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Abstract. Employment outcomes of resettled refugees depend strongly on where they are
initially placed in the host country. Each week, a resettlement agency is allocated a set of
refugees by the U.S. government. The agency must place these refugees in its local affiliates
while respecting the affiliates” annual capacities. We develop an allocation system that
recommends where to place an incoming refugee family to improve total employment suc-
cess. Our algorithm is based on two-stage stochastic programming and achieves over 98%
of the hindsight-optimal employment, compared with under 90% of current greedy-like
approaches. This dramatic improvement persists even when we incorporate a vast array of
practical features of the refugee resettlement process including inseparable families, batch-
ing, and uncertainty with respect to the number of future arrivals. Our algorithm is now
part of the Annie™ MOORE optimization software used by a leading American refugee
resettlement agency.
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1. Introduction

As of 2022, over 35 million people are seeking refuge
outside their country of origin due to war, violence, or
persecution (United Nations High Commissioner for
Refugees 2023b). Of these refugees, the United Nations
High Commissioner for Refugees (UNHCR) considers
2.4 million to be in need of resettlement, that is, perma-
nent relocation from their country of asylum to a third
country (United Nations High Commissioner for Refu-
gees 2023b). Resettlement is mainly targeted at the most
vulnerable refugees, such as children at risk, survivors
of violence and torture, and those with urgent medical
needs. Despite resettlement efforts by dozens of coun-
tries, global resettlement falls far short of what would be
required. In 2022, for example, only around 114,000 refu-
gees were resettled (United Nations High Commis-
sioner for Refugees 2023a), whereas the projected need
for resettlement grew by 400,000 over a similar time
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frame (United Nations High Commissioner for Refugees
2023b). Given this dearth of resettlement capacity, coun-
tries need to use their limited places as effectively as pos-
sible in order to maximize refugee welfare.

Historically, countries taking in resettled refugees
have paid little attention to where inside the country
these refugees are placed. This policy might be worth
reconsidering in light of ample evidence that the local
resettlement destination dramatically affects key socio-
economic outcomes for refugees (Aslund and Rooth
2007; Aslund and Fredriksson 2009; Aslund et al. 2010,
2011; Damm 2014; Bansak et al. 2018; Martén et al. 2019).
One specific outcome impacted by community place-
ment is whether and when resettled refugees find em-
ployment (e.g., Aslund and Rooth 2007), which plays a
key role in the successful integration of a refugee by
“promoting economic independence, planning for the
future, meeting members of the host society, providing
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opportunity to develop language skills, restoring self-
esteem and encouraging self-reliance” (Ager and Strang
2008, p. 170).

To help more refugees find employment, the U.S. reset-
tlement agency HIAS (founded as the Hebrew Immigrant
Aid Society) started in 2018 to match refugees to com-
munities with the software Annie"™ MOORE (Matching
and Outcome Optimization for Refugee Empowerment)
developed by Ahani et al. (2021). Based on past arrival
data, Annie MOORE estimates how likely a refugee is to
find employment in each community soon after arrival.
The software then suggests where to place the refugee to
maximize the expected total employment, subject to not
exceeding community capacities and to ensuring that
refugees have access to services they need.

A key limitation of the existing software, however,
was that it solved an offline optimization problem,
whereas refugee allocation is an online problem: whereas
Annie MOORE optimized a one-shot matching of refu-
gees to communities, organizations like HIAS continu-
ously allocate refugees over the year as they are cleared
for resettlement, and they aim to maximize the total
employment across the year. Because of this mismatch,
resettlement practitioners employed Annie MOORE
as a greedy algorithm; that is, Annie MOORE myopi-
cally maximized the employment of the current batch
of refugees, without considering whether the current
assignment would negatively impact the employment
of future arrivals in the same fiscal year by prematurely
using up community capacity.

In this paper, we design and deploy an online algo-
rithm for refugee allocation. This algorithm achieves
higher employment by explicitly accounting for the
value that a community’s capacity has for the employ-
ment of future arrivals, which we refer to as the commu-
nity’s potential. In fact, we design two closely related
algorithms, defined by different ways of computing
potentials from the dual values of a matching linear pro-
gram. One of these potentials is motivated by stochastic
programming and the other by Walrasian equilibrium.
We study these algorithms in a rich model that captures
all of the relevant practical features of the refugee re-
settlement process, including inseparable families of re-
fugees, batching, and unknown numbers of refugee
arrivals. Evaluating our algorithms on HIAS data from
2014 to 2019, we show that they achieve over 98% of
the hindsight-optimal employment in all years, com-
pared with a typical employment of around 90% for
the greedy baseline. We then describe how we imple-
mented our algorithms within Annie MOORE to create
Annie 2.0, which has been well-received by HIAS leader-
ship: “Annie™ 2.0 is a game-changer for our pre-arrivals
processes, allowing us to plan and optimize our pre-arrival
strategy a year rather than a week ahead.” The code for our
experiments is available at https://github.com/pgoelz/

dynamicrefugees, and Section EC.1 of the e-companion
contains a detailed descriptions of our data set, as well as
details on data preprocessing.

1.1. Related Work

Our paper extends a line of work initiated by Bansak
et al. (2018), which aims to increase refugees” employ-
ment outcomes through data- and optimization-driven
placement. This approach consists of two components:
using machine learning to estimate the probability that a
given refugee placed at a given community would find
employment, and using mathematical programming to
perform the optimization. Ahani et al. (2021) adopted a
similar approach to develop Annie MOORE; they also
pointed out the practical relevance of inseparable families
and the possibility of batching. Both papers seek to maxi-
mize employment with respect to a current batch of refu-
gees, without considering future arrivals. In this sense, we
think of the previously deployed algorithms as greedy,
and that is indeed our benchmark in this paper.

Though our dynamic refugee placement problem gen-
eralizes the classic edge-weighted online bipartite matching
problem, most algorithms in the theory literature are not
promising for our application because they are optimized
for overly pessimistic arrival scenarios. Whereas competi-
tive analysis was quite successful for unweighted online
bipartite matching (Karp et al. 1990), no constant-factor
approximation algorithm is possible for the weighted set-
ting if arrivals are adversarial (Fahrbach et al. 2020). In
the random-order arrival model, a 1/e-approximation is
possible (Kesselheim et al. 2013), but the algorithm is
impractical; in particular, it leaves the first 37% of arrivals
unmatched. Even if arrivals are drawn independent and
identically distributed from a known distribution, Man-
shadi et al. (2012) show that no online algorithm can
obtain a better approximation ratio than 0.823, far below
the performance of even the greedy baseline in our set-
ting. Because this impossibility is based on highly ad-
versarial arrival distributions, many papers additionally
assume that arrivals belong to finitely many types deter-
mining their edge weights. In this setting, constructing
matchings that are optimal up to lower-order terms (with
high probability) is not difficult (see Alaei et al. 2013), and
multiple papers obtain such results, often in generaliza-
tions of edge-weighted online bipartite matching (Alaei
et al. 2012, 2013; Vera and Banerjee 2021). What limits the
applicability of these algorithms to our setting, however,
is that these algorithms require the distribution over
types explicitly in their input, and are often constructed
based on the assumption that multiple arrivals of each
type will occur in a single run of the algorithm. By con-
trast, we estimate employment scores based on 20 inde-
pendent features, which means the number of refugee
“types” is too large to enumerate, and we do not expect
to see identical refugees.


https://github.com/pgoelz/dynamicrefugees
https://github.com/pgoelz/dynamicrefugees

Ahani et al.: Dynamic Placement in Refugee Resettlement
Operations Research, 2024, vol. 72, no. 3, pp. 1087-1104, © 2023 INFORMS

1089

Our allocation algorithms work by simulating sequences
of future arrivals, computing the optimal matchings for
these simulated futures, and then allocating the current
arrival based on the shadow prices of these optimal match-
ings. This approach can be seen as an instantiation of the
Bayes selector, an algorithmic paradigm that takes in a pre-
diction of future arrivals and then performs the action (in
our setting, chooses the affiliate for the current arrival) that
seems most likely to coincide with the action taken by an
optimal benchmark. Across various problems with sto-
chastic online arrivals, algorithms following this paradigm
have yielded impressive theoretical and empirical results
(Freund and Banerjee 2019, Banerjee et al. 2020, Vera and
Banerjee 2021, Vera et al. 2021, Sinclair et al. 2023). Specifi-
cally, under some regularity conditions on arrivals, these
algorithms obtain constant regret; that is, the expected differ-
ence between the algorithm’s performance and that of the
optimal benchmark does not grow with the size of the
problem. The prediction of future arrivals often takes other
shapes, but it can be a sampled trajectory of arrivals as in
our algorithms (Banerjee et al. 2020). In most papers, the
choice of action is based on how often the optimal bench-
mark would take an action in the simulated future, rather
than, as in our work, on the marginal effect of an action on
the optimal value. In recent work, however, Sinclair et al.
(2023) analyzed the same variant of the Bayes selector (the
“hindsight planning policy”) as our Equation (1) and
showed that it gives constant regret for the problem of sto-
chastic online bin packing. Even though we do not provide
theoretical guarantees in this paper, the success of the
Bayes selector across related settings partially explains our
good empirical performance.

Our use of shadow prices for guiding online refugee
allocation mirrors earlier applications of shadow prices to
a variety of online decision problems in, among other con-
texts, advertising (Vazirani et al. 2005, Devanur and Hayes
2009, Vee et al. 2010), revenue management (Talluri et al.
2004), worker assignment (Ho and Vaughan 2012, Johari
et al. 2021), and resource allocation (Asadpour et al. 2020).
Agrawal et al. (2014) develop a dynamic learning approach
where prices are calculated in a similar manner to ours,
but whereas they update their match scores upon every
doubling of the arrival history, we update our match
scores upon every batch. Ho and Vaughan (2012) extend
the advertising context of Devanur and Hayes (2009) to
assign workers to tasks when match scores are initially
unknown and must be learned. Like Ho and Vaughan
(2012), Johari et al. (2021) also consider the worker-to-job
context, but learn scores while matching via an explore-
then-exploit approach. In our setting, our scores are known
in advance independent of arrivals (Ahani et al. 2021).

In independent and concurrent work, Bansak (2020)
also considers dynamic refugee resettlement, albeit in a
model of the problem that is more stylized than ours.
Our model is more representative of practical refugee
matching through explicit inclusion of nonunit family

sizes, incompatibilities between families and communi-
ties, and uncertain arrival numbers. Out of the four
assignment algorithms studied by Bansak (2020), the
first two are closely related to algorithms we develop.
(The other two algorithms lead to substantially worse
employment in Bansak’s (2020) experiments, which is
why we do not discuss them here.) Bansak’s (2020) algo-
rithm 1, which achieves the best employment in his
experiments, is a straightforward sampling implementa-
tion of the two-stage stochastic programming formula-
tion in Section 4.1. As we explain in that section, our
algorithm PM(Potl) is functionally equivalent to Bansak’s
(2020) algorithm 1 in his model; thus, PM(Potl) would
obtain the same great employment outcomes as in Ban-
sak’s (2020) experiments. An important difference, how-
ever, is that our algorithms are orders of magnitude
faster than Bansak’s (2020) algorithm 1, as shown in Sec-
tion 6. This allows us to evaluate our algorithms on
entire fiscal years of arrivals (whereas Bansak’s (2020)
evaluation is limited to individual months) and enables
our algorithms to scale to large future increases in arri-
vals numbers (see Section EC.4.3 of the e-companion).
To overcome his algorithm 1’s slow running time, Ban-
sak (2020) proposes algorithm 2, another instantiation of
the Bayes selector, which has a comparable running
time to our algorithms. Whereas our algorithms match a
current case based on shadow prices for a large number
of simulated arrival trajectories, Bansak’s (2020) algo-
rithm 2 matches the current case with the affiliate to
which it was most frequently matched in the offline
solutions for the arrival trajectory. Given that Bansak’s
(2020) experiments reveal that his algorithm 2 obtains
nearly as much employment as his algorithm 1 (for an
unspecified number of arrival trajectories), his algorithm
2 and PM(Potl) can be expected to be comparable in
terms of employment and running time. Recent work by
Bansak and Paulson (2022) extends the earlier work by
Bansak (2020) by incorporating a secondary objective
that seeks to consume capacity at similar rates across
affiliates, improving case wait times across affiliates
without sacrificing much employment. Even more re-
cently, Freund et al. (2023) employ a bid-price approach
related to ours to enforce fairness between subgroups of
refugees.

1.2. Organization of This Paper

In Section 2, we provide an overview of the U.S. refugee
resettlement process. In Section 3, we outline our model
of dynamic refugee matching. In Section 4, we propose
our two algorithms and show that they obtain near-
optimal employment in a baseline setting that ignores the
inseparability of families, batching, and uncertainty about
the total number of arrivals. In the next three sections, we
layer on complexity toward the setting encountered in
practice: families of different sizes (Section 5), batching
(Section 6), and unknown arrival numbers (Section 7). In
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these sections, we demonstrate that inseparable families
and batching do not substantially change our algorithms’
employment performance, and that employment remains
high unless the number of arrivals widely deviates from
the numbers announced by the government. In Section
8, we then explain how we implemented our approach
within Annie MOORE, and we conclude in Section 9. In
the e-companion, we provide details deferred from the
main text for space reasons and additional empirical
analyses.

2. Institutional Background

The federal Office of Refugee Resettlement was cre-
ated by the Refugees Act in 1980. The act established
funding rules and authorized the president of the
United States to set annual capacities for resettlement.
The resettlement process is managed by the U.S. Refu-
gee Admissions Program (USRAP) of the U.S. Depart-
ment of State, in conjunction with a number of federal
agencies across federal departments as well as the Inter-
national Organization for Migration and the UNHCR.

Applications for the resettlement program take place
from outside of the Unites States, typically in refugee
camps. The U.S. government conducts security checks
and medical screenings, and performs cultural orienta-
tion, which can take upward of 18 months (Jones 2015).
After clearance, the USRAP decentralizes the process of
welcoming refugees to nine nongovernmental organiza-
tions known as resettlement agencies, one of which is HIAS.
Each agency works with their own network of local affili-
ates, each supported by local offices as well as religious
entities like churches, synagogues, or mosques, which
serve as community liaisons for refugees. Each agency
typically works with dozens of affiliates, though the exact
number of affiliates fluctuates over time. Some affiliates
lack services to host certain kinds of refugees. For exam-
ple, certain affiliates do not have translators for non-
English-speaking refugees, or they might lack support for
single-parent families.

Agencies have no influence on which refugees are
cleared for resettlement by the USRAP or on when the
refugees might arrive. Resettlement agencies meet on a
weekly or fortnightly basis to allocate among themselves
the refugees that have been cleared by the USRAP.

Refugees are usually resettled with members of their
family. Such an inseparable group of refugees is referred
to as a case. As a family can split when its members are
fleeing their home country, some refugees who are apply-
ing for resettlement might already have existing relatives
or connections in the United States. Such cases with U.S.
ties are automatically resettled near their existing ties. All
other refugees, referred to as free cases, can be resettled by
any agency into any of the agency’s affiliates.

Each affiliate has an assigned annual capacity for the
number of individual refugees it can admit in a given

fiscal year.' These capacities are approved by the USRAP
and, in theory, agencies cannot exceed them. In practice,
capacities can be slightly adjusted toward the end of the
year or, as in recent years, substantially revised in the
course of the year. Because capacities limit the number
of refugees arriving in a fiscal year rather than allocated in
it, and because there is typically a delay of multiple
months between the two events, the U.S. Department of
State tells the resettlement agencies an estimated arrival
date for each cleared case.

Agencies are assessed annually by the USRAP on
their performance in finding employment for refugees
within 90 days of their arrival. Data on 90-day employ-
ment is therefore diligently collected by the affiliates and
monitored by the agencies.

3. Model

An instance of the matching problem first defines a set L
of affiliates, and each affiliate £ has a capacity c, € Nyo U
{oo} of how many refugees it can host. We call a vector
¢ = {c¢} e of capacities for all affiliates a capacity profile c.
We write ¢ — e, to describe the capacity profile obtained
from ¢ by reducing the capacity of affiliate £ by one.

On the other side of the matching problem is a set N =
{1,...,n} of cases. Each case i represents an inseparable
family of s; € N refugees. Furthermore, each case i, for
each affiliate ¢, has an employment score u; ¢, which indi-
cates the expected number of case members that will
find employment if the case is allocated to £. Typically,
these employment scores 1; ¢ are real numbers in [0, s;],
but we will also allow to set u; , = —c0 to express that
case i is not compatible with affiliate £. We will refer to
the combination of a case’s size and vector of employ-
ment scores as the characteristics of the case. To ensure
that the matching problem is always feasible, we will
assume that L contains a special affiliate L that repre-
sents leaving a case unmatched, where u; , =0 for all
casesiand ¢, = c0.?

We use the employment scores developed by Ahani
et al. (2021), and we give details on data preprocessing
and training in Section EC.1.1 of the e-companion.
Throughout this paper, we consider these employment
scores as ground truth, which means that we evaluate
algorithms directly based on the employment scores. An
evaluation of how accurately the employment scores
predict employment outcomes is outside of the scope of
this paper, and has already been performed by Ahani
etal. (2021).

The goal of the matching problem is to allocate cases
to affiliates such that the total employment, that is, the
sum of employment scores, is maximized, subject to
not exceeding capacities. For a set I € N and a capacity
profile ¢ = {c/} 4, define MATCHING(I, ¢) as the match-
ing integer linear program (ILP) below, where vari-
ables x;, indicate whether case i€l is matched to
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affiliate £ € L:

maximize Z Z Ui ¢ Xi ¢
iel (el

subject to in,g =1 Viel,
el
ZS,-XMSC{) VlelL,
iel
x;¢0€{0,1} Viel,eL.

Let Ort(I,¢) denote the optimal objective value of
MatcHING(I, ¢). The linear programming (LP) relaxation of
MatcHING(I, ¢) is obtained by replacing the constraint
x,0€{0,1} by 0<x;,<1 for all iel,{ e L. For a fixed
matching, we define the match score of a case i as its
employment score u; ¢, at the affiliate £; where it is allo-
cated; we will also refer to its match score per refugee,
Ui, ¢, /Si.

Finally, cases arrive online, that is, they arrive one by
one, and when case i arrives, the decision of which affili-
ate to place i in must be made irrevocably, before the
characteristics of the subsequent arrivals i +1,...,n are
known.”? Thus, although an online matching algorithm
must still produce a matching whose indicator variables
x; ¢ satisfy the constraints of MATCHING(N, ¢), the total
employment ) .y s Ui, Xi, ¢ typically will not attain the
benchmark Ort(N, c) of the optimal matching in hindsight.
Although we will not commit to a specific model of how
the characteristics of arriving cases are generated, these
arrivals should be thought of as sfochastic rather than
worst case, and the distribution of case characteristics as
changing slowly enough that sampling from recent arri-
vals is a reasonable proxy for the distribution of future
arrivals.

Note that we use the word “arriving,” as is customary
in online algorithms, to refer to the time at which a case
is presented to and allocated by the algorithm. Unfortu-
nately, this usage disagrees with the terminology of ref-
ugee resettlement, where “arrival” refers to a refugees
physical arrival in the United States, which takes place
some time after allocation. As we have described in Sec-
tion 2, this physical arrival plays a single role in our allo-
cation problem, namely, by determining which fiscal
year’s capacities a case counts toward. Because we treat
the allocation problems for different fiscal years sepa-
rately, the important point in time associated with a case
is its time of allocation, which we will refer to as its
arrival for the remainder of this paper.

Throughout the following sections, we will consider a
sequence of models that incorporate an increasing
number of features of the real-world refugee allocation
problem. In Section 4, we consider traditional online
bipartite matching, which results from requiring s;=1in
the above model. From Section 5 onward, we allow cases
to have arbitrary size. From Section 6 onward, we also
allow cases to arrive in batches rather than one by one.

In Section 7, we no longer assume that the total number
n of arriving cases is known to the algorithm.

4. Online Bipartite Matching (s; = 1)
In this section, we will consider the special case of online
bipartite (weighted) matching. We stress that this classic
problem does not capture key features of the refugee-
allocation problem in practice, which we will add in later
sections. Instead, online bipartite matching allows us to
more cleanly draw connections to theoretical arguments,
which help motivate our algorithm design. Later in the
paper, we will empirically show that the approach con-
tinues to work well in richer and more realistic settings.
Formally, this section considers the model defined in
the previous section, with the restriction that all cases
consist of single refugees, that is, thats; = 1 for all i € N.
Under this assumption, it is well known that the opti-
mum matching for the ILP MatcHING(, ¢) can be found
by solving its LP relaxation.

4.1. Algorithmic Approach

To motivate our algorithmic approach, we begin by
describing why matching systems currently deployed in
practice lead to suboptimal employment. These systems
assign cases greedily, which—putting aside batching for
now—means that an arriving case 7 is matched to the
affiliate £ with highest employment score u;, among
those that have at least s; remaining capacity. The main
problem with greedy assignment is that it exhausts the
capacity of the most desirable affiliates too early. In par-
ticular, we observe on the real data that a large fraction of
cases have their highest employment score in the same
affiliate £, but that the size of the employment advantage
of affiliate {* over the second-best affiliate varies. Because
it considers only the highest-employment affiliate for
each case, greedy assignment will fill the entire capacity
of {* early in the year, including with some cases that ben-
efit little from this assignment. Consequently, cases
that would particularly profit from being placed in £
but arrive later in the year no longer fit within the
capacity.

Intuitively, the decision to match a case 7 to an affiliate
¢ has two effects: the immediate increase of the total
employment by u; , but also an opportunity cost for con-
suming {’s capacity, which might prevent profitable
assignments for later arrivals. Because greedy assign-
ment considers only the former effect, it leaves employ-
ment on the table.

A better approach is two-stage stochastic programming,
which allocates an arriving case i to the affiliate £ maxi-
mizing the sum of the immediate employment #; ; and
the expected optimal employment obtainable by match-
ing the future arrivals subject to the remaining capacity.
That is, if, at the time of i’s arrival, the remaining capaci-
ties are given by ¢, two-stage stochastic programming
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allocates i to the affiliate

argmax u;,+E[OprT({i+1,...,n},c—s;-er)],
teLlico>s;

where the expectation is taken over the characteristics of
cases j=i+1,...,n. Because adding a constant term
does not change the argmayx, this can be rewritten as

=argmax u;¢—E[OrT({i+1,...,n},¢)]
CeL:cr>s;

+ E[OrT({i+1,...,n},c—5s;-e)]

=arg max u;,¢—E[OpT({i+1,...,n},¢)
CeLl:ci>s;

— Ort({i+1,...,n},c—s;-e)]. 1)
Using our assumption that s; = 1, this can be simplified to
uir —E[OPT({i+1,...,1},¢)

= arg max
telic,>1

—Orr({i+1,...,n},c—e)].

Note that the expected value that is subtracted in either
of the last two lines is exactly the expected opportunity
cost of reducing the capacity of ¢ by placing case i there.
This motivates our algorithmic approach: In every time
step, we first compute a potential p, for each affiliate ¢.
Then, rather than myopically maximizing the matching
score as does greedy assignment, our algorithm PM
(“potential match”) myopically maximizes the matching
score minus the potential of the capacity used, as shown
in Algorithm 1. (Note that an affiliate £ can always be
defined in Line 5 as, by assumption, ¢; = c0.)

Algorithm 1 (PM(Potential))

Parameter: a subroutine Potential to determine affil-
iate potentials

1 initialize the capacities ¢, for each affiliate ¢;

2 fort=1,...,ndo

3 | observe the case size s; and the employment
scores {u; ¢}
4 | call Potential() to define a potential p, for each
affiliate ¢;
5 | €« arg maxeer.,>s,Ut,¢ — StPe;
6 | allocate case f to £ and set ¢, < ¢y — sy;

We estimate the expected value of the opportunity
cost by averaging over a fixed number k of trajectories,
each of which consists of randomly sampled characteris-
tics of all arrivals i + 1 through n. As the characteristics
of arriving refugees change over time, and as these
changes tend to be gradual, we draw these arrival char-
acteristics uniformly with replacement from the arrivals
in the six months prior to the current allocation decision.
In Section EC 4.4 of the e-companion, we evaluate differ-
ent lengths of this sampling window.

For each sampled trajectory, it remains to calculate the
potential, which we would like to equal the opportunity
cost Orr({i+1,...,n},c) —Orr({i+1,...,n},c —e;). Clearly,
this could be computed by solving O(|L|) matching linear
programs, which is what algorithm 1 by Bansak (2020)
does.

Instead, we make use of an important observation in
matching theory (Leonard 1983) to exactly compute the
opportunity costs for all affiliates with remaining capac-
ity as the shadow prices of a single LP.

Fact 1. Fix a matching-problem instance, in which all cases
ihave size s; = 1. In the LP relaxation of MaTcHING(N, ¢), let
{pe}eer denote the unique element-wise maximal set of
shadow prices for the constraints  _,nsi X;,¢ < c¢. Then, for
each ¢ withc, > 1,

pe=0rr({i+1,...,n},¢) —Opr({i +1,...,n},c —e).

This suggests the procedure Potl for computing poten-
tials, which is shown in Algorithm 2. (One way of find-
ing the element-wise maximal shadow prices is to first
solve the dual LP to find its objective value, then add a
constraint that constrains the objective of the dual LP to
be equal to this optimal objective value, and to finally
maximize the sum of dual variables p, over this new
restricted LP.)

Algorithm 2 (Potl(k))
Parameter: k € Ny, the number of trajectories per
potential computation
Input: remaining capacities ¢, the index t of the
last observed case, characteristics of cases arriving in
the past 6 months
Output: a set of potentials p; for all affiliates £
1 forj=1,...,kdo
2 | foreachi=t+1,...,n, sets;and {u; (}, to the size
and employment scores of a random, recently
arrived case;
3 | solve the following bipartite-matching LP:

n
maximize E E Ui ¢ Xi ¢

i=t+1 (el

subject to in,[:l Vi=(t+1),...,n

teL

Vel (%)

n
E SiXi¢<Cr

i=t+1

0<xi, Vi=(t+1),...,n, VLEL.

4 | foreach ¢, set p, to be the maximal shadow price
|_of the constraint (+);

5 setpp (Zj.‘zl pp)/kforall ¢;

6 return {p}c;;

We also develop a second method, Pot2, for comput-
ing potentials, which is based on a slightly different LP
and has different theoretical underpinnings:
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e whereas the matching LP for Potl does not include
the current batch of arrivals, the current batch is included
in the LP for Pot2;

e whereas Potl uses the element-wise maximal set
of shadow prices, Pot2 uses the element-wise minimal
one; and

e whereas Potl is theoretically derived from two-
stage stochastic programming, Pot2 is motivated by a
connection to Walrasian equilibria.

For conciseness, we defer the formal definition of
Pot2 and its connection to the Walrasian equilibrium
to Section EC.2 of the e-companion.

4.2. Empirical Evaluation

We evaluate the employment of our potential-based
matching algorithm on six real sequences of annual arri-
vals at HIAS; that is, for each fiscal year, we consider all
refugees who physically arrived during this fiscal year,
and we consider them in the order in which they were
received for allocation by HIAS. For the capacities, we
use the year’s final, that is, most revised, capacities.* We
also immediately take into account that affiliates have
constraints on which nationalities, languages, and fam-
ily sizes they can accommodate, that not all affiliates can
host single parents, and that tied cases can only be allo-
cated to their corresponding affiliate.

The main way in which this experiment deviates from
reality is the assumption (made throughout this section)
that cases have unit size. To satisfy this assumption, we
split each case of size s;>1 into s; identical single-
refugee cases with a 1/s; fraction of the original employ-
ment scores. In subsequent sections, we will repeat the
experiments without this modification.

We study six fiscal years, from 2014 to 2019. As affili-
ates closed and opened across these years, the number
of affiliates varies between 16 and 24 (not counting the
unmatched affiliate ). Finally, the number of arriving

refugees (respectively, cases) varies between 1,670
(respectively, 640) and 4,150 (respectively, 1,630) across
fiscal years. For further metrics of the allocation prob-
lem, see Section EC.1.2 of the e-companion.

As shown in Figure 1, even the greedy baseline obtains
a total employment of between 89% and 92% of Opr1(N, c),
the optimum matching in hindsight. (One outlier is the
year 2018, which we discuss below.) Nevertheless, the
greedy algorithm leads to between 50 and 100 fewer refu-
gees finding employment every year compared with what
would have been possible in the optimum matching. Our
potential algorithms close a large fraction of this gap,
obtaining between 98% and 99% of the optimal total
employment, both for algorithms based on Potl and for
those based on Pot2. Because experiments in this model
take much longer to run than those in subsequent mod-
els, we defer a comparison between the two potential
methods and between different numbers k of trajecto-
ries to Section 6.1, where we can run the potential algo-
rithms a sufficient number of times to discern smaller
differences.

The fiscal year 2018 stands out from the others because
the greedy algorithm performs on par with the potential
algorithms, at 99% of the hindsight-optimal total employ-
ment. This is easily explained by the fact that the capaci-
ties are much looser than in other fiscal years: whereas, in
all other fiscal years between 2014 and 2019, the number
of arriving refugees amounts to between 84% (2019) and
97% (2016) of the final total capacity across all affiliates,
this fraction is only 48% in 2018. Because capacity is so
abundant, the optimal matching will match a large frac-
tion of cases to their maximum-score affiliate, and the
greedy matching is close to optimal.

We also compare with the employment obtained by the
allocation chosen by HIAS (“historical”). This comparison
gives the historical matching a slight advantage, as HIAS
sometimes overrides the incompatibility between an

Figure 1. (Color online) Total Employment Obtained by Different Algorithms, Assuming That Cases Are Split into Multiple
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Figure 2. (Color online) Evolution of the Per Refugee Match Score in Order of Arrival for Fiscal Years 2016 and 2019 in the

Experiment in Figure 1 (Split Cases, Final Capacities)

Fiscal year = 2016
0.30

0.25 y——y =
0.20 N
. :_/ >

0.15
0 1,000 2,000 3,000 4,000 0

Refugees in order of arrival

Matching score per refugee
\z
\
|
|
|
/4

Fiscal year = 2019

algorithm
—— optimum
greedy
—— historical
—— PM(Pot1(k=5))
PM(Pot2(k=5))
500 1,000 1,500
Refugees in order of arrival

2,000

Note. Consecutive match scores are smoothed using triangle smoothing with width 500.

affiliate and a case, which we do not allow any other algo-
rithm to do.”

In Figure 2, we investigate how the match score
changes over the course of two fiscal years, 2016 and
2019, chosen to contain one year in which the greedy
and historical baselines perform relatively poorly (2016)
and one in which they perform well (2019). As the match
score of subsequently arriving refugees can greatly dif-
fer, these graphs are heavily smoothed over time. If arri-
vals were drawn from a time-invariant distribution, we
would expect the curves for the optimum matching in
hindsight to be level, because how much employment
the optimum matching can extract from a case would be
independent of the case’s arrival time. Instead, we see
that the employment prospects of arrivals fluctuate
noticeably over time; in particular, the early refugees in
fiscal year 2016 and the late refugees in fiscal year 2019
seem to have worse employment prospects than other
refugees in the plot.

The curves for both potential algorithms are nearly
indistinguishable from one another, which shows that
the algorithms make very similar decisions. In 2016,
these curves start out closely tracking the curve of the
optimal-hindsight matching, but fall behind for the last
arrivals, which we observe in most fiscal years. The simi-
larity of the curves over most of the year indicates that
our approach of sampling trajectories from past arrivals
is nearly as useful as the optimum algorithm’s perfect
knowledge of future arrivals and that it leads to a similar
trade-off in extracting immediate employment versus
preserving capacity for later arrivals. Of course, the
imperfect knowledge of the future incurs a small loss
toward the end of the fiscal year, likely because the
amount of capacity reserved per affiliate does not per-
fectly match the demand, which explains the gap in total
employment between the hindsight optimum and the
potential algorithms. This typical end-of-year effect is
not very pronounced in fiscal year 2019, likely because
the final arrivals of fiscal year 2019 have lower employ-
ment probabilities than what would be expected based
on past arrivals. Instead, the potential algorithms fall
behind the optimum algorithm for some period in the

middle of the year, perhaps because they are reserving
capacity for late arrivals which the optimum already
knows to hold little promise.

The most striking curve is that of the greedy algo-
rithm, which lies above those of all other algorithms in
the first quarter of arrivals, but then falls clearly below
the other curves in the second half. This observation can
be explained by the effect we predicted in the motivation
of our potential approach: the greedy algorithm extracts
small additional gains in employment early in the
arrival period, at the cost of prematurely consuming the
capacity of the most desirable affiliates. Then, the lack of
capacity limits the match scores of later arrivals, result-
ing in an overall unfavorable trade-off. This effect can be
directly seen in Figure 3, in which we visualize the
amount of capacity remaining in the most valuable affili-
ates. Specifically, looking at all arrivals of the fiscal year,
we compute the shadow prices of the matching LP. At
any point in time, we can then weight the remaining
capacity by these prices to obtain a priced capacity. In
Figure 3, we see that the optimum-hindsight matching
and the potential algorithms use up the priced capacity
at a roughly constant pace and essentially consume it all.
By contrast, the greedy algorithm uses up the capacity
very quickly, such that at the median refugee, only 22%
(2016) or 17% (2019) of the priced capacity is left.

The historical matching made by HIAS does not have
such obvious defects, but still falls short in terms of total
employment. In both reference years, the average employ-
ment moves in parallel with the optimum matching,
meaning that HIAS does not overly focus on extracting
employment at certain parts of the fiscal year at the
expense of others. However, the average employment
consistently lies below that of the optimum and of the
potential algorithms. We see in Figure 3 that, in 2019,
HIAS started consuming the priced capacity at a near-
constant pace very similar to that of the optimum algo-
rithm. Around the median arrival, however, the historical
matching slowed down its capacity consumption and
ended up not consuming all priced capacity, which
explains some loss in total employment. One reason for
this behavior might be that HIAS staff treat the last 9% of



Ahani et al.: Dynamic Placement in Refugee Resettlement
Operations Research, 2024, vol. 72, no. 3, pp. 1087-1104, © 2023 INFORMS

1095

Figure 3. (Color online) Remaining Priced Capacity at the Time of Arrival of Different Refugees, for Fiscal Years 2016 and 2019

in the Experiment in Figure 1 (Split Cases, Final Capacities)
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the capacity as a reserve that they are more reluctant to
use. In a year such as 2019, in which the overall arrivals
were only 84% of the total capacity, this heuristic might
have actually kept much of the reserve capacity free,
including in the affiliates that could have generated
higher employment. By contrast, the total arrivals in
2016 amounted to 97% of the overall capacity, which could
explain why nearly all priced capacity was consumed in
this year. Despite using up priced capacity in a similar pat-
tern as the optimum matching in 2016, the historical
assignment achieved lower matching scores throughout
the year. This indicates that the low employment of the his-
torical matching is not just due to a reluctance to use the
entire capacity, but that the priced capacity is furthermore
inefficiently allocated.

5. Nonunit Cases (s; > 1)

The most pressing aspect of refugee matching that we
have ignored thus far is that many cases do not consist
of individual refugees. Instead, they consist of an entire
family of refugees, which has to be resettled to the same
affiliate.

To accommodate cases consisting of multiple family
members, we will from now drop the assumption that the
s; are one. The main effect of this change is that the LP
relaxation of the ILP MATCHING(I, ¢) can now be a strict
relaxation. Indeed, the LP relaxation might allow for higher
objective values because it allows fractional solutions.’
As a result, our dual prices will no longer exactly compute
the marginal value of a unit of capacity. In any case, to
retain the exact connection to stochastic programming in
Equation (1), PM would have to subtract the opportunity
cost of s; units of capacity from u; ,, which might exceed s;
times the opportunity cost of a single unit of capacity.

However, as the capacity of most affiliates is much
larger than the size of a typical case, both approxima-
tions can be expected to be relatively close, which is
what we find empirically: we repeat the experiment of
the previous section, but without splitting up cases into
individual refugees. The results are nearly indistinguish-
able, which supports our decision to use LP relaxations

Fiscal year = 2019

algorithm
—— optimum
greedy
—— historical
—— PM(Pot1(k=5))
PM(Pot2(k=5))

=
2,000

500 1,000 1,500
Refugees in order of arrival

even in the setting with inseparable cases. The full figures
are deferred to Section EC 4.1 of the e-companion.

6. Batching

A second aspect that we have not considered thus far is
that HIAS does not actually process arriving cases one
by one, but in batches containing one or multiple cases.
Most of these batches result from the weekly meetings
between the resettlement agencies, but smaller batches
with urgent cases are allocated between the weekly
meetings.

The fact that cases arrive in batches does not make the
problem harder; after all, a matching algorithm that
does not support batching can still be used by presenting
the cases of each batch to the algorithm one by one. As
we will argue, however, batching represents an oppor-
tunity to improve on this strategy: there is a (limited)
opportunity to increase total employment and a (sub-
stantial) opportunity to reduce running time.

Concerning total employment, using a nonbatching
algorithm in a batching setting is wasteful because it
ignores potentially valuable information. Specifically,
when the earliest cases of the batch are allocated, a non-
batching algorithm presumes that the characteristics of
the other cases in the batch are not yet known. Arguably,
as the sizes of batches tend to be much smaller than the
total number of cases 7, the amount by which account-
ing for this information can increase total employment is
likely to be limited.

As for running time, given that the matching algo-
rithm receives no new information between the first and
last case of a batch, it seems reasonable not to recompute
potentials within a batch. As there tend to be 5 to 10
times more cases than batches and as the computation
of potentials is the bottleneck in the running time of
the potential algorithms, this promises to substantially
speed up the algorithm.

In adapting our algorithm PM to batching, we will not
change how we compute the potentials p,. However, the
algorithm now allocates all cases in the batch at once,
still with the objective of optimizing the immediate score
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of the assignment less the sum of potentials consumed.
Thus, our extended algorithm PMB (“potential match
with batching,” Algorithm 4 in Section EC.3 of the e-
companion) allocates the current batch according to the
solution to a matching ILP, in which matching case i to
affiliate ¢ contributes an amount of u;,—s;p, to the
objective. Note that if all batches have size b = 1, this
algorithm coincides with our previous algorithm PM.
Moreover, PMB also generalizes the greedy algorithm
previously implemented in Annie MOORE, which can
be recovered by setting all potentials p, to zero.

We can now compare the running time of our algo-
rithms to Bansak’s (2020) algorithm 1, which obtained
the highest employment in his study. Though this algo-
rithm is closely related to ours, it does not use dual
prices to compute opportunity costs and handles batch-
ing in a way that does not improve running time. The
bottleneck in our algorithms and his is the computation
of bipartite-matching linear programs over the trajecto-
ries of simulated future arrivals. Whereas we compute a
single such program per batch of arrivals, Bansak (2020)
solves |L|-b many such linear programs per batch,
where |L| is the number of affiliates and b is the number
of cases in the batch. In our data set, a typical value of
|L| - bisaround 150, so these speedups are substantial.

6.1. Empirical Evaluation

We repeat the experiment measuring the total employ-
ment obtained by the algorithms, this time with the
greedy algorithm and the potential algorithms allocating
cases in batches. As shown in Figure 4, the results again
look very close to those in the restricted setting of online
bipartite matching, confirming that our algorithmic approach
generalizes well not only to nonunit case sizes but also to
batching as it is used in practice.

Because processing entire cases in batches is much fas-
ter than processing cases (or individual refugees) one by
one, we are now in a position to run each potential algo-
rithm many times and analyze the distribution of total

employment. As shown in Figure 5, the total employ-
ment produced by each potential algorithm is sharply
concentrated, especially when the algorithms use k >3
trajectories to compute duals.

Running each algorithm many times enables us to
compare the relative performance of the potential algo-
rithms. Across both ways of computing potentials and all
fiscal years (with the exception of 2018, where everything
is very close together), we see a clear tendency that aver-
aging the potentials across more trajectories improves the
employment outcome. These effects are somewhat lim-
ited, though, as going from a single trajectory to nine tra-
jectories improves the median employment by less than
half a percent of the hindsight optimum. As is to be
expected, increasing k exhibits diminishing returns.

For k held constant, we observe that the Pot2 variants
quite consistently outperform the Potl variants, again
with the exception of 2018, in which a small inversion of
this trend can be seen. Although all potential algorithms
perform very well, based on these results, we recommend
the Pot2 potentials with a relatively large k for practical
implementation. Of course, increasing k increases the run-
ning time of the matching algorithm. However, because a
resettlement agency computes only one set of potentials
per day, the algorithm runs in few seconds even for k = 9
(see Section EC.4.3 of the e-companion).

To additionally support our observation that the
potential algorithms outperform the greedy algorithm
and the historical matching, we repeat the experiment
from Figure 4 for additional arrival sequences derived
from the historical data. As we show in Section EC 4.6 of
the e-companion, we obtain similar employment perfor-
mance as in Figure 4 if the arrival sequence for each year
is reversed, or if we consider shifted yearly arrival peri-
ods from, say, April to the March of the following year
rather than fiscal years (from October to September). In
Section 7.2, we also evaluate the algorithms on boot-
strapped arrivals. While we discuss more specific obser-
vations there, the potential algorithms perform similarly

Figure 4. (Color online) Total Employment, Where Cases Are Not Split and Arrive in Batches
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Figure 5. (Color online) Distribution of the Total Employment Obtained by Instantiating PMB with Different Potential Methods
and Different k in the Experiment in Figure 4 (Whole Cases, Batching, Final Capacities) and Over 50 Random Runs per
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well or slightly better in that setting, consistently at 99%
of the hindsight optimum.

7. Uncertainty in the Number of
Future Arrivals

Given that our algorithm PMB supports nonunit sized
cases and batching, it might seem that we are ready to
replace the greedy algorithm in Annie MOORE by our
potential algorithm. However, our algorithm crucially
relies on one piece of input that the greedy algorithm
did not need, namely, the total number of cases arriving
in the fiscal year. This number determines the length of
the sampled trajectories, which can greatly impact the
shadow prices and, thus, how the algorithm allocates
cases.

In principle, the information given to resettlement agen-
cies should provide a fairly precise estimate of how many
cases are expected to arrive. Indeed, before the start of each
fiscal year, the U.S. Department of State announces how
many refugees it intends to resettle in that fiscal year, and
resettlement agencies are instructed to prepare for a certain
fraction of this total number. In fact, HIAS sets its affiliate
capacities to sum up to 110% of this number of announced
refugees, which is intended to give local affiliates a good
idea of how many refugees they will receive while

affording the resettlement agency some freedom in its allo-
cation decisions.

7.1. Relying on Capacities

It is thus natural to run our potential algorithms under
the assumption that the number of arriving refugees
will be 1/(110%) ~ 91% of the total announced capac-
ity.” The result of this strategy is shown in Figure 6.
Because these experiments use the initial, unrevised
capacities, the employment scores of the hindsight opti-
mum and the greedy algorithm may differ from those in
previous experiments, which used the most revised
capacities.® In all fiscal years other than 2017 and 2018,
the imprecise knowledge of future arrivals deteriorates the
approximation ratio of the potential algorithms, but
the potential algorithms continue to clearly outper-
form the greedy baseline overall, and they outperform
the historical matching in every single year.

Setting aside the outlier years of 2017 and 2018 for the
moment, we investigate the fiscal years 2016 and 2019,
in which arrivals were otherwise highest and lowest rel-
ative to the announced capacity. In fiscal year 2016, the
total arrivals were particularly large relative to the initial
capacity: the arrival numbers added up to 100% of the
initial capacity rather than 91%, which means that our
potential algorithms expected around 3,770 refugees to
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Figure 6. (Color online) Total Employment, Where Cases Are Not Split Up and Arrive in Batches
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arrive rather than the 4,150 that ended up arriving. As a
result, the potential algorithms consume the priced
capacity at an approximately constant rate, consuming it
all around the expected number of expected refugees
(Figure 7, bottom left). Up to this point, the potential
algorithms are more generous in consuming capacity
than would be ideal given the actual number of arriving
cases, which is why the potential algorithms obtain a
slightly higher average employment over the first three-
quarters of arrivals (Figure 7, top left) than the optimal
matching in hindsight. For refugees arriving after the
3,770 expected refugees, however, the capacity in the

best affiliates is used up, which is why the averaged
employment sharply drops after this point.”

In 2019, by contrast, fewer refugees arrived than
expected, only 86% of the total capacity. At the bottom
right of Figure 7, it is visible that the potential algorithms
consume priced capacity at a slightly lower rate than the
optimal algorithm in hindsight, as they aim to use up
the capacity around 2,440 refugees rather than the 2,310
who ended up arriving. This effect is reflected in the
average employment rates (top right), which lie below
that of the optimal algorithm throughout most of the

year."

Figure 7. (Color online) Evolution of the Per Refugee Match Score and Remaining Priced Capacity in Order of Arrival, for Fiscal
Years 2016 and 2019 and One Run per Algorithm in the Experiment in Figure 6 (Whole Cases, Batches, Initial Capacities, Poten-
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The fiscal years of 2017 and 2018 stand out because
the total number of arriving refugees fell far short of the
announced number reflected in the approved capacities:
in 2017, arrivals amounted to 65% of the approved
capacities, whereas they amounted to only 46% in 2018.
Both of these years fall into the beginning of the Trump
administration, which not only sharply reduced the
announced intake of resettled refugees, but furthermore
abruptly halted the intake of refugees from six (predom-
inantly Muslim) countries starting from early 2017.

As the potential algorithm depicted in Figure 8 severely
overestimates how many cases will arrive, it holds back
much more priced capacity than would be optimal (bot-
tom, solid lines). This causes the potential algorithms to
extract less employment throughout the year than the opti-
mal algorithm (top, solid lines). As observed in Section 4.2,
the capacities in 2018 are so loose that the greedy algorithm
performs close to optimal.

In these two years, the U.S. Department of State even-
tually reacted by correcting the expected arrivals down-
ward and instructing the resettlement agencies to
reduce their capacities. In fiscal year 2017, this revision
came quite late and ended up underestimating the arri-
vals: where the arrivals amounted to only 65% of the ini-
tial capacities, they exceeded the revised total capacity at
a level of 103%, rather than amounting to the 91% that
was intended. Even if imperfect, this signal that arrivals
are much lower than originally announced is still useful
to the potential algorithms. Indeed, in Figure 8, the
dashed curve corresponds to a potential algorithm that
still starts out expecting 91% of the initial capacities to

arrive, but expects only 91% of the revised capacities to
arrive from the point on where they were announced
(vertical line). Although this information comes late,
the algorithm in fiscal year 2017 uses the new informa-
tion to burn through the remaining priced capacity
more aggressively (bottom left), which allows for higher
employment among refugees arriving after the revision
of arrival numbers (top left). As a result, the employ-
ment reaches 97% of the optimum in hindsight, exceed-
ing the value of 95% without the updated information
that we showed in Figure 6.

By contrast, the revision in fiscal year 2018 did not yield
much useful information; whereas the arrivals amounted
to 46% of the initial capacities, they still amounted to 48%
of the revised capacities. This seems to indicate that even
after half of the fiscal year’s refugees had already been
allocated, the administration overestimated the number
of arriving refugees by a factor of two. Because the
revision barely changed the number of expected arrivals,
giving the potential algorithm access to this revised infor-
mation does not have much effect (Figure 8, right).

Although we have considered the informational value
of revisions above, our experiments have not considered
that these revisions actually reduced the allowable capac-
ities. Although we include a variant of the experiment in
Section EC.4.7 of the e-companion, it is difficult to mean-
ingfully compare the employment achieved by different
algorithms if the parameters of the matching problem are
changed so drastically during the matching period. One
particular challenge is that, although the amount of
reduction was extraneously decided, HIAS was involved

Figure 8. (Color online) Evolution of the Per Refugee Match Score and Remaining Priced Capacity in Order of Arrival, for
Fiscal Years 2017 and 2018 in the Experiment in Figure 6 (Whole Cases, Batches, Initial Capacities, Potential Algorithms Do
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in deciding which capacities to decrease, which was
done in a way that depended on previous allocation
decisions."" Because we know only the revised capacities
that were agreed upon, and not the counterfactual revi-
sion of capacities that would have been made, the greedy
algorithm and the potential algorithms might have already
exceeded a reduced capacity before it was announced.
This means that the experiment rewards algorithms for
greedily using up the capacity in the best affiliates before
the revision, which we do not expect to be a good policy in
practice. More generally, a substantial change in capacities
is an exceptional situation, outside of our model, and can-
not be addressed by our algorithm alone without manual
intervention.

7.2. Arrival Misestimation on Bootstrapped Data
and Incorporating Uncertainty

To obtain more systematic insights into the robustness
of potential algorithms to misestimated arrival numbers,
we study bootstrapped case arrivals, which allows us to
simulate varying numbers of arrivals. The results of this
experiment are displayed in Figure 9 (results for other fiscal
years are deferred to Section EC.4.2 of the e-companion).
As a baseline, consider the greedy algorithm, which
obtains optimal employment when the number of arri-
vals is much lower than the total capacity (say, 25% of
the expected arrivals, which is (25%/110%) ~ 23% of
the capacity), but becomes more and more suboptimal
the more refugees arrive.

By contrast, the potential algorithms perform best
(around 99% of the optimal employment) when the
number of arriving refugees matches what the algorithm
expects. On average, this number is around half of a per-
centage point higher than in the corresponding nonboot-
strapped experiments (Figure 4). Such an increase is to
be expected, as the bootstrapping setup ensures that the
algorithm draws trajectories from the same distribution
from which the arrivals are generated. In particular, the
real arrival sequence used for Figure 4 might contain a

drift in refugee characteristics or a seasonality not cap-
tured by our algorithm, and the lack of these features in
the bootstrapped experiment allows for slightly higher
employment. It is just as noticeable, however, that this
increase is only half a percentage point, revealing that a
drift of arrival characteristics and seasonality does not
account for most of the remaining optimality gap of our
algorithm.

The further the actual arrival number deviates from
this expectation, the further the relative employment per-
formance of the potential algorithm decreases. Notice-
ably, the performance more quickly deteriorates when
the arrival numbers exceed the expectation, versus falling
short. This sharp decline makes sense for two reasons. First,
the algorithms aim to exploit all useful capacity exactly at
the expected number of refugee arrivals; thus, only a subset
of the affiliates remain available for subsequent arrivals.
Second, once the number of arrivals exceeds the expecta-
tion, the trajectories in the potential algorithms add no cases
beyond those that have already arrived, which means that
the algorithm serves subsequent arrivals greedily. In the six
fiscal years we observe, arrivals below the expectation
seem like a more urgent problem than arrivals above the
expectation, but overarrivals might well become a problem
under different political circumstances or when applying
potential algorithms to other matching settings.

A natural way to make the potential algorithms more
robust to inaccurate arrival estimates is to treat arrival
estimates not as exact predictions but as subject to some
uncertainty. Concretely, we adapt the potential algo-
rithms by sampling trajectories of different lengths, each
drawn from a “prior” distribution whose mean is the
arrival estimate, conditioning this distribution such that
trajectory lengths are never less than the number of refu-
gees who have already been allocated. Conceivably,
these adapted trajectories could generate potentials that
are robust across a wider range of arrival numbers, and
the adapted algorithm could therefore lead to higher
employment when the official arrival numbers are

Figure 9. (Color online) Employment Achieved by Different Algorithms as a Function of How Many Refugees Arrive
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inaccurate. The most obvious distribution is perhaps a
Poisson distribution. As shown by the dotted line in
Figure 9, using Poisson trajectories hardly changes the
employment outcomes for any of the experiments rela-
tive to the baseline of fixed trajectory sizes. This is most
likely due to the low variance of the Poisson distribution.
For a quite typical mean of 3,000 arriving refugees, 95%
of the probability mass lies within a distance of only 3.6%
of the mean. For this reason, we also try a distribution
with overdispersion, specifically, a negative binomial dis-
tribution parameterized to have its mean equal to the
expected arrivals and its standard deviation equal to 10%
of the expected arrivals. For example, if again 3,000 arri-
vals are expected, 95% of the probability mass deviates up
to 20% from the mean. As the figure shows, negative-
binomial trajectories lead to decent improvements in
employment when more refugees arrive than expected.
When fewer refugees arrive than expected, using random
trajectory lengths helps more often than not, though with
different degrees of success. Overall, negative-binomial
arrivals seem to make the potential algorithms marginally
more robust to misestimated arrival numbers, though not
by enough to make misestimation less of an overall con-
cern. However, this additional robustness comes at a non-
negligible cost when arrival estimates are accurate.

7.3. Better Knowledge of Future Arrivals
In Section 7.1, we demonstrated that, even without outside
supervision, our potential algorithms lead to substantial
employment increases over the baselines, unless the an-
nounced capacities miss the eventual arrival numbers by
an extreme margin. Even in these typical years, however,
more accurate arrival predictions could increase the total
employment on the order of percentage points of the hind-
sight optimum. Obviously, more accurate information
about arrivals would be even more useful in years like
2017 and 2018, in which the official information is
unreliable.

One approach would be to use time-series prediction
to estimate the number of arrivals. For instance, when
the U.S. Department of State revised the capacities for

the fiscal year 2018 in January 2018 (several months into
the fiscal year), the announcement that 2.5 times more
refugees were still to come than had already arrived
might have raised some doubts. However, the graph of
monthly arrivals in Figure 10 shows that late increases
in arrival rates may actually happen as they did in fiscal
year 2016."

A fundamental challenge that any data-driven approach
faces is that there are very little data to learn from. Indeed,
although HIAS has data on hundreds of thousands of refu-
gees, they have data on only 15 fiscal years, which is, more-
over, incomplete and smaller scale in earlier years. Thus,
there is a limited foundation on which to learn about how
arrival patterns change between years. This task becomes
especially difficult given that arrival numbers are heavily
influenced by external events such as elections, the emer-
gence of humanitarian disasters, and changes in immigra-
tion policy, which cannot be deduced from past arrival
patterns. Thus, although a time-series prediction approach
might lead to marginal improvements over naively expect-
ing 91% of the capacity to arrive, past arrival numbers are
unlikely to give enough information to accurately predict
future arrival numbers.

Fortunately, resettlement agencies such as HIAS already
possess much richer information and insights into the
dynamics of refugee arrivals than a pure data approach
would consider. In fiscal year 2017, for example, HIAS
foresaw a worsening climate for refugee resettlement
immediately after the November 2016 election'® and was
aware of concrete plans to drastically reduce refugee
intake in January 2017,"* both before these changes were
reflected in arrival numbers and before the capacities were
officially updated in March 2017. Similarly, HIAS continu-
ously monitors domestic politics and international crises
for their potential impact on resettlement, and, moreover,
it has some limited insight into the resettlement pipeline,
which allows it to prepare for changes in arrivals. We
therefore believe that, rather than building a sophisticated
tool for predicting arrivals in a fully autonomous manner,
it is preferable to allow HIAS staff to override our predic-
tion with more advanced information.

Figure 10. (Color online) Monthly Number of Allocated Refugees, Disaggregated by Fiscal Year of Arrival
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Figure 11. (Color online) Updated Annie Interface
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8. Implementation in Annie MOORE

To enable HIAS to benefit from online allocation via
potentials, we have integrated new features into its
matching software Annie MOORE, which constitute the
software’s second major release (Annie 2.0). A crucial
design requirement is that HIAS staff must be able
to override the allocation recommendations of Annie
MOORE when they are aware of requirements outside
of our model. From an interface-design perspective, the
challenge is to visualize the effect of such overrides
on total employment, enabling HIAS staff to make
informed trade-offs. In the original, static model, this
was easy enough: as the quality of a matching was just
the total employment of the current batch, the interface
labeled each case-locality match with its associated
employment score, and staff could drag the case to other
localities to see the respective employment scores. In a
dynamic setting, however, presenting only the employ-
ment scores may unintentionally encourage HIAS staff
to greedily use capacity in their overrides, at the expense
of future arrivals.

As we illustrate in Figure 11, the new interface of
Annie augments the original interface with information
about affiliate potentials, thereby taking future arrivals
into account. Specifically, the background color of the
tile for case i encodes the adjusted employment score,
that is, the original employment score u; ¢ less the poten-
tial s; p; of the capacity consumed in affiliate ¢.'” The fact

Figure 12. (Color online) Moving a Family Tile

that the algorithm PMB always maximizes the sum of
adjusted employment scores in its allocation of the cur-
rent batch means that the algorithm is explainable in
terms of the information presented to the user. In the
interface, the green color spectrum indicates positive
adjusted employment scores (meaning that the employ-
ment score of the case outweighs the loss in future
employment), whereas the red color spectrum highlights
negative adjusted scores (where a placement reduces
future employment by more than its employment score).
Darker shades signify greater magnitudes.

In overriding the allocation recommended by Annie
MOORE, HIAS staff should be able to quickly find alter-
native placements for a case that do not reduce immedi-
ate and future employment by more than necessary. To
support this workflow, our interface shows the adjusted
employment scores of a case across all affiliates at a
glance: As shown in Figure 12, upon dragging a particu-
lar case tile from its current placement, all other case tiles
temporarily fade in appearance, and the shading of
every affiliate tile temporarily assumes the adjusted
employment score relative to the selected case. By hover-
ing a selected case tile over a new affiliate, the original
(numeric) employment score and the adjusted match
score (background color of the case tile) dynamically
update. Moreover, incompatibilities with affiliates due
to nationality, language, family size, and single-parent
households can be seen via an exclamation mark in the

.
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i

Notes. While moving a family tile, tiles belonging to other cases fade, and affiliate tiles are shaded as per their adjusted employment scores, in
green (positive) or red (negative). Exclamation marks indicate incompatibilities.
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lower left corner of the affiliate tile. After dropping the
case tile in a new affiliate, the background color for each
affiliate returns to its original blue shade, and all affiliate-
tile exclamation marks disappear.

On a separate screen (not shown), Annie 2.0 enables the
entry of a prediction for total refugee arrivals, as men-
tioned in Section 7.3. This estimate can be critical to inform
the process of estimating proper shadow prices, as at times
HIAS is in a better position to give more accurate case
arrival predictions than officially announced capacities.

9. Conclusion

We have developed and implemented online algorithms
allocating refugees in a way that promotes refugees’ pro-
spects of finding employment. Our algorithms outper-
form the greedy and historical baselines, even when
taking into account how refugee placement in practice
deviates stylized online matching problems.

Although we have tested the algorithms as an autono-
mous system, the success of Annie MOORE in increasing
employment outcomes in practice will depend on how it
performs in interaction with HIAS resettlement staff. In
Section 7.3, we already saw that the allocation decisions of
Annie can greatly profit from human decision makers
providing better estimates of future arrivals. Human
input is equally crucial in dealing with uncertainty in sev-
eral other places; for example, HIAS staff might intervene
by correcting a case’s physical-arrival year if the Depart-
ment of State’s estimate seems off, or they might increase
certain affiliate capacities late in the year if they anticipate
that these capacities will be renegotiated. By allowing all
parameters of the matching problem to be changed,
Annie MOORE allows HIAS resettlement staff to im-
prove the matching using any available information.

Our hope is that the human-in-the-loop system con-
sisting of the matching algorithm and HIAS staff will
combine the strengths of both of its parts: On the one
hand, the algorithms in Annie MOORE capitalize on subtle
patterns in employment data and manage capacity more
effectively over the course of the fiscal year. On the other
hand, the expert knowledge of HIAS staff enables the sys-
tem to handle the uncertainty that is inherent in a matching
problem involving the actions of multiple government
agencies, dozens of affiliates, and thousands of refugees. In
light of the administration’s recent increase of the total
resettlement capacity from 15,000 to 125,000,'° we foresee
both parts playing a crucial role: the increasing scale of the
problem will make data-based algorithms more effective,
and human guidance will be necessary to navigate the
evolving environment of a rapidly growing operation.
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Endnotes

T Each fiscal year ranges from October 1 of the previous calendar
year to September 30. For example, fiscal year 2017 ranges from
October 1, 2016, to September 30, 2017.

2 For example, allowing cases to be unmatched is necessary because
an arriving case might only be compatible with affiliates whose
capacity is already exhausted. When these situations occur in prac-
tice, such cases do not remain unmatched; instead, capacities can be
increased or case-affiliate incompatibilities overruled manually by
the arrivals officer. For our sequence of models, we report the frac-
tion of matched refugees in Section EC.4.8 of the e-companion and
find that our algorithms do not lead to fewer refugees being
matched than in the greedy baseline. To lower the number of
unmatched refugees at the cost of reducing employment, one can
add a constant reward per refugee to the u; , with £ # L.

3 From Section 6 onward, cases will instead arrive in batches, which
can be allocated simultaneously.

# When the number of refugees resettled in the fiscal year exceeds
the official capacity, we use the number of resettled refugees
instead. In these situations, HIAS negotiated an increase in capacity
that may not be recorded in our data.

5 In these cases, we estimate the employment achieved by the case
using the regression rather than using u; , = —co.

€ One can always find a fractional solution that splits cases into 1/s;
fractions similarly to what we did in the evaluation of Section 4.2.

" To convert the number of remaining refugees into a number of
cases, we divide by the average case size of recent arrivals (over the
years, this average size fluctuates between 2.4 and 2.6). Although the
number of refugees who have arrived is below 91% of the total capac-
ity, this gives us a total number of cases 7 for the algorithms. Once the
number of arrivals exceeds 91% of the total capacity, we make the
algorithms assume that the current case is the last to arrive, that is, all
subsequently sampled trajectories have length zero.

8 This means that the comparison with the historical algorithm is not
quite on equal terms, because the latter is constrained by a different
set of capacities. In all fiscal years except for 2017 and 2018, the final
capacities are affiliate-wise larger than the original capacities.

9 Note that, because of the triangle smoothing, the drop starts drag-
ging down the curve 500 arrivals before its actual start.

19 The drop in employment probabilities at the end of the fiscal year
affects all algorithms including the hindsight optimum and must
therefore be caused by an anomaly in arrival characteristics.

1 Although the sum of capacities did not change much in fiscal
year 2018, the capacities of some affiliates were substantially
decreased, and those of others were substantially increased.

2 1n fiscal year 2016, the number of arrivals after January 2016 was
1.6 times larger than the number that had arrived so far. In the fiscal
year of 2015, the number of refugees arriving after January 2015
was only 75% of that arriving before.

13 Gee https://www hias.org/news /press-releases/hias-calls-president-
elect-trump-respect-longstanding-refugee-policy.

14 See https: //www.hias.org/news,/press-releases/ trumps-planned-
action-refugees-betrayal-american-values.

5 The employment scores of cases in affiliates are prominently
retained in text labels.

16 See https://www.hias.org/news/press-releases,/ refugee-cap-fy2022-
set-125000.
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