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Abstract. Employment outcomes of resettled refugees depend strongly on where they are 
initially placed in the host country. Each week, a resettlement agency is allocated a set of 
refugees by the U.S. government. The agency must place these refugees in its local affiliates 
while respecting the affiliates’ annual capacities. We develop an allocation system that 
recommends where to place an incoming refugee family to improve total employment suc
cess. Our algorithm is based on two-stage stochastic programming and achieves over 98% 
of the hindsight-optimal employment, compared with under 90% of current greedy-like 
approaches. This dramatic improvement persists even when we incorporate a vast array of 
practical features of the refugee resettlement process including inseparable families, batch
ing, and uncertainty with respect to the number of future arrivals. Our algorithm is now 
part of the AnnieTM MOORE optimization software used by a leading American refugee 
resettlement agency.
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1. Introduction
As of 2022, over 35 million people are seeking refuge 
outside their country of origin due to war, violence, or 
persecution (United Nations High Commissioner for 
Refugees 2023b). Of these refugees, the United Nations 
High Commissioner for Refugees (UNHCR) considers 
2.4 million to be in need of resettlement, that is, perma
nent relocation from their country of asylum to a third 
country (United Nations High Commissioner for Refu
gees 2023b). Resettlement is mainly targeted at the most 
vulnerable refugees, such as children at risk, survivors 
of violence and torture, and those with urgent medical 
needs. Despite resettlement efforts by dozens of coun
tries, global resettlement falls far short of what would be 
required. In 2022, for example, only around 114,000 refu
gees were resettled (United Nations High Commis
sioner for Refugees 2023a), whereas the projected need 
for resettlement grew by 400,000 over a similar time 

frame (United Nations High Commissioner for Refugees 
2023b). Given this dearth of resettlement capacity, coun
tries need to use their limited places as effectively as pos
sible in order to maximize refugee welfare.

Historically, countries taking in resettled refugees 
have paid little attention to where inside the country 
these refugees are placed. This policy might be worth 
reconsidering in light of ample evidence that the local 
resettlement destination dramatically affects key socio- 
economic outcomes for refugees (Åslund and Rooth 
2007; Åslund and Fredriksson 2009; Åslund et al. 2010, 
2011; Damm 2014; Bansak et al. 2018; Martén et al. 2019). 
One specific outcome impacted by community place
ment is whether and when resettled refugees find em
ployment (e.g., Åslund and Rooth 2007), which plays a 
key role in the successful integration of a refugee by 
“promoting economic independence, planning for the 
future, meeting members of the host society, providing 
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opportunity to develop language skills, restoring self- 
esteem and encouraging self-reliance” (Ager and Strang 
2008, p. 170).

To help more refugees find employment, the U.S. reset
tlement agency HIAS (founded as the Hebrew Immigrant 
Aid Society) started in 2018 to match refugees to com
munities with the software AnnieTM MOORE (Matching 
and Outcome Optimization for Refugee Empowerment) 
developed by Ahani et al. (2021). Based on past arrival 
data, Annie MOORE estimates how likely a refugee is to 
find employment in each community soon after arrival. 
The software then suggests where to place the refugee to 
maximize the expected total employment, subject to not 
exceeding community capacities and to ensuring that 
refugees have access to services they need.

A key limitation of the existing software, however, 
was that it solved an offline optimization problem, 
whereas refugee allocation is an online problem: whereas 
Annie MOORE optimized a one-shot matching of refu
gees to communities, organizations like HIAS continu
ously allocate refugees over the year as they are cleared 
for resettlement, and they aim to maximize the total 
employment across the year. Because of this mismatch, 
resettlement practitioners employed Annie MOORE 
as a greedy algorithm; that is, Annie MOORE myopi
cally maximized the employment of the current batch 
of refugees, without considering whether the current 
assignment would negatively impact the employment 
of future arrivals in the same fiscal year by prematurely 
using up community capacity.

In this paper, we design and deploy an online algo
rithm for refugee allocation. This algorithm achieves 
higher employment by explicitly accounting for the 
value that a community’s capacity has for the employ
ment of future arrivals, which we refer to as the commu
nity’s potential. In fact, we design two closely related 
algorithms, defined by different ways of computing 
potentials from the dual values of a matching linear pro
gram. One of these potentials is motivated by stochastic 
programming and the other by Walrasian equilibrium. 
We study these algorithms in a rich model that captures 
all of the relevant practical features of the refugee re
settlement process, including inseparable families of re
fugees, batching, and unknown numbers of refugee 
arrivals. Evaluating our algorithms on HIAS data from 
2014 to 2019, we show that they achieve over 98% of 
the hindsight-optimal employment in all years, com
pared with a typical employment of around 90% for 
the greedy baseline. We then describe how we imple
mented our algorithms within Annie MOORE to create 
Annie 2.0, which has been well-received by HIAS leader
ship: “AnnieTM 2.0 is a game-changer for our pre-arrivals 
processes, allowing us to plan and optimize our pre-arrival 
strategy a year rather than a week ahead.” The code for our 
experiments is available at https://github.com/pgoelz/ 

dynamicrefugees, and Section EC.1 of the e-companion 
contains a detailed descriptions of our data set, as well as 
details on data preprocessing.

1.1. Related Work
Our paper extends a line of work initiated by Bansak 
et al. (2018), which aims to increase refugees’ employ
ment outcomes through data- and optimization-driven 
placement. This approach consists of two components: 
using machine learning to estimate the probability that a 
given refugee placed at a given community would find 
employment, and using mathematical programming to 
perform the optimization. Ahani et al. (2021) adopted a 
similar approach to develop Annie MOORE; they also 
pointed out the practical relevance of inseparable families 
and the possibility of batching. Both papers seek to maxi
mize employment with respect to a current batch of refu
gees, without considering future arrivals. In this sense, we 
think of the previously deployed algorithms as greedy, 
and that is indeed our benchmark in this paper.

Though our dynamic refugee placement problem gen
eralizes the classic edge-weighted online bipartite matching 
problem, most algorithms in the theory literature are not 
promising for our application because they are optimized 
for overly pessimistic arrival scenarios. Whereas competi
tive analysis was quite successful for unweighted online 
bipartite matching (Karp et al. 1990), no constant-factor 
approximation algorithm is possible for the weighted set
ting if arrivals are adversarial (Fahrbach et al. 2020). In 
the random-order arrival model, a 1=e-approximation is 
possible (Kesselheim et al. 2013), but the algorithm is 
impractical; in particular, it leaves the first 37% of arrivals 
unmatched. Even if arrivals are drawn independent and 
identically distributed from a known distribution, Man
shadi et al. (2012) show that no online algorithm can 
obtain a better approximation ratio than 0.823, far below 
the performance of even the greedy baseline in our set
ting. Because this impossibility is based on highly ad
versarial arrival distributions, many papers additionally 
assume that arrivals belong to finitely many types deter
mining their edge weights. In this setting, constructing 
matchings that are optimal up to lower-order terms (with 
high probability) is not difficult (see Alaei et al. 2013), and 
multiple papers obtain such results, often in generaliza
tions of edge-weighted online bipartite matching (Alaei 
et al. 2012, 2013; Vera and Banerjee 2021). What limits the 
applicability of these algorithms to our setting, however, 
is that these algorithms require the distribution over 
types explicitly in their input, and are often constructed 
based on the assumption that multiple arrivals of each 
type will occur in a single run of the algorithm. By con
trast, we estimate employment scores based on 20 inde
pendent features, which means the number of refugee 
“types” is too large to enumerate, and we do not expect 
to see identical refugees.
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Our allocation algorithms work by simulating sequences 
of future arrivals, computing the optimal matchings for 
these simulated futures, and then allocating the current 
arrival based on the shadow prices of these optimal match
ings. This approach can be seen as an instantiation of the 
Bayes selector, an algorithmic paradigm that takes in a pre
diction of future arrivals and then performs the action (in 
our setting, chooses the affiliate for the current arrival) that 
seems most likely to coincide with the action taken by an 
optimal benchmark. Across various problems with sto
chastic online arrivals, algorithms following this paradigm 
have yielded impressive theoretical and empirical results 
(Freund and Banerjee 2019, Banerjee et al. 2020, Vera and 
Banerjee 2021, Vera et al. 2021, Sinclair et al. 2023). Specifi
cally, under some regularity conditions on arrivals, these 
algorithms obtain constant regret; that is, the expected differ
ence between the algorithm’s performance and that of the 
optimal benchmark does not grow with the size of the 
problem. The prediction of future arrivals often takes other 
shapes, but it can be a sampled trajectory of arrivals as in 
our algorithms (Banerjee et al. 2020). In most papers, the 
choice of action is based on how often the optimal bench
mark would take an action in the simulated future, rather 
than, as in our work, on the marginal effect of an action on 
the optimal value. In recent work, however, Sinclair et al. 
(2023) analyzed the same variant of the Bayes selector (the 
“hindsight planning policy”) as our Equation (1) and 
showed that it gives constant regret for the problem of sto
chastic online bin packing. Even though we do not provide 
theoretical guarantees in this paper, the success of the 
Bayes selector across related settings partially explains our 
good empirical performance.

Our use of shadow prices for guiding online refugee 
allocation mirrors earlier applications of shadow prices to 
a variety of online decision problems in, among other con
texts, advertising (Vazirani et al. 2005, Devanur and Hayes 
2009, Vee et al. 2010), revenue management (Talluri et al. 
2004), worker assignment (Ho and Vaughan 2012, Johari 
et al. 2021), and resource allocation (Asadpour et al. 2020). 
Agrawal et al. (2014) develop a dynamic learning approach 
where prices are calculated in a similar manner to ours, 
but whereas they update their match scores upon every 
doubling of the arrival history, we update our match 
scores upon every batch. Ho and Vaughan (2012) extend 
the advertising context of Devanur and Hayes (2009) to 
assign workers to tasks when match scores are initially 
unknown and must be learned. Like Ho and Vaughan 
(2012), Johari et al. (2021) also consider the worker-to-job 
context, but learn scores while matching via an explore- 
then-exploit approach. In our setting, our scores are known 
in advance independent of arrivals (Ahani et al. 2021).

In independent and concurrent work, Bansak (2020) 
also considers dynamic refugee resettlement, albeit in a 
model of the problem that is more stylized than ours. 
Our model is more representative of practical refugee 
matching through explicit inclusion of nonunit family 

sizes, incompatibilities between families and communi
ties, and uncertain arrival numbers. Out of the four 
assignment algorithms studied by Bansak (2020), the 
first two are closely related to algorithms we develop. 
(The other two algorithms lead to substantially worse 
employment in Bansak’s (2020) experiments, which is 
why we do not discuss them here.) Bansak’s (2020) algo
rithm 1, which achieves the best employment in his 
experiments, is a straightforward sampling implementa
tion of the two-stage stochastic programming formula
tion in Section 4.1. As we explain in that section, our 
algorithm PM(Pot1) is functionally equivalent to Bansak’s 
(2020) algorithm 1 in his model; thus, PM(Pot1) would 
obtain the same great employment outcomes as in Ban
sak’s (2020) experiments. An important difference, how
ever, is that our algorithms are orders of magnitude 
faster than Bansak’s (2020) algorithm 1, as shown in Sec
tion 6. This allows us to evaluate our algorithms on 
entire fiscal years of arrivals (whereas Bansak’s (2020) 
evaluation is limited to individual months) and enables 
our algorithms to scale to large future increases in arri
vals numbers (see Section EC.4.3 of the e-companion). 
To overcome his algorithm 1’s slow running time, Ban
sak (2020) proposes algorithm 2, another instantiation of 
the Bayes selector, which has a comparable running 
time to our algorithms. Whereas our algorithms match a 
current case based on shadow prices for a large number 
of simulated arrival trajectories, Bansak’s (2020) algo
rithm 2 matches the current case with the affiliate to 
which it was most frequently matched in the offline 
solutions for the arrival trajectory. Given that Bansak’s 
(2020) experiments reveal that his algorithm 2 obtains 
nearly as much employment as his algorithm 1 (for an 
unspecified number of arrival trajectories), his algorithm 
2 and PM(Pot1) can be expected to be comparable in 
terms of employment and running time. Recent work by 
Bansak and Paulson (2022) extends the earlier work by 
Bansak (2020) by incorporating a secondary objective 
that seeks to consume capacity at similar rates across 
affiliates, improving case wait times across affiliates 
without sacrificing much employment. Even more re
cently, Freund et al. (2023) employ a bid-price approach 
related to ours to enforce fairness between subgroups of 
refugees.

1.2. Organization of This Paper
In Section 2, we provide an overview of the U.S. refugee 
resettlement process. In Section 3, we outline our model 
of dynamic refugee matching. In Section 4, we propose 
our two algorithms and show that they obtain near- 
optimal employment in a baseline setting that ignores the 
inseparability of families, batching, and uncertainty about 
the total number of arrivals. In the next three sections, we 
layer on complexity toward the setting encountered in 
practice: families of different sizes (Section 5), batching 
(Section 6), and unknown arrival numbers (Section 7). In 
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these sections, we demonstrate that inseparable families 
and batching do not substantially change our algorithms’ 
employment performance, and that employment remains 
high unless the number of arrivals widely deviates from 
the numbers announced by the government. In Section 
8, we then explain how we implemented our approach 
within Annie MOORE, and we conclude in Section 9. In 
the e-companion, we provide details deferred from the 
main text for space reasons and additional empirical 
analyses.

2. Institutional Background
The federal Office of Refugee Resettlement was cre
ated by the Refugees Act in 1980. The act established 
funding rules and authorized the president of the 
United States to set annual capacities for resettlement. 
The resettlement process is managed by the U.S. Refu
gee Admissions Program (USRAP) of the U.S. Depart
ment of State, in conjunction with a number of federal 
agencies across federal departments as well as the Inter
national Organization for Migration and the UNHCR.

Applications for the resettlement program take place 
from outside of the Unites States, typically in refugee 
camps. The U.S. government conducts security checks 
and medical screenings, and performs cultural orienta
tion, which can take upward of 18 months (Jones 2015). 
After clearance, the USRAP decentralizes the process of 
welcoming refugees to nine nongovernmental organiza
tions known as resettlement agencies, one of which is HIAS. 
Each agency works with their own network of local affili
ates, each supported by local offices as well as religious 
entities like churches, synagogues, or mosques, which 
serve as community liaisons for refugees. Each agency 
typically works with dozens of affiliates, though the exact 
number of affiliates fluctuates over time. Some affiliates 
lack services to host certain kinds of refugees. For exam
ple, certain affiliates do not have translators for non- 
English-speaking refugees, or they might lack support for 
single-parent families.

Agencies have no influence on which refugees are 
cleared for resettlement by the USRAP or on when the 
refugees might arrive. Resettlement agencies meet on a 
weekly or fortnightly basis to allocate among themselves 
the refugees that have been cleared by the USRAP.

Refugees are usually resettled with members of their 
family. Such an inseparable group of refugees is referred 
to as a case. As a family can split when its members are 
fleeing their home country, some refugees who are apply
ing for resettlement might already have existing relatives 
or connections in the United States. Such cases with U.S. 
ties are automatically resettled near their existing ties. All 
other refugees, referred to as free cases, can be resettled by 
any agency into any of the agency’s affiliates.

Each affiliate has an assigned annual capacity for the 
number of individual refugees it can admit in a given 

fiscal year.1 These capacities are approved by the USRAP 
and, in theory, agencies cannot exceed them. In practice, 
capacities can be slightly adjusted toward the end of the 
year or, as in recent years, substantially revised in the 
course of the year. Because capacities limit the number 
of refugees arriving in a fiscal year rather than allocated in 
it, and because there is typically a delay of multiple 
months between the two events, the U.S. Department of 
State tells the resettlement agencies an estimated arrival 
date for each cleared case.

Agencies are assessed annually by the USRAP on 
their performance in finding employment for refugees 
within 90 days of their arrival. Data on 90-day employ
ment is therefore diligently collected by the affiliates and 
monitored by the agencies.

3. Model
An instance of the matching problem first defines a set L 
of affiliates, and each affiliate ℓ has a capacity cℓ ∈ N≥0 ∪

{∞} of how many refugees it can host. We call a vector 
c � {cℓ}ℓ∈L of capacities for all affiliates a capacity profile c. 
We write c � eℓ to describe the capacity profile obtained 
from c by reducing the capacity of affiliate ℓ by one.

On the other side of the matching problem is a set N �

{1, : : : , n} of cases. Each case i represents an inseparable 
family of si ∈ N≥1 refugees. Furthermore, each case i, for 
each affiliate ℓ, has an employment score ui, ℓ, which indi
cates the expected number of case members that will 
find employment if the case is allocated to ℓ. Typically, 
these employment scores ui, ℓ are real numbers in [0, si], 
but we will also allow to set ui, ℓ � �∞ to express that 
case i is not compatible with affiliate ℓ. We will refer to 
the combination of a case’s size and vector of employ
ment scores as the characteristics of the case. To ensure 
that the matching problem is always feasible, we will 
assume that L contains a special affiliate ⊥ that repre
sents leaving a case unmatched, where ui, ⊥ � 0 for all 
cases i and c⊥ � ∞.2

We use the employment scores developed by Ahani 
et al. (2021), and we give details on data preprocessing 
and training in Section EC.1.1 of the e-companion. 
Throughout this paper, we consider these employment 
scores as ground truth, which means that we evaluate 
algorithms directly based on the employment scores. An 
evaluation of how accurately the employment scores 
predict employment outcomes is outside of the scope of 
this paper, and has already been performed by Ahani 
et al. (2021).

The goal of the matching problem is to allocate cases 
to affiliates such that the total employment, that is, the 
sum of employment scores, is maximized, subject to 
not exceeding capacities. For a set I ⊆ N and a capacity 
profile c � {cℓ}ℓ∈L, define MATCHING(I, c) as the match
ing integer linear program (ILP) below, where vari
ables xi, ℓ indicate whether case i ∈ I is matched to 
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affiliate ℓ ∈ L:

maximize
X

i∈I

X

ℓ∈L
ui, ℓ xi, ℓ

subject to
X

ℓ∈L
xi, ℓ � 1 ∀i ∈ I,

X

i∈I
si xi, ℓ ≤ cℓ ∀ℓ ∈ L,

xi, ℓ ∈ {0, 1} ∀i ∈ I,ℓ ∈ L:

Let OPT(I, c) denote the optimal objective value of 
MATCHING(I, c). The linear programming (LP) relaxation of 
MATCHING(I, c) is obtained by replacing the constraint 
xi, ℓ ∈ {0, 1} by 0 ≤ xi, ℓ ≤ 1 for all i ∈ I,ℓ ∈ L. For a fixed 
matching, we define the match score of a case i as its 
employment score ui, ℓi at the affiliate ℓi where it is allo
cated; we will also refer to its match score per refugee, 
ui, ℓi =si.

Finally, cases arrive online, that is, they arrive one by 
one, and when case i arrives, the decision of which affili
ate to place i in must be made irrevocably, before the 
characteristics of the subsequent arrivals i + 1, : : : , n are 
known.3 Thus, although an online matching algorithm 
must still produce a matching whose indicator variables 
xi, ℓ satisfy the constraints of MATCHING(N, c), the total 
employment 

P
i∈N, ℓ∈Lui, ℓ xi, ℓ typically will not attain the 

benchmark OPT(N, c) of the optimal matching in hindsight. 
Although we will not commit to a specific model of how 
the characteristics of arriving cases are generated, these 
arrivals should be thought of as stochastic rather than 
worst case, and the distribution of case characteristics as 
changing slowly enough that sampling from recent arri
vals is a reasonable proxy for the distribution of future 
arrivals.

Note that we use the word “arriving,” as is customary 
in online algorithms, to refer to the time at which a case 
is presented to and allocated by the algorithm. Unfortu
nately, this usage disagrees with the terminology of ref
ugee resettlement, where “arrival” refers to a refugees 
physical arrival in the United States, which takes place 
some time after allocation. As we have described in Sec
tion 2, this physical arrival plays a single role in our allo
cation problem, namely, by determining which fiscal 
year’s capacities a case counts toward. Because we treat 
the allocation problems for different fiscal years sepa
rately, the important point in time associated with a case 
is its time of allocation, which we will refer to as its 
arrival for the remainder of this paper.

Throughout the following sections, we will consider a 
sequence of models that incorporate an increasing 
number of features of the real-world refugee allocation 
problem. In Section 4, we consider traditional online 
bipartite matching, which results from requiring si � 1 in 
the above model. From Section 5 onward, we allow cases 
to have arbitrary size. From Section 6 onward, we also 
allow cases to arrive in batches rather than one by one. 

In Section 7, we no longer assume that the total number 
n of arriving cases is known to the algorithm.

4. Online Bipartite Matching (si 5 1)
In this section, we will consider the special case of online 
bipartite (weighted) matching. We stress that this classic 
problem does not capture key features of the refugee- 
allocation problem in practice, which we will add in later 
sections. Instead, online bipartite matching allows us to 
more cleanly draw connections to theoretical arguments, 
which help motivate our algorithm design. Later in the 
paper, we will empirically show that the approach con
tinues to work well in richer and more realistic settings.

Formally, this section considers the model defined in 
the previous section, with the restriction that all cases 
consist of single refugees, that is, that si � 1 for all i ∈ N. 
Under this assumption, it is well known that the opti
mum matching for the ILP MATCHING(I, c) can be found 
by solving its LP relaxation.

4.1. Algorithmic Approach
To motivate our algorithmic approach, we begin by 
describing why matching systems currently deployed in 
practice lead to suboptimal employment. These systems 
assign cases greedily, which—putting aside batching for 
now—means that an arriving case i is matched to the 
affiliate ℓ with highest employment score ui, ℓ among 
those that have at least si remaining capacity. The main 
problem with greedy assignment is that it exhausts the 
capacity of the most desirable affiliates too early. In par
ticular, we observe on the real data that a large fraction of 
cases have their highest employment score in the same 
affiliate ℓ∗, but that the size of the employment advantage 
of affiliate ℓ∗ over the second-best affiliate varies. Because 
it considers only the highest-employment affiliate for 
each case, greedy assignment will fill the entire capacity 
of ℓ∗ early in the year, including with some cases that ben
efit little from this assignment. Consequently, cases 
that would particularly profit from being placed in ℓ∗
but arrive later in the year no longer fit within the 
capacity.

Intuitively, the decision to match a case i to an affiliate 
ℓ has two effects: the immediate increase of the total 
employment by ui, ℓ but also an opportunity cost for con
suming ℓ’s capacity, which might prevent profitable 
assignments for later arrivals. Because greedy assign
ment considers only the former effect, it leaves employ
ment on the table.

A better approach is two-stage stochastic programming, 
which allocates an arriving case i to the affiliate ℓ maxi
mizing the sum of the immediate employment ui, ℓ and 
the expected optimal employment obtainable by match
ing the future arrivals subject to the remaining capacity. 
That is, if, at the time of i’s arrival, the remaining capaci
ties are given by c, two-stage stochastic programming 
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allocates i to the affiliate

arg max
ℓ∈L:cℓ≥si

ui, ℓ +E[OPT({i + 1, : : : , n}, c � si · eℓ)], 

where the expectation is taken over the characteristics of 
cases j � i + 1, : : : , n. Because adding a constant term 
does not change the argmax, this can be rewritten as

� arg max
ℓ∈L:cℓ≥si

ui, ℓ �E[OPT({i + 1, : : : , n}, c)]

+ E[OPT({i + 1, : : : , n}, c � si · eℓ)]

� arg max
ℓ∈L:cℓ≥si

ui, ℓ �E
�
OPT({i + 1, : : : , n}, c)

� OPT({i + 1, : : : , n}, c � si · eℓ)
�
: (1) 

Using our assumption that si � 1, this can be simplified to

� arg max
ℓ∈L:cℓ≥1

ui, ℓ � E
�
OPT({i + 1, : : : , n}, c)

� OPT({i + 1, : : : , n}, c � eℓ)
�
:

Note that the expected value that is subtracted in either 
of the last two lines is exactly the expected opportunity 
cost of reducing the capacity of ℓ by placing case i there. 
This motivates our algorithmic approach: In every time 
step, we first compute a potential pℓ for each affiliate ℓ. 
Then, rather than myopically maximizing the matching 
score as does greedy assignment, our algorithm PM 

(“potential match”) myopically maximizes the matching 
score minus the potential of the capacity used, as shown 
in Algorithm 1. (Note that an affiliate ℓ can always be 
defined in Line 5 as, by assumption, c⊥ � ∞.)

Algorithm 1 (PM(Potential))
Parameter: a subroutine Potential to determine affil

iate potentials 
1 initialize the capacities cℓ for each affiliate ℓ;
2 for t � 1, : : : , n do
3 observe the case size st and the employment 

scores {ut, ℓ}ℓ;
4 call Potential() to define a potential pℓ for each 

affiliate ℓ;
5 ℓ← arg maxℓ∈L:cℓ≥st ut, ℓ � st pℓ;
6 allocate case t to ℓ and set cℓ ← cℓ � st;

We estimate the expected value of the opportunity 
cost by averaging over a fixed number k of trajectories, 
each of which consists of randomly sampled characteris
tics of all arrivals i + 1 through n. As the characteristics 
of arriving refugees change over time, and as these 
changes tend to be gradual, we draw these arrival char
acteristics uniformly with replacement from the arrivals 
in the six months prior to the current allocation decision. 
In Section EC.4.4 of the e-companion, we evaluate differ
ent lengths of this sampling window.

For each sampled trajectory, it remains to calculate the 
potential, which we would like to equal the opportunity 
cost OPT({i + 1, : : : , n}, c) � OPT({i + 1, : : : , n}, c � eℓ). Clearly, 
this could be computed by solving O( |L | ) matching linear 
programs, which is what algorithm 1 by Bansak (2020) 
does.

Instead, we make use of an important observation in 
matching theory (Leonard 1983) to exactly compute the 
opportunity costs for all affiliates with remaining capac
ity as the shadow prices of a single LP.

Fact 1. Fix a matching-problem instance, in which all cases 
i have size si � 1. In the LP relaxation of MATCHING(N, c), let 
{pℓ}ℓ∈L denote the unique element-wise maximal set of 
shadow prices for the constraints 

P
i∈Nsi xi, ℓ ≤ cℓ. Then, for 

each ℓ with cℓ ≥ 1,

pℓ � OPT({i + 1, : : : , n}, c) � OPT({i + 1, : : : , n}, c � eℓ):

This suggests the procedure Pot1 for computing poten
tials, which is shown in Algorithm 2. (One way of find
ing the element-wise maximal shadow prices is to first 
solve the dual LP to find its objective value, then add a 
constraint that constrains the objective of the dual LP to 
be equal to this optimal objective value, and to finally 
maximize the sum of dual variables pℓ over this new 
restricted LP.)

Algorithm 2 (Pot1(k))
Parameter: k ∈ N≥1, the number of trajectories per 

potential computation
Input: remaining capacities c, the index t of the 

last observed case, characteristics of cases arriving in 
the past 6 months

Output: a set of potentials pℓ for all affiliates ℓ 
1 for j � 1, : : : , k do
2 for each i � t + 1, : : : , n, set si and {ui, ℓ}ℓ to the size 

and employment scores of a random, recently 
arrived case;

3 solve the following bipartite-matching LP:

maximize
Xn

i�t+1

X

ℓ∈L
ui,ℓxi,ℓ

subject to
X

ℓ∈L
xi,ℓ � 1 ∀i � (t+1), : : : ,n

Xn

i�t+1
si xi,ℓ ≤ cℓ ∀ℓ∈ L (∗)

0 ≤ xi,ℓ ∀i � (t+1), : : : ,n, ∀ℓ∈ L:

4 for each ℓ, set pj
ℓ to be the maximal shadow price 

of the constraint (∗);
5 set pℓ ← (

Pk
j�1 pj

ℓ)=k for all ℓ;
6 return {pℓ}ℓ∈L;

We also develop a second method, Pot2, for comput
ing potentials, which is based on a slightly different LP 
and has different theoretical underpinnings: 
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• whereas the matching LP for Pot1 does not include 
the current batch of arrivals, the current batch is included 
in the LP for Pot2;

• whereas Pot1 uses the element-wise maximal set 
of shadow prices, Pot2 uses the element-wise minimal 
one; and

• whereas Pot1 is theoretically derived from two- 
stage stochastic programming, Pot2 is motivated by a 
connection to Walrasian equilibria.

For conciseness, we defer the formal definition of 
Pot2 and its connection to the Walrasian equilibrium 
to Section EC.2 of the e-companion.

4.2. Empirical Evaluation
We evaluate the employment of our potential-based 
matching algorithm on six real sequences of annual arri
vals at HIAS; that is, for each fiscal year, we consider all 
refugees who physically arrived during this fiscal year, 
and we consider them in the order in which they were 
received for allocation by HIAS. For the capacities, we 
use the year’s final, that is, most revised, capacities.4 We 
also immediately take into account that affiliates have 
constraints on which nationalities, languages, and fam
ily sizes they can accommodate, that not all affiliates can 
host single parents, and that tied cases can only be allo
cated to their corresponding affiliate.

The main way in which this experiment deviates from 
reality is the assumption (made throughout this section) 
that cases have unit size. To satisfy this assumption, we 
split each case of size si > 1 into si identical single- 
refugee cases with a 1=si fraction of the original employ
ment scores. In subsequent sections, we will repeat the 
experiments without this modification.

We study six fiscal years, from 2014 to 2019. As affili
ates closed and opened across these years, the number 
of affiliates varies between 16 and 24 (not counting the 
unmatched affiliate ⊥). Finally, the number of arriving 

refugees (respectively, cases) varies between 1,670 
(respectively, 640) and 4,150 (respectively, 1,630) across 
fiscal years. For further metrics of the allocation prob
lem, see Section EC.1.2 of the e-companion.

As shown in Figure 1, even the greedy baseline obtains 
a total employment of between 89% and 92% of OPT(N, c), 
the optimum matching in hindsight. (One outlier is the 
year 2018, which we discuss below.) Nevertheless, the 
greedy algorithm leads to between 50 and 100 fewer refu
gees finding employment every year compared with what 
would have been possible in the optimum matching. Our 
potential algorithms close a large fraction of this gap, 
obtaining between 98% and 99% of the optimal total 
employment, both for algorithms based on Pot1 and for 
those based on Pot2. Because experiments in this model 
take much longer to run than those in subsequent mod
els, we defer a comparison between the two potential 
methods and between different numbers k of trajecto
ries to Section 6.1, where we can run the potential algo
rithms a sufficient number of times to discern smaller 
differences.

The fiscal year 2018 stands out from the others because 
the greedy algorithm performs on par with the potential 
algorithms, at 99% of the hindsight-optimal total employ
ment. This is easily explained by the fact that the capaci
ties are much looser than in other fiscal years: whereas, in 
all other fiscal years between 2014 and 2019, the number 
of arriving refugees amounts to between 84% (2019) and 
97% (2016) of the final total capacity across all affiliates, 
this fraction is only 48% in 2018. Because capacity is so 
abundant, the optimal matching will match a large frac
tion of cases to their maximum-score affiliate, and the 
greedy matching is close to optimal.

We also compare with the employment obtained by the 
allocation chosen by HIAS (“historical”). This comparison 
gives the historical matching a slight advantage, as HIAS 
sometimes overrides the incompatibility between an 

Figure 1. (Color online) Total Employment Obtained by Different Algorithms, Assuming That Cases Are Split into Multiple 
Cases of Size 1 
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Notes. Capacities are the final capacities of the fiscal year. For the potential algorithms, total employment is averaged over 10 random runs. The 
numbers in the bars denote the absolute total employment; the bar height indicates the proportion of the optimum total employment in 
hindsight.
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affiliate and a case, which we do not allow any other algo
rithm to do.5

In Figure 2, we investigate how the match score 
changes over the course of two fiscal years, 2016 and 
2019, chosen to contain one year in which the greedy 
and historical baselines perform relatively poorly (2016) 
and one in which they perform well (2019). As the match 
score of subsequently arriving refugees can greatly dif
fer, these graphs are heavily smoothed over time. If arri
vals were drawn from a time-invariant distribution, we 
would expect the curves for the optimum matching in 
hindsight to be level, because how much employment 
the optimum matching can extract from a case would be 
independent of the case’s arrival time. Instead, we see 
that the employment prospects of arrivals fluctuate 
noticeably over time; in particular, the early refugees in 
fiscal year 2016 and the late refugees in fiscal year 2019 
seem to have worse employment prospects than other 
refugees in the plot.

The curves for both potential algorithms are nearly 
indistinguishable from one another, which shows that 
the algorithms make very similar decisions. In 2016, 
these curves start out closely tracking the curve of the 
optimal-hindsight matching, but fall behind for the last 
arrivals, which we observe in most fiscal years. The simi
larity of the curves over most of the year indicates that 
our approach of sampling trajectories from past arrivals 
is nearly as useful as the optimum algorithm’s perfect 
knowledge of future arrivals and that it leads to a similar 
trade-off in extracting immediate employment versus 
preserving capacity for later arrivals. Of course, the 
imperfect knowledge of the future incurs a small loss 
toward the end of the fiscal year, likely because the 
amount of capacity reserved per affiliate does not per
fectly match the demand, which explains the gap in total 
employment between the hindsight optimum and the 
potential algorithms. This typical end-of-year effect is 
not very pronounced in fiscal year 2019, likely because 
the final arrivals of fiscal year 2019 have lower employ
ment probabilities than what would be expected based 
on past arrivals. Instead, the potential algorithms fall 
behind the optimum algorithm for some period in the 

middle of the year, perhaps because they are reserving 
capacity for late arrivals which the optimum already 
knows to hold little promise.

The most striking curve is that of the greedy algo
rithm, which lies above those of all other algorithms in 
the first quarter of arrivals, but then falls clearly below 
the other curves in the second half. This observation can 
be explained by the effect we predicted in the motivation 
of our potential approach: the greedy algorithm extracts 
small additional gains in employment early in the 
arrival period, at the cost of prematurely consuming the 
capacity of the most desirable affiliates. Then, the lack of 
capacity limits the match scores of later arrivals, result
ing in an overall unfavorable trade-off. This effect can be 
directly seen in Figure 3, in which we visualize the 
amount of capacity remaining in the most valuable affili
ates. Specifically, looking at all arrivals of the fiscal year, 
we compute the shadow prices of the matching LP. At 
any point in time, we can then weight the remaining 
capacity by these prices to obtain a priced capacity. In 
Figure 3, we see that the optimum-hindsight matching 
and the potential algorithms use up the priced capacity 
at a roughly constant pace and essentially consume it all. 
By contrast, the greedy algorithm uses up the capacity 
very quickly, such that at the median refugee, only 22% 
(2016) or 17% (2019) of the priced capacity is left.

The historical matching made by HIAS does not have 
such obvious defects, but still falls short in terms of total 
employment. In both reference years, the average employ
ment moves in parallel with the optimum matching, 
meaning that HIAS does not overly focus on extracting 
employment at certain parts of the fiscal year at the 
expense of others. However, the average employment 
consistently lies below that of the optimum and of the 
potential algorithms. We see in Figure 3 that, in 2019, 
HIAS started consuming the priced capacity at a near- 
constant pace very similar to that of the optimum algo
rithm. Around the median arrival, however, the historical 
matching slowed down its capacity consumption and 
ended up not consuming all priced capacity, which 
explains some loss in total employment. One reason for 
this behavior might be that HIAS staff treat the last 9% of 

Figure 2. (Color online) Evolution of the Per Refugee Match Score in Order of Arrival for Fiscal Years 2016 and 2019 in the 
Experiment in Figure 1 (Split Cases, Final Capacities) 
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the capacity as a reserve that they are more reluctant to 
use. In a year such as 2019, in which the overall arrivals 
were only 84% of the total capacity, this heuristic might 
have actually kept much of the reserve capacity free, 
including in the affiliates that could have generated 
higher employment. By contrast, the total arrivals in 
2016 amounted to 97% of the overall capacity, which could 
explain why nearly all priced capacity was consumed in 
this year. Despite using up priced capacity in a similar pat
tern as the optimum matching in 2016, the historical 
assignment achieved lower matching scores throughout 
the year. This indicates that the low employment of the his
torical matching is not just due to a reluctance to use the 
entire capacity, but that the priced capacity is furthermore 
inefficiently allocated.

5. Nonunit Cases (si ≥ 1)
The most pressing aspect of refugee matching that we 
have ignored thus far is that many cases do not consist 
of individual refugees. Instead, they consist of an entire 
family of refugees, which has to be resettled to the same 
affiliate.

To accommodate cases consisting of multiple family 
members, we will from now drop the assumption that the 
si are one. The main effect of this change is that the LP 
relaxation of the ILP MATCHING(I, c) can now be a strict 
relaxation. Indeed, the LP relaxation might allow for higher 
objective values because it allows fractional solutions.6
As a result, our dual prices will no longer exactly compute 
the marginal value of a unit of capacity. In any case, to 
retain the exact connection to stochastic programming in 
Equation (1), PM would have to subtract the opportunity 
cost of si units of capacity from ui, ℓ, which might exceed si 
times the opportunity cost of a single unit of capacity.

However, as the capacity of most affiliates is much 
larger than the size of a typical case, both approxima
tions can be expected to be relatively close, which is 
what we find empirically: we repeat the experiment of 
the previous section, but without splitting up cases into 
individual refugees. The results are nearly indistinguish
able, which supports our decision to use LP relaxations 

even in the setting with inseparable cases. The full figures 
are deferred to Section EC.4.1 of the e-companion.

6. Batching
A second aspect that we have not considered thus far is 
that HIAS does not actually process arriving cases one 
by one, but in batches containing one or multiple cases. 
Most of these batches result from the weekly meetings 
between the resettlement agencies, but smaller batches 
with urgent cases are allocated between the weekly 
meetings.

The fact that cases arrive in batches does not make the 
problem harder; after all, a matching algorithm that 
does not support batching can still be used by presenting 
the cases of each batch to the algorithm one by one. As 
we will argue, however, batching represents an oppor
tunity to improve on this strategy: there is a (limited) 
opportunity to increase total employment and a (sub
stantial) opportunity to reduce running time.

Concerning total employment, using a nonbatching 
algorithm in a batching setting is wasteful because it 
ignores potentially valuable information. Specifically, 
when the earliest cases of the batch are allocated, a non
batching algorithm presumes that the characteristics of 
the other cases in the batch are not yet known. Arguably, 
as the sizes of batches tend to be much smaller than the 
total number of cases n, the amount by which account
ing for this information can increase total employment is 
likely to be limited.

As for running time, given that the matching algo
rithm receives no new information between the first and 
last case of a batch, it seems reasonable not to recompute 
potentials within a batch. As there tend to be 5 to 10 
times more cases than batches and as the computation 
of potentials is the bottleneck in the running time of 
the potential algorithms, this promises to substantially 
speed up the algorithm.

In adapting our algorithm PM to batching, we will not 
change how we compute the potentials pℓ. However, the 
algorithm now allocates all cases in the batch at once, 
still with the objective of optimizing the immediate score 

Figure 3. (Color online) Remaining Priced Capacity at the Time of Arrival of Different Refugees, for Fiscal Years 2016 and 2019 
in the Experiment in Figure 1 (Split Cases, Final Capacities) 
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of the assignment less the sum of potentials consumed. 
Thus, our extended algorithm PMB (“potential match 
with batching,” Algorithm 4 in Section EC.3 of the e- 
companion) allocates the current batch according to the 
solution to a matching ILP, in which matching case i to 
affiliate ℓ contributes an amount of ui, ℓ � si pℓ to the 
objective. Note that if all batches have size b � 1, this 
algorithm coincides with our previous algorithm PM. 
Moreover, PMB also generalizes the greedy algorithm 
previously implemented in Annie MOORE, which can 
be recovered by setting all potentials pℓ to zero.

We can now compare the running time of our algo
rithms to Bansak’s (2020) algorithm 1, which obtained 
the highest employment in his study. Though this algo
rithm is closely related to ours, it does not use dual 
prices to compute opportunity costs and handles batch
ing in a way that does not improve running time. The 
bottleneck in our algorithms and his is the computation 
of bipartite-matching linear programs over the trajecto
ries of simulated future arrivals. Whereas we compute a 
single such program per batch of arrivals, Bansak (2020) 
solves |L | · b many such linear programs per batch, 
where |L | is the number of affiliates and b is the number 
of cases in the batch. In our data set, a typical value of 
|L | · b is around 150, so these speedups are substantial.

6.1. Empirical Evaluation
We repeat the experiment measuring the total employ
ment obtained by the algorithms, this time with the 
greedy algorithm and the potential algorithms allocating 
cases in batches. As shown in Figure 4, the results again 
look very close to those in the restricted setting of online 
bipartite matching, confirming that our algorithmic approach 
generalizes well not only to nonunit case sizes but also to 
batching as it is used in practice.

Because processing entire cases in batches is much fas
ter than processing cases (or individual refugees) one by 
one, we are now in a position to run each potential algo
rithm many times and analyze the distribution of total 

employment. As shown in Figure 5, the total employ
ment produced by each potential algorithm is sharply 
concentrated, especially when the algorithms use k ≥ 3 
trajectories to compute duals.

Running each algorithm many times enables us to 
compare the relative performance of the potential algo
rithms. Across both ways of computing potentials and all 
fiscal years (with the exception of 2018, where everything 
is very close together), we see a clear tendency that aver
aging the potentials across more trajectories improves the 
employment outcome. These effects are somewhat lim
ited, though, as going from a single trajectory to nine tra
jectories improves the median employment by less than 
half a percent of the hindsight optimum. As is to be 
expected, increasing k exhibits diminishing returns.

For k held constant, we observe that the Pot2 variants 
quite consistently outperform the Pot1 variants, again 
with the exception of 2018, in which a small inversion of 
this trend can be seen. Although all potential algorithms 
perform very well, based on these results, we recommend 
the Pot2 potentials with a relatively large k for practical 
implementation. Of course, increasing k increases the run
ning time of the matching algorithm. However, because a 
resettlement agency computes only one set of potentials 
per day, the algorithm runs in few seconds even for k � 9 
(see Section EC.4.3 of the e-companion).

To additionally support our observation that the 
potential algorithms outperform the greedy algorithm 
and the historical matching, we repeat the experiment 
from Figure 4 for additional arrival sequences derived 
from the historical data. As we show in Section EC.4.6 of 
the e-companion, we obtain similar employment perfor
mance as in Figure 4 if the arrival sequence for each year 
is reversed, or if we consider shifted yearly arrival peri
ods from, say, April to the March of the following year 
rather than fiscal years (from October to September). In 
Section 7.2, we also evaluate the algorithms on boot
strapped arrivals. While we discuss more specific obser
vations there, the potential algorithms perform similarly 

Figure 4. (Color online) Total Employment, Where Cases Are Not Split and Arrive in Batches 

Notes. Capacities are the final fiscal year capacities. In contrast to Figure 1, cases are treated as inseparable, cases arrive in batches, and the batch
ing variants of the greedy and potential algorithms are used. For the potential algorithms, the mean employment across 50 random runs is 
shown.
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well or slightly better in that setting, consistently at 99% 
of the hindsight optimum.

7. Uncertainty in the Number of 
Future Arrivals

Given that our algorithm PMB supports nonunit sized 
cases and batching, it might seem that we are ready to 
replace the greedy algorithm in Annie MOORE by our 
potential algorithm. However, our algorithm crucially 
relies on one piece of input that the greedy algorithm 
did not need, namely, the total number of cases arriving 
in the fiscal year. This number determines the length of 
the sampled trajectories, which can greatly impact the 
shadow prices and, thus, how the algorithm allocates 
cases.

In principle, the information given to resettlement agen
cies should provide a fairly precise estimate of how many 
cases are expected to arrive. Indeed, before the start of each 
fiscal year, the U.S. Department of State announces how 
many refugees it intends to resettle in that fiscal year, and 
resettlement agencies are instructed to prepare for a certain 
fraction of this total number. In fact, HIAS sets its affiliate 
capacities to sum up to 110% of this number of announced 
refugees, which is intended to give local affiliates a good 
idea of how many refugees they will receive while 

affording the resettlement agency some freedom in its allo
cation decisions.

7.1. Relying on Capacities
It is thus natural to run our potential algorithms under 
the assumption that the number of arriving refugees 
will be 1=(110%) ≈ 91% of the total announced capac
ity.7 The result of this strategy is shown in Figure 6. 
Because these experiments use the initial, unrevised 
capacities, the employment scores of the hindsight opti
mum and the greedy algorithm may differ from those in 
previous experiments, which used the most revised 
capacities.8 In all fiscal years other than 2017 and 2018, 
the imprecise knowledge of future arrivals deteriorates the 
approximation ratio of the potential algorithms, but 
the potential algorithms continue to clearly outper
form the greedy baseline overall, and they outperform 
the historical matching in every single year.

Setting aside the outlier years of 2017 and 2018 for the 
moment, we investigate the fiscal years 2016 and 2019, 
in which arrivals were otherwise highest and lowest rel
ative to the announced capacity. In fiscal year 2016, the 
total arrivals were particularly large relative to the initial 
capacity: the arrival numbers added up to 100% of the 
initial capacity rather than 91%, which means that our 
potential algorithms expected around 3,770 refugees to 

Figure 5. (Color online) Distribution of the Total Employment Obtained by Instantiating PMB with Different Potential Methods 
and Different k in the Experiment in Figure 4 (Whole Cases, Batching, Final Capacities) and Over 50 Random Runs per 
Algorithm 
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arrive rather than the 4,150 that ended up arriving. As a 
result, the potential algorithms consume the priced 
capacity at an approximately constant rate, consuming it 
all around the expected number of expected refugees 
(Figure 7, bottom left). Up to this point, the potential 
algorithms are more generous in consuming capacity 
than would be ideal given the actual number of arriving 
cases, which is why the potential algorithms obtain a 
slightly higher average employment over the first three- 
quarters of arrivals (Figure 7, top left) than the optimal 
matching in hindsight. For refugees arriving after the 
3,770 expected refugees, however, the capacity in the 

best affiliates is used up, which is why the averaged 
employment sharply drops after this point.9

In 2019, by contrast, fewer refugees arrived than 
expected, only 86% of the total capacity. At the bottom 
right of Figure 7, it is visible that the potential algorithms 
consume priced capacity at a slightly lower rate than the 
optimal algorithm in hindsight, as they aim to use up 
the capacity around 2,440 refugees rather than the 2,310 
who ended up arriving. This effect is reflected in the 
average employment rates (top right), which lie below 
that of the optimal algorithm throughout most of the 
year.10

Figure 6. (Color online) Total Employment, Where Cases Are Not Split Up and Arrive in Batches 

Notes. The potential algorithms no longer have access to the true number of arriving cases but assume that the arriving refugees amount to 91% 
of the total capacity. Capacities are the initial capacities of the fiscal year (except for historical). For the potential algorithms, the mean employ
ment across 50 random runs is shown.

Figure 7. (Color online) Evolution of the Per Refugee Match Score and Remaining Priced Capacity in Order of Arrival, for Fiscal 
Years 2016 and 2019 and One Run per Algorithm in the Experiment in Figure 6 (Whole Cases, Batches, Initial Capacities, Poten
tial Algorithms Do Not Know n) 
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Notes. Dotted lines show how many refugees the potential algorithms expect. Smoothing is as in Figure 2. Priced capacity is not shown for 
“historical” because it uses different capacities.
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The fiscal years of 2017 and 2018 stand out because 
the total number of arriving refugees fell far short of the 
announced number reflected in the approved capacities: 
in 2017, arrivals amounted to 65% of the approved 
capacities, whereas they amounted to only 46% in 2018. 
Both of these years fall into the beginning of the Trump 
administration, which not only sharply reduced the 
announced intake of resettled refugees, but furthermore 
abruptly halted the intake of refugees from six (predom
inantly Muslim) countries starting from early 2017.

As the potential algorithm depicted in Figure 8 severely 
overestimates how many cases will arrive, it holds back 
much more priced capacity than would be optimal (bot
tom, solid lines). This causes the potential algorithms to 
extract less employment throughout the year than the opti
mal algorithm (top, solid lines). As observed in Section 4.2, 
the capacities in 2018 are so loose that the greedy algorithm 
performs close to optimal.

In these two years, the U.S. Department of State even
tually reacted by correcting the expected arrivals down
ward and instructing the resettlement agencies to 
reduce their capacities. In fiscal year 2017, this revision 
came quite late and ended up underestimating the arri
vals: where the arrivals amounted to only 65% of the ini
tial capacities, they exceeded the revised total capacity at 
a level of 103%, rather than amounting to the 91% that 
was intended. Even if imperfect, this signal that arrivals 
are much lower than originally announced is still useful 
to the potential algorithms. Indeed, in Figure 8, the 
dashed curve corresponds to a potential algorithm that 
still starts out expecting 91% of the initial capacities to 

arrive, but expects only 91% of the revised capacities to 
arrive from the point on where they were announced 
(vertical line). Although this information comes late, 
the algorithm in fiscal year 2017 uses the new informa
tion to burn through the remaining priced capacity 
more aggressively (bottom left), which allows for higher 
employment among refugees arriving after the revision 
of arrival numbers (top left). As a result, the employ
ment reaches 97% of the optimum in hindsight, exceed
ing the value of 95% without the updated information 
that we showed in Figure 6.

By contrast, the revision in fiscal year 2018 did not yield 
much useful information; whereas the arrivals amounted 
to 46% of the initial capacities, they still amounted to 48% 
of the revised capacities. This seems to indicate that even 
after half of the fiscal year’s refugees had already been 
allocated, the administration overestimated the number 
of arriving refugees by a factor of two. Because the 
revision barely changed the number of expected arrivals, 
giving the potential algorithm access to this revised infor
mation does not have much effect (Figure 8, right).

Although we have considered the informational value 
of revisions above, our experiments have not considered 
that these revisions actually reduced the allowable capac
ities. Although we include a variant of the experiment in 
Section EC.4.7 of the e-companion, it is difficult to mean
ingfully compare the employment achieved by different 
algorithms if the parameters of the matching problem are 
changed so drastically during the matching period. One 
particular challenge is that, although the amount of 
reduction was extraneously decided, HIAS was involved 

Figure 8. (Color online) Evolution of the Per Refugee Match Score and Remaining Priced Capacity in Order of Arrival, for 
Fiscal Years 2017 and 2018 in the Experiment in Figure 6 (Whole Cases, Batches, Initial Capacities, Potential Algorithms Do 
Not Know n) 

1,000 1,500 1,000 1,250 1,500

1,000 1,250 1,500

2,000 2,500 3,000

1,000 1,500 2,5002,000 3,000

Note. Dotted lines show evolution if potential the algorithm updates its expected arrival number at the time of capacity revision.
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in deciding which capacities to decrease, which was 
done in a way that depended on previous allocation 
decisions.11 Because we know only the revised capacities 
that were agreed upon, and not the counterfactual revi
sion of capacities that would have been made, the greedy 
algorithm and the potential algorithms might have already 
exceeded a reduced capacity before it was announced. 
This means that the experiment rewards algorithms for 
greedily using up the capacity in the best affiliates before 
the revision, which we do not expect to be a good policy in 
practice. More generally, a substantial change in capacities 
is an exceptional situation, outside of our model, and can
not be addressed by our algorithm alone without manual 
intervention.

7.2. Arrival Misestimation on Bootstrapped Data 
and Incorporating Uncertainty

To obtain more systematic insights into the robustness 
of potential algorithms to misestimated arrival numbers, 
we study bootstrapped case arrivals, which allows us to 
simulate varying numbers of arrivals. The results of this 
experiment are displayed in Figure 9 (results for other fiscal 
years are deferred to Section EC.4.2 of the e-companion). 
As a baseline, consider the greedy algorithm, which 
obtains optimal employment when the number of arri
vals is much lower than the total capacity (say, 25% of 
the expected arrivals, which is (25%=110%) ≈ 23% of 
the capacity), but becomes more and more suboptimal 
the more refugees arrive.

By contrast, the potential algorithms perform best 
(around 99% of the optimal employment) when the 
number of arriving refugees matches what the algorithm 
expects. On average, this number is around half of a per
centage point higher than in the corresponding nonboot
strapped experiments (Figure 4). Such an increase is to 
be expected, as the bootstrapping setup ensures that the 
algorithm draws trajectories from the same distribution 
from which the arrivals are generated. In particular, the 
real arrival sequence used for Figure 4 might contain a 

drift in refugee characteristics or a seasonality not cap
tured by our algorithm, and the lack of these features in 
the bootstrapped experiment allows for slightly higher 
employment. It is just as noticeable, however, that this 
increase is only half a percentage point, revealing that a 
drift of arrival characteristics and seasonality does not 
account for most of the remaining optimality gap of our 
algorithm.

The further the actual arrival number deviates from 
this expectation, the further the relative employment per
formance of the potential algorithm decreases. Notice
ably, the performance more quickly deteriorates when 
the arrival numbers exceed the expectation, versus falling 
short. This sharp decline makes sense for two reasons. First, 
the algorithms aim to exploit all useful capacity exactly at 
the expected number of refugee arrivals; thus, only a subset 
of the affiliates remain available for subsequent arrivals. 
Second, once the number of arrivals exceeds the expecta
tion, the trajectories in the potential algorithms add no cases 
beyond those that have already arrived, which means that 
the algorithm serves subsequent arrivals greedily. In the six 
fiscal years we observe, arrivals below the expectation 
seem like a more urgent problem than arrivals above the 
expectation, but overarrivals might well become a problem 
under different political circumstances or when applying 
potential algorithms to other matching settings.

A natural way to make the potential algorithms more 
robust to inaccurate arrival estimates is to treat arrival 
estimates not as exact predictions but as subject to some 
uncertainty. Concretely, we adapt the potential algo
rithms by sampling trajectories of different lengths, each 
drawn from a “prior” distribution whose mean is the 
arrival estimate, conditioning this distribution such that 
trajectory lengths are never less than the number of refu
gees who have already been allocated. Conceivably, 
these adapted trajectories could generate potentials that 
are robust across a wider range of arrival numbers, and 
the adapted algorithm could therefore lead to higher 
employment when the official arrival numbers are 

Figure 9. (Color online) Employment Achieved by Different Algorithms as a Function of How Many Refugees Arrive 

Notes. Refugee arrivals are bootstrapped over each fiscal year’s historical arrivals, and the number of arriving refugees is given as a fraction of 
the historical arrivals. Capacities are 110% of historical matching. Employment is measured as a ratio of the optimal hindsight employment for 
the same set of arriving refugees. Curves are averaged over 10 arrival sequences.
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inaccurate. The most obvious distribution is perhaps a 
Poisson distribution. As shown by the dotted line in 
Figure 9, using Poisson trajectories hardly changes the 
employment outcomes for any of the experiments rela
tive to the baseline of fixed trajectory sizes. This is most 
likely due to the low variance of the Poisson distribution. 
For a quite typical mean of 3,000 arriving refugees, 95% 
of the probability mass lies within a distance of only 3.6% 
of the mean. For this reason, we also try a distribution 
with overdispersion, specifically, a negative binomial dis
tribution parameterized to have its mean equal to the 
expected arrivals and its standard deviation equal to 10% 
of the expected arrivals. For example, if again 3,000 arri
vals are expected, 95% of the probability mass deviates up 
to 20% from the mean. As the figure shows, negative- 
binomial trajectories lead to decent improvements in 
employment when more refugees arrive than expected. 
When fewer refugees arrive than expected, using random 
trajectory lengths helps more often than not, though with 
different degrees of success. Overall, negative-binomial 
arrivals seem to make the potential algorithms marginally 
more robust to misestimated arrival numbers, though not 
by enough to make misestimation less of an overall con
cern. However, this additional robustness comes at a non
negligible cost when arrival estimates are accurate.

7.3. Better Knowledge of Future Arrivals
In Section 7.1, we demonstrated that, even without outside 
supervision, our potential algorithms lead to substantial 
employment increases over the baselines, unless the an
nounced capacities miss the eventual arrival numbers by 
an extreme margin. Even in these typical years, however, 
more accurate arrival predictions could increase the total 
employment on the order of percentage points of the hind
sight optimum. Obviously, more accurate information 
about arrivals would be even more useful in years like 
2017 and 2018, in which the official information is 
unreliable.

One approach would be to use time-series prediction 
to estimate the number of arrivals. For instance, when 
the U.S. Department of State revised the capacities for 

the fiscal year 2018 in January 2018 (several months into 
the fiscal year), the announcement that 2.5 times more 
refugees were still to come than had already arrived 
might have raised some doubts. However, the graph of 
monthly arrivals in Figure 10 shows that late increases 
in arrival rates may actually happen as they did in fiscal 
year 2016.12

A fundamental challenge that any data-driven approach 
faces is that there are very little data to learn from. Indeed, 
although HIAS has data on hundreds of thousands of refu
gees, they have data on only 15 fiscal years, which is, more
over, incomplete and smaller scale in earlier years. Thus, 
there is a limited foundation on which to learn about how 
arrival patterns change between years. This task becomes 
especially difficult given that arrival numbers are heavily 
influenced by external events such as elections, the emer
gence of humanitarian disasters, and changes in immigra
tion policy, which cannot be deduced from past arrival 
patterns. Thus, although a time-series prediction approach 
might lead to marginal improvements over naïvely expect
ing 91% of the capacity to arrive, past arrival numbers are 
unlikely to give enough information to accurately predict 
future arrival numbers.

Fortunately, resettlement agencies such as HIAS already 
possess much richer information and insights into the 
dynamics of refugee arrivals than a pure data approach 
would consider. In fiscal year 2017, for example, HIAS 
foresaw a worsening climate for refugee resettlement 
immediately after the November 2016 election13 and was 
aware of concrete plans to drastically reduce refugee 
intake in January 2017,14 both before these changes were 
reflected in arrival numbers and before the capacities were 
officially updated in March 2017. Similarly, HIAS continu
ously monitors domestic politics and international crises 
for their potential impact on resettlement, and, moreover, 
it has some limited insight into the resettlement pipeline, 
which allows it to prepare for changes in arrivals. We 
therefore believe that, rather than building a sophisticated 
tool for predicting arrivals in a fully autonomous manner, 
it is preferable to allow HIAS staff to override our predic
tion with more advanced information.

Figure 10. (Color online) Monthly Number of Allocated Refugees, Disaggregated by Fiscal Year of Arrival 
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8. Implementation in Annie MOORE
To enable HIAS to benefit from online allocation via 
potentials, we have integrated new features into its 
matching software Annie MOORE, which constitute the 
software’s second major release (Annie 2.0). A crucial 
design requirement is that HIAS staff must be able 
to override the allocation recommendations of Annie 
MOORE when they are aware of requirements outside 
of our model. From an interface-design perspective, the 
challenge is to visualize the effect of such overrides 
on total employment, enabling HIAS staff to make 
informed trade-offs. In the original, static model, this 
was easy enough: as the quality of a matching was just 
the total employment of the current batch, the interface 
labeled each case–locality match with its associated 
employment score, and staff could drag the case to other 
localities to see the respective employment scores. In a 
dynamic setting, however, presenting only the employ
ment scores may unintentionally encourage HIAS staff 
to greedily use capacity in their overrides, at the expense 
of future arrivals.

As we illustrate in Figure 11, the new interface of 
Annie augments the original interface with information 
about affiliate potentials, thereby taking future arrivals 
into account. Specifically, the background color of the 
tile for case i encodes the adjusted employment score, 
that is, the original employment score ui, ℓ less the poten
tial si pℓ of the capacity consumed in affiliate ℓ.15 The fact 

that the algorithm PMB always maximizes the sum of 
adjusted employment scores in its allocation of the cur
rent batch means that the algorithm is explainable in 
terms of the information presented to the user. In the 
interface, the green color spectrum indicates positive 
adjusted employment scores (meaning that the employ
ment score of the case outweighs the loss in future 
employment), whereas the red color spectrum highlights 
negative adjusted scores (where a placement reduces 
future employment by more than its employment score). 
Darker shades signify greater magnitudes.

In overriding the allocation recommended by Annie 
MOORE, HIAS staff should be able to quickly find alter
native placements for a case that do not reduce immedi
ate and future employment by more than necessary. To 
support this workflow, our interface shows the adjusted 
employment scores of a case across all affiliates at a 
glance: As shown in Figure 12, upon dragging a particu
lar case tile from its current placement, all other case tiles 
temporarily fade in appearance, and the shading of 
every affiliate tile temporarily assumes the adjusted 
employment score relative to the selected case. By hover
ing a selected case tile over a new affiliate, the original 
(numeric) employment score and the adjusted match 
score (background color of the case tile) dynamically 
update. Moreover, incompatibilities with affiliates due 
to nationality, language, family size, and single-parent 
households can be seen via an exclamation mark in the 

Figure 11. (Color online) Updated Annie Interface 

Notes. Family tiles now show both the original numerical employment scores of families in affiliates and the adjusted employment scores by their shad
ing. In the user interface, green tiles indicate positive adjusted scores, red tiles indicate negative scores, and darker shades represent greater magnitudes.

Figure 12. (Color online) Moving a Family Tile 

Notes. While moving a family tile, tiles belonging to other cases fade, and affiliate tiles are shaded as per their adjusted employment scores, in 
green (positive) or red (negative). Exclamation marks indicate incompatibilities.
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lower left corner of the affiliate tile. After dropping the 
case tile in a new affiliate, the background color for each 
affiliate returns to its original blue shade, and all affiliate- 
tile exclamation marks disappear.

On a separate screen (not shown), Annie 2.0 enables the 
entry of a prediction for total refugee arrivals, as men
tioned in Section 7.3. This estimate can be critical to inform 
the process of estimating proper shadow prices, as at times 
HIAS is in a better position to give more accurate case 
arrival predictions than officially announced capacities.

9. Conclusion
We have developed and implemented online algorithms 
allocating refugees in a way that promotes refugees’ pro
spects of finding employment. Our algorithms outper
form the greedy and historical baselines, even when 
taking into account how refugee placement in practice 
deviates stylized online matching problems.

Although we have tested the algorithms as an autono
mous system, the success of Annie MOORE in increasing 
employment outcomes in practice will depend on how it 
performs in interaction with HIAS resettlement staff. In 
Section 7.3, we already saw that the allocation decisions of 
Annie can greatly profit from human decision makers 
providing better estimates of future arrivals. Human 
input is equally crucial in dealing with uncertainty in sev
eral other places; for example, HIAS staff might intervene 
by correcting a case’s physical-arrival year if the Depart
ment of State’s estimate seems off, or they might increase 
certain affiliate capacities late in the year if they anticipate 
that these capacities will be renegotiated. By allowing all 
parameters of the matching problem to be changed, 
Annie MOORE allows HIAS resettlement staff to im
prove the matching using any available information.

Our hope is that the human-in-the-loop system con
sisting of the matching algorithm and HIAS staff will 
combine the strengths of both of its parts: On the one 
hand, the algorithms in Annie MOORE capitalize on subtle 
patterns in employment data and manage capacity more 
effectively over the course of the fiscal year. On the other 
hand, the expert knowledge of HIAS staff enables the sys
tem to handle the uncertainty that is inherent in a matching 
problem involving the actions of multiple government 
agencies, dozens of affiliates, and thousands of refugees. In 
light of the administration’s recent increase of the total 
resettlement capacity from 15,000 to 125,000,16 we foresee 
both parts playing a crucial role: the increasing scale of the 
problem will make data-based algorithms more effective, 
and human guidance will be necessary to navigate the 
evolving environment of a rapidly growing operation.
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Endnotes
1 Each fiscal year ranges from October 1 of the previous calendar 
year to September 30. For example, fiscal year 2017 ranges from 
October 1, 2016, to September 30, 2017.
2 For example, allowing cases to be unmatched is necessary because 
an arriving case might only be compatible with affiliates whose 
capacity is already exhausted. When these situations occur in prac
tice, such cases do not remain unmatched; instead, capacities can be 
increased or case–affiliate incompatibilities overruled manually by 
the arrivals officer. For our sequence of models, we report the frac
tion of matched refugees in Section EC.4.8 of the e-companion and 
find that our algorithms do not lead to fewer refugees being 
matched than in the greedy baseline. To lower the number of 
unmatched refugees at the cost of reducing employment, one can 
add a constant reward per refugee to the ui,ℓ with ℓ ≠ ⊥.
3 From Section 6 onward, cases will instead arrive in batches, which 
can be allocated simultaneously.
4 When the number of refugees resettled in the fiscal year exceeds 
the official capacity, we use the number of resettled refugees 
instead. In these situations, HIAS negotiated an increase in capacity 
that may not be recorded in our data.
5 In these cases, we estimate the employment achieved by the case 
using the regression rather than using ui,ℓ � �∞.
6 One can always find a fractional solution that splits cases into 1=si 
fractions similarly to what we did in the evaluation of Section 4.2.
7 To convert the number of remaining refugees into a number of 
cases, we divide by the average case size of recent arrivals (over the 
years, this average size fluctuates between 2.4 and 2.6). Although the 
number of refugees who have arrived is below 91% of the total capac
ity, this gives us a total number of cases n for the algorithms. Once the 
number of arrivals exceeds 91% of the total capacity, we make the 
algorithms assume that the current case is the last to arrive, that is, all 
subsequently sampled trajectories have length zero.
8 This means that the comparison with the historical algorithm is not 
quite on equal terms, because the latter is constrained by a different 
set of capacities. In all fiscal years except for 2017 and 2018, the final 
capacities are affiliate-wise larger than the original capacities.
9 Note that, because of the triangle smoothing, the drop starts drag
ging down the curve 500 arrivals before its actual start.
10 The drop in employment probabilities at the end of the fiscal year 
affects all algorithms including the hindsight optimum and must 
therefore be caused by an anomaly in arrival characteristics.
11 Although the sum of capacities did not change much in fiscal 
year 2018, the capacities of some affiliates were substantially 
decreased, and those of others were substantially increased.
12 In fiscal year 2016, the number of arrivals after January 2016 was 
1.6 times larger than the number that had arrived so far. In the fiscal 
year of 2015, the number of refugees arriving after January 2015 
was only 75% of that arriving before.
13 See https://www.hias.org/news/press-releases/hias-calls-president- 
elect-trump-respect-longstanding-refugee-policy.
14 See https://www.hias.org/news/press-releases/trumps-planned- 
action-refugees-betrayal-american-values.
15 The employment scores of cases in affiliates are prominently 
retained in text labels.
16 See https://www.hias.org/news/press-releases/refugee-cap-fy2022- 
set-125000.
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