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Abstract
We consider the dynamic property of the volume preserving mean curvature flow.
This flow was introduced by Huisken (J Reine Angew Math 382:35–48, 1987) who
also proved it converges to a round sphere of the same enclosed volume if the initial
hypersurface is strictly convex in Euclidean space. We study the stability of this flow
in hyperbolic space. In particular, we prove that if the initial hypersurface is hyper-
bolically mean convex and close to an umbilical sphere in the L2-sense, then the flow
exists for all time and converges exponentially to an umbilical sphere.
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1 Introduction

1.1 Background andMain Theorem

Let Mn be a smooth, embedded, closed (compact, no boundary) n-dimensional man-
ifold in hyperbolic space Hn+1 (n ≥ 2), and we evolve it by the volume preserving
mean curvature flow (VPMCF),

∂F

∂t
= (h − H) ν, F(·, 0) = F0(·), (1.1)

where F0 : Mn → H
n+1 is the initial embedding, H = H(x, t) is the mean curvature

and ν = ν(x, t) is the outward unit normal vector of the evolving surface Mt = F(·, t)
at point (x, t) (for simplicity, we write (x, t) ∈ Mt ). The function h is the average of
the mean curvature on Mt , given by

h = h(t) =
 
Mt

H dμ =
´
Mt

H dμ´
Mt

dμ
, (1.2)

where dμ = dμt denotes the surface area element of the evolving surface Mt with
respect to the induced metric g(t).

In this paper, we use the convention that the mean curvature is the sum of all
principal curvatures. Clearly, we have H �≡ 0 on M0 since there is no closed minimal
hypersurface in hyperbolic space. The presence of the global term h in the VPMCF
equation (1.1) forces the flow to behave quite differently from the usualmean curvature
flow (MCF).

Hypersurfaces of constant mean curvature are critical points of the area functional
under the constraint of fixed enclosed volume. These hypersurfaces are also static state
for the VPMCF equation (1.1). A remarkable theorem of Huisken–Yau [19] on the
existence of a foliation of spheres outside of some large compact set in asymptotic flat
manifolds was achieved by studying a parameter family of VPMCFs. This flow, and
the surface area preserving mean curvature flow studied in [14, 21], are special cases
of so-called mixed volume preserving mean curvature flow. They are closely related
to convex geometry and classical inequalities, see for instance [1, 9, 22, 26], also see
[5, 8] for other geometric settings.

We denote A = {ai j } the second fundamental form of Mt and Å = A − H
n g

its traceless part. Then, we have |Å|2 = |A|2 − 1
n H

2. This quantity measures the
roundness of a (closed, immersed) hypersurface � in H

n+1: if Å ≡ 0, i.e., � is
umbilic at every point, then by a classical Codazzi’s theorem in differential geometry,
it is a geodesic sphere, see, e.g., [24, Theorem29].We also remark that, inR3, DeLellis
and Müller [7] generalized Codazzi’s theorem by showing a version of the following
quantitative rigidity:

inf
λ∈R ‖A − λ Id‖L2(�) ≤ C‖Å‖L2(�),
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for some universal constantC . Such quantitative rigidity is not available for hyperbolic
space to our knowledge.

Strict convexity (i.e., all principal curvatures are positive) plays a fundamental role
in classical works of several types of MCFs, especially in Euclidean space. Huisken
[15] proved that an initial smooth closed and strictly convex hypersurface will stay
convex and flow into a round point along the MCF in Euclidean space. He [17] also
showed, in the case of the VPMCF, the flow of an initial smooth closed and strictly
convex hypersurface will exist for all time and flow into a round sphere in Euclidean
space. The parallel result for the surface area preserving mean curvature flow is also
true, showed by McCoy [21]. Though natural in Euclidean geometry, this notion of
convexity is not the most natural in hyperbolic space. The presence of horospheres
in hyperbolic space poses strong restrictions on the geometry of hypersurfaces (via
Hopf’s maximum principle): for instance any closed constant mean curvature hyper-
surface has mean curvature greater than n in Hn+1.

Definition 1.1 We call a hypersurface of an (n + 1)-dimensional hyperbolic manifold
(strictly) h-convex if every principal curvature of the hypersurface at every point is
greater than 1, and call it (strictly) h-mean convex or hyperbolically mean convex if
its mean curvature at every point is greater than n.

The “h-convexity" was introduced in [4], where the authors proved that h-convexity
is preserved along the VPMCF in hyperbolic space. Moreover, under the assumption
of closed initial hypersurface being h-convex, they showed that the volume preserving
mean curvature flow exists for all time and converges to an umbilical sphere. The “h-
mean convexity", or the notion of being hyperbolically mean convex, is much weaker
than h-convexity, and it is not known to be preserved along the VPMCF. But it turns
out this condition plays a very important role in proving the dynamic stability of the
VPMCF.

Unlike the regular MCF, the VPMCF (1.1) has a global forcing term in the equation
which greatly complicates the analysis of the flow. How the singularities of the flow
may form remains elusive at the current stage of study, even in Euclidean space.
Moreover, in our hyperbolic space setting, the negative curvature of the ambient space
presents significant challenges in analyzing the evolution equations involved in the
study. As a first step to understand the long-term behavior of the flow, in this paper, we
study the dynamical property of the VPMCF (1.1) in hyperbolic space in the situation
that the initial hypersurface is not necessarily h-convex, yet close to an umbilical sphere
in the L2-sense. More precisely, we show the stability of the flow with initial h-mean
convex hypersurface (namely the initial mean curvature at every point is greater than
n) and small L2-norm of the traceless part of the second fundamental form. Our main
theorem is the following.

Theorem 1.2 Let Mn
t ⊂ H

n+1 of n ≥ 2 be a smooth closed solution to the VPMCF
(1.1) for t ∈ [0, T ) with T ≤ ∞. Assume that M0 is h-mean convex with H − n ≥ 1

�2
0

and

max

{
|M0|2, max

M0
|A|2,

ˆ
M0

|∇m A|2 dμ

}
≤ �2

0, (1.3)
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for some �0 � 1 and all m ∈ [1, n + 3], where |Mt | is the n-dimensional surface
area of Mt with the induced metric. Then, there exists some ε0 = ε0(n,�0) > 0 such
that if

ˆ
M0

|Å|2 dμ < ε0, (1.4)

then T = ∞ and the flow converges exponentially to an umbilical sphere which
encloses the same volume as M0.

Remark 1.3 The VPMCF has been an interesting research topic since the introduction
in [17], natural questions as studied in this paper have attracted much attention for a
while. Let us provide some background here.

(1) Our strategy is similar to that of [28], both inspired by the work in [20, 29]. While
our method is self-contained and more direct, there are some subtle differences.
For instance, as in Lemma 2.12, we work with integral bounds instead of the much
stronger L∞-bound for the higher covariant derivatives of the second fundamental
form, together with the reduction in Sect. 3.2 and further estimates in Sect. 3, we
are able to follow through with the strategy.

(2) Furthermore, in previous treatments of similar stability problems for nonlocal flows
in Euclidean or hyperbolic spaces, a key estimate often needed is to what degree
one has control on the higher covariant derivatives of the second fundamental
form along the flow. Such approaches often rely on L∞-control of these covariant
derivatives from only C0-bound on the initial hypersurface. Such estimates are
not available in the current literature for a nonlocal flow such as the VPMCF,
even in the Euclidean case to our knowledge. In the appendix, we provide the
Shi-type estimates for both the Euclidean and hyperbolic spaces, using relevant
calculations in this paper. This extends Huisken’s arguments [17] to obtain point-
wise control on higher covariant derivatives of the second fundamental form with
only continuous data on the initial hypersurface.

(3) There are other very interesting recent works on the stability of other nonlocal
geometric flows similar to the VPMCF in hyperbolic space, see for instance [3,
10, 13] where different initial conditions were imposed for the specific flows to
ensure the convergence.

1.2 Outline of the Proof

We would like to stress that there are several serious complications in order to inves-
tigate the dynamic stability for VPMCF: with a forcing term h, the flow is global in
nature, therefore, it is difficult to localize the analysis and it is essential to keep track
of h along the flow; we are working in the hyperbolic space where h-mean convexity is
likely not preserved along the flow in general and the negative curvature of hyperbolic
space makes the analysis of the flow substantially more involved. To overcome these
difficulties, we use iteration techniques in combination of several new tools to prove
the main theorem.

We organize the iteration argument in the following steps:
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• Step 1, based on the initial bounds, we derive bounds on some short time interval
for several geometric quantities (Lemmas 3.1 and 3.2) such as H ,∇H , |Å|2, etc. As
a consequence, we show that the h-mean convexity is preserved on some definite
time interval provided the initial hypersurface is close enough to an umbilical
sphere in the L2 sense;

• Step 2, we reduce to the case of the mean curvature H of the evolving hypersurface
is close to n;

• Step3,weprove exponential decay for these quantities on the time interval obtained
in Step 1 (Theorem 3.5), which allows us to obtain uniform bounds for these
quantities on the interval;

• Step 4,we see that the above arguments allows to extend the time interval (Theorem
3.6) repeatedly with the amount extended each time only depends on the initial
conditions, and conclude the main theorem.

2 Technical Preparations

In this section, we collect basic evolution equations for key quantities, and derive some
preliminary estimates that will be used in the proof.

2.1 Evolution Equations

Let us first fix some notations of the following geometric quantities that will be used
in this study:

(1) the induced metric of the evolving hypersurface Mt : {gi j (t)};
(2) the second fundamental form of Mt : A(·, t) = {ai j (·, t)}, and its square norm is

given by

|A(·, t)|2 = gi j gklaika jl;

(3) themean curvature ofMt with respect to the outward unit normal vector: H(·, t) =
gi j ai j ;

(4) the traceless part of the second fundamental form: Å = A − H
n g;

(5) the area element of the evolving hypersurface Mt : dμt = √
det(gi j )dx .

The evolution equations for these quantities are as follows:

Lemma 2.1 [17, 19] The metric of Mt satisfies the evolution equation

∂

∂t
gi j = 2(h − H)ai j . (2.1)

Therefore,

∂

∂t
gi j = −2(h − H)ai j (2.2)
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and the area element satisfies:

∂

∂t
(dμt ) = H(h − H)dμt . (2.3)

Moreover, the outward unit normal vector ν to Mt satisfies

∂ν

∂t
= ∇H , (2.4)

where ∂ν
∂t is a conventional way of writing down ∇ ∂

∂t
ν for the connection ∇ of the

ambient space.

By (2.3), we have the following geometrical properties of the VPMCF:

Corollary 2.2 [17]

(1) The (n + 1)-dimensional volume Vt of the region enclosed by Mt remains
unchanged along the flow, i.e.,

d

dt
Vt =

ˆ
Mt

(h − H) dμ = 0.

(2) The n-dimensional surface area |Mt | of Mt is non-increasing along the flow:

d

dt
|Mt | = d

dt

ˆ
Mt

dμ =
ˆ
Mt

H(h − H) dμ = −
ˆ
Mt

(h − H)2 dμ ≤ 0.

Following Huisken’s calculations for the MCF in general Riemannian manifolds
[16], we have the following evolution equations for key quantities in our setting. See
also [19] for the case n = 2 in the setting of asymptotic flat manifolds and [4] for
equivalent formulas in hyperbolic space setting.

Theorem 2.3 We have the evolution equations for H and |A|2:
(i)

∂

∂t
H = �H + (H − h)(|A|2 − n); (2.5)

(ii)

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2|A|2(|A|2 + n) − 2htr(A3) + 2H(h − 2H).

(2.6)

where tr(A3) = gi j gkl gmnaikalmanj .

We include a short proof for readers’ convenience.
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Proof Let ḡ = {ḡαβ} be the metric onHn+1, ∇̄ and R̄αβγ δ be covariant derivative and
Riemannian curvature tensorwith respect to ḡ. Equation (2.5) is clear sinceRic(ν, ν) =
−n inHn+1. For (2.6), we first follow [4, 16] to find that the second fundamental form
{ai j } of Mt satisfies the following evolution equation:

∂

∂t
ai j = �ai j + (h − 2H)ai
a j
 + |A|2ai j + ai j R̄0
0
 − h R̄0i0 j

−a j
 R̄
mim − ai
 R̄
mjm + 2a
m R̄
im j − ∇̄ j R̄0
i
 − ∇̄
 R̄0i j
. (2.7)

The last two terms which involve the covariant derivatives of the curvature tensor
drop out as we are in a constant curved space. Furthermore, since Hn+1 has constant
sectional curvature −1, the Riemannian curvature tensor is given by

R̄αβγ δ = (−1) · (ḡαγ ḡβδ − ḡαδ ḡγβ). (2.8)

Now, (2.6) follows from contraction and (2.1). 
�
The covariant derivatives for A satisfy the following.

Corollary 2.4 We have the evolution equation for |∇m A|2 with m ≥ 1:

∂

∂t
|∇m A|2 = �|∇m A|2 − 2|∇m+1A|2 + ∇m A ∗ ∇m A

+
∑

i+ j+k=m

∇ i A ∗ ∇ j A ∗ ∇k A ∗ ∇m A +
∑

r+s=m

∇r A ∗ ∇s A ∗ ∇m A ,

(2.9)

where S ∗ � denotes any linear combination of tensors formed by contraction on S
and � by the metric g. Here, in addition to constants, h = h(t) (having only time
variable) may be involved in the contraction coefficients, which is essentially bounded
by |A|.
Proof We have the following evolution of the second fundamental form from the proof
of Theorem 2.3:

∂

∂t
A = �A + A ∗ A ∗ A + A ∗ A + ∗A.

Meanwhile, the time derivative of the Christoffel symbols �i
jk is equal to

∂

∂t
�i

jk = 1

2
gil

{
∇ j

(
∂

∂t
gkl

)
+ ∇k

(
∂

∂t
g jl

)
− ∇l

(
∂

∂t
g jk

)}

= gil
{∇ j ((h − H)akl) + ∇k

(
(h − H)a jl

) − ∇l
(
(h − H)a jk

)}
= ∗∇A + A ∗ ∇A , (2.10)

where ∗T denotes contraction of T by the metric g. Note that we have used the
evolution equation (2.1) for the metric.
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Now, we proceed as in [11, Sect. 13] (see also [15, Sect. 7]) to obtain Eq. (2.9).
In particular, using (2.10), if S and � are tensors satisfying the evolution equation
∂
∂t S = �S + �, then the covariant derivative ∇S, which involves the Christoffel
symbols, satisfies an equation of the following form:

∂

∂t
∇S = �(∇S) + S ∗ A ∗ ∇A + S ∗ ∇A + A ∗ A ∗ ∇S + ∇�. (2.11)

Therefore, by (2.7), we find

∂

∂t
∇A = �∇A +

∑
i+ j+k=1

∇ i A ∗ ∇ j A ∗ ∇k A +
∑

r+s=1

∇r A ∗ ∇s A + ∗∇A.

Then, by induction we have for m ≥ 1,

∂

∂t
∇m A = �∇m A +

∑
i+ j+k=m

∇ i A ∗ ∇ j A ∗ ∇k A +
∑

r+s=m

∇r A ∗ ∇s A + ∗∇m A.

(2.12)

Then, Eq. (2.9) follows from the following identity essentially from (2.1)

∂

∂t
|∇m A|2 = 2

〈
∇m A,

∂

∂t
∇m A

〉
+ A ∗ ∇m A ∗ ∇m A + A ∗ A ∗ ∇m A ∗ ∇m A

and the standard identity

�|∇m A|2 = 2
〈∇m A,�∇m A

〉 + 2|∇m+1A|2.


�
We also have the time derivative for the average of mean curvature h(t).

Lemma 2.5

h′(t) =
´
Mt

(H − h)(|A|2 − H2 + hH)dμ´
Mt

dμ
. (2.13)

Proof An easy calculation using Eqs. (2.3) and (2.5). Note that the expression does
not contain terms involving ∇H . 
�
The following inequalities for gradients are useful and we record them here:

Lemma 2.6 (cf. [16]) The following inequalities hold:

(i)

|∇A|2 ≥ 3

n + 2
|∇H |2;
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(ii)

|∇Å|2 ≥ n − 1

2n + 1
|∇A|2 ≥ 3(n − 1)

(n + 2)(2n + 1)
|∇H |2.

2.2 Intuitive Decay of |Å|2

One of the key estimates for us is an exponential decay for |Å|2 on some time interval.
We now give a heuristic argument to show why this is the case when |Å|2 is small and
h-mean convexity is preserved.

Since |Å|2 = |A|2 − 1
n H

2 and |∇Å|2 = |∇A|2 − 1
n |∇H |2, we obtain the evolution

equation for |Å|2 as follows.
Lemma 2.7

∂

∂t
|Å|2 = �|Å|2 − 2|∇Å|2 + 2|Å|2(|A|2 + n) + 2h

n

(
H |A|2 − n tr(A3)

)

= �|Å|2 − 2|∇Å|2 + 2|Å|2(|A|2 + n) − 2h

{
tr(Å3) + 2

n
|Å|2H

}
. (2.14)

Proof The evolution equation for H2 can be easily derived from (2.5):

∂

∂t
H2 = �H2 − 2|∇H |2 + 2H(H − h)(|A|2 − n). (2.15)

Then, (2.14) follows easily from the identity (see, e.g., page 335 of [20]):

tr(A3) − 1

n
|A|2H = tr(Å3) + 2

n
|Å|2H .


�
To see a heuristic argument on exponential decay of |Å|2, we examine Eq. (2.14) more
closely, provided |Å|2 is small and |h − H | is also very small. Obviously, one can
apply the maximum principle to (2.14) to obtain the exponential decay of |Å|2, if for
some small ε > 0, we have

2|Å|2(|A|2 + n) − 2h

{
tr(Å3) + 2

n
|Å|2H

}
≤ −ε|Å|2.

Since |tr(Å3)| ≤ |Å|3, it suffices to show

|Å|2 + H2

n
+ n + |h| · |Å| − 2hH

n
< −ε

2
, (2.16)

which can be rewritten as

H2

n
= H + H(H − n)

n
> |Å|2 + n + |h| · |Å| + 2H(H − h)

n
+ ε

2
.

123



Z. Huang et al.

This inequality holds once we establish H > n + σ for some σ > 0 (i.e., h-mean
convexity) provided that |Å|2 and |h − H | are both sufficiently small. We will make
the argument precise in Sect. 3.3.

2.3 Technical Tools

For the sake of self-containedness of the paper, we now collect tools that will be used
in the proof: a version of maximum principle, Hamilton’s interpolation inequalities
for tensors, a generalization of Topping’s theorem in hyperbolic space, and an L2-
bound for covariant derivatives of A along the VPMCF. First, the following version
of maximum principle is useful in our iteration scheme.

Theorem 2.8 (Maximum Principle, see, e.g., [6, Lemma 2.11]) Suppose u : M ×
[0, T ] → R satisfies

∂

∂t
u ≤ ai j (t)∇i∇ j u + 〈B(t),∇u〉 + F(u),

where the coefficient matrix
(
ai j (t)

)
> 0 for all t ∈ [0, T ], B(t) is a time-dependent

vector field and F is a Lipschitz function. If u ≤ c at t = 0 for some c ∈ R, then
u(x, t) ≤ U (t) for all (x, t) ∈ M × {t}, t ∈ [0, T ], where U (t) is the solution to

d

dt
U (t) = F(U ) with U (0) = c.

We also need the following Hamilton’s interpolation inequalities for tensors. These
inequalities will be used inductively for us to obtain integral bounds of covariant
derives of Å.

Theorem 2.9 [11] Let M be an n-dimensional compact Riemannian manifold and �

be any tensor on M. Suppose

1

p
+ 1

q
= 1

r
with r ≥ 1.

Then, we have the estimate:

(ˆ
M

|∇�|2r dμ

) 1
r ≤ (2r − 2 + n)

(ˆ
M

|∇2�|p dμ

) 1
p
(ˆ

M
|�|q dμ

) 1
q

.

Theorem 2.10 [11] Let M and � be the same as in Theorem 2.9. If 1 ≤ i ≤ m − 1
and m ≥ 1, then there exists a constant C = C(n,m) independent of the metric and
connection on M, such that

ˆ
M

|∇ i�| 2mi dμ ≤ C max
M

|�|2(mi −1)
ˆ
M

|∇m�|2 dμ.
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As an application of these inequalities and Corollary 2.4, we have the following.

Lemma 2.11 For any m ≥ 0, we have the estimate

(
d

dt

ˆ
Mt

|∇m A|2dμ

)
+ 2

ˆ
Mt

|∇m+1A|2dμ

≤ C max
Mt

(
1 + |A| + |A|2)

ˆ
Mt

|∇m A|2dμ ,

where C = C(n,m, |h|).
Proof Whenm = 0, the inequality is obvious in light of (2.6). Nowwe considerm ≥ 1.
By integrating (2.9) of Corollary 2.4 and using the generalized Hölder inequality, we
have

(
d

dt

ˆ
Mt

|∇m A|2 dμ

)
−
ˆ
Mt

(h − H)H |∇m A|2 dμ + 2
ˆ
Mt

|∇m+1A|2 dμ

≤ C

{ ∑
i+ j+k=m

(ˆ
Mt

|∇i A| 2mi dμ

) i
2m

(ˆ
Mt

|∇ j A| 2mj dμ

) j
2m

(ˆ
Mt

|∇k A| 2mk dμ

) k
2m

+
∑

r+s=m

(ˆ
Mt

|∇r A| 2mr dμ

) r
2m

(ˆ
Mt

|∇s A| 2ms dμ

) s
2m

} (ˆ
Mt

|∇m A|2 dμ

) 1
2

+ C
ˆ
Mt

|∇m A|2 dμ ,

where all the indices now take values from 1 and up and the terms in the original sums
with 0 indices being absorbed by other sums and C’s.

Applying Theorem 2.10 for A, we have

(ˆ
Mt

|∇q A| 2mq dμ

) q
2m ≤ C max

Mt
|A|1− q

m

(ˆ
Mt

|∇m A|2 dμ

) 1
2m

,

where q can be i, j, k, r or s. We also notice

ˆ
Mt

|(h − H)H |∇m A|2dμ ≤ max
Mt

{|h||H | + H2} ˆ
Mt

|∇m A|2dμ

≤ C(n, |h|)max
Mt

(|A|2 + |A|)
ˆ
Mt

|∇m A|2dμ.

Combining these inequalities, we complete the proof. 
�
It is known from [17] that L∞ bound for |A| along the VPMCF in Euclidean space

and the initial L∞ bounds of its covariant derivatives will give L∞ bounds for the
covariant derivatives. Adapting the argument there, we have the following lemma for
explicit L2 bounds for our situation.
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Lemma 2.12 Along the VPMCF, for k ≥ 0, if

max

{
|M0|, max

Mt ,t∈[0,T ] |A|2, max
m≤k

ˆ
M0

|∇m A|2 dμ

}
≤ �2

0,

then uniformly for t ∈ [0, T ] and m ≤ k, we have

ˆ
Mt

|∇m A|2 dμ ≤ C(�0, k),

where C(�0, k) is independent of T .

Proof Along the VPMCF, we have |Mt | ≤ |M0| by Corollary 2.2. Therefore, the
conclusion is clear for m = 0 for any fixed k ≥ 0. We can then prove the lemma
by induction on m. Suppose the conclusion is true for m ≥ 0, to see this holds for
m + 1 ≤ k, note that by Lemma 2.11, we know for m ≥ 0,

d

dt

ˆ
Mt

|∇m A|2 dμ ≤ C(�0)

ˆ
Mt

|∇m A|2 dμ − 2
ˆ
Mt

|∇m+1A|2 dμ ,

d

dt

ˆ
Mt

|∇m+1A|2 dμ ≤ C(�0)

ˆ
Mt

|∇m+1A|2 dμ .

Let G(t) = C(�0)
´
Mt

|∇m A|2 dμ + ´
Mt

|∇m+1A|2 dμ. Then, we have

G ′(t) ≤ C(�0)

(
C(�0)

ˆ
Mt

|∇m A|2 dμ −
ˆ
Mt

|∇m+1A|2 dμ

)
. (2.17)

Consider the maximum of G(t) achieved at t = t̄ ∈ [0, T ]. If t̄ = 0 then for all
t ∈ [0, T ],

G(t) ≤ G(0) ≤ (C(�0) + 1)�2
0. (2.18)

Otherwise by (2.17),

C(�0)

ˆ
Mt̄

|∇m A|2 dμ −
ˆ
Mt̄

|∇m+1A|2 dμ ≥ 0,

and thus, we have for all t ∈ [0, T ]

G(t) ≤ G(t̄) ≤ C(�0, k). (2.19)

Therefore, by (2.18) and (2.19),

ˆ
Mt

|∇m+1A|2 dμ ≤ C(�0, k),

which is independent of T . 
�
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In the Euclidean space, Topping [25] discovered a relation between the intrinsic
diameter and the mean curvature H of any closed, connected and smoothly immersed
submanifold. This result has been extended to a more general Riemannian setting by
Wu–Zheng [27], usingHoffman–Spruck’s generalization [12] of theMichael–Simon’s
inequality [23]. We formulate their result in our setting below.

Theorem 2.13 [27] Let M be an n-dimensional closed, connected manifold smoothly
isometrically immersed in H

N , where N ≥ n + 1. There exists a constant C = C(n)

such that the intrinsic diameter and the mean curvature H of M are related by the
following inequality:

diam(M) ≤ C(n)

ˆ
M

|H |n−1 dμ.

2.4 Hyperbolic Mean Convexity

The h-mean convexity is a very important geometric ingredient in ourmain result. Note
that mean convexity and h-mean convexity are not known to be preserved along the
VPMCF. The strict h-convexity is however preserved along the VPMCF in Hn+1 [4].
We give an alternative proof for this result by following very closely Huisken’s tensor
calculations in [15, 17] and highlighting the role of the curvature for the ambient space.
Unlike the preserved mean convexity along the MCF in Euclidean space, this shows
the subtlety of the h-mean convexity in hyperbolic space and the negative-curvature
effects of the ambient space.

Proposition 2.14 [4] Let Mn be a smooth, embedded, closed hypersurface moving
by the VPMCF (1.1) in a smooth, complete, hyperbolic manifold Nn+1. If the initial
hypersurface Mn is strictly h-convex, then each evolving hypersurface Mn

t is also
strictly h-convex along the flow (1.1).

Proof Let Mi j = ai j − gi j . Recall the evolution equations for ai j and gi j along the
mean curvature flow (1.1) as (2.7) and (2.1):

∂

∂t
ai j − �ai j = (h − 2H)ai
a j
 + |A|2ai j − nai j − h R̄0i0 j

−a j
 R̄
mim − ai
 R̄
mjm + 2a
m R̄
im j ,

where the covariant derivatives for the curvature tensor disappear since the sectional
curvature is −1, and

∂

∂t
gi j = 2(h − H)ai j .

Therefore, we obtain the evolution equation for the symmetric tensor Mi j :

∂

∂t
Mi j = �Mi j + Ni j ,
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where we have used �g = 0 and

Ni j = (h − 2H)ai
a j
 + (|A|2 − n
)
ai j − h R̄0i0 j − a j
 R̄
mim

−ai
 R̄
mjm + 2a
m R̄
im j + 2(H − h)ai j . (2.20)

Now, recall from (2.8),

R̄αβγ δ = (−1) · (ḡαγ ḡβδ − ḡαδ ḡγβ).

Let X be a null-eigenvector of Mi j at some (x0, t0). We arrange the coordinates such
that at (x0, t0), X = e1, gi j = δi j and ai j = λiδi j . This is justified as {gi j } is a
symmetric positive-definite matrix, {ai j } is a symmetric matrix, and so they can be
simultaneously diagonalized.

We examine term by term from (2.20) to arrive at

N11 = (h − 2H)λ21 + (|A|2 − n
)
λ1 + h + 2(n − 1)λ1 + 2(λ1 − H) + 2(H − h)λ1.

Meanwhile, with X = e1 being a null-eigenvector of Mi j , we have λ1 = 1 since
M11 = a11 − g11 = 0. Thus, we have

N11 = |A|2 + n − 2H ≥ 1

n
H2 − 2H + n = 1

n
(H − n)2 ≥ 0.

The conclusion follows from Hamilton’s maximum principle for tensors [11]. 
�

3 Proof of Main Theorem

We are now ready to use iteration method to prove our main theorem. It is divided into
four steps discussed in four subsections accordingly.

3.1 Step 1: Short Time Bounds

We start by bounding important geometric quantities for short time, with the bounds
depending on the initial conditions. This is certainly expected for a smooth flow.
However, one expects such bounds to hold only for a short time, and as the flow
evolves such bounds would deteriorate by extending the time interval.

The first technical lemma is as follows:

Lemma 3.1 Let Mn
t ⊂ H

n+1, n ≥ 2 be a smooth closed solution to the VPMCF (1.1)
for t ∈ [0, T ) with T ≤ ∞. Assume

max

{
|M0|2, max

M0
|A|2,

ˆ
M0

|∇m A|2 dμ

}
≤ �2

0 (3.1)

for some �0 � 1 and all m ∈ [1, n + 3], where |Mt | is the n-dimensional surface
area of Mt with the induced metric. There exist constants ε0 = ε0(n,�0) > 0 and
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t1 = t1(n,�0) ∈ (0, 1) such that if

ˆ
M0

|Å|2 dμ ≤ ε < ε0, (3.2)

then for any t ∈ [0, t1] and any m ∈ [0, n + 3], we have

max

{
max
Mt

|A|2,
ˆ
Mt

|∇m A|2 dμ

}
≤ 2�2

0. (3.3)

Moreover, there exist C1 = C1(n,�0) and some universal constant α ∈ (0, 1) such
that for any t ∈ [0, t1]

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C1ε
α. (3.4)

Proof Recall from (2.6) the evolution equation for |A|2 is given by

∂

∂t
|A|2 = �|A|2 − 2|∇A|2 + 2|A|2(|A|2 + n

) − 2htr(A3) + 2H(h − 2H).

Using the facts that |tr(A3)| ≤ |A|3 (see [18, Lemma 2.2]), and H2 ≤ n|A|2, we
obtain the following inequality on Mt for all t ∈ [0, T ):

∂

∂t
|A|2 ≤ �|A|2 + 2|A|4 + 2n|A|2 + 2|h|(|A|3 + √

n|A|). (3.5)

Set f (t) = maxMt |A|2, then f (t) satisfies

∂

∂t
f ≤ 2 f 2 + 2n f + 2|h|(|A|3 + √

n|A|)
≤ 2 f 2 + 2n f + 2

√
n f 2 + 2n f

≤ 4n f 2 + 4n f . (3.6)

One solves the comparison ODE explicitly to get U (t) > 0 satisfying

log

(
1 + 1

U (t)

)
= log

(
1 + 1

U (0)

)
− 4nt,

withU (0) = f (0) = maxM0 |A|2 ≤ �2
0 by (3.1). Therefore, by Theorem 2.8, f (t) ≤

U (t) for all t ∈ [0, T ).
Therefore, there exists some t1 = t1(n,�0) ∈ (0, 1) such that

max
Mt

|A|2 ≤ 2�2
0 for all t ∈ [0, t1]. (3.7)

123



Z. Huang et al.

Moreover, by choosing t1 sufficiently small and integrating the inequality in Lemma
2.11 over [0, t1], we have

ˆ
Mt

|∇m A|2 dμ ≤ eC(n,�0)t1

ˆ
M0

|∇m A|2 dμ ≤ 2�2
0 (3.8)

for all t ∈ [0, t1] and m ∈ [1, n + 3]. Using the Sobolev embedding on compact
manifolds [2], this yields

|A|C2(Mt )
≤ C(n,�0) for all t ∈ [0, t1]. (3.9)

In light of

|h| ≤ max
Mt

|H | ≤ √
nmax

Mt
|A| ≤ √

2n�0,

|tr(Å3)| ≤ |Å|3 ≤ √
2�0|Å|2,

we integrate the evolution equation (2.14) for |Å|2 over Mt for t ∈ [0, t1] to get
∂

∂t

ˆ
Mt

|Å|2 dμ ≤ C(n,�0)

ˆ
Mt

|Å|2 dμ, (3.10)

and so using (3.2), we have

ˆ
Mt

|Å|2 dμ ≤ εeC(n,�0)t ≤ C(n,�0)ε for all t ∈ [0, t1], (3.11)

where the constant C(n,�0) can be different at places. We then apply Hamilton’s
interpolation inequalities (Theorem 2.9 with r = 1, p = q = 2):

ˆ
Mt

|∇Å|2 dμ ≤ n

(ˆ
Mt

|Å|2 dμ

) 1
2
(ˆ

Mt

|∇2Å|2 dμ

) 1
2 ≤ C(n,�0)ε

1
2 , (3.12)

where we use |∇2Å| ≤ C(n)|∇2A| and the L2-bound for |∇2A| in (3.8). In fact,
applying Theorem 2.9 inductively, we have for all m ∈ [0, n + 2],

ˆ
Mt

|∇mÅ|2 dμ ≤ C(n,�0)ε
1/2m for all t ∈ [0, t1]. (3.13)

Now, again by the Sobolev embedding [2], we have

|Å|C2(Mt )
≤ C(n,�0)ε

α, (3.14)

for all t ∈ [0, t1] and some universal constant α ∈ (0, 1). Now, by (ii) of Lemma 2.6,
for all t ∈ [0, t1], we have

max
Mt

|∇H | ≤ C(n)max
Mt

|∇Å| ≤ C(n,�0)ε
α. (3.15)
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Furthermore, by Corollary 2.2, the surface area |Mt | is non-increasing along the flow,
i.e.,

|Mt | ≤ |M0| ≤ �2
0. (3.16)

Using Theorem 2.13, (3.7), (3.15) and (3.16), we arrive at

|h(t) − H(x, t)| =
(ˆ

Mt

dμ

)−1 ∣∣∣∣
ˆ
Mt

(
H(y, t) − H(x, t)

)
dμ(y)

∣∣∣∣
≤ diam(Mt )max

Mt
|∇H |

≤ C(n,�0)ε
α (3.17)

for all (x, t) ∈ Mt and t ∈ [0, t1]. This together with (3.14) and (3.15) give (3.4), and
we conclude the proof. 
�

With the above control of geometric quantities, we next show that the h-mean
convexity is preserved for short time if the initial hypersurface is close to an umbilical
sphere in the L2-sense.

Lemma 3.2 Let Mn
t ⊂ H

n+1 for n ≥ 2 be a smooth closed solution to the VPMCF
(1.1) as in Lemma 3.1 with the initial condition (3.1). Suppose

min
M0

(H − n) ≥ c0 > 0. (3.18)

Then, there exist ε1 = ε1(n,�0) ∈ (0, ε0) and T1 = T1(n,�0) ∈ (0, t1], where ε0
and t1 are as in Lemma 3.1, such that if

ˆ
M0

|Å|2 dμ ≤ ε < ε1,

then for t ∈ [0, T1], we have

min
Mt

(H − n) ≥ c0
2

> 0. (3.19)

Proof We start with the evolution equation for H (2.5):

Ht = �H + (H − h)
(|A|2 − n

)
.

By (3.7) and (3.9), for any (x, t) ∈ Mt , t ∈ [0, t1], we have
∣∣∣∣ ∂

∂t
H

∣∣∣∣ (x, t) ≤ C(n,�0), (3.20)
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where we have also used |∇2H | ≤ C(n)|∇2A|. Using (3.15) and (3.20) and choosing
T1 = T1(n,�0) ∈ (0, t1] and ε1 = ε1(n,�0) ∈ (0, ε0) sufficiently small, we have

min
Mt

(H − n) ≥ 1

2
min
M0

(H − n) ≥ c0
2

> 0.


�

3.2 Step 2: Reduction

In the previous subsection, we have obtained estimates (3.3) and (3.4) on some time
interval [0, t1], provided that the initial hypersurface is close to an umbilical sphere
in the L2-sense (see (1.4)). In this step, we make a key reduction. Namely, we show
it suffices to prove the main theorem when the mean curvature H of the evolving
hypersurface is close to n. In particular, we have the following.

Proposition 3.3 Let Mn
t ⊂ H

n+1 for n ≥ 2 be a smooth closed solution to the VPMCF
(1.1) on t ∈ [0, t1] with t1 = t1(n,�0) ∈ (0, 1), where t1 and �0 are as in Lemma
3.1. If (3.1) and (3.2) hold, then

(1) either the evolving hypersurface Mt becomes strictly h-convex, and the flow (1.1)
exists for all time and converges exponentially to an umbilical sphere,

(2) or there is a constant C2 = C2(n,�0) > 0 such that for all (x, t) ∈ Mt , t ∈ [0, t1],
we have

|H(x, t) − n| ≤ C2ε
α
2 , (3.21)

where ε is from (3.2) and α ∈ (0, 1) is from (3.4).

Proof On the time interval [0, t1], we recall the estimate (3.4) from Lemma 3.1:

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C1ε
α

for some C1 = C1(n,�0) > 0. Let {λi }i=1,2,...,n be the principal curvatures of Mt at
(x, t) ∈ Mt . Direct algebra gives

|Å|2 = 1

n

∑
i< j

(λi − λ j )
2, (3.22)

so there exists C3 = C3(n,�0) > 0 such that for all (x, t) ∈ Mt , t ∈ [0, t1],

|λi (x, t) − λ j (x, t)| ≤ C3ε
α. (3.23)

Therefore, for all (x, t) ∈ Mt , t ∈ [0, t1] and any fixed i ∈ {1, 2, . . . , n}, we have

|H(x, t) − nλi (x)| ≤ C4ε
α, (3.24)
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for some C4 = C4(n,�0) > 0.
For some C5 = C5(n,�0) > 0 which will be fixed shortly, suppose there is

η0 = C5ε
α
2 > 0 where ε ∈ (0, ε0) and some (x0, t0) ∈ Mt0 where t0 ∈ [0, t1] such

that H(x0, t0) < n − η0. Then, from (3.24), we have

nλi (x0, t0) − C4ε
α ≤ H(x0, t0) < n − η0 = n − C5ε

α
2 .

Since ε ∈ (0, ε0) is small, for properly chosen C5 and C6 = C6(n,�0) > 0, we have
λi (x0, t0) < 1 − C6ε

α
2 for all i ∈ {1, 2, . . . , n}. In light of maxMt |∇H | ≤ C1ε

α , the
smallness of ε and the diameter bound from Theorem 2.13, we have H < n at every
point of Mt0 . However, this contradicts the fact that any smooth closed hypersurface
has at least one point whose mean curvature is greater than n in H

n+1 by comparing
with horospheres.

Similarly for some C ′
5 = C ′

5(n,�0) > 0 which will be fixed shortly, suppose
there is some η′

0 = C ′
5ε

α
2 > 0 where ε ∈ (0, ε0) and some (x ′

0, t
′
0) ∈ Mt ′0 such that

H(x ′
0, t

′
0) > n + η′

0. We have

nλi (x
′
0, t

′
0) + C4ε

α ≥ H(x ′
0, t

′
0) > n + η′

0 = n + C ′
5ε

α
2 .

Using again the smallness of ε, for properly chosen C ′
5 and C

′
6, we have λi (x ′

0, t
′
0) >

1 + C ′
6ε

α
2 for any i ∈ {1, 2, . . . , n}. Using again the fact that maxMt |∇H | ≤ C1ε

α ,
smallness of ε and the diameter bound from Theorem 2.13, we find λi (x, t ′0) > 1 for
all i ∈ {1, 2, . . . , n} and all (x, t ′0) ∈ Mt ′0 . Namely, Mt ′0 is strictly h-convex. By the
main theorem of [4], the VPMCF then exists for all time after t = t ′0, stays strictly
h-convex and converges exponentially to an umbilical sphere in Hn+1.

Finally, we are left with (3.21), which completes the proof. 
�

Remark 3.4 By Proposition 3.3, we can now assume H of Mt is very close to n on time
interval [0, t1], namely the inequality (3.21), for the remaining proof for Theorem 1.2,
and therefore, we now have H > 0 (hence, h > 0).

3.3 Step 3: Precise Decay

In the previous subsection, we have obtained estimates (3.3), (3.4) and (3.19) on some
short time interval [0, T1], provided that the initial hypersurface is close to an umbilical
sphere in the L2 sense (see (1.4)) and h-mean convex (see (3.18)). These bounds will
likely deteriorate along the flow if we iterate for later time intervals. For an iteration
argument to work, we need to establish time-independent bound on these quantities
for this short time interval.

In this subsection, we show that, if estimates similar to (3.3), (3.4) and (3.19) hold
on some time interval [0, T1], then we can choose sufficiently small ε in the initial
L2-bound (1.4) on Å, such that |Å|, |∇H | and |h − H | exponentially decay on this
time interval [0, T1]. More precisely, we establish the following theorem.
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Theorem 3.5 Let Mn
t ⊂ H

n+1 for n ≥ 2 be a smooth closed solution to the VPMCF
(1.1) with the initial condition

ˆ
M0

|Å|2 dμ ≤ ε.

Suppose for any t ∈ [0, T1] with T1 ≤ ∞ and all m ∈ [1, n + 3], we have

max

{
|M0|2, max

Mt
|A|2,

ˆ
M0

|∇m A|2 dμ

}
≤ �2

1, min
Mt

(H − n) ≥ σ, (3.25)

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C1ε
β, (3.26)

for constants �1 > 0, σ > 0, β ∈ (0, 1) and C1 > 0. Then, there exists some
ε2 = ε2(n,�0, β,C1) > 0 such that if ε < ε2, then for all t ∈ [0, T1], we have

max
Mt

|Å| ≤ max
M0

|Å|, (3.27)

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C2(n,�1,C1)

(
max
M0

|Å|
)α

e−ασ t , (3.28)

where α ∈ (0, 1) is the universal constant from Lemma 3.1.

Proof To start with, by Lemma 2.12 and (3.25), for m ∈ [1, n + 3] and t ∈ [0, T1],
we have

ˆ
Mt

|∇m A|2 dμ ≤ C(n,�1),

which works as the replacement of (3.3) as in the proof of Lemma 3.1. Now, using
(3.25), we compute

n − hH

n
= n − H

´
Mt

H dμ

n
´
Mt

dμ

≤ n − (n + σ)2

n
< −2σ, (3.29)

and

∣∣∣∣1n H2 − hH

n

∣∣∣∣ (x, t) =
∣∣∣∣∣H(x, t) ·

´
Mt

[H(x, t) − H(y, t)] dμ(y)

n
´
Mt

dμ

∣∣∣∣∣
≤ 1

n
max
Mt

H · diam(Mt ) · max
Mt

|∇H |
≤ C(n,�1,C1)ε

β , (3.30)
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where we have used |H | ≤ √
n|A| ≤ √

n�1 and Theorem 2.13.
Now, by (2.14), (3.29) and (3.30), we have

∂

∂t
|Å|2 = �|Å|2 − 2|∇Å|2 + 2|Å|2(|A|2 + n) − 2h

{
tr(Å3) + 2

n
|Å|2H

}

≤ �|Å|2 + 2|Å|2
(

|Å|2 + 1

n
H2 + n

)
+ 2h

∣∣Å∣∣3 − 4hH

n
|Å|2

= �|Å|2 + 2

(
|Å|2 + h|Å| + 1

n
H2 + n − 2hH

n

)
|Å|2

≤ �|Å|2 − (4σ − Ĉεβ)|Å|2
≤ �|Å|2 − σ |Å|2,

where Ĉ = Ĉ(n,�1,C1) > 0 and for the last step,we choose ε to be sufficiently small.
Therefore, we conclude the exponential decay of |Å| from the maximum principle,
i.e., Theorem 2.8,

max
Mt

|Å|2 ≤ e−σ t max
M0

|Å|2,

and the estimate (3.27) also follows. This is where the h-mean convexity is essentially
involved in our arguments, see (3.29). Afterwards, we can prove (3.28) by the exact
arguments in the proof of Lemma 3.1, namely (3.12)–(3.17). 
�

3.4 Step 4: Time Extension

In this step, we use the exponential decay of |Å|, |∇H | and |h − H | on some short
time interval obtained in the previous step to extend the time interval of interest.

Theorem 3.6 Let Mn
t ⊂ H

n+1 for n ≥ 2 be a smooth closed solution to the VPMCF
(1.1) with the initial hypersurface satisfying

|M0| ≤ �0, max
M0

|H | ≤ �0,

ˆ
M0

|∇m A|2 dμ ≤ �2
0, min

M0
(H − n) ≥ 1

�2
0

> 0

for all m ∈ [1, n + 3]. Suppose for any t ∈ [0, T ] with T < ∞, we have

max
Mt

|A|2 ≤ �2
0, min

Mt
(H − n) ≥ 1

2�2
0

> 0 (3.31)

and

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C∗ε
α2
2 e−ασ t ≤ C∗ε

α2
2 , (3.32)

where α ∈ (0, 1) is the universal constant from Lemma 3.1 and σ = 1
2�2

0
is as in

Theorem 3.5. Then, there exist ε3 = ε3(n,�0, α,C∗) > 0 and T2 = T2(n,�0) > 0
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such that if

ˆ
M0

|Å|2 dμ ≤ ε < ε3, (3.33)

then (3.31) and (3.32) hold for t ∈ [0, T + T2].
Proof We begin by applying Lemmas 3.1 and 3.2 to obtain ε4 = ε0(n,�2

0) and
T2 = T1(n,�2

0) such that if

ˆ
M0

|Å|2 dμ ≤ ε < ε4,

then for all t ∈ [T , T + T2], we have

max

{
max
Mt

|A|2,
ˆ
Mt

|∇m A|2 dμ

}
≤ 2�2

0 and min
Mt

(H − n) ≥ 1

4�2
0

, (3.34)

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C1(n,�0)ε
α, (3.35)

where C1 and α are from Lemma 3.1. Then, choose ε5 = ε5(n,�0, α,C∗) > 0
sufficiently small so that for any ε < ε5, we have

C1(n,�0)ε
α− α2

2 ≤ C∗.

Therefore, for all t ∈ [0, T + T2], we have (3.34) and also

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C∗ε
α2
2 . (3.36)

By Corollary 2.2, the surface area |Mt | is non-increasing along the flow, therefore,
|Mt | ≤ �0 < �2

0 by the initial condition (1.3) as long as the flow exists, in particular,
on [0, T + T2]. Now, we apply the Theorem 3.5 on [0, T + T2] with �2

1 = 2�2
0,

C1 = C∗, β = α2

2 and σ = 1
4�2

0
to conclude that for some ε6 := ε2(n,�0, α,C∗) > 0

sufficiently small, if ε < ε6, then for all t ∈ [0, T + T2], we have

max
Mt

(|Å| + |∇H | + |h − H |) ≤ C2(n,�0,C∗)(max
M0

|Å|)αe−ασ t

≤ C2(n,�0,C∗)[C1(n,�0)ε
α]αe−ασ t , (3.37)

where we have used (3.4) at t = 0. Now, choose ε7 = ε7(n,�0, α,C∗) > 0 small
enough so that

C2(n, 2�2
0,C∗)[C1(n,�0)]αε

α2
2 ≤ C∗, (3.38)

thus (3.32) holds for all t ∈ [0, T + T2].
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We are left to show (3.31) for t ∈ [0, T + T2]. Let us examine each term in (3.31).
Consider maxMt |A|. Recall the time derivative formula for h(t) (2.13) is given by

h′(t) =
´
Mt

(H − h)(|A|2 − H2 + hH)dμ´
Mt

dμ
.

Then, using (3.34) and (3.35), we have

|h′(t)| ≤ C3(n,C∗,�0)ε
α2
2 e−ασ t

for all t ∈ [0, T + T2]. Note that, from the initial condition (1.3), we also have

h(0) =
´
M0

H dμ´
M0

dμ
≤ max

M0
|H | ≤ �0.

By choosing ε < ε8 = ε8(n,�0, α,C∗) sufficiently small, we then have for any
t ∈ [0, T + T2]:

|h(t)| ≤ 6

5
�0. (3.39)

Then, by (3.35) and n ≥ 2, for sufficiently large �0, we have

max
Mt

|A| = max
Mt

√
|Å|2 + 1

n
H2 ≤ max

Mt

(
|Å| + 1√

n
|H − h|

)
+ 1√

n
|h(t)| ≤ �0.

(3.40)

Finally, we consider the term minMt (H − n). Using the evolution equations for H
(see (2.5)) and dμ (see (2.3)), we have

ˆ
Mt

H dμ −
ˆ
M0

H dμ =
ˆ t

0

ˆ
Ms

H2(h − H) + (H − h)(|A|2 − n) dμ ds

≥ −C(n,�0,C∗)ε
α2
2

ˆ t

0
e−ασ s ds

≥ −C4(n,�0, α,C∗)ε
α2
2 ,

wherewe have used again the bound on |h−H | in (3.32) for t ∈ [0, T+T2]. Therefore,
ˆ
Mt

H dμ ≥
(
n + 1

�2
0

)
|M0| − C4(n,�0, α,C∗)ε

α2
2 ≥

(
n + 2

3�2
0

)
|M0|,

(3.41)

where we have chosen ε < ε10 = ε10(n,�0, α,C∗) sufficiently small and used the
initial condition minM0(H − n) ≥ 1

�2
0
.
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Now, applying the bound on |∇H | in (3.32) which holds for all t ∈ [0, T + T2], we
conclude from (3.41) and |Mt | ≤ |M0| that if ε < ε11 = ε11(n,�0, α,C∗) is chosen
sufficiently small, then for all t ∈ [0, T + T2], we have

min
Mt

(H − n) ≥ 1

2�2
0

.

Choosing ε3 = min{ε4, . . . , ε11} > 0, we conclude the proof of the theorem. 
�
Now, we conclude the proof of our main theorem.

Proof of Theorem 1.2 In light of Lemma 3.1, Lemma 3.2 andTheorem3.5, by choosing
�0 sufficiently large, we are in position to apply Theorem 3.6. Thus, we can keep
extending the VPMCF and estimates (3.31) and (3.32) for a fixed amount of time
depending only on the initial condition. Hence, the flow (1.1) exists for all time and
converges exponentially to a closed umbilic hypersurface in H

n+1 by (3.32), i.e., an
umbilical sphere [24]. 
�
Acknowledgements The research of Z. Huang is partially supported by a PSC-CUNYGrant. The research
of Z. Zhang is partially supported by ARC Future Fellowship FT150100341.

Appendix

In this appendix, we provide the global Shi’s type of estimates for VPMCF, i.e., the
higher order estimates for the second fundamental form away from the initial time
depending only on C0-bound on the initial hypersurface. This is done for the cases of
the ambient space being Euclidean or hyperbolic, which are often needed for the earlier
consideration of the stability problem in previous approaches. Similar arguments yield
similar estimates for some other nonlocal flows such as the surface area preserving
mean curvature flows.

In the following, the positive constant C depends on the dimension n and the initial
C0-bound of A and might vary at places by abusing the notations. For the global term
h, it is useful to notice |h| ≤ C max |A|.

For the ambient space being Euclidean, the computations in [17] give

(
∂

∂t
− �

)
|A|2 ≤ −2|∇A|2 + 2|A|4 + max |A|

and so for t ∈ [0, δ0] with some small δ0 > 0, we have |A| ≤ C .
We stay in the time interval [0, δ0], and the calculations in [17] also give

(
∂

∂t
− �

)
|∇A|2 ≤ −2|∇2A|2 + C |∇A|2,

and so
(

∂

∂t
− �

)
(t |∇A|2) ≤ −2t |∇2A|2 + Ct |∇A|2 + |∇A|2.
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Together with

(
∂

∂t
− �

)
|A|2 ≤ −2|∇A|2 + C,

which makes use of the bound on |A|, we have
(

∂

∂t
− �

) (
t |∇A|2 + |A|2) ≤ C + C

(
t |∇A|2 + |∇A|2),

which gives

t |∇A|2 ≤ C .

Let us pick some small ε1 ∈ (0, δ0) as the new initial time. Therefore, we have
uniform both bounds for |A| and |∇A| for the new time t ∈ [0, δ1] which corresponds
to [ε1, δ1 + ε1] for the original time.

Now, we proceed by induction, assuming for t ∈ [0, δm] (for the original time
[εm, δm + εm]),

|∇k A| ≤ C

for k = 0, . . . ,m for m ∈ N. Now, we have from calculations in [17],

(
∂

∂t
− �

)
|∇m+1A|2 ≤ −2|∇m+2A|2 + C + C |∇m+1A|2

and so
(

∂

∂t
− �

) (
t |∇m+1A|2) ≤ −2t |∇m+2A|2 + Ct + Ct |∇m+1A|2 + |∇m+1A|2.

By the induction assumption,

(
∂

∂t
− �

)
|∇m A|2 ≤ −2|∇m+1A|2 + C .

Thus, we have

(
∂

∂t
− �

) (
t |∇m+1A|2 + |∇m A|2) ≤ C + C

(
t |∇m+1A|2 + |∇m A|2),

which gives

t |∇m+1A|2 ≤ C

and we conclude the induction step.
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For any sufficiently small ε > 0 and some small δ > 0, we can choose εm and δm
for 0 < εm < ε < δ < εm + δm for all m’s which gives bound for all higher orders in
the origina time [ε, δ].

For the ambient space be hyperbolic, the calculations in our Sect. 2 give

(
∂

∂t
− �

)
|A|2 ≤ −2|∇A|2 + C max |A| · (|A| + |A|3)

and so for small time t ∈ [0, δ0],

|A| ≤ C .

The rest of the argument is the same as above in light of Corollary 2.4, andwe conclude

|∇m A| ≤ C

for m = 0, 1, . . . for t ∈ (ε, δ) for any sufficiently small ε > 0 and some small δ > 0.
We summarize the estimates in the following theorem.

Theorem A.1 For the VPMCF of closed hypersurface in either the Euclidean or hyper-
bolic space, if the initial second fundamental form A is bounded, i.e., |A| ≤ � for
some � > 0, then there exists δ(�) > 0 such that for any sufficiently small ε > 0, we
have in [ε, δ(�)] for m = 0, 1, . . .

|∇m A| ≤ C(�,m, ε).

Remark A.2 One certainly expects such result to hold for more general ambient space
with explicit bounds away from the initial time. We choose this form to make use of
clean classical calculations, which is sufficient for earlier studies of the VPMCF as
mentioned in Remark 1.3.
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