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ABSTRACT

Looking for a geometric framework to study plectic Heegner points, we define a collection of abelian varieties —
called plectic Jacobians—using the middle-degree cohomology of quaternionic Shimura varieties (QSVs). The
construction is inspired by the definition of Griffiths’ intermediate Jacobians and rests on Nekovai—Scholl’s
notion of plectic Hodge structures. Moreover, we construct exotic Abel-Jacobi maps sending certain zero
cycles on QSVs to plectic Jacobians.

1. INTRODUCTION

For a long time number theorists have been looking for suitable generalizations of Heegner points
to tackle the BSD conjecture for elliptic curves of rank greater than 1. Motivated by that problem,
a conjectural construction of determinants of global points was recently proposed [10, 9] combin-
ing Darmon’s pioneering work [3] with the powerful insights of Nekovat—Scholl’s plectic conjectures
[22]. These plectic Stark—Heegner (PSH) points are constructed using p-adic integration, and their
peculiar appearance is motivated by the uniformization of quaternionic Shimura varieties (QSVs) by
certain p-adic symmetric domains. To explain how PSH points should arise from global points, pre-
cise conjectures were formulated in [9, Conjectures 1.3 and 1.5]. In a nutshell, they claim that given
an elliptic curve of algebraic rank r, a PSH point constructed using r different p-adic places is in the
image of the top exterior power of the Mordell-Weil group via a p-adic determinant map. Notably, for
elliptic curves of rank 1 those conjectures recover the expectation that classical Stark-Heegner points
are images of global points under p-adic localization.

Those aforementioned conjectures were substantiated by numerical and theoretical evidence. On
the computational side, in [ 10] they were verified (up to precision) for several elliptic curves of rank 2
defined over Q(+/13) and Q(1/37). On the theoretical side, instances of the conjectures were proved
in the setting of polyquadratic CM extensions [ 8], leveraging higher p-adic Gross-Zagier formulas for
anticyclotomic p-adic L-functions ([9], Theorem A). Moreover, it is reasonable to expect that the work
of Molina-Hernandez [ 16] will help in clarifying the connection between PSH points and generalized
Kato classes [5].

As is the case for Darmon’s Stark-Heegner points, one cannot usually guarantee that PSH points
arise from global points because of their inherently analytic construction. More than 20 years after
the introduction of Stark—Heegner points, our understanding of their conjectural global properties
remains quite unsatisfactory in general. There is a notable exception: for CM extensions Darmon’s
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points recover classical Heegner points, whose global features have long been understood using Jaco-
bian varieties and the theory of complex multiplication. One of the appealing traits of PSH points is
that they are already interesting and new for CM extensions. Thus, from now on, we will refer to PSH
points for CM extensions as plectic Heegner points, and we will try to shed some light on their attributes
using Nekovéi—Scholl’s plectic Hodge theory.

1.1. Main results
Nekovét and Scholl observed [22, 23] that Hodge structures of Hilbert modular varieties carry more
information than those of general Kihler manifolds. In particular, they showed the existence of a
Kiinneth-like structure that reflects the canonical decomposition of the tangent bundle of Hilbert
modular varieties.

DEFINITION 1.1 Letn > 1 be an integer. An n-plectic Hodge structure on a finite free
Z-module H consists of a decomposition

H®,C= @ H*® suchthat H%P = HAe,
o,Be7

REMARK 1.2 There is a natural procedure that produces a Hodge structure from the data of an
n-plectic Hodge structure. Given o = (aj i € 2" set la| = Z;’zl @, and let H be an
n-plectic Hodge structure. The classical Hodge structure arising from H is defined by setting

HP = @ HYP Vpq€EZ
loe|=p,|B|=q

In this case we say that the n-plectic Hodge structure refines the associated Hodge structure.

Our first main theorem shows that plectic Hodge structures arise in the cohomology of compact
rigidified Kahler manifolds, that is, compact complex manifolds endowed with certain foliations and
compatible Kihler metrics (see Definitions 2.2 and 3.3 and Corollary 3.8).

THEOREM A Let X be an n-dimensional compact rigidified Kahler manifold. The cohomology of X is
endowed with a canonical n-plectic Hodge structure refining its classical Hodge structure.

‘We note here that the compatibility conditions between the foliation and the Kihler metric are singled
out to ensure that the Laplacian operator associated with the Kahler metric respects the decomposition
of harmonic differential forms induced by the foliation.

1.1.1. Plectic Jacobians and exotic Abel-Jacobi maps
Our work on PSH points was inspired by Nekovar and Scholl’s belief that CM points on higher dimen-
sional QSVs could be used to study the arithmetic of elliptic curves of higher rank. While previous
articles leveraged p-adic techniques, this paper begins to develop an Archimedean framework to study
plectic Heegner points following Oda’s trailblazing work on periods of Hilbert modular varieties ([24,
25]). The aim is to understand a form of geometric modularity where Jacobians of Shimura curves are
replaced by plectic Jacobians of higher-dimensional QSVs. As the Jacobian of a curve C can be con-
structed from the weight 1 Hodge structure H'(C,Z), so plectic Jacobians of a QSV X are defined

using the plectic Hodge structure appearing in the middle-degree cohomology group HY™X(x, 7).

DEFINITION 1.3 An n-plectic Hodge structure H is effective and has weight 1 = (1,.,1) € Z" if

H* 40 = ofeN' & a+f=1
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An effective n-plectic Hodge structure of weight 1 € Z” can be thought of as a collection of n
effective Hodge structures of weight 1 on the same underlying module by setting

FY =FY(H) :=@HO"5 foranyj=1,...,n.
a]21

It is then natural to make the following definition.

DEFINITION 1.4 Let H be an effective n-plectic Hodge structure of weight 1 € Z". For any
j=1,...,nthe plectic Jacobian ] (H, j) associated with H is the complex torus defined by

Jo(H,j) :=H\(H®, C)/F".

Systems of Hecke eigenvalues of modular elliptic curves appear in the cohomology of QSVs only
in middle degree, and the cuspidal part of those middle-degree cohomology groups can be shown
to carry a canonical effective plectic Hodge structure of weight 1 (Lemma S5.1). Therefore, an r-
dimensional compact QSV X determines r plectic Jacobians { ] (X, j)};:1 which are abelian varieties

(Proposition 5.4) and conjecturally are closely related to modular elliptic curves (Conjectures 5.5 &
5.6).

REMARK 1.5 When the QSV X has odd dimension r, all middle-degree cohomology classes are
cuspidal. Thus, the real torus

H'(X,R)/H'(X,Z)

can be endowed with several complex structures: those arising from our definitions and
those considered by Weil ([29] and [17], Section 3) and Griffiths ([15], Section 3).
However, while Weil’s and Griffiths’ definitions of intermediate Jacobians exclude even
cohomological degrees, our definition applies unchanged to the middle-degree cohomology
of even dimensional QSVs.

To add details to our discussion, let us consider a totally real number field F of narrow class num-
ber one, and a non-split quaternion algebra B/F with X := {1, ..., 1, } as its set of split Archimedean
places. Recall that a QSV Xj, associated with B/F and a choice of Eichler order, has a canonical
model over the reflex field @(Z;:I V](x) |x € F) C C. The following conjecture aims at elucidating
the relations between the plectic Jacobians of X 5.

CONJECTURE 1.6. There is an abelian variety J(Xy) defined over F and canonical isomorphisms
(J@(XB) ®F,l/] C)an = Jo(Xp) Vi=1..,r.

REMARK 1.7 Conjecture 1.6 is well-known when r = 1, that is, whenever X is a Shimura curve,
while it is wide open for all r > 2.

Griffiths” style definition of plectic Jacobians allows us to define an exotic Abel-Jacobi map with a
subgroup of zero cycles which we now describe. We begin by recalling the complex uniformization of

a QSV. Let us fix an isomorphism ¢;: B®j, R — M, (R) for every v; € %, then, if the level of the
7

Eichler order is large enough, there is a torsion-free arithmetic subgroup I' < B*/F* such that
Xp= F\~7{ b

is a complex manifold where I acts on the product Hy, = [ [, ., #,, of Poincaré’s upper-half planes
J ]

via Mdbius transformations. For technical reasons (see Equation (14)) our exotic Abel-Jacobi map is
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only defined for zero cycles supported at ‘generic’ points: denoting by J(;, C J{,, the subset of those
] ]
points with trivial stabilizer in Lj(F) < PGL,(R), we can define

Hy= 1196, ad  X5=T\IG
VjGZ
Note that this is not a serious restriction for arithmetic applications since the set X contains all
CM points. The free group Z[H ;} of the product (5, is canonically isomorphic to ®;:1Div(.'}( °)
]
by mapping generators [ (7, ...,7,)] to elementary tensors ® [7;]. If we denote by Div’(J(;,) the
J

subgroup of degree-zero elements of Div(H f,,) , we can define plectic zero cycles supported on X, by
setting

Z.[X] = Im( ®., Div’(JC;) - z[xg]).
Following Darmon-Logan [4] we consider the homomorphism
[ oD o6) - H ), oL lsl-b) = [ 76
1 Y

mapping an elementary tensor to the linear functional computing a series of line integrals. We are now
ready to state our second main theorem, a first step towards an Archimedean construction of plectic
Heegner points.

THEOREM B The homomorphism [" induces a well-defined Abel-Jacobi map

AlL: Z[X;) — Jo(Xp))  Vj=1.,rm

In future work, we plan to perform numerical experiments to understand the feasibility of enlarging
the domain of our exotic Abel-Jacobi maps to contain canonically defined zero cycles supported on
CM points.

2. RIGIDIFIED COMPLEX MANIFOLDS

DEFINITION 2.1 Let U,V C C" be open subsets. We say that a holomorphic function ¢: U — V
is rigid if there exist holomorphic functions {¢/ };':1 in one variable such that

Guyyeoyu,) = (01 (1), -, 8" ()

Let X be a Hausdorff topological space. An n-dimensional chart (U, ¢) in X consists of an open
subset U C X and an homeomorphism ¢: U — D onto an open subset D C C”". We say that two
charts (U, @), (V, 1)) are compatible if the transition function

pop: P(UNV) = d(UNV)

and its inverse are both rigid. A covering of X consisting of pairwise compatible n-dimensional
charts is called an n-dimensional rigidified atlas of X. Moreover, two such atlases &, &, are called
equivalent if any two charts (U,¢) € o, and (V,1)) € of, are compatible. Finally, an equiva-
lence class of n-dimensional rigidified atlases on X is called an n-dimensional rigidified holomorphic
structure on X. It contains a maximal atlas which is the union of the atlases in the equivalence
class.

DEFINITION 2.2 An n-dimensional rigidified complex manifold consists of a Hausdorff space X
with a countable basis, equipped with an n-dimensional rigidified holomorphic structure.
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2.1 Examples
Any open subset {2 C C" has a natural structure of rigidified complex manifold given by the atlas

o/ ={(U,idy) | U open subset of Q2 }.

The class of examples most relevant for our arithmetic applications consists of quotients I"\ {2 of an
open subset {) C C" by a discrete group I'.

LEMMA 2.3 Let I be a discrete group acting on a connected open subset €2 C C". Suppose

o T acts smoothly, freely and properly on 0,
o there exists a homomorphism I' — GL,(C)", v = (v, -..,7,,), such that

v (peen,) = (1 (), 70 (x,)) vVyerl,
then I'\ ) has a structure of rigidified complex manifold.

Proof. Let : 2 — I'\ Q2 be the quotient map and &/ an atlas in the canonical rigidified
holomorphic structure of Q. We define a rigidified atlas /- for I'\ (2 as the collection of all
pairs (w(U), TI"_J) such that (U, id;;) belongs to &/ and Ty :U— 7(U) is injective. First, as
I acts smoothly, freely and properly on Q the quotient I'\ 2 is a complex manifold. Then,

A is arigidified atlas because its transition functions are given by the action of elements of
the group, since I is discrete. O

REMARK 2.4 Lemma 2.3 shows that complex tori and QSVs are natural examples of rigidified
complex manifolds. Moreover, we note here that the notion of rigidified complex manifolds
could be generalized to include symplectic and unitary Shimura varieties over totally real
number fields.

2.2. Foliations

In this section we explain why the tangent bundle of a rigidified complex manifold admits a natu-
ral decomposition. For readers interested in the relation between split tangent bundles and product
structures of the universal covering space, we refer to the articles [1, 6].

Let X be an n-dimensional rigidified complex manifold. For any index j = 1,...,n we define the j-th

sub-vector bundle T; of the tangent bundle Ty of X as follows. Let % = { U, } be an open covering of

X, and set U , := U N U,. Then the rank 2 real vector bundle T;( is covered by open sets { U, x R*},
and the transition morphism between

Uy xR*CUXR*  and U, xR*CU xR
is given by (u,v) = (u, dqzﬁik(u)(v)), where ¢ = (cb}i P ¢Z£) is the rigid transition map between

#(Upp) € C" and ¢,(U, ») € C" and dqﬁ],;,é(u): R? — R?* denotes the Jacobian matrix of QS;C,Z at
point u. We note that there is a direct sum decomposition of the tangent bundle

Ty = @ T).
j=1

Since X is a complex manifold, each vector bundle Tg( is equipped with an almost complex structure
I Therefore, there is a decomposition of the extension of scalars
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; 1,0, 0,1
renc-1 o1,
1,0 0,1 j
where T, (resp. T, ') is the sub-bundle of T}, ®g C on which the involution I ;acts with eigenvalue
i (resp. —i).

REMARK 2.5 Let (z,,...,z,) be local complex coordinates on an open subset U C X

trivializing T;( ,and denote by €°°(U) the ring of smooth C-valued functions on U. If we
write z; = x; + iy;, then we can explicitly describe smooth sections as

Th ®g C(U) = €= (V) - 8% ®E=(U)- a%'

1,0 0,1
Moreover, the modules of smooth sections of Ty ' and Ty ’ over U are free of rank one
over € °°(U) with respective basis elements

g:;(ﬁ_,z) - g:z(gﬂ.g)
3zj 2 5‘xj 3yj 6Zj 2 8xj 8y]-

2.2.1. Refined types of differential forms
The classical Hodge decomposition of differential form on complex manifolds uses the factorization

of the exterior differential d, into a holomorphic and an anti-holomorphic component dy, = 9y + 5}(
The decomposition of the tangent bundle of rigidified complex manifolds further refines the types of
differential forms and a fortiori the factorization of the exterior differential.

DEFINITION 2.6 Let X be an n-dimensional rigidified complex manifold. Forj € {1,...,n} set
1,0, 1,0, 0,1 0,1,
A" =Home(1y",C)  and A" :=Home(Ty",C).

Then, for an ordered pair (v, 3) of elements in {0, 1}", we define the vector bundle of
C-valued smooth differential forms of type («, 3) by

AP = QA o R A (1)
a=1 B=1

REMARK 2.7 Exterior powers of smooth differential forms Ay := Homg (T, C) admit direct
sum decomposition of the form

k a,f
NAy= B Ay
ot Bl=k
a+1],ﬂ

Letj€{1,...,n} and o, 5 € {0,1}". If a; = 0 there is a differential operator ¢;: ./l;’ﬂ — Ay
defined by the diagram

o, 5/ . (Y+l],j3 (2)

y dx .
/\|(1+J\AX /\|(\+,3\+1AX.
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If we simply set §;: ﬂ;’ﬁ — {0} when ;= 1, we can write Oy = Z;’zl §;- On alocal chart with

coordinates (z,, ..., z,), any differential form w € A;'ﬂ can be written as
w=f-dz, Ndzg, where  dz, =g ydz,  dzg=Ageodz,

and the differential operator ; is given by the formula
(W) =2f de Adz, A dz 3)
j(w) = Bzzf z; Ndz, Ndzg.
j

3. REFINED HODGEDECOMPOSITION

To promote the refined decomposition of differential forms into a refinement of the Hodge decompo-
sition of de Rham cohomology; it is necessary to understand when the Laplacian operator associated
with a Kahler metric respects the refined types of differential forms. The next definition singles out a
sufficient condition.

DEFINITION 3.1 We say that a hermitian metric ds® on an n-dimensional rigidified complex
manifold X is distinctive Kahler if in a neighborhood of every point x € X there are a
holomorphic coordinate system (z,, ...,z,) and a unitary coframe ¢, ..., ®, for the metric,
such that

0
=f(z)-dz & —f(x)=0 Vi=1,..,n.
v =f(z) - dz; 6,zjjj(x) j
Therefore, ¢, is a differential form of type (lj, 0) which satisfies (%f] =0= a%(]j Yk #j.

REMARK 3.2 A distinctive Kéhler metric is also Kahler. Indeed, one of the equivalent
conditions for a metric on an n-dimensional complex manifold to be Kahler is the existence,
for any x € X, of a unitary coframe ¢, ..., ¢, in a neighborhood of x such that ngoj(x) =0
foreveryj=1,...,n.

DEFINITION 3.3 A rigidified Kahler manifold is a rigidified complex manifold admitting a
distinctive Kahler metric.

We now show that rigidified Kahler manifolds exist in nature. For every j = 1,...,n consider a con-
nected open subset {2; C C admitting a Kahler metric dsjz. Write 2 = H}": 1 §2; and suppose a discrete
group I acts on it satisfying the assumptions of Lemma 2.3.

LeEMMA 3.4 If the [-action preserves the metric ds* = > j dsjz, then I'\2 has a natural structure of
rigidified Kahler manifold.

Proof. Lemma 2.3 shows that I"\(2 has a structure of rigidified complex manifold. We just have
to prove that the metric ds* = Z]. Clsj2 induces a distinctive Kihler metric on the quotient.

For any point x € I'\{2 we choose alift = (x,,...,x,) € {2 and open neighborhoods

U; C €, of x; such that the projection map 7r: {2 — I'\Q is injective when restricted to
U= Hj U;. As each ( Q, dsjz) is a Kdhler manifold, we can suppose that there is a
holomorphic coordinate z; on U, and a unitary coframe ¢, = J;(Zj) . dzj for the metric dsj2

satisfying d<p}-(xj) = 0. Then, the collection of all the pull-backs of the ;s to the product U
gives the sought-after unitary coframe. O

REMARK 3.5 Lemma 3.4 implies that complex tori and QSVs admit natural structures of
rigidified Kahler manifolds.
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3.1. Refined Hodge identities

Following [11, Ch. 0, Section 6], we recall the definitions of formal adjoint differential operators and
apply it to the special case of rigidified Kihler manifolds. For a connected, compact, n-dimensional
rigidified Kihler manifold X, we fixa distinctive Kahler metric ds* with associated (1, 1)-form wlocally
given in a unitary coframe by

i o _
j:l

The distinctive Kahler metric induces a Hermitian metric on the space of differential forms which
can be used in combination with the volume form w" to define the inner product

W= [ G Vi e Ao,

Using Hodge’s star operator ([11], pp. 82 and 101-102), we can then define the formal adjoint
differential operator fj* : APA(X) — AP~M(X) by setting

& =-x&
and check that it satisfies
Eom=(hgn  VneAaMX)

by adapting slightly the computation beginning at the end of [11, p. 82].

PROPOSITION 3.6 If X is a rigidified Kahler manifold, then

§-&+&-§=0  VjFk
Proof. We adapt the proof of the classical Hodge identities ([11], p. 111) and begin by
verifying the claim for C" with the Euclidean metric. The idea is to write the differential

operators &;s as a composition of simpler operators. For each indexj = 1,...,n we consider
a+ Ii’b

the operator¢; : A?’b(C") — A, " (C") on compactly supported forms defined by

& () = dz; A .

Let ei* denote the formal adjoint of € and note that the operators € ej* are

% °°(C")-linear. By a direct computation one verifies that
¢ ete e =0 Vj#k

Forj=1,...,nwe also consider the operator (9] on A?’h(C”) defined by

- 0 _
O(f -dz, Ndz,) = gf -dz, Ndz,.
j
The operators 3j’s commute with each other, with all ¢, ¢]'s, and satisfy (9].* = —5]., that is,

. - 0 _
O (f-dz, Ndz,) = —éj_ﬁdza A dz,,.
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We can then write
= . * = — . *
§=0-¢  §=-0q.
For j # k, the straightforward computation

§j'§;=@'6j'(_5k'62)
=5k'3j'52'€;
:_51:’5]‘

proves the proposition for C". We claim that the computations with the Euclidean metric
suffice to deduce the result for any rigidified Kihler manifold X. Indeed, recall that by
assumption, in a neighborhood of any point x € X, we can find a holomorphic coordinate
system (zy, ...,z,) and a unitary coframe {ij = fj(zj) . dzj };;1 for the metric, such that

0 17} d
—f=0= —f & —f(x)=0 Vi=1,...,n Vk#j.
22 &) (%jff(x) / m k]

In general, the operator §; equals 8} ¢; up to terms that only involve the first-order
derivative of the function f;. Then, as the operators ¢;, e].*s are linear with respect to the

algebra of € °°-functions, we deduce that & §+& §fork # j coincides at x € X with the
zero operator up to terms that involve first derivatives, products of first derivatives and mixed
second derivatives of the functions f; and f;. The terms containing the first-order derivatives

or their products vanish at x € X because of the usual Kéhler condition, while the terms
containing the mixed partial derivatives vanish identically because each function f; depends

on a single holomorphic coordinate. O

Recall that given an operator P on differential forms, the associated Laplacian is the degree zero
operator given by the formula A, = P - P* + P* - P. For a Kahler manifold X we set Ay = A .

CoRoOLLARY 3.7 If X is an n-dimensional rigidified Kahler manifold, then

n
Ag=3 ,Z; Ae.
In particular, the Laplacian operator A4 respects differential forms of refined types.
Proof. Since X is a Kahler manifold we know that
Ay =2A,.
The claim then follows from a direct computation using Proposition 3.6:

Np=0-0"+8"-0
(36)- (2 (2)(T9)
:Zgj.§;+251j.§j

jik jk
=) (G g+ ) H D> (& GHEE)

' j#k

]
= A
J
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We denote by € 4B (X) the space of harmonic differential forms of refined type («, 3), that is,
FHOP(X) = {p € A% (X) | Agp=0}.
Note that H*5(X) = B2 (X) since the Laplacian operator A is real.

CoRoOLLARY 3.8 The de Rham cohomology of any compact rigidified Kahler manifold X
admits a canonical direct sum decomposition

Hi (X/C) = @D #*P(x),  a,B€ {01}~
jove Bk

in terms of harmonic differential forms of refined types.

Proof. The usual Hodge decomposition describes the de Rham cohomology of Kihler
manifolds in terms of harmonic differential forms. As the Laplacian operator A 4 respects
differential forms of refined types when X is rigidified Kihler (Corollary 3.7), the claim
follows. O

REMARK 3.9 When X is a compact QSV, Corollary 3.8 can also be deduced from
Matsushima-Shimura [21] or Nekovaf—Scholl [22, Section 2]. The case of non-compact
Hilbert modular varieties was studied by Davidescu-Scholl in [7].

LeMMA 3.10 The refined Hodge decomposition does not depend on the choice of a distinctive Kiahler
metric, that is, it only depends on the rigidified complex structure.

Proof. Voisin’s proof ([28], Proposition 6.11) of the independence of the Hodge
decomposition from the choice of Kidhler metric can be easily adapted to our setting. We aim
to show that the subspace of de Rham cohomology classes which are representable by a
closed form of refined type (v, ) coincides with HB (X). Let 1) be a closed form of refined
type (v, 3). We can write in a unique way ¢ = 1) + A 4 with 17 harmonic. Since A 4 respects
refined types (Proposition 3.7), we can further suppose that both 77 and ( are of refined type
(o, B). As ker(Ay) C ker(d), we see that d7) = 0 and compute that A 4 is closed:

dOAdCZdn‘FdOAd(:de:O.

Since d* = 0, we further deduce that d*d( € ker(d). As the intersection
ker(d) NIm(d*) is trivial, we obtain d*d¢ = 0. Hence, v = n + dd*(, that is, 1) and 7 are in
the same de Rham class. (]

In other words, we have shown that the cohomology of a compact rigidified Kahler manifold is
endowed with a canonical plectic Hodge structure refining its classical Hodge structure.

3.2. Functoriality of plectic Hodge structures

DEFINITION 3.11 Let X, Y be n-dimensional rigidified complex manifolds. A morphism from X
to Y is a function ¢: X — Y such that for every point x € X there is a chart (U, ¢) on X
with x € U and a chart (V, 1)) on Y with o(x) € V such that o(U) C V and the
composition ¢ o o ¢ is a rigid holomorphic function.

REMARK 3.12 In the rest of this section we will commit a slight abuse of notation and denote
the maximal torsion-free quotients of the cohomology groups H¥(X,Z) by the same
symbols.
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What follows is a simple adaptation of [28, Section 7.3.2]. Let X,Y be n-dimensional compact
rigidified Kahler manifolds and ¢ : X — Y a morphism of rigidified complex manifolds. Using the de
Rham cohomology description of pullbacks, it is clear that ¢ : H*(Y,Z) — H*(X,Z) is a morphism
of n-plectic Hodge structures of degree 0.

LEMMA 3.13 For every k > 0 the pushforward o.: H*(X,Z) — H*(Y,Z) is a morphism of
n-plectic Hodge structures of degree 0.

Proof Recall that Poincaré duality ( , ) : H*(X,Z) x H**(X,Z) — Z gives an
isomorphism H*(X,Z) =~ H*"**(X,Z)" between the maximal torsion-free quotients of the
cohomology groups which is used to characterize the pushforward ¢. map:

(erym)y = (K, cp*n>X V ke HY(X,Z), n e H* (v, 7).

Suppose now that € FH*?(X), then to prove the lemma we need to show that
ok € FH*P(Y). This is a direct consequence of equality (4), and the fact that the pullback
map ¢ is a morphism of plectic Hodge structures of weight 0.

For cv € {0,1}" denote by a° € {0,1}" the unique element such that & + a° = 1. We
claim that for any (o, () satisfying | + (| = k we have

1
P =< P :W‘S> ) (4)
(v8)#(a5)

where the pairs (,0) also satisfy |y + d| = 2n — k and the orthogonality is taken with respect
to Poincaré pairing. To prove the claim we note that @# is contained on the right-hand
side (RHS), and the dimensions of the two spaces coincide

dimRHS = dim H**# = dim H*>5. (5)

The first equality of (S) follows from the non-degeneracy of the Poincaré pairing, while
the second arises from the isomorphism x: J OB o gt given by the Hodge star
operator induced by the distinguished Kahler metric. U

4. ALGEBRAICITY OF COMPLEXTORIWITH REAL
MULTIPLICATION

While the content of this section is well-known to experts, we decided to include it for the convenience
of the reader. Recall that for any complex torus T = V' /A there is an injective ring homomorphism

End(T) < End,(A).
In particular, the ring End(T) is torsion-free and finitely generated as a Z-module.
DEFINITION 4.1 A complex torus T has real multiplication if there exists a totally real field L
with [L : Q] = dimT and a unital ring homomorphism §: L — End(T)g. We say that T
has real multiplication by an order O if T has real multiplication and O := ' (End(T)).

LEMMA 4.2 Any complex torus T with real multiplication is isogenous to a complex torus T  with
real multiplication by the ring of integers of a totally real number field.

Proof. Let T = V/A be a complex torus with real multiplication given by 6: L — End(T)Q.
As @ := 07" (End(T)) is an order in L, it has finite index in the ring of integers O, . Write
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n=[0; : O] and consider

A= ] A
x€0,/0
We have A C A’ C 1A, hence A’ is a lattice in V commensurable with A. Moreover,
n

T’ := V/A’ is a complex torus with real multiplication by O, isogenous to T.

ProrosITION 4.3 ([19], Theorem 7.2) Let R be a Dedekind ring. For a finitely generated
R-module M the following are equivalent:

® M is R-projective,
e M is R-flat,
® M is R-torsion-free.

Moreover, any finitely generated and torsion-free R-module M is isomorphic to R"™" @ U for some
fractional ideal 2 of R and n = rky M.

COROLLARY 44 Let T = V /A be a complex torus with real multiplication by O, , the ring of
integers of a totally real number field. Then, A is O, -projective of rank two.

Proof. By considering the inclusion End(T) < End(A) 22 M,; 5 (Z), we see that the
non-zero elements of J; act on A via elements of M, 4 (Z) N GL,; 5 (Q). Hence, A is
O, -torsion-free. Now, [12, Corollary 2.6] tells us that V = A ® , R is a free
O, ®7 C-module of rank one. Therefore, we compute that

rkoL A = rkoL®ZR V=2 rkoL®ZC V=2
Proposition 4.3 then finishes the proof.

The following result can also be found in [27, Ch. IX, Lemma 1.4].
THEOREM 4.5 Every complex torus T with real multiplication is an abelian variety.

Proof. Up to isogeny ([2], Ch. 2, Proposition 1.1), we can assume that T = V/A has real
multiplication by a maximal order O; (Lemma 4.2), then A =2 O; & U for some fractional
ideal A (Corollary 4.4 & Proposition 4.3). Set ¥ = Homg, (L, C). As V is a free
O, ®7 C-module of rank one, it admits a decomposition into one-dimensional C-subspaces

v=Ev,
oc
such that an element x € O} acts on V7 as multiplication by o/(x). From a choice of
isomorphism ¢: A — O; @& A of O; -modules, we obtain an R-linear isomorphism

(¢ ®1)7: V7 — R*for every o € X by extending scalars to R. Moreover, transporting the
complex structure from V7 to R?, we can promote them to C-linear identifications

(p@1)7: V° Sc Thus, there are A, ;1 € (C*)y; such that A, i, € C* are R-linearly
independent Vo € X and

pHP®@DA=0, - (Ap™) + - 1.

AsLis densein L ®¢g R, the composition L™ — (L ®g R)™ — {41}y is surjective, and
we can choose x € L such that every component of x(Azi ™) € Cy; has positive imaginary
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part. Hence, we have shown the existence of z € (s, a fractional ideal B of O} and an
isomorphism of complex tori

T=Cyxy/A, where A, =0, -z+%B.
We deduce that T is an abelian variety using [ 12, Corollary 2.10]. O

REMARK 4.6 Every compact complex manifold has at most one algebraic structure because the
analytification functor is fully faithful ([13], Corollaire 4.5).

DEFINITION 4.7 A rational Hodge structure Hg, of weight 1 has real multiplication if there is a
totally real field L with 2[L : @] = dimgHg and a unital ring homomorphism
0: L — End(Hg).

CoROLLARY 4.8 The isogeny class of complex tori associated with an effective rational Hodge
structure of weight 1 with real multiplication consists of abelian varieties.

Proof. Let Hg be an effective rational Hodge structure of weight 1 with real multiplication.
Directly from the definitions, the Jacobian associated with any lattice A C Hg is a complex
torus with real multiplication. The claim then follows from Theorem 4.5. O

S. ARCHIMEDEAN PLECTIC JACOBIANS
Recall that an n-plectic Hodge structure H is called effective of weight 1 € Z” if

H* 40 = aqfeN & a+f=1

We can think of an n-plectic Hodge structure of weight 1 € Z" as a collection of n classical Hodge
structures of weight 1 on the same underlying module by setting for anyj = 1,...,n

FY=F'(H) = G H>". (6)

oc]21

Then, for any j = 1,...,n the plectic Jacobian ] (H,j) associated with an effective n-plectic Hodge
structure H of weight 1 € Z" is the complex torus defined by

J@(H;j) = H\(H ®z C)/Pll.

Note that if H; = (H,F") denotes the j-th Hodge structure of weight 1, we deduce that points of
plectic Jacobians parametrize extensions of mixed Hodge structures ([26], Example 3.34)

J@(H;j) = EXtMHS(Z(—I))Hj)-

5.1. Example: products of complex tori

Recall that the Jacobian of the weight one Hodge structure appearing in the first cohomology group
H'(T,Z) ofa complextorus T recovers the dual torus T" ([28], Section 7.2). If we consider a product
X =T, x - x T, of complex tori, then the tensor product

H'(X,2), := QH(T,2)
j=1

is an effective n-plectic Hodge structure of weight 1 € Z" satisfying
F'H"(X,C), = F'H'(T,C) ®; @ HY(T,,Z),
k#j

and whose plectic Jacobians can be explicitly described. For any index j = 1,...,n let us define the
plectic Jacobian J (X, ) as the plectic Jacobian associated with the plectic Hodge structure H" (X, Z),.
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A direct calculation shows that

JCD(X)j) = Tj\/ ®Z ®H1(Tkrz)’
K7

In particular, if T;isan abelian variety defined over a number field, then (X, ) is also an abelian
variety with a distinguished model over the same number field.

5.2. Compact QSVs

Let F be a totally real number field of degree d = [F : Q] and, to simplify the exposition, of narrow
class number one. Let B/F be a non-split quaternion F-algebra, denote by & = {v,, ..., v, } the set of
Archimedean places of F at which B/F splits, and fix isomorphisms

t,: B®, R=M,(R) for veX.

Given an Eichler order R in B, we denote by [ the subgroup of R* consisting of those elements with
totally positive reduced norm. The group I' maps in [[,.5(B®;, R)™* = GL,( R)*, and hence it
acts on r-copies of the Poincaré upper half plane Hy, = #(,, x - X J{,, via Mdbius transformations.

Let Z denote the center of GLZ(R)E. We suppose that I" := L/ (1:‘ N Z) is torsion-free so that the
quotient X := '\ H(y; is a compact complex manifold. The holomorphic tangent bundle 7 of X, has
a canonical decomposition into line bundles

T=Pp 2,

vex

where £, is the holomorphic line bundle associated with the v-th automorphy factor, and the image

of first Chern class ¢, (Z£,) € H*(X,Z) in HéR (X3/C) can be represented by

1 dz, Adz,
o @)
v

Furthermore, for every k > 0, the maximal torsion-free quotient of H* (Xg,Z) carries a canonical r-
plectic Hodge structure (Corollary 3.8) which is preserved by Hecke operators (Section 3.2). Denote
by L,: H(X3,2) — H™**(X,Z) the morphism of r-plectic Hodge structures of bidegree (1,,1,)
given by the cup product with the class ¢, (Z,), and define the strongly primitive component

H{, (X3, 2) (8)
of H' (X, Z) as the maximal torsion-free quotient of the kernel of @, 5.L,,.

LEMMA 5.1 The strongly primitive cohomology Hy (X, Z) carries a canonical effective r-plectic
Hodge structure of weight 1 € Z" and is preserved by the action of Hecke operators.

Proof. Since the L, s are morphisms of plectic Hodge structures of bidegree (1,,1,) the
strongly primitive cohomology is endowed with an r-plectic Hodge structure. We can
determine its weight by noticing that the explicit formula given in (7) allows us to compute

ker(L,: H'(X;C) - H*(X,,C))= & H™
a,=1or =1

To prove that Hecke operators preserve the strongly primitive cohomology, note that any
prime ideal p of O admits a totally positive generator oy, because F has narrow class
number one. It is well-known that the maps 7, Ty describing the Hecke correspondence
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Ty:= | Xp<""Xp(p) > Xp
are, respectively, uniformized by the identity Hy. — Ky, (z,,), > (z,,), and the morphism
Hy = Hs, (2,), 2 (U@y) 2,),.
Thus, from equation (7) we deduce that
(1) (L) =(mp) e(Z,) VveR €
As the action of Ty, is given by the formula Ty = (Trp)* o(m), equation (9) implies that
Tp(w) U (Z) =Ty(wUe (Z,)) VweH (X52),Vrves,
that is, that the Hecke operator Ty, commutes with the morphisms L. 0
REMARK 5.2 Matsushima and Shimura described the cohomology of X, in terms of

automorphic forms in [21]. An inspection of their result shows that the strongly primitive

cohomology is the part of the cohomology of X ; which is controlled by cuspidal
automorphic representations.

For every v € X let 7, € R” be an element such that det(z,,(7,)) < 0, and det(z,,(v,)) > 0if 1 #
v. Such an element exists because F has narrow class number one. We define the non-holomorphic
involution Fr,, of X by setting

J

Fry’ (Tl/l’ ) Tl/y) = ([’1/1 (’y]/])Tl/l’ ) LV] (’yl// )FV’} ) Ll/y (’YV/)TVY)' (10)
The involutions {Fr , }, ., acting on the cohomology of X all commute with each other and with

the Hecke operators (see for example [ 14, Equation S and Section 3]), but they are not morphisms of
plectic Hodge structures. Indeed, if we write Frg = [ [, 5 _, Fr, forany 8 € {0,1}", we find that

H;p(XB)C): @ Frtg( LQ)] (11)

o+f=1
that is, the base change to C of the strongly primitive cohomology is spanned by translates of holomor-

phic differential forms ([21] and [25, Theorem 1.3]). Nevertheless, for any fixed v € ¥, the operators
{Fr ) " u+1 are automorphisms of the v-th Hodge structure of weight one

Hz(Xp,v) := (Hy, (X5, 2),F'v) (12)
attached to the strongly primitive cohomology as in (6) since

F'YH,(X,,C) = 5@ Fr, (H).
, 3,=0

DEFINITION 5.3 For every v € ¥, we define the plectic Jacobian J (X5, ) as the Jacobian of
the Hodge structure H (X, /).

PROPOSITION S.4 Forevery v € ¥, the plectic Jacobian J(Xy, V) is an abelian variety.
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Proof. There is a decomposition of rational Hodge structures

H@ (XB: V) = @ H@ (XBJ V)X
P
indexed by characters y = H##V Xyt H#%V{:I:I} — {41} such that Fr , actson
Hg (X, v)X as multiplication by x ; ,(=1). Moreover,

dimg Hg (X, v)X =2 - dime H.

Let 'ﬂ'dg;;md denote the Q-algebra generated by the Hecke operators associated with primes
not dividing disc(B) - level(R) acting faithfully on Hf, (X5, @) via endomorphisms of
plectic Hodge structures. We claim that

o Hg(Xpv)Xisafree 'ﬂ'gmd-module of rank 2 and

. 'I]'%ml is isomorphic to a product [ | ¢ L¢ of totally real number fields.

Indeed, equation (11) and the compatibility between the Hecke action and the action of

the involutions {Fr,, }, show that Tg)()d is determined by its faithful action on the space H>2
of holomorphic differential forms. The Jacquet-Langlands correspondence produces a
Hecke-equivariant (for the good Hecke operators) isomorphism between HX? and the space
of Hilbert cuspforms of weight 2, level disc(B) - level(R), trivial character, which are new at
the primes dividing disc(B). Then, the claim follows from Miyake’s results ([20], Section 2).
Note that 'I]'gmCl is a product of totally real number fields because the relevant Hilbert

modular forms have trivial character. The proposition now follows from Corollary 4.8

because Hp (Xp, )X decomposes as a direct sum of effective rational Hodge structure of
weight 1 with real multiplication. O

S.2.1. Plectic Oda conjecture

Let E; be a modular elliptic curve corresponding to a quaternionic newform f of some level I' for
an indefinite quaternion algebra B/F. For every Archimedean place of F v € 3 where B/F is split, we
consider the base change E,, = E X, C, and we denote by c,, the involution of H'(E,, Q) induced
by action of complex conjugation on E, (C). Let T denote the Hecke Q-algebra generated by Hecke
operators for primes not dividing the discriminant of B/F acting faithfully on H (X5, Q) and denote
by Hg, (X5, Q)f the f-isotypic component of the strongly primitive cohomology. The following is a
refinement of a classical conjecture of Oda ([25], Conjecture A).

CoNJeCTURE S.S. ([Plectic Oda]) There is an isomorphism of rational r-plectic Hodge structures
H;p (XB) @)f = ® Hl (Ew @)
veX
intertwining the action of Fr,, with that of c,, for every v € X.

We note that Conjecture 5.5 together with the computation in Section 5.1 implies the existence of a
morphism of abelian varieties

Put J@(XB) v) — EV(C) ®z ® H! (EH;Z)) (13)
neX\{v}

which should be thought of as a generalization of the parameterization of elliptic curves by Jacobians of
Shimura curves. Moreover, it suggests the following conjecture which aims at elucidating the relation
between the various plectic Jacobians attached to X .
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CONJECTURE S.6. There exists an abelian variety ] ,(Xp) defined over F endowed with an

F-rational Hecke action and a Hecke equivariant morphism ¢ J(Xp) — B2 such that the
analytification of p ®p,,, C is canonically isomorphic to o, for every v € X..

6. PLECTICABEL-JACOBI MAPS

Recall that X; = I'\ Ky, is a compact QSV. The group I is assumed to be torsion-free, and it acts on
J(,, through its image 1/(I") < PGL,(R).

DEFINITION 6.1 Forany v € X we denote by J(,, C J(,, the subset of those points with trivial

stabilizer in I". We set F(5, := [ [, o, 7, and X}, := T\ F(5,,

REMARK 6.2 Let XIEM C Xj denote the subset of CM points, then XBCM CX;.

Let M be a I''module. The subset J(;, has been singled out because the higher homology groups of
the tensor product Div(F(}) ® ; M with diagonal I'-action vanish, that is,

H, (T, Div(¥;)®,M)=0  Vk>1. (14)
Indeed, by definition there is an isomorphism of I'-modules

Div(7(;) =~ P z[T],
xe\JFC;,

and the I'-module Z[I'] ® , M with diagonal I'-action is isomorphic to the induced I'-module
Ind! | (M).
{1}
DEFINITION 6.3 Let S C X be a subset with complement denoted by S°. We define
Z[7t3] = R) Div(4(;) @ Q) Div°(I¢;).

VES vese
where Div®(J(;,) denotes the group of divisors of degree zero.

PROPOSITION 6.4 There is a short exact sequence
0 ——Hy (I, Z) —=Ho(T, 2y [ 5]) —=z[x; ].

Proof. Note that the free group Z[#(5,] equals Zx, [#(5,| and that Z[X;] = H, (T, Z[#(5,]).
Then, to prove the proposition, it suffices to show that for any non-empty S C ¥ and any
ves

H(I,Z) ifS={v},

0 otherwise.

er (Ho (T, Zg, ) [965)) — Ho(T, Z4[7¢3)) ) = { (15)

To see that the claim holds, consider the short exact sequence of I'-modules

deg, ®1

00— Zg\ (1} (€3] Zs[3%] ®,es\ i DIV © @5 DIVIFL;,) — 0.
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If |S| > 1, then we are done thanks to the observation (14). If S = {v/} we are left to prove

that
HI(F, ®Div°(?€;)> ~ H (T, 2). (16)
wFV
For this, let S C ¥ be arbitrary, ;1 ¢ S, and consider the short exact sequence of
I'-modules
degu ®1

0— @, csu(y) DIVIFT) —=Div(I(;) © @, DivIF(}) Q®, s DivIFCs) —o.

Once more, observation (14) shows that taking homology we obtain the connecting

isomorphisms
H,., (r, 0% Divo(%,j)> ~H, (r, 0% Divo(ﬂ,",)) Vm> 1, (17)
vES vesu{u}
Thus, the isomorphism in (16) follows by repeatedly applying (17). O

Using the cup product in de Rham cohomology we make the following identification:
J@(XBJ V) = (Flyng (XB/ C)>V/Hr (XB; Z)J

and consider the homomorphism

vy v,

> Xy *u,
/ : HO(F’Z@ [‘7{;]]) —>J®(XBJ V), ®;:1(xu/ _yuj) = l/ / (_)‘| . (18)
Y Y

It will be convenient for the proof of the next lemma to compute the singular homology of X ; with
the chain complex (C{°(X5),0,) of smooth cubical chains on Xj [18]. An element ¢ € C°(Xj) is
a non-degenerate smooth function ¢ : [0,1]" — X and the differential 0,: C;°(X) — C.°,(Xp) is
given by the formula

8,(c) = Y (-D*[A4(c) - B()], (19)
k=1

where A (c)(xy,...,%, ;) = c(y, ... %_1,0,%,1, .-, %,_,) can be thought of as the k-th ‘front’ face of
the cubical n-chain c and B,.(c) (%, ..., %, ;) = (%}, ..., %1, L, X4, -+, %, ) as the k-th ‘back’ face.

THEOREM 6.5 We have

b
H.(T,z) C ker/ .

Proof. Integration over smooth cubical n-chains gives a morphism Y': C>°(Xp) —
H' (X3/C) V. Moreover, Stokes’ theorem implies that 9,,,;C™° (X) C ker T, and de
Rham’s theorem gives the following exact sequence:

0——H,(Xg,2)/tor—=C(Xp) /ker Y ——>C* (X5) /0, (ker Y).
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The homomorphism [ >, H, (T, Zy[#5,]) — Jo (X, v) naturally factors through
&: Hy(T,2y[7¢5]) — C°(Xp) [ ker Y.

Motivated by the description of the boundary map 0, given in (19), we define
¢ Hy(DZy[765]) — PH(T, 2, [75]), A (((LYA)L,.
j=1

Note that ker { = H (T', Z) by equation (15). Then, the claim follows because there exists
amorphism ww: Im(¢) — 9,(C(X5) / ker T') making the following diagram (with exact

rows) commute

Im(¢)

v l v
0—>H,(Xp,7)/tor —> C=(Xp) / ker T —2> 8, (C=(X )/ ker ).

0———H, (I, 2) ———Ho(I'Z,y [}3])

DEFINITION 6.6 Let Z_[X;] := Im(Z,[H 2] — Z[X}]) denote the group of plectic zero
cycles supported on X. For any v € X the v-th plectic Abel-Jacobi map is the
homomorphism

Alg: Z[Xp] — Jo(Xp,v)
obtained from (18) using Proposition 6.4 and Theorem 6.5.
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