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of RF coil elements increases, so does the prototyping cost

of the array. For this reason, electromagnetic (EM) simu-

lations8-11 are often used to optimize coil designs before

building prototypes. However, despite the use of parallel

computing12 and GPU programming,13 these simulations

remain time consuming, which makes a thorough opti-

mization of complex designs challenging.14-16

It was shown that ideal current patterns (ICP)2,17,18

can provide valuable physical insight to guide a tenta-

tive initial coil design, which can then be optimized more

effectively in simulation. ICP confirmed the near opti-

mality of traditional coil designs for low-field MRI but

suggested that novel designs might be needed to approach

the ultimate intrinsic performance atUHF.2,4 For example,

ICP results inspired the use of electric dipoles, tradition-

ally discounted because they were considered too lossy

for MRI, for UHF head and body imaging.19-22 Initial

work on ICP was based on analytical methods, so it was

limited to homogeneous spherical and cylindrical geome-

tries.2,23 More recent work24 employed EM bases compris-

ing vector spherical harmonics on spherical or cylindrical

shells2 to determine the optimal SNR in heterogeneous

head models. However, this approach is limited to spher-

ical and cylindrical surface shells compatible with the

vector spherical harmonics basis, which prevents investi-

gating other more realistic coil formers as basis support

to study ICP. Finally, another recent study suggested that

the shape of the ICP dependsmainly on the topology of the

current-bearing surface, rather than the geometry of the

sample.18 In order to confirm such a hypothesis, and also

to provide a practical tool for RF coil design and perfor-

mance assessment, in this work, we introduce a method

to calculate ICP associated with optimal SNR in realis-

tic heterogeneous human head models, using volume25

and volume-surface10 integral equation (VIE, VSIE) meth-

ods. Numerical methods to calculate the optimal SNR in

heterogeneous head models were proposed in previous

studies,26,27 whereas this work focuses on deriving the cor-

responding ICP. A preliminary version of this work was

presented at the 2019 meeting of the International Society

for Magnetic Resonance in Medicine.28

2 THEORY

2.1 Volume integral equation

The Galerkin29 discretized current-based VIE25,30-32 can

approximate the electric polarization currents jb ∈ Cqn×1

in tissue over a uniform grid of n voxels, as a polynomial

of q components per voxel. The equation has the following

form: (
M�r

G −M�e
N
)
jb = ceM�e

einc. (1)

Here M�r
,M�e

∈ Cqn×qn are diagonal matrices whose

entries are equal to the complex-valued permittivity and

electric susceptibility, respectively, associated with each

voxel. ce = i��0, where i is the imaginary unit, � is the

angular frequency, and �0 is the permittivity of vacuum.

G ∈ Cqn×qn is the Grammian,N ∈ Cqn×qn is the discretized

version of the dyadic Green’s function operator that maps

volumetric electric currents to electric fields,33,34 and

einc ∈ Cqn×1 is the excitation or incident electric field from

an external source. The electric field e ∈ Cqn×1 and mag-

netic field h ∈ Cqn×1 in the sample can be computed as

follows:

e = G−1

(
1

ce
(N − I)jb + einc

)
,

h = G−1
(
Kjb + hinc

)
, (2)

where hinc ∈ Cqn×1 is the incident magnetic field from

an external source and K ∈ Cqn×qn is the discretized ver-

sion of the dyadic Green’s function operator that maps

volumetric electric currents to magnetic fields.33,34

2.2 Volume-surface integral equation

In an MRI setup, the external source is a transmit RF coil,

which delivers EM fields to the tissue-sample. Therefore,

given a vector of electric coil currents jc ∈ Cm×1 defined for

each of them discretization triangular elements of the coil,

one can compute the incident fields as follows:

einc = Z
cb
jc, hinc = Z

cbjc. (3)

Z
cb
,Z

cb ∈ Cqn×m are the discretized dyadic Green’s func-

tion operators that map surface electric currents to elec-

tric and magnetic fields, respectively.27,35 The electric coil

currents can be computed simultaneously with the body

polarization currents through the solution of the VSIE as

in.35,36

2.3 Optimal SNR

The intrinsic SNR at a position of interest r0 accounts

only for the intrinsic thermal losses due to the conductive

sample and can be expressed according to37 as:

SNR(r0) =
�M0B

(−)

1 (r0)
√
4kBT∫∫∫

V ′

[
�e(r′)|e(r′)|2

]
d3r′

. (4)

Here, r′ ∈ Rn×3 is the position vector, � is the angular

operating frequency,M0 is the equilibriummagnetization,
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B(−)

1 ∈ Cn×1
(
= hx − ihy

)
is the receive coil sensitivity, kB is

the Boltzmann’s constant, �e ∈ Rn×1 is electric conductiv-

ity of the sample, and T is the average temperature of the

sample. The triple integration in the denominator of (4) is

over the entire volume (V ′) of the sample.

In the case of coil arrays with p elements, the equation

(4) can be written as:

SNR(r0) =
�M0B

(−)

1 (r0)w
√
4kBTwH�w

, (5)

where B(−)

1 is now a matrix ∈ Cn×p whose number of

columns corresponds to the number of coils andw ∈ Cp×1

are the weights used to combine individual coils contribu-

tions. The elements of the noise covariance matrix38 Ψ ∈

Rp×p that accounts for the intrinsic thermal losses due to

the sample’s conductivity can be computed for each coil

pair p1, p2 as:

�p1,p2 = ∫ ∫ ∫
V ′

[
�e
(
r′
)
eHp2

(
r′
)
ep1

(
r′
)]
dr′3. (6)

The coil combination weights that yield the optimal SNR

are given by39,40:

w =
[
B(−)

1

H
(r0)�

−1B(−)

1 (r0)
]−1

B(−)

1

H
(r0)�

−1. (7)

By substituting (6) and (7) into (5), the optimal SNR at r041

can be expressed as

SNRopt(r0) =
�M0√

4kBT
[
B(−)

1 (r0)�
−1B(−)

1

H
(r0)

]−1
. (8)

2.4 Ultimate intrinsic SNR and ICP

Given Equation (3) we can construct a basis of incident

EM fields by assembling the discretized Green’s function

operators Z
cb
and Z

cb between a sample and a closed sur-

face that surrounds it. The surface must be located outside

the sample to obey the Huygens–Fresnel principle,42 so

that all possible EM field distributions within the sample

generated from RF sources external to the surface can be

accurately represented.

Z
cb can be compressed and orthogonalized using a

truncated singular value decomposition (SVD)27 as fol-

lows:

Z
cb ≈ U�VH

U = Z
cb
V�−1 . (9)

Here, U and U are bases of electric and magnetic

incident fields consistent with electrodynamics princi-

ples.43 � is a diagonal matrix containing the singular

values ofZ
cb up to the predefined tolerance of the SVD. The

columns of V are the right singular vectors of Z
cb.

After the two bases are constructed, the VIE (1) can

be rapidly solved,13,44 using each column ofU ,U as an
excitation, to compute an EM basis of e and h fields in the

sample. The combination weights (7) and the associated

optimal SNR (8) can be computed at any voxel of interest

in postprocessing using the e and h fields.

As we increase the number of columns of U and

U we include additional excitation modes in the EM

basis. As the number of modes increases, the value of

the optimal SNR (8) will converge to a maximum bound-

ing value, which depends on the geometry of the surface

where the sources are defined. In particular, if the surface

is closed and fully surrounds the sample, then the SNR

will converge to its ultimate intrinsic upper bound called

UISNR,23,40,41,45 which is the theoretical maximum limit of

achievable SNR for the particular sample. By combining

the excitations using theweights in (7)we can approximate

the incident fields that lead to such maximum SNR val-

ues at r0 as einc = Uw and hinc = Uw. Finally, the ICP
on the current-bearing surface of choice can be computed

based on (3) and (9) as

jideal(r) ≈ V�−1 w. (10)

Note that Equation (10) refers to the complex spatial pat-

tern of ICP at time t = 0. In order to visualize the evolution

of the ICP in timewe can perform the following spatiotem-

poral conversion:

̂jideal(r, t) = Re
(
jideal(r)e

i�t
)
, (11)

where i is the imaginary unit and r is the position in

the current-bearing surface. Note that the ICP yield the

UISNR only if defined on a closed surface surrounding

the sample, as in Figure 1A. For all other current-bearing

surfaces in Figure 1, the ICP correspond to the largest

SNR theoretically achievable by any coil defined on such

formers.

3 METHODS

3.1 Numerical samples

We calculated ICP associated with optimal SNR inside the

head of the realistic Duke human model from the virtual

family.46 The distribution of relative permittivity and elec-

tric conductivity inside the head model at 7T is shown in
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F IGURE 1 Geometry of the ultimate (A), the bell-shaped (B),

the helmet-shaped (C), the cylindrical (D), and the spherical (E)

current-bearing surfaces. The surface surrounded a realistic head

model (Duke), with the ultimate one being the only closed surface

and having the minimum distance from the sample.

Figure S1. The computational domain enclosing the head

model was 18.5 × 23 × 22.5 cm3 and was discretized over a

uniform grid of 5 mm3 voxel resolution, corresponding to

38 × 47 × 46 voxels.

For validation, we qualitatively compared the ICP cal-

culated with our proposed numerical method and with

an analytic method2 for the case of a uniform spherical

sample with relative permittivity 50 and conductivity 0.4

S/m (resembling average brain electrical properties). The

sphere had a 10-cm radius and was discretized over a

uniform grid of 5 mm3 voxel resolution.

3.2 Currents-bearing surfaces

We generated an ultimate basis that fully captures the

UISNR in Duke’s head based on the Huygens–Fresnel

principle.42 In particular, we defined our ultimate EM

basis (9) on a Hugyens’ surface fully surrounding the

head43 (Figure 1A), which we constructed by expand-

ing the isosurface of the sample by approximately 2 cm.

The ultimate basis was discretized with 7254 triangular

elements. We also modeled the surface of three realistic

receive RF coil array formers and generated their respec-

tive EM bases. The first former6 resembled a bell struc-

ture (Figure 1B) with height 29 cm and radius 13 cm.

8870 triangular elements were used for its discretization.

The second former47,48 resembled a helmet-shaped surface

(Figure 1C). The helmet was constructed by expanding the

isosurface of the Duke’s head by approximately 3 cm and

forcing a symmetry along the y-axis. 5212 triangular ele-

ments were needed for its discretization. The third former

resembled what is normally used for birdcage49 and other

volume coil designs.50 We modeled it as an open cylindri-

cal surface (Figure 1D) of length 29 cm and radius 13 cm,

using 8824 triangular elements for discretization.

For the case of the spherical sample, since the ana-

lytical solution requires an enclosing spherical surface

concentric with the sample, we designed a spherical shell

(Figure S2) of radius 13 cm, discretized it with 8464 tri-

angular elements, and generated the EM basis. We used

the same average triangle edge size of 8 mm for the dis-

cretization of all current-bearing surfaces, and all studied

MR frequencies.

3.3 RF coil models

Wemodeled single loops of three radii (4.15 cm, 3.1125 cm,

and 2.075 cm) (Figure 2 top) and three corresponding sur-

face quadrature configurations, with a loop positioned at

the center of a figure-eight coil (Figure 2 bottom) and com-

pared their SNR for different voxel positions against the

corresponding UISNR. The conductor width was 0.3 cm

for all cases. The coils were placed close to the helmet for-

mer (positioned on the exterior of the surface (Figure S3),

and, in each case, their position was chosen based on the

shape of the ICP for the voxel of interest (4.3). We used

the VSIE to compute the SNR. The loops were segmented

with one (1.5T, 3 T) or seven (7 T) capacitors for tuning

and one capacitor connected in parallel to the feeding port

for matching. We assumed ideal decoupling between the

three loops of the array. The coils were discretizedwith ele-

ments of the same resolution as the basis surfaces, yielding

102, 88, and 72, elements per loop of radius 4.15, 3.1125,

and 2.075 cm, respectively.

3.4 Simulation settings

All simulations were performed on a server running

Ubuntu 20.04.2 LTS operating system, with an Intel(R)

Xeon(R) Gold 6248R CPU at 2.70GHz, 112 cores, 2 threads

per core, and an NVIDIA A100 PCIe GPU with 40GB of

memory. We used our custom integral equation methods

which borrow some routines from the open-source soft-

ware MARIE.10 The VIE was solved with the aid of the

higher-order singular value decomposition (HOSVD),13

and the VSIE with the aid of the precorrected fast Fourier
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F IGURE 2 Geometry of the single loops (top) and three-element arrays (bottom) relative to the head model. The loop radius is

decreasing from left to right.

transform.51 Both integral equations were solved with the

generalized minimal residual algorithm (GMRES)52 and

tolerance 1e − 5. HOSVD’s tolerance was set to 1e − 7. We

used a truncated SVD of 1e − 3 tolerance to construct the

EM bases for the heterogeneous samples and 1e − 2 for

the homogeneous ones. In order to achieve high accuracy

for the calculated fields,34 for the simulations involving

heterogeneous samples we used first-order polynomials to

approximate the polarization currents, thus, 12 unknowns

per voxel. For the simulations that involved homogeneous

samples, we used zeroth-order polynomials (3 unknowns

per voxel). The coil models were tuned and matched

using the optimization method presented in Reference

53. Finally, the surface currents were approximated over

the triangular discretization using the well-established

Rao–Wilton–Glisson (RWG) basis functions.54

4 RESULTS

4.1 Validation against the analytic
solution

Figure 3 compares the numerical ICP, obtained with

our proposed method, and analytical ICP, obtained

with a complete basis of spherical harmonics,2 for the

central voxel of a tissue-mimicking dielectric sphere.

The simulations were performed at 7 tesla Larmor

frequency. The ICP look the same in both cases, forming

two large distributed current loops that precess around the

z-axis. Figures S4 and S5 compare the same simulation

for 1.5 and 3 T frequencies, and present high similarity

between the analytic and the numerical method as well.

4.2 Effect of former topology
on the optimal SNR

In Figure 4, we compare the spatial distribution of the

optimal SNR at 7 T for the central planes and additional

representative axial plane of Duke for the four different

formers: ultimate, bell, helmet, and cylinder. The num-

ber of basis vectors (modes) to achieve a 1e − 3 singular

value drop in the SVD of (9) was not equal for all cases

(Figure S6) and depended on the geometry of the basis

former. In particular, 3149, 761, 855, and 585 modes were

needed for the ultimate, bell, helmet, and cylindrical bases,

respectively, to reach the desired tolerance. The time foot-

print to compute the SVD in (9) was approximately 38, 47,

21, and 51 min, while the weights in (7) were computed in

approximately 520, 125, 140, and 95 min for the ultimate,

bell, helmet, and cylindrical formers, respectively.

In Figure 5, we compare the slope of the optimal

SNR for the four formers as the number of basis modes
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F IGURE 3 Ideal current patterns (ICP) on the spherical shell

computed numerically with the proposed approach (top) and

analytically using a complete basis of spherical harmonics (bottom)

for a voxel located at the center of a homogeneous dielectric sphere

and 7 T. Both current patterns form two large distributed current

loops precessing around the sphere. The first row corresponds to

ICP at �t = 0, while the second row presents them after a �t = �∕2

time delay. The spherical sample is omitted from the figure, and

instead, the surface shell is shown in gray for visual aid.

increases. The convergence (slope approaching zero) is

shown for four voxels in the central sagittal slice of Duke.

To generate the plots in Figure 5, we evaluated the opti-

mal SNR for each basis by increasing the number ofmodes

until reaching the 1e − 3 singular drop in the SVD of (9).

The largest SNR associated with the realistic coil formers

is presented as a percentage of theUISNR in Table 1 for the

four voxels of interest.

4.3 Simulated ICP

Figure 6 shows a temporal snapshot of the ICP that yielded

optimal SNR for the intermediate voxel at 7 T (Results

for the bottom, middle, and top voxels are presented in

Figures S7, S8, and S9, respectively. For all current-bearing

surfaces, the ICP formed two distributed figure-eight

loops. Smaller loops formed by currents of lower inten-

sity were present for the cylindrical basis. In Figure 7, we

present the time evolution (four time-points) of the ICP for

the helmet former for 1.5, 3, and 7 T. As expected in sur-

face quadrature reception,2 the dominant component of

F IGURE 4 Comparison of the ultimate intrinsic

signal-to-noise ratio (SNR) with the largest SNR achieved with the

various formers. Maps are in logarithmic scale and arbitrary units

for the central sections (Sagittal, Coronal, and Axial #1) of the head

model and an additional representative axial slice (Axial #2). Note

that in most regions, the SNR is almost identical for all cases.

the ICP alternated between a butterfly configuration and a

single-loop every �∕(2�) and shift direction every �∕�.

4.4 RF coil simulations

Table 2 presents the percentage of the UISNR at the inter-

mediate voxel of the head model for 1.5, 3, and 7 T Larmor

frequency and three loop radii, for all coil configurations.

The percentage drops for larger loop radii and larger field

strengths. For all cases, the absolute performance of the

surface quadrature array inspired by the ICP in Figure 7

was approximately 1.6 times larger than the single loop

performance for the intermediate voxel. Absolute perfor-

mance maps for all coil configurations are presented for

the central sagittal slice of Duke in Figure 8.

5 DISCUSSION

The aim of this work was to introduce a new method

to calculate the ICP that yield optimal SNR in heteroge-

neous realistic anatomical models. The use of numerical

EM bases27 allowed the computation of a set of incident

EM fields generated from electric currents sources defined

on a surface surrounding the sample. We used a fast13
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F IGURE 5 Convergence of the signal-to-noise ratio (SNR) expressed as its numerical derivative with respect to the number of modes

for 7 T MR frequency. The SNR grew rapidly at the beginning and converged monotonically to the optimal value for all formers and voxel

locations. The oscillations at the beginning of the curves reflect changes in the rate of convergence. For visual clarity we present the

corresponding voxel location inside the ultimate intrinsic signal-to-noise ratio map.

TABLE 1 Percentage of the ultimate intrinsic signal-to-

noise ratio (SNR) achieved by the largest SNR achievable using

the realistic coil formers, for the middle, top, bottom, and

intermediate (3 cm deep in the sample’s cortex) voxels in the head.

Coil former /

Voxel Middle Top Bottom Intermediate

Bell 98% 93% 44% 100%

Helmet 96% 97% 31% 99%

Cylinder 98% 63% 44% 99%

Note: All values are rounded to the nearest integer above its current value.

and accurate34 VIE solver (1) to estimate the correspond-

ing total electric and magnetic field inside the sample (2).

The combination weights (7) that yield optimal SNR for

a voxel of interest were then used also to calculate the

associated ICP.

Our approach requires the setting of three tolerances

for the HOSVD, GMRES, and SVD. Based on previous

work on the VIE method,30,34 a 1e − 5 GMRES tolerance

is expected to be enough to generate accurate results. To

avoid false convergence of GMRES, its tolerance must be

set at least one to two orders of magnitude lower than

the tolerance of the HOSVD, otherwise erroneous numer-

ical digits will be fitted in its solution. A lower toler-

ance for SVD than GMRES would result in an inaccurate

estimation of the effect of the incident fields on the

sample, leading to erroneous total fields. The tolerance of

the SVD determines not only the accuracy of the com-

pressed representation of the incident EM fields but also

the number of basis modes. In fact, in our numerical

approach, the number of modes is essentially the rank of

Z
cb up to the predefined SVD tolerance, which is directly

related to the distance between the discretization ele-

ments,55 which in our case was the distance between the

triangular elements of the surface shell and the voxels

of the sample. Rather than fixing the number of modes,

which could have become computationally intractable, in

this work, we decided to fix the SVD tolerance, which

allowed us to have a fair comparison of the optimal SNR

values between the different cases.

We validated the ICP calculated with our proposed

numerical method against the analytical solution for a

dielectric sphere. Despite the unavoidable staircase effect

when discretizing a curved surface and the numerical inte-

gration errors introduced in the construction of Z
cb and

Z
cb
, the ICP based on our new approach qualitatively

matched the analytic ICP (Figure 3). A direct quantita-

tive comparison between the analytical and numerical

currents is not practical due to the discrete nature of

the numerical currents plotted over a discretized surface,

which may result in different locations compared to the
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F IGURE 6 A temporal snapshot of the ideal current patterns

yielding optimal signal-to-noise ratio at a voxel located in the back

of the head for the (A) ultimate, (B) bell, (C) helmet, and (D)

cylinder formers at 7 T.

analytically calculated currents. Nevertheless, the discrep-

ancies between the two cases are primarily associated with

the numerical error between volume integral equations

and vector spherical harmonics (Mie theory), which has

been extensively studied in the literature.34

In addition to the ultimate surface that yielded the true

UISNR (an absolute performance benchmark), we used

three surfaces that resembled realistic coil formers to eval-

uate the shape of the ICP and the value of the associated

optimal SNRwith respect to the ultimate case. To construct

the bases, we used a relatively high SVD tolerance (1e − 3)

because a lower one would lead to a large number of basis

modes, resulting in possible memory overflows, or numer-

ical instabilities in GMRES’ convergence. For the ultimate

basis support that tightly fitted the head model and fully

enclosed it, this threshold resulted in approximately 3100

modes. For all other bases less than 860 mode were suffi-

cient to achieve this threshold (Figure S6), which explains

the truncated lines appearing in Figure 5.

For the intermediate voxel (Figure 5), the SNR con-

verged closely to the UISNR for all surfaces. According to

Table 1, for the middle voxel, the basis of the helmet for-

mer achieved a slightly lower SNR than the ultimate case.

This happened because the helmet does not fully surround

the sample (Figure 1), so the respective EM basis cannot

fully capture all possible EM fields in contrast to the other

formers. A similar pattern was found for the cylinder

basis and the top voxel since the top area of the head

is not covered by the cylindrical surface. For the bottom

voxel, the bell, helmet, and cylinder formers all achieved

lower values than the UISNR, since they do not cover

the bottom area of the sample. Overall, the SNR conver-

gence (Figure 5) was slower for voxels placed close to

the surface rather than deep inside the sample. In par-

ticular, the derivative of the SNR required more modes

to reach zero for the top and bottom voxels than for the

intermediate andmiddle voxels. This finding was in agree-

mentwith previouswork that showed similar convergence

trends.40,56 Note that convergence of the UISNR at super-

ficial locations could be more easily obtained by moving

the current-bearing former farther away from the sample.

In fact, this would reduce the number of modes needed

for convergence. However, the shape of the ICP would

change.17 Since we were interested in the shape of ICP

for realistic coil formers rather than the exact value of the

UISNR at every location, in this work, we chose not to

increase the distance between the surface and the sample.

In fact, a perfect convergence at the surface of the body is

not critical to achieve qualitatively correct ICP shapes.

As in the case of spherical objects,2 for a voxel in an

intermediate region of the sample (3 cm deep in the sam-

ple’s cortex), the ICP overall resembled a surface quadra-

ture coil.57 In particular, they alternated in time between

a figure-eight and a single loop (Figure 7). This was the

case for all formers, although the shape and size of the

ICP slightly changed based on the former. This confirms

the hypothesis formulated in Reference 18 that the shape

of the ICP mainly depends on the topology of the former,

rather than the geometry of the sample.

We designed arrays combining a loop with a

figure-eight coil in Figure S3 on top of the helmet former

based on the shape of the ICP in Figure 6 and com-

pared the resulting SNR with that achieved by using just

a loop. As reported also in previous work based on an

analytic method,2 we found that the SNR performance

increased with the surface quadrature array57 and specif-

ically was around 1.6 times higher than for the single

loop for all studied radii and Larmor frequencies. The

SNR performance in the intermediate voxel decreased for

loops of larger radius. In fact for an 1.5× increase in the

loop’s radius, starting from approximately 2 cm, the SNR

dropped approximately 2%, 3%, 2% for the single loop and

approximately 1%, 1.5%, and 0.5% for the three-loop con-

figuration at 1.5, 3, and 7 T, respectively. A 2× increase

in the radius led to a approximately 7%, 7%, and 5% SNR

drop for the single loop and a 6%, 7%, and 5% drop for the

three-loop array at 1.5, 3, and 7 T, respectively. To ensure

a fair comparison between the coil SNR and the UISNR,
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F IGURE 7 Temporal snapshots of the ideal current patterns yielding optimal signal-to-noise ratio at a voxel in the back of the head for

the helmet former at 1.5, 3, and 7 T. Four time-points are shown with equal time differences �(�t) = �∕2.

TABLE 2 Percentage of the ultimate intrinsic signal-to-noise

ratio (SNR) achieved by the coil configurations for the

intermediate voxel in the head.

Coil configuration

Loop

radius (cm) 1.5 T 3 T 7 T

Single loop 4.15 51.5% 48.4% 44.7%

3.1125 55.6% 52.5% 47.6%

2.075 58.7% 55.7% 49.8%

Surface Quadrature 4.15 85.1% 80.6% 75.1%

3.1125 90.0% 85.8% 79.2%

2.075 91.2% 87.5% 79.7%

Note: The SNR drops with higher field strengths and with larger loop radius.

we used the same resolution for the discretization mesh

of the basis surface and the coil conductors, since finer

or coarser meshes could lead to underestimation or over-

estimation of the SNR, respectively. While the radius of

the loop affects SNR performance, Figure 6 shows that

the ICP are complex, distributed current patterns, there-

fore adjusting the loop radius by qualitatively observing

the ICP is not sufficient to thoroughly optimize coil design.

In fact, ICP can provide insight about the number, size,

type and position of the coils, but to design a coil that

closely resembles the ICP and can capture the UISNR per-

formance would require a sophisticated coil optimization

process that accounts for the coils’ position, radius, and

conductor width. This is beyond the scope of this paper

and will be the subject of future work.

Previous approaches to calculate the UISNR in het-

erogeneous human models were based on expanding the

EM basis using dipole clouds surrounding the object.26,27

In these cases, the calculation of the ICP is not straight-

forward and requires nontrivial postprocessing steps in

order to project the current patterns to the surface of

interest. Here, we used RWG functions, which facilitate

the visualization of the ICP, although our approach is

still different than what is used in analytic methods.2 In

particular, we do not solve a surface integral equation

to compute the coefficients that would optimally com-

bine the RWG basis functions, but instead, we solve the

VIE using external excitations and then use the RWG

functions as projections of the incident fields back to

the current-bearing surface. As a result, the SVD in (9)

forms a nonlinear relation between the EM basis and the
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F IGURE 8 Performance maps of the single loop (top)

and the three-loop array configuration (bottom), for three

loop radii, in Figure 2, displaying their signal-to-noise ratio (SNR)

as a percentage of the ultimate intrinsic signal-to-noise ratio for the

central sagittal plane at 1.5, 3, and 7 T. The SNR performance is

higher for the array and for smaller loop radii. It also decreases for

all cases at higher magnetic field strengths. The dotted white line

contours the area with tissue voxels.

size of the triangular elements since the RWG functions

depend on the triangular element’s size, which is not con-

stant throughout the mesh. This can lead to nonsmooth

current patterns (somehow evident in Figure 6) because

the currents are not properly normalized based on the

triangle’s size. In future work, we plan to use curvilin-

ear triangular elements and the higher order interpola-

tory vector basis Graglia–Wilton–Peterson.58 We expect

that Graglia–Wilton–Peterson could allow for a better dis-

cretization of the curved surfaces, resulting inmesheswith

almost equal-sized elements, which would enhance the

visualization of the ICP.

The computational methods presented in this work

are constrained by memory limitations. In particular,

the assembly of Z
cb

and Z
cb, for the basis genera-

tion in Equation (9), has a vast memory footprint, that

can reach the TB range for fine voxel resolutions or

low SVD tolerances. One solution could be to com-

press these matrices by exploiting their hidden low-rank

structures. In fact, their columns could be reshaped as

three-dimensional tensors (due to the three-dimensional

uniform grid that was used for the discretization of the

sample) that can be significantly compressed with the

HOSVD.59,60 As a result, Z
cb
and Z

cb would be reshaped

as four-dimensional tensors that can be compressed with

the HOSVD or tensor train-SVD.61,62 This approach would

reduce the memory demands by thousands of times com-

pared to the traditional SVD in (9). However, it can-

not be employed directly with the method introduced

in this work. In fact, to ensure the orthogonality of

the incident fields inside the sample, we applied the

traditional SVD only on the voxels that belong to the

sample and not to the entire three-dimensional domain

that encloses it. Therefore, Z
cb
and Z

cb have an incom-

plete four-dimensional structure and HOSVD or tensor

train-SVD are not applicable. To address this, future

work will investigate the compression of such incom-

plete four-dimensional structures using tensor completion

schemes.63

6 CONCLUSION

We introduced a new computational method to calculate

ICP associatedwith optimal SNR in any sample and for any

current-bearing surface of interest. We demonstrated our

method for the case of a heterogeneous head model, pre-

senting ICP associatedwith different surfaces and showing

that they can qualitatively guide coil design. ICP could

become a valuable tool to investigate novel coil designs

since they provide physical insights into optimal coils’

shape and geometrical arrangement. Furthermore, they

could be used as benchmarks for coil shape optimization

algorithms.64
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Figure S1. (left to right) Relative permittivity and elec-

tric conductivity for the middle sagittal head section of the

numerical human model Duke.

Figure S2. Geometry of the spherical surface which sur-

rounded a homogeneous spherical sample.

Figure S3. Geometry of the surface quadrature array next

to the helmet former. The loops were placed outside the

helmet former and as close as possible to its surface.

Figure S4. ICP on the spherical shell computed numer-

ically with the proposed approach (top) and analytically

using a complete basis of spherical harmonics (bottom)

for a voxel located at the center of a homogeneous dielec-

tric sphere for 1:5 T MRI frequency. Both current pat-

terns form two large distributed current loops precessing

around the sphere. The first row corresponds to ICP at

�t = 0, while the second row presents them after a �t =

�∕2 time delay. The spherical sample is omitted from the

figure, and instead, the surface shell is shown in gray for

visual aid.

Figure S5. ICP on the spherical shell computed numer-

ically with the proposed approach (top) and analytically

using a complete basis of spherical harmonics (bottom)

for a voxel located at the center of a homogeneous dielec-

tric sphere for 3 T MRI frequency. Both current patterns

form two large distributed current loops precessing around

the sphere. The first row corresponds to ICP at �t = 0,

while the second row presents them after a �t = �∕2 time

delay. The spherical sample is omitted from the figure, and

instead, the surface shell is shown in gray for visual aid.

Figure S6. Drop of the singular values of Z
cb for the four

bases.

Figure S7. A temporal snapshot of the ICP yielding opti-

mal SNR at a voxel located in the bottom part of the head

for the (A) ultimate, (B) bell, (C) helmet, and (D) cylinder

formers at 7 T.

Figure S8. A temporal snapshot of the ICP yielding opti-

mal SNR at a voxel located in themiddle of the head for the

(A) ultimate, (B) bell, (C) helmet, and (D) cylinder formers

at 7 T.

Figure S9. A temporal snapshot of the ICP yielding opti-

mal SNR at a voxel located in the top area of the head

for the (A) ultimate, (B) bell, (C) helmet, and (D) cylinder

formers at 7 T.
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