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deposition hotspots. Recent work demonstrated that the

use of HPM placed between the RF coils and the patient

can improve image SNR in reception and reduce the spe-

cific RF energy absorption rate (SAR) in transmission.5–11

This effect has been traditionally explained as the result of

auxiliary fields produced in the tissue by the displacement

currents in the dielectric material. Such interpretation is

only partial and does not provide a comprehensive physi-

cal insight on the phenomenon. For example, it does not

explain why the beneficial effect of HPM takes place only

for selected permittivity values and neither clarifies the

role of the HPM thickness in the propagation of the RF

field.

In a recent paper,12 an analytical model was proposed

to interpret the effect of HPM on the RF field propaga-

tion in spherical dielectric samples. This approach, based

on a reformulation of the classical Mie scattering,13 allows

one to describe the scattering properties of layered spheres

in terms of standard engineering concepts, overcoming

some misconceptions about the effect of HPM on field

propagation.

In this paper, we extend the theoretical work presented

in12 to the case of cylindrical samples, which are often

used in simulations as an approximated geometry for the

human body and extremities.14–16

In Section 2, we present the theory that supports our

work. We reformulate the classical scattering from cylin-

drical samples,18–25 which dates back to the seminal work

of Lord Rayleigh17 in 1881. In such classical formulation,

the electromagnetic (EM) fields are expressed as a super-

position of separable vector harmonics. The radial depen-

dence inside the sample is defined bymeans of Bessel func-

tions and, to ensure that the EM field is finite at the origin

of the coordinate system, only Bessel functions of the first

kind are used to describe the radial dependence inside the

cylinder. Outside the cylinder, the EM field is typically

defined with a combination of stationary first kind and

progressive fourth kind Bessel functions. The closed form

solutions for the EM field obtainedwith this approach pre-

vent an easy interpretation of the results, mainly because

scattered and transmitted field coefficients are expressed

as the ratio between traveling and stationary waves.

To address this, we express both the EM fields out-

side and inside the scatterer as a sum of inward (or inci-

dent) and outward (or reflected) traveling waves. This field

decomposition enables us to define the field coefficients

as reflection coefficients that are defined as ratios between

traveling regressive and progressive waves, which has a

consolidated engineering meaning.

In Section 3, we describe an application where the

developed framework is used to model the case of an HPM

layer surrounding a tissue-mimicking cylindrical sample.

This case is of interest in MRI, as well as in many other

areas that deal with the scattering from a coated cylin-

der. We present a study on the effect of the HPM on the

first modes of the field expansion, with the goal to show

how the relative permittivity and thickness of the HPM

layer can be used to control the EM field propagation.

In Section 3, we discuss the results, whereas Section 4 is

dedicated to the concluding remarks.

2 METHODS

In this section, we describe the analytical model adopted

for this work. As in previous work for spherical geome-

tries,12 our goal is towrite theEM field coefficients in terms

of reflection coefficients between traveling waves.

2.1 Field expansion

Let us consider a layered infinite cylinder with an arbi-

trary number of layers. Figure 1 shows a schematic and the

cross-section for the case of a two-layer cylinder in air and

defines the cylindrical reference system (�, z, �). In each

medium, the total field is expressed as the superposition

of inward and outward waves, which is described as the

superposition of the cylindrical harmonicsMn andNn
18,19:
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Here, k is the wavenumber, and Bn are Bessel functions

that can be chosen according to the physical problem at

hand.

Since the Mn and Nn vectors are orthogonal to each

other and, as shown in Eq. (1), the evaluation of the EM

field can be separated in two independent problems for

the transverse electric (TE) and transverse magnetic (TM)

field. For the sake of brevity, in this paper we present the

formulation for the TE field. The case of the TM field can

be derived with an analogous procedure.

With an appropriate choice of the reference system (see

Figure 1A), we can make the TE electric field point only
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F IGURE 1 (A) Geometrical representation of the scattering

problem. (B) Cross-section of the layered cylinder. The field in each

medium is expressed as the combination of inward and outward

waves.

in the �̂ direction. With this choice, the TE magnetic field

exists only in the plane (�, z). In the l-th medium, the TE

field can be written as:

El(r) =
∞∑
n=0

(
E+
nl
M(3)

n +E−
nl
M(4)

n

)
(3a)
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The superscripts(3) and(4) appended to the vector har-

monics indicate the kind of the Bessel functions used for

the description of the radial dependence of the field. In

our approach, in analogy with,12 we keep the distinction

between inward (described byHankel functions of the first

kind and represented by the superscript(3) in Eq. 1) and

outward (described byHankel functions of the secondkind

and represented by the superscript(4) in Eq. 1) waves in

every medium and we fulfill the energy conservation prin-

ciple by forcing the equality of their field coefficients inside

the sample, so that the field does not diverge at the axis

of symmetry of the cylinder. The fields in adjacent layers

are linked by the continuity conditions, which allow us to

calculate the coefficients of the series expansion in Eq. (3).

Within this framework, the energy carried by the ingo-

ing wave is entirely transferred to an outward cylindrical

wave, so that the energy conservation principle is fulfilled.

It was demonstrated in13 that this physical phenomenon

can be described by a reflection coefficient at the origin

equal to −1. Therefore, in the transmission line model,

we can conceptualize the line as if closed with a short

circuit, therefore working as a perfect reflector. This pro-

cess transforms the incoming wave energy into outgoing

energy. This abstraction enables the description of field

propagation as an equivalent TL model terminated with a

short circuit, allowing the derivation of useful formula for

impedance transfer.

2.2 Characteristic impedance

Generally speaking, the wave impedance is defined as the

ratio between the transverse components of electric and

magnetic fields. In the cylindrical case, the discontinuity

is in the (z, �) plane, so we can define the impedance as

the ratio between the tangential components E� andHz to

the cylindrical surface. From the definition ofMn and Nn

in Eqs. (1) and (2), for inward, outward, and stationary TE

waves, the impedances of the n-th mode at each layer l can

be expressed as:
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(
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) (4)

where the term Ḃn represents the derivative of the Bessel

function with respect to its argument and n is the order of

the Bessel function.

In Table 1, the different expressions that Eq. (4) can

take for different Bessel functions are provided. The last

column shows a compact expression that will be used in

the remainder of the paper.

2.3 Field expression: Traveling form

Eq. (1) shows that the cylindrical harmonics are separable,

which allowed us to focus only on the radial dependence

of the coefficients.
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TABLE 1 Definitions of the different wave impedances (in the same way proposed in Ruello and Lattanzi13).

Bessel function Impedance expression Impedance symbol Compact expression
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In analogy with Ruello and Lattanzi,12 the tangential

(to the cylinder) components E� and Hz of the n-th mode

of the EM field in the l-th medium are here named Enl and

Hnl and expressed as:
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whereH(1)′

n andH(2)′

n represent the derivatives of the Bessel

functions H(1)
n and H(2)

n , respectively, with respect to �. By

defining the reflection coefficient for the electric field as

the ratio between the outward and the inward waves:
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we can write the fields in a more compact form:
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The impedance of the total field can be expressed as

a function of the reflection coefficient by taking the ratio

between the electric and magnetic field in Eq. (7):
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where the term R has been defined as R = Znl∕Zni.

By inversion of Eq. (8), it is straightforward to obtain

the reflection coefficient in terms of the impedance as:
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As in the spherical case, Eq. (7) provides a straight-

forward physical interpretation of the field propagation

through the cylinder layers. In fact, the electric field is

expressed as the product between the term 1 + Γn(kir),

which describes the interference between progressive and

regressive waves, and the termH(1)′

n

(
k�l�

)
, which accounts

for the radial distribution of the energy typically expressed

using Bessel functions. Analogous interpretation can be

obtained for the magnetic field.

2.4 Field expression: Stationary form

The Hankel functions of the first and second kind can be

expressed in terms of stationary Bessel functions as:
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Then, the EM field can bewritten in stationary form as:
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The corresponding impedance in the l-th medium can

be calculated, for each mode, as the ratio between electric

andmagnetic fields. It is possible to show,with simple ana-

lytical calculations, that the impedance along the layers of

cylinder, in analogy with the transmission line theory, can

be evaluated as:
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Eq. (12) allows us to evaluate the impedance in any

medium and, in the case of layered cylinders, it allows us

to evaluate the resonant modes with a simple impedance

transfer, as it will be shown in the following sections.

3 RESULTS

The non-uniform transmission line model introduced in

Section 2 allows us to study the RF field propagation in

a layered cylinder. In MRI, a layer of HPM can be placed

between the coil and the sample tomanipulate theB1mag-

netic field of the coil. As an example, in this section, we

investigate how the value of the HPM permittivity affects

the field propagating froman external source in a two-layer

cylinder. We used the geometry in Figure 1, where the

inner medium (characterized by permittivity 	3 = 	r3	0) is

surrounded by a layer of HPM (characterized by permit-

tivity 	2 = 	r2	0). The layered structure is surrounded by

air. The inner cylinder radius was set to 10 cm, and its per-

mittivity to 	r3 = 50, typical values for approximating the

human body.21,22 The HPM thickness was set to 1.158 cm,

to correspond to half wavelength when 	r2 = 1000, a value

that was used in previous work5,12 and it is a reasonable

value if the HPM layer were to be integrated within the

inner surface of typical receive MRI coils.

The incident fieldwas a cylindrical wave traveling from

the external medium to the sample. The wave frequency

was set to 297.2MHz, corresponding to the Larmor fre-

quency of a 7T MRI system.

Note that we are not considering an actual coil as field

source because the results would depend on the incident

field coefficients associatedwith the specific coil geometry.

Here, wewanted to isolate and investigate only the effect of

the HPM on the field distribution, so we compared modes

that are excited by an ideal sourcewith the same amplitude

coefficient for each mode.

3.1 Fundamental mode (n= 0) in a
lossless cylinder

We evaluated the field coefficients inside the sample as a

function of known incident field coefficients. For the case

of the fundamental mode (n= 0), we looked for an analyti-

cal relationship between the coefficientsE+
03
of the internal

field and the coefficients E+
01 of the inward waves in the

outermostmedium. This relationship can be found by pos-

ing the continuity conditions at the two interfaces a2 and

a3 (Figure 1):
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where:
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(
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A clear physical interpretation can be gained from

Eq. (16), by observing that the ratio between the ampli-

tude coefficients E+
03
and E+

01 is composed of two factors.

The first one is a combination of Bessel functions, account-

ing for the geometry of the problem. The second one is

a combination of the transmission coefficients (17)–(19),

representing the interferences between ingoing and out-

going fields associated with the different media at the

different interfaces.

The amplitude of the E+
03
coefficient is mainly deter-

mined by the 
12 coefficient, which describes the phase

relation between ingoing and outgoing waves at the out-

ermost layer interface. This can be seen in the plots in

Figure 2A, which show that a resonance condition can be

induced by setting the 	r2 of the HPM layer to the value for

which the 
12 coefficient peaks. Therefore, the value of 	r2
corresponding to the peak of the field can be calculated by

imposing a simple scalar condition:

Z0(a2) =
2Z01Z01

Z01 + Z01
= i

|Z01|2
Im(Z01)

= ZM (20)

where Z0(a2) is the impedance at the interface a2, which

can be evaluated with the transfer Eq. (12), in which

the A03 coefficient of the innermost medium is infinite

because the energy conservation condition E+
13

= E−
13
is

posed. Eq. (20) admits real solutions because the inner

medium is lossless, therefore, the impedance Z0(a2) on

the left-hand-side is purely imaginary as the matching

impedance ZM on the right-hand-side. This is not the case

for a lossy medium, which will be discussed later.

Eq. (20) is graphically represented in Figure 2B, where

the two curves intersect at 	r2 = 1234, which corresponds

to the peak of the 
12 coefficient in Figure 2A. In Figure 2C,

the transverse magnetic field evaluated in the center of the

cylinder is plotted as a function of 	r2. As predicted, the

field peaks in correspondence of the 	r2 value that max-

imizes the 
12 coefficient. The amplification of the fun-

damental mode can be further appreciated by comparing

the plots of its amplitude in the absence and presence of

an HPM layer with 	r2 = 1234 (Figure 3). Note that in

Figure 2, there are two peaks corresponding to different

permittivity values. From a conceptual viewpoint, there is

no difference between the two cases. We focus on the peak

at 1234 because it is slightly higher in amplitude, Similar
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F IGURE 2 (A) Transmission coefficients τ12 (blue line), τ22
(magenta line), and τ23 (gold line) for the fundamental mode as a

function of the HPM permittivity. (B) The imaginary part of the

impedance Z0(a2)seen at the a2interface is represented in blue as a

function of the permittivity of the high permittivity materials

(HPM) layer. The matching value is represented in magenta. (C)

Tangential component of the magnetic induction field B = �� for

the fundamental mode (n= 0) on the cylinder axis as a function of

the HPM permittivity. The maximum value is reached for εr2 = 1234.

F IGURE 3 Tangential component of the magnetic induction

field of the fundamental mode (n = 0) as a function of the radial

distance from the cylinder axis in the absence (A) and presence (B)

of a surrounding layer of lossless HPM with dielectric constant that

satisfies the resonance condition.

results can be obtained from the peak at lower permittivity,

as appreciable in Figure S1 in the supplementary material,

where the plot of themagnetic induction field as a function

of the radial distance from the cylinder axis in presence of a

surrounding layer of lossless HPMwith dielectric constant

identified by the second peak is depicted.

3.2 First mode (n= 1) in a lossless
cylinder

A similar investigation was performed for the first mode

(n= 1). As for the previous case, to find the 	r2 value that

maximizes the field coefficient, the matching condition in

Eq. (20) can be found by comparing the overall cylinder

impedance and the air impedance (see Figure 4A). For
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F IGURE 4 (A) The imaginary part of the impedance Z1(a2)

seen at the a2 interface is represented in blue. The matching value is

represented in magenta. B field is considered in � = 4.2 cm e � = 0

where first mode peaks. (B) Tangential component of the magnetic

induction field of the first mode (n= 1) for a position at �= 4 cm

from the axis of the cylinder as a function of HPM permittivity. The

maximum amplitude is reached at εr2 = 906. Tangential component

of the magnetic induction field of the first mode (n = 1) as a

function of the radial distance from the axis in the absence (C) and

presence (D) of a surrounding layer of lossless HPM with εr2 = 906

(Bmax= 0.864 mT at �= 4.2 cm).

the first mode, the peak of the magnetic field for mode

n= 1, evaluated 4 cm away from the axis along the cylinder

radius, occurred for 	r2 = 906 (Figure 4B). This prediction

is confirmed by Figure 4C,D, which compares the amplifi-

cation of the field for the predicted 	r2 with the case in the

absence of HPM. The first mode peaks at about r = 4.2 cm

from the axis of the cylinder, and this means that we can

amplify the field in that position with a proper choice of

the HPM layer.

The same analysis can be replicated for all the remain-

ing modes. In particular, the HPM permittivity values that

maximize the first five modes are reported, along with the

distance from the axis at which the peak of the field occurs:

• Mode 0: 	r2 = 1234 at �max = 0 cm

• Mode 1: 	r2 = 906 at �max = 4.2 cm

• Mode 2: 	r2 = 1125 at �max = 7.0 cm

• Mode 3: 	r2 = 219 at �max = 9.5 cm

• Mode 4: 	r2 = 695 at �max = 10 cm

• Mode 5: 	r2 = 881 at �max = 10 cm

3.3 Combination of the first two modes
in a lossless cylinder

In the previous paragraphs, we showed that specific 	r2
value can amplify selected modes of the field expansion.

This suggests the one could optimize the HPM for shaping

the field in accordance with specific needs. In this section,

we show how the HPM value yields different field shapes,

considering only the first two modes (n= 0 and n= 1).

The choice of 	r2 will change the ratio between the

amplitudes of the two modes and, therefore, the overall

field distribution. Figure 5 shows the magnetic field pro-

file for each mode and their sum for different values of

the relative permittivity of the HPM layer. In Figure 5a,

we show the case of an uncoated cylinder (	r2 = 1). The

two modes have a comparable peak value, so that the total

field is almost homogeneous near the center of the cylin-

der and reaches a maximum level of about 0.1 mT. The

total field has a maximum at about 2 cm from the origin,

halfway between the location of the maximum of mode

0, which peaks at the origin, and mode 1, which peaks at

about 4 cm.

If wewant tomaximize themagnetic field at the origin,

where only the Bessel function of order 0 is non-null, we

need an HPM layer that amplifies mode 0 and attenuates

mode 1, since the latter would only contribute to noise. In

fact, the magnetic field (signal) for mode 1 would be zero

at the origin, but the noise, which is given by the integral

of the electric field over the entire volume of the sample,

would not be zero and would degrade the overall SNR.
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F IGURE 5 Tangential component of the magnetic induction

field of the first and second mode and their sum as a function of the

distance from the axis of the cylinder (A) without HPM and in the

presence of a surrounding layer of HPM with (B) εr2 = 1234, (C) εr2
= 906, and (D) εr2 = 620.

Figure 5B shows that we can obtain this by surrounding

the cylindrical sample with an HPM layer with 	r2 = 1234,

which creates resonance for the fundamental mode, yield-

ing an amplification of about 17-fold. As a result, almost

all the energy is in the axis of symmetry of the cylinder and

the contribution of the second mode to the total field is

negligible. If we are interested in imaging a region between

the center and the surface of the sample, we could instead

use 	r2 = 906, for which the second mode resonates and

maximizes the total field at about 4 cm (Figure 5C). If we

are instead interested in maximizing field homogeneity

over the field of view, we could choose a value of 	r2 that

balances the contributions of the two modes (Figure 5D),

although with a considerably lower signal sensitivity than

for the other cases.

3.4 Lossy samples

In order to gain physical insight that could be translated

for improvedMRI performance, we need to investigate the

field propagation for the case of a lossy, tissue mimick-

ing innermost medium. In this section, we use the same

three-layers geometry as in the previous cases, and we

study the effect of the HPM layer as a function of the

conductivity �3 of the innermost medium.

In the case of a lossy cylinder, the impedance is not

purely imaginary anymore, and it can never be equal to

the impedance of air (the external medium), as required

by Eq. (20). Therefore, we can only maximize the modu-

lus of 
12 = 1 + Γn
(
kρ1a2

)
, to amplify the nth mode. To do

that, we must find the 	r2 values for which the reflection

coefficient Γn
(
kρ1a2

)
is real and positive. The amplitude

of the fundamental mode at the cylinder axis is plotted in

Figure 6A as a function of the HPM permittivity 	r2, for

different values of the cylindrical sample conductivity (�3
= 0, 0.01, 0.1 and 0.5 S/m). The analogous result for the

mode n= 1 is presented in Figure 6B. In this second case,

the amplitude of the magnetic field is evaluated for a voxel

about 4.2 cm away from the axis, which is the position

where the mode peaks.

The use of conductivity values gradually increasing

from the ideal lossless case to real-world cases enabled

us to investigate the different effects of conductivity on

the behavior of the fields. Figure 6 show that, for small

conductivities up to about �3 = 0.1 S/m, the peak of the

field’s amplitude decreased for increasing conductivities,

but it always corresponded to the same 	r2 value. Figure 7

confirms this result, showing that the field distribution

is approximately the same as for the lossless case (see

Figure 7A,B), except for the peak value of the magnetic

field, which is lower in the lossy cases. On the other hand,

for larger values of the sample conductivity, for example,
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F IGURE 6 (A) Tangential component of the magnetic

induction field of the fundamental mode (n= 0) at the cylinder axis,

where it peaks, as a function of the HPM permittivity for different

values of the inner medium conductivity. (B) Tangential component

of the magnetic induction field of the first mode (n= 1) at the

position where it peaks (4.2 cm from the axis along the radius), as a

function of the HPM permittivity for different values of the inner

medium conductivity. (C) Tangential component of the magnetic

induction field of the first five modes as a function of the HPM

permittivity, evaluated at the point on the radius where they exhibit

maximum value. The inner medium conductivity is σ3= 0.5 S/m.

(D) Ratio of the tangential components of the magnetic induction

field for the fundamental mode (n= 0) with and without the HPM

layer as a function of the permittivity. The inner medium

conductivity is σ3= 0.5 S/m (field peaks at εr2 = 52).

F IGURE 7 (A) Tangential component of the magnetic

induction field of the first two modes as a function of the distance

from the cylinder axis for different εr2 values of the HPM layer. The

inner medium conductivity is σ3= 0.01 S/m. (B) Tangential

component of the magnetic induction field of the first two modes as

a function of the distance from the cylinder axis for different εr2
values of the HPM layer. The inner medium conductivity is

σ3 = 0.1 S/m. (C) Tangential component of the magnetic induction

field of the first two modes as a function of the distance from the

cylinder axis for different permittivity values of the HPM layer,

εr2 = 38 to amplify the foundamental mode while εr2 = 52 for the

first (n= 1). The inner medium conductivity is σ3 = 0.5 S/m. (D)

Tangential component of the magnetic induction field of the first

modes as a function of the distance from the cylinder axis for

different εr2 values of the HPM layer. The inner medium

conductivity is σ3 = 0.5 S/m while different εr2 values are selected to

amplify the fourth mode (εr2 = 947) and the second peak of the

foundamental mode (εr2 = 1096).
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F IGURE 8 Magnitude of the tangential component of the magnetic induction field of the first five modes in the central section of the

cylinder and for different conductivity values. The first row shows the transverse field in the absence of the HPM for the three chosen

conductivity values. The second to fifth rows show the transverse field in the presence of the HPM layer with the permittivity value selected

to maximize the modes from n= 0 to n= 3. Note that for low conductivity values (second column), the permittivity values that maximize the

field do not deviate from the ideal case (first column), while in the third column, the high conductivity produces a phase shift that changes

the permittivity value required for maximization.
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for �3 = 0.5 S/m, which is approximately the conductiv-

ity of various biological tissues,23 the optimal 	r2 value for

the HPM changes compared to the lossless case. This hap-

pens because the losses cause a phase change between

inward and outwardwaves thatmust be compensatedwith

a different 	r2 value in order to achieve the same field

behavior.

The amplitude of the tangential component of themag-

netic induction field for the first two modes as a function

of the HPM permittivity is presented in Figure 6C. In the

absence of HPM (	r2 = 1), the magnetic field at the cylin-

der axis is about 0.048 mT (dashed line). The field peaks

instead at 0.075mT for 	r2 = 52 and its values are overall at

least 20% larger than in the case without HPM. This result

is also confirmed by Figure S2A,B in the supplementary

material. They show the magnetic induction field ampli-

tude as a function of the conductivity of the biological

tissue in the innermost layer, accounting for permittivity

values that maximize the n= 0 and n= 1 modes in both

the lossy and non-lossy cases, compared to the case where

HPM is not present.

In addition, the supplementary Figure S3A,B show the

magnetic field amplitudes, under the same conditions of

Figure 6C for the two modes n= 0 and n= 1 separately, in

order to better understand the contribution they lead to the

overall field.

Figure 8 shows the distribution of the magnetic induc-

tion field in the transverse plane. The three columns rep-

resent the fields for different values of the electrical con-

ductivity of the innermost layer ranging from 0 to 0.5 S/m.

The initial row illustrates the lossless scenario. In each suc-

ceeding row, the permittivity values for theHPMhave been

selected to optimize modes ranging from 0 to 3.

3.5 Dependence on the layer thickness

The results in the previous sections were obtained using

a thickness of 1.158 cm for the HPM layer, however, it

is worth to remember that the thickness and the relative

permittivity of the HPM layer are related and results anal-

ogous to those presented in the previous paragraphs can

be obtained for a different HPM thickness by changing

the relative permittivity accordingly. To evaluate the sen-

sitivity and robustness of the HPM design, we investigated

how the resonance conditions change for different HPM

thicknesses.

In Figure 9A we plot the transverse magnetic field of

the fundamental mode at the cylinder axis as a function of

	r2 for HPM thickness values in the range 0.75–2 cm, in the

case of a lossless cylinder.

We observe that, in the chosen range (1–1500) of per-

mittivity values, two resonances occur for a thickness

F IGURE 9 (A) Tangential component of the magnetic

induction field of the fundamental mode on the cylinder axis as a

function of the permittivity of the HPM layer. for different HPM

thicknesses in a lossless cylinder. (B) Tangential component of the

magnetic induction field of the fundamental mode on the cylinder

axis as a function of the permittivity of the HPM layer for different

HPM thicknesses in a lossy cylinder with conductivity σ3 = 0.5 S/m.

(C, B) close up for εr2 values in the range 1–300.
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value larger than 0.75 cm. In particular, one group of reso-

nances is in the range 1–400, whereas the other one occurs

for permittivity values higher than 600. By increasing the

HPM thickness, the peaks of the field amplitude occur for

lower values of 	r2. The shift of 	r2with thickness is smaller

for the first group of resonances (	r2 < 400) than for the

second group (	r2 > 600).

An analogous trend is reported for the lossy case in

Figure 9B, which also shows that the resonance curves

tend to be attenuated and enlarged due to the sample being

conductive. In fact, as we discussed in the lossy sample

section, the permittivity value that maximizes a specific

mode must satisfy the impedance condition described in

Eq. (20). When the internal medium has nonzero conduc-

tivity, the phase of its impedancewill change, so a different

permittivity value is required to maximize the amplitude

of the particular mode.

The zoomed view in Figure 9C shows that the reso-

nant curves almost perfectly overlaps for HPM thickness

greater than 1 cm. This suggests that the HPM thick-

ness has a smaller effect on the optimal permittivity in

biologically-relevant cases, which could make the design

of coils with integrated HPMmore robust.

4 CONCLUSIONS

In Sections 2 and 3, we introduced a reformulation of the

classical theory of scattering from cylindrical samples and

applied it to the case of a cylindrical phantom surrounded

by an HPM layer. This case can be seen as a first-order

approximation of an MRI setup, where the human body

can be modeled as a uniform cylinder with average tissue

electrical properties and a layer of HPM placed between

the RF coil and the object to investigate the fundamen-

tal aspects of the field body interaction. Further develop-

ments, including a comparative analysis with numerical

methods, have the potential to enrich the available infor-

mation set for the design of real-world setups, similar to

those presented in.6,24–26

The proposed formalism provides a straightforward

physical interpretation of this phenomenon in terms of the

classical engineering concepts of impedance and reflection

coefficient. We investigated canonical cases to shed light

on the fundamental physicalmechanisms that produce the

effects observed in MRI. In particular, by investigating the

effect of HPM in the simplified case of a field composed of

only two modes (see Sections 3.3 and 3.4), we showed that

it is possible to tailor the field distribution inside the sam-

ple based on specific needs. The two modes could be seen

as hypothetical RF coils in an MRI experiment. In the lit-

erature, it was previously hypothesized that the effect of

HPM was mainly due to the generation of auxiliary fields

produced by displacement currents,27 as predicted by the

Ampere-Maxwell law.

Although correct, this explanation as such cannot

accurately predict or explain some phenomena observed

in simulations and experiments.

However, the results presented in Section 3, as well

as the results published in previous work11 show that the

performance improvement occurs instead only for lim-

ited range of values of the HPM permittivity. The ana-

lytical interpretation provided by our framework (see, for

example, Figures 2C and 4B) indicates that the observed

behavior is mainly due to a mode amplification effect,

which occurs when the HPM permittivity value rephrases

the incoming and outgoing waves at the air-stratification

interface, allowing the creation of a stationary wave,

with the consequent magnification of the overall trans-

mission coefficient. This suggests that it could be possi-

ble to optimize the dielectric constant of the HPM layer

to amplify only the modes that contribute to the MRI

signal, minimizing the contribution of the other modes

that would increase the overall noise (in reception) and

RF energy deposition in patient (in transmission). For

transmit/receive coils, the same HPM could produce the

contemporary increase of the SNR and reduction of the

SAR in the tissues, as already found in12 for spherical

geometries.

Previous work mainly focused on the effect of HPM

as a function of their relative permittivity, while the

dependence of the field patterns on the HPM thick-

ness has been largely ignored. The results presented in

Section 3.4 demonstrate that the optimal permittivity

value depends on the chosen thickness. In fact, a dif-

ferent thickness produces a different phase shift on the

external interface, so that different values of the rela-

tive permittivity are needed to achieve the desired res-

onant condition. Note that the optimal permittivity val-

ues also depend on the sample dimension and on the

distance between the sample and the HPM layer. How-

ever, for the sake of compactness, we decided to leave the

investigation of these additional dependencies for future

work.

In biologically relevant cases, samples are lossy to

mimic biological tissue, which reduces the mode amplifi-

cation effect, and results in the widening of the resonance

curves (see Figures 6 and 7). As a consequence, while the

beneficial effect of the HPM is reduced, it happens for a

wider range of relative permittivity values. This makes the

design of theHPM layer robustwith respect to its geometri-

cal and dielectric characteristics, which has facilitated the

discovery of the advantage of HPM in MRI from empirical

observations.

To summarize, in this paper we introduced a refor-

mulation of the scattering theory for layered cylindrical
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samples and demonstrated that it can provide an intu-

itive explanation of the effect of HPM in MRI. We showed

how an HPM layer between the sources (i.e., the RF coils)

and the sample can be used to rephase the propagating

waves, selectively amplifying one or more modes to shape

the field inside the sample. The proposed model could be

employed to optimize the design of HPM coil inserts in

MRI applications.
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Figure S1. Tangential component of the magnetic induc-

tion field of the fundamental mode (n= 0) as a function of

the radial distance from the cylinder axis in the presence of

a surrounding layer of lossless high permittivity materials

(HPM)with dielectric constant that satisfies the resonance

condition for the second peak of the foundamental mode

n= 0.

Figure S2. (A) Tangential component of the magnetic

induction field as a function of the distance from the

cylinder axis with and without high permittivity materi-

als (HPM) to amplify foundamental mode n = 0 in a lossy

sample � = 0.5 S∕m. (B) Same figure as the previous case

but εr2 is chosen to maximize the contribution of the first

mode n= 1.

Figure S3. Transverse component of the magnetic field

for the fundamental mode (A) and for the first mode (B)

as a function of conductivity in three cases. The solid

line corresponds to the permittivity value that maximizes

the field in the lossless case, the dotted line corresponds

to a lossy case with σ = 0.5 S∕m, while the dashed line

shows again the lossy case but without high permittivity

materials (HPM).
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