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ABSTRACT

Looking for a geometric framework to study plectic Heegner points, we define a collection of abelian varieties – 
called plectic Jacobians—using the middle-degree cohomology of quaternionic Shimura varieties (QSVs). The 
construction is inspired by the definition of Griffiths’ intermediate Jacobians and rests on Nekovář–Scholl’s 
notion of plectic Hodge structures. Moreover, we construct exotic Abel–Jacobi maps sending certain zero 
cycles on QSVs to plectic Jacobians.
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1 . I N T R O D U CT I O N
For a long time number theorists have been looking for suitable generalizations of Heegner points 
to tackle the BSD conjecture for elliptic curves of rank greater than 1. Motivated by that problem, 
a conjectural construction of determinants of global points was recently proposed [10, 9] combin-
ing Darmon’s pioneering work [3] with the powerful insights of Nekovář–Scholl’s plectic conjectures 
[22]. These plectic Stark–Heegner (PSH) points are constructed using p-adic integration, and their 
peculiar appearance is motivated by the uniformization of quaternionic Shimura varieties (QSVs) by 
certain p-adic symmetric domains. To explain how PSH points should arise from global points, pre-
cise conjectures were formulated in [9, Conjectures 1.3 and 1.5]. In a nutshell, they claim that given 
an elliptic curve of algebraic rank r, a PSH point constructed using r different p-adic places is in the 
image of the top exterior power of the Mordell–Weil group via a p-adic determinant map. Notably, for 
elliptic curves of rank 1 those conjectures recover the expectation that classical Stark–Heegner points 
are images of global points under p-adic localization.

Those aforementioned conjectures were substantiated by numerical and theoretical evidence. On 
the computational side, in [10] they were verified (up to precision) for several elliptic curves of rank 2 
defined over ℚ(

√
13) and ℚ(

√
37). On the theoretical side, instances of the conjectures were proved 

in the setting of polyquadratic CM extensions [8], leveraging higher p-adic Gross–Zagier formulas for 
anticyclotomic p-adic L-functions ([9], Theorem A). Moreover, it is reasonable to expect that the work 
of Molina–Hernandez [16] will help in clarifying the connection between PSH points and generalized 
Kato classes [5].

As is the case for Darmon’s Stark–Heegner points, one cannot usually guarantee that PSH points 
arise from global points because of their inherently analytic construction. More than 20 years after 
the introduction of Stark–Heegner points, our understanding of their conjectural global properties 
remains quite unsatisfactory in general. There is a notable exception: for CM extensions Darmon’s 
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points recover classical Heegner points, whose global features have long been understood using Jaco-
bian varieties and the theory of complex multiplication. One of the appealing traits of PSH points is 
that they are already interesting and new for CM extensions. Thus, from now on, we will refer to PSH 
points for CM extensions as plectic Heegner points, and we will try to shed some light on their attributes 
using Nekovář–Scholl’s plectic Hodge theory.

1.1. Main results
Nekovář and Scholl observed [22, 23] that Hodge structures of Hilbert modular varieties carry more 
information than those of general Kähler manifolds. In particular, they showed the existence of a 
Künneth-like structure that reflects the canonical decomposition of the tangent bundle of Hilbert 
modular varieties.

Definition 1.1 Let n ≥ 1 be an integer. An n-plectic Hodge structure on a finite free 
ℤ-module H consists of a decomposition 

H ⊗ℤℂ = ⨁
𝛼,𝛽∈ℤn

H𝛼,𝛽 such that H𝛼,𝛽 = H𝛽,𝛼.

Remark 1.2 There is a natural procedure that produces a Hodge structure from the data of an 
n-plectic Hodge structure. Given 𝛼 = (𝛼j)

n
j=1 ∈ ℤn set |𝛼| = ∑n

j=1 𝛼j, and let H be an 
n-plectic Hodge structure. The classical Hodge structure arising from H is defined by setting 

Hp,q := ⨁
|𝛼|=p,|𝛽|=q

H𝛼,𝛽 ∀ p, q ∈ ℤ.

In this case we say that the n-plectic Hodge structure refines the associated Hodge structure.

Our first main theorem shows that plectic Hodge structures arise in the cohomology of compact 
rigidified Kähler manifolds, that is, compact complex manifolds endowed with certain foliations and 
compatible Kähler metrics (see Definitions 2.2 and 3.3 and Corollary 3.8).

Theorem A Let X be an n-dimensional compact rigidified Kähler manifold. The cohomology of X is 
endowed with a canonical n-plectic Hodge structure refining its classical Hodge structure.

We note here that the compatibility conditions between the foliation and the Kähler metric are singled 
out to ensure that the Laplacian operator associated with the Kähler metric respects the decomposition 
of harmonic differential forms induced by the foliation.

1.1.1. Plectic Jacobians and exotic Abel–Jacobi maps
Our work on PSH points was inspired by Nekovář and Scholl’s belief that CM points on higher dimen-
sional QSVs could be used to study the arithmetic of elliptic curves of higher rank. While previous 
articles leveraged p-adic techniques, this paper begins to develop an Archimedean framework to study 
plectic Heegner points following Oda’s trailblazing work on periods of Hilbert modular varieties ([24,
25]). The aim is to understand a form of geometric modularity where Jacobians of Shimura curves are 
replaced by plectic Jacobians of higher-dimensional QSVs. As the Jacobian of a curve C can be con-
structed from the weight 1 Hodge structure H1(C,ℤ), so plectic Jacobians of a QSV X are defined 
using the plectic Hodge structure appearing in the middle-degree cohomology group HdimX (X ,ℤ).

Definition 1.3 An n-plectic Hodge structure H is effective and has weight 1 = (1,.., 1) ∈ ℤn if 

H𝛼,𝛽 ≠ 0 ⟹ 𝛼,𝛽 ∈ ℕn & 𝛼 + 𝛽 = 1.
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An effective n-plectic Hodge structure of weight 1 ∈ ℤn can be thought of as a collection of n
effective Hodge structures of weight 1 on the same underlying module by setting 

F1j = F1j(H) := ⨁
𝛼j≥1

H𝛼,𝛽 for any j = 1,… , n.

It is then natural to make the following definition.

Definition 1.4 Let H be an effective n-plectic Hodge structure of weight 1 ∈ ℤn. For any 
j = 1,… , n the plectic Jacobian J⚭(H, j) associated with H is the complex torus defined by 

J⚭(H, j) := H\(H ⊗ℤℂ)/F1j .

Systems of Hecke eigenvalues of modular elliptic curves appear in the cohomology of QSVs only 
in middle degree, and the cuspidal part of those middle-degree cohomology groups can be shown 
to carry a canonical effective plectic Hodge structure of weight 1 (Lemma 5.1). Therefore, an r-
dimensional compact QSV X determines r plectic Jacobians {J⚭(X , j)}r

j=1 which are abelian varieties 
(Proposition 5.4) and conjecturally are closely related to modular elliptic curves (Conjectures 5.5 & 
5.6).

Remark 1.5 When the QSV X has odd dimension r, all middle-degree cohomology classes are 
cuspidal. Thus, the real torus 

Hr(X ,ℝ)/Hr(X ,ℤ)

can be endowed with several complex structures: those arising from our definitions and 
those considered by Weil ([29] and [17], Section 3) and Griffiths ([15], Section 3). 
However, while Weil’s and Griffiths’ definitions of intermediate Jacobians exclude even 
cohomological degrees, our definition applies unchanged to the middle-degree cohomology 
of even dimensional QSVs.

To add details to our discussion, let us consider a totally real number field F of narrow class num-
ber one, and a non-split quaternion algebra B/F with Σ := {𝜈1,… ,𝜈r} as its set of split Archimedean 
places. Recall that a QSV XB, associated with B/F and a choice of Eichler order, has a canonical 
model over the reflex field ℚ(∑r

j=1 𝜈j(x)|x ∈ F) ⊂ ℂ. The following conjecture aims at elucidating 
the relations between the plectic Jacobians of XB.

Conjecture 1.6. There is an abelian variety J⚭(XB) defined over F and canonical isomorphisms 

(J⚭(XB) ⊗F,𝜈j
ℂ)an ≅ J⚭(XB, j) ∀ j = 1,… , r.

Remark 1.7 Conjecture 1.6 is well-known when r = 1, that is, whenever XB is a Shimura curve, 
while it is wide open for all r ≥ 2.

Griffiths’ style definition of plectic Jacobians allows us to define an exotic Abel–Jacobi map with a 
subgroup of zero cycles which we now describe. We begin by recalling the complex uniformization of 
a QSV. Let us fix an isomorphism 𝜄j : B ⊗F,𝜈j

ℝ
∼
→ M2(ℝ) for every 𝜈j ∈ Σ, then, if the level of the 

Eichler order is large enough, there is a torsion-free arithmetic subgroup Γ ≤ B×/F× such that 

XB = Γ\ℋΣ

is a complex manifold where Γ acts on the product ℋΣ = ∏𝜈j∈Σℋ𝜈j
 of Poincaré’s upper-half planes 

via Möbius transformations. For technical reasons (see Equation (14)) our exotic Abel-Jacobi map is 
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only defined for zero cycles supported at ‘generic’ points: denoting by ℋ∘
𝜈j

⊆ ℋ𝜈j
 the subset of those 

points with trivial stabilizer in 𝜄j(Γ) ≤ PGL2(ℝ), we can define 

ℋ∘
Σ := ∏

𝜈j∈Σ
ℋ∘

𝜈j
and X∘

B := Γ\ℋ∘
Σ.

Note that this is not a serious restriction for arithmetic applications since the set X∘
B contains all 

CM points. The free group ℤ[ℋ∘
Σ] of the product ℋ∘

Σ is canonically isomorphic to ⊗r
j=1Div(ℋ∘

𝜈j
)

by mapping generators [(𝜏1,… ,𝜏r)] to elementary tensors ⊗r
j=1[𝜏j]. If we denote by Div0(ℋ∘

𝜈j
) the 

subgroup of degree-zero elements of Div(ℋ∘
𝜈j

), we can define plectic zero cycles supported on X∘
B by 

setting 

ℤ⚭[X∘
B] := Im( ⊗r

j=1 Div0(ℋ∘
𝜈j

) → ℤ[X∘
B]).

Following Darmon–Logan [4] we consider the homomorphism 

∫
r

: ⊗r
j=1 Div0(ℋ∘

𝜈j
) ⟶ Hr

dR(XB)∨, ⊗r
j=1([xj] − [yj]) ↦ ∫

x1

y1

⋯∫
xr

yr

(−)

mapping an elementary tensor to the linear functional computing a series of line integrals. We are now 
ready to state our second main theorem, a first step towards an Archimedean construction of plectic 
Heegner points.

Theorem B The homomorphism ∫r  induces a well-defined Abel–Jacobi map 

AJj
⚭ : ℤ⚭[X∘

B] ⟶ J⚭(XB, j) ∀ j = 1,… , r.

In future work, we plan to perform numerical experiments to understand the feasibility of enlarging 
the domain of our exotic Abel–Jacobi maps to contain canonically defined zero cycles supported on 
CM points.

2 . R I G I D I F I E D CO M P L E X M A N I F O L D S

Definition 2.1 Let U , V ⊆ ℂn be open subsets. We say that a holomorphic function 𝜙 : U → V
is rigid if there exist holomorphic functions {𝜙j}n

j=1 in one variable such that 

𝜙(u1,… , un) = (𝜙1(u1),… ,𝜙n(un)).

Let X be a Hausdorff topological space. An n-dimensional chart (U ,𝜙) in X consists of an open 
subset U ⊆ X  and an homeomorphism 𝜙 : U → D onto an open subset D ⊆ ℂn. We say that two 
charts (U ,𝜙), (V ,𝜓) are compatible if the transition function 

𝜙 ∘ 𝜓−1 : 𝜓(U ∩ V ) → 𝜙(U ∩ V )

and its inverse are both rigid. A covering of X consisting of pairwise compatible n-dimensional 
charts is called an n-dimensional rigidified atlas of X. Moreover, two such atlases 𝒜1, 𝒜2 are called 
equivalent if any two charts (U ,𝜙) ∈ 𝒜1 and (V ,𝜓) ∈ 𝒜2 are compatible. Finally, an equiva-
lence class of n-dimensional rigidified atlases on X is called an n-dimensional rigidified holomorphic 
structure on X. It contains a maximal atlas which is the union of the atlases in the equivalence
class.

Definition 2.2 An n-dimensional rigidified complex manifold consists of a Hausdorff space X
with a countable basis, equipped with an n-dimensional rigidified holomorphic structure.
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2.1 Examples
Any open subset Ω ⊆ ℂn has a natural structure of rigidified complex manifold given by the atlas 

𝒜 = {(U , idU ) | U open subset of Ω}.

The class of examples most relevant for our arithmetic applications consists of quotients Γ\Ω of an 
open subset Ω ⊆ ℂn by a discrete group Γ.

Lemma 2.3 Let Γ be a discrete group acting on a connected open subset Ω ⊆ ℂn. Suppose

• Γ acts smoothly, freely and properly on Ω,
• there exists a homomorphism Γ → GL2(ℂ)n, 𝛾 ↦ (𝛾1,… ,𝛾n), such that 

𝛾 ⋅ (x1,… , xn) = (𝛾1(x1),… ,𝛾n(xn)) ∀𝛾 ∈ Γ,

then Γ\Ω has a structure of rigidified complex manifold.

Proof. Let 𝜋 : Ω → Γ\Ω be the quotient map and 𝒜 an atlas in the canonical rigidified 
holomorphic structure of Ω. We define a rigidified atlas 𝒜Γ for Γ\Ω as the collection of all 
pairs (𝜋(U),𝜋−1

|U ) such that (U , idU ) belongs to 𝒜 and 𝜋|U : U → 𝜋(U) is injective. First, as 
Γ acts smoothly, freely and properly on Ω the quotient Γ\Ω is a complex manifold. Then, 
𝒜Γ is a rigidified atlas because its transition functions are given by the action of elements of 
the group, since Γ is discrete.

Remark 2.4 Lemma 2.3 shows that complex tori and QSVs are natural examples of rigidified 
complex manifolds. Moreover, we note here that the notion of rigidified complex manifolds 
could be generalized to include symplectic and unitary Shimura varieties over totally real 
number fields.

2.2. Foliations
In this section we explain why the tangent bundle of a rigidified complex manifold admits a natu-
ral decomposition. For readers interested in the relation between split tangent bundles and product 
structures of the universal covering space, we refer to the articles [1, 6].

Let X be an n-dimensional rigidified complex manifold. For any index j = 1,… , n we define the j-th 
sub-vector bundle T j

X  of the tangent bundle TX  of X as follows. Let 𝒰 = {Uk}k be an open covering of 
X, and set Uk,ℓ := Uk ∩ Uℓ. Then the rank 2 real vector bundle T j

X  is covered by open sets {Uk ×ℝ2}k
and the transition morphism between 

Uk,ℓ ×ℝ2 ⊆ Uk ×ℝ2 and Uk,ℓ ×ℝ2 ⊆ Uℓ ×ℝ2

is given by (u, v) ↦ (u, d𝜙j
ik(u)(v)), where 𝜙k,ℓ = (𝜙1

k,ℓ,… ,𝜙n
k,ℓ) is the rigid transition map between 

𝜙k(Uk,ℓ) ⊆ ℂn and 𝜙ℓ(Uk,ℓ) ⊆ ℂn and d𝜙j
k,ℓ(u) : ℝ2 → ℝ2 denotes the Jacobian matrix of 𝜙j

k,ℓ at 
point u. We note that there is a direct sum decomposition of the tangent bundle 

TX =
n

⨁
j=1

T j
X .

Since X is a complex manifold, each vector bundle T j
X  is equipped with an almost complex structure 

I j. Therefore, there is a decomposition of the extension of scalars
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T j
X ⊗ℝℂ = T

1j,0j

X ⊕ T
0j,1j

X ,

where T
1j,0j

X  (resp. T
0j,1j

X ) is the sub-bundle of T j
X ⊗ℝℂ on which the involution I j acts with eigenvalue 

i (resp. −i).

Remark 2.5 Let (z1,… , zn) be local complex coordinates on an open subset U ⊆ X
trivializing T j

X , and denote by 𝒞 ∞(U) the ring of smooth ℂ-valued functions on U. If we 
write zj = xj + iyj, then we can explicitly describe smooth sections as 

T j
X ⊗ℝℂ(U) = 𝒞 ∞(U) ⋅ 𝜕

𝜕xj
⊕ 𝒞 ∞(U) ⋅ 𝜕

𝜕yj
.

Moreover, the modules of smooth sections of T
1j,0j

X  and T
0j,1j

X  over U are free of rank one 
over 𝒞 ∞(U) with respective basis elements 

𝜕
𝜕zj

:= 1
2

( 𝜕
𝜕xj

− i 𝜕
𝜕yj

) and 𝜕
𝜕zj

:= 1
2

( 𝜕
𝜕xj

+ i 𝜕
𝜕yj

) .

2.2.1. Refined types of differential forms
The classical Hodge decomposition of differential form on complex manifolds uses the factorization 
of the exterior differential dX  into a holomorphic and an anti-holomorphic component dX = 𝜕X + 𝜕X . 
The decomposition of the tangent bundle of rigidified complex manifolds further refines the types of 
differential forms and a fortiori the factorization of the exterior differential.

Definition 2.6 Let X be an n-dimensional rigidified complex manifold. For j ∈ {1,… , n} set 

𝒜
1j,0j

X := Homℂ(T
1j,0j

X ,ℂ) and 𝒜
0j,1j

X := Homℂ(T
0j,1j

X ,ℂ).

Then, for an ordered pair (𝛼,𝛽) of elements in {0, 1}n, we define the vector bundle of 
ℂ-valued smooth differential forms of type (𝛼,𝛽) by 

𝒜𝛼,𝛽
X := ⨂

𝛼j=1
𝒜

1j,0j

X ⊗ ⨂
𝛽j=1

𝒜
0j,1j

X . (1)

Remark 2.7 Exterior powers of smooth differential forms 𝒜X := Homℂ(TX ,ℂ) admit direct 
sum decomposition of the form 

∧k𝒜X = ⨁
|𝛼+𝛽|=k

𝒜𝛼,𝛽
X .

Let j ∈ {1,… , n} and 𝛼,𝛽 ∈ {0, 1}n. If 𝛼j = 0 there is a differential operator 𝜉j : 𝒜𝛼,𝛽
X → 𝒜

𝛼+1j,𝛽
X

defined by the diagram

𝒜

𝒜𝒜

𝒜

X

X
X

X

X
𝛼

𝛼 𝛼

𝛼𝛽

𝛽 𝛽

𝛽, ,1+

1+

jj
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If we simply set 𝜉j : 𝒜𝛼,𝛽
X → {0} when 𝛼j = 1, we can write 𝜕X = ∑n

j=1 𝜉j. On a local chart with 

coordinates (z1,… , zn), any differential form 𝜔 ∈ 𝒜𝛼,𝛽
X  can be written as 

𝜔 = f ⋅dz𝛼 ∧dz𝛽, where dz𝛼 = ∧{j: 𝛼j=1}dzj, dz𝛽 = ∧{j: 𝛽j=1}dzj,

and the differential operator 𝜉j is given by the formula 

𝜉j(𝜔) = 𝜕
𝜕zj

f ⋅dzj ∧dz𝛼 ∧dz𝛽. (3)

3 . R E F I N E D H O D G E D ECO M P O S I T I O N
To promote the refined decomposition of differential forms into a refinement of the Hodge decompo-
sition of de Rham cohomology, it is necessary to understand when the Laplacian operator associated 
with a Kähler metric respects the refined types of differential forms. The next definition singles out a 
sufficient condition.

Definition 3.1 We say that a hermitian metric ds2 on an n-dimensional rigidified complex 
manifold X is distinctive Kähler if in a neighborhood of every point x ∈ X  there are a 
holomorphic coordinate system (z1,… , zn) and a unitary coframe 𝜑1,… ,𝜑n for the metric, 
such that 

𝜑j = fj(zj) ⋅dzj & 𝜕
𝜕zj

fj(x) = 0 ∀ j = 1,… , n.

Therefore, 𝜑j is a differential form of type (1j, 0) which satisfies 𝜕
𝜕zk

fj ≡ 0 ≡ 𝜕
𝜕zk

fj ∀ k ≠ j.

Remark 3.2 A distinctive Kähler metric is also Kähler. Indeed, one of the equivalent 
conditions for a metric on an n-dimensional complex manifold to be Kähler is the existence, 
for any x ∈ X , of a unitary coframe 𝜑1,… ,𝜑n in a neighborhood of x such that dX𝜑j(x) = 0
for every j = 1,… , n.

Definition 3.3 A rigidified Kähler manifold is a rigidified complex manifold admitting a 
distinctive Kähler metric.

We now show that rigidified Kähler manifolds exist in nature. For every j = 1,… , n consider a con-
nected open subset Ωj ⊆ ℂ admitting a Kähler metric ds2

j . Write Ω = ∏n
j=1 Ωj and suppose a discrete 

group Γ acts on it satisfying the assumptions of Lemma 2.3.

Lemma 3.4 If the Γ-action preserves the metric ds2 = ∑jds2
j , then Γ\Ω has a natural structure of 

rigidified Kähler manifold.

Proof. Lemma 2.3 shows that Γ\Ω has a structure of rigidified complex manifold. We just have 
to prove that the metric ds2 = ∑jds2

j  induces a distinctive Kähler metric on the quotient. 
For any point x ∈ Γ\Ω we choose a lift ̃x = (x1,… , xn) ∈ Ω and open neighborhoods 
Uj ⊆ Ωj of xj such that the projection map 𝜋 : Ω → Γ\Ω is injective when restricted to 
U = ∏j Uj. As each (Ωj,ds2

j ) is a Kähler manifold, we can suppose that there is a 
holomorphic coordinate zj on U j and a unitary coframe 𝜑j = fj(zj) ⋅dzj for the metric ds2

j
satisfying d𝜑j(xj) = 0. Then, the collection of all the pull-backs of the 𝜑j’s to the product U
gives the sought-after unitary coframe.

Remark 3.5 Lemma 3.4 implies that complex tori and QSVs admit natural structures of 
rigidified Kähler manifolds.
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3.1. Refined Hodge identities
Following [11, Ch. 0, Section 6], we recall the definitions of formal adjoint differential operators and 
apply it to the special case of rigidified Kähler manifolds. For a connected, compact, n-dimensional 
rigidified Kähler manifold X, we fix a distinctive Kähler metric ds2 with associated (1, 1)-form 𝜔 locally 
given in a unitary coframe by 

𝜔 = i
2

n

∑
j=1

𝜑j ∧ 𝜑j.

The distinctive Kähler metric induces a Hermitian metric on the space of differential forms which 
can be used in combination with the volume form 𝜔n to define the inner product 

⟨𝜓,𝜂⟩ := ∫
X

(𝜓(x),𝜂(x))𝜔n

n!
∀ 𝜓,𝜂 ∈ Ap,q(X).

Using Hodge’s star operator ([11], pp. 82 and 101–102), we can then define the formal adjoint 
differential operator 𝜉⋆

j : Ap,q(X) → Ap−1,q(X) by setting 

𝜉⋆
j = − ⋆ 𝜉j⋆,

and check that it satisfies 

⟨𝜉⋆
j 𝜓, 𝜂⟩ = ⟨𝜓, 𝜉j𝜂⟩ ∀ 𝜂 ∈ Ap−1,q(X)

by adapting slightly the computation beginning at the end of [11, p. 82].

Proposition 3.6 If X is a rigidified Kähler manifold, then 

𝜉j ⋅ 𝜉⋆
k + 𝜉⋆

k ⋅ 𝜉j = 0 ∀ j ≠ k.

Proof. We adapt the proof of the classical Hodge identities ([11], p. 111) and begin by 
verifying the claim for ℂn with the Euclidean metric. The idea is to write the differential 
operators 𝜉js as a composition of simpler operators. For each index j = 1,… , n we consider 

the operator ej : Aa,b
c (ℂn) → A

a+1j,b
c (ℂn) on compactly supported forms defined by 

ej(𝜓) = dzj ∧ 𝜓.

Let e⋆
j  denote the formal adjoint of ej, and note that the operators ej, e⋆

j  are 
𝒞 ∞(ℂn)-linear. By a direct computation one verifies that 

e⋆
j ⋅ ek + ek ⋅ e⋆

j = 0 ∀ j ≠ k.

For j = 1,… , n we also consider the operator 𝜕j on Aa,b
c (ℂn) defined by 

𝜕j(f ⋅dza ∧dzb) = 𝜕
𝜕zj

f ⋅dza ∧dzb.

The operators 𝜕j’s commute with each other, with all ek, e⋆
k s, and satisfy 𝜕⋆

j = −𝜕j, that is, 

𝜕⋆
j (f ⋅dza ∧dzb) = − 𝜕

𝜕zj
f ⋅dza ∧dzb.
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We can then write 
𝜉j = 𝜕j ⋅ ej, 𝜉⋆

j = −𝜕j ⋅ e⋆
j .

For j ≠ k, the straightforward computation 

𝜉j ⋅ 𝜉⋆
k = 𝜕j ⋅ ej ⋅ (−𝜕k ⋅ e⋆

k )

= 𝜕k ⋅ 𝜕j ⋅ e⋆
k ⋅ ej

= −𝜉⋆
k ⋅ 𝜉j

proves the proposition for ℂn. We claim that the computations with the Euclidean metric 
suffice to deduce the result for any rigidified Kähler manifold X. Indeed, recall that by 
assumption, in a neighborhood of any point x ∈ X , we can find a holomorphic coordinate 
system (z1,… , zn) and a unitary coframe {𝜑j = fj(zj) ⋅dzj}n

j=1 for the metric, such that 

𝜕
𝜕zk

fj ≡ 0 ≡ 𝜕
𝜕zk

fj & 𝜕
𝜕zj

fj(x) = 0 ∀ j = 1,… , n, ∀ k ≠ j.

In general, the operator 𝜉j equals 𝜕j ⋅ ej up to terms that only involve the first-order 
derivative of the function f j. Then, as the operators ej, e⋆

j s are linear with respect to the 
algebra of 𝒞 ∞-functions, we deduce that 𝜉j ⋅ 𝜉⋆

k + 𝜉⋆
k ⋅ 𝜉j for k ≠ j coincides at x ∈ X  with the 

zero operator up to terms that involve first derivatives, products of first derivatives and mixed 
second derivatives of the functions f j and f k. The terms containing the first-order derivatives 
or their products vanish at x ∈ X  because of the usual Kähler condition, while the terms 
containing the mixed partial derivatives vanish identically because each function f j depends 
on a single holomorphic coordinate.

Recall that given an operator P on differential forms, the associated Laplacian is the degree zero 
operator given by the formula ΔP = P ⋅ P⋆ + P⋆ ⋅ P. For a Kähler manifold X we set Δd = ΔdX

.

Corollary 3.7 If X is an n-dimensional rigidified Kähler manifold, then 

Δd = 1
2

n

∑
j=1

Δ𝜉j
.

In particular, the Laplacian operator Δd respects differential forms of refined types.

Proof. Since X is a Kähler manifold we know that 

Δd = 2Δ𝜕.

The claim then follows from a direct computation using Proposition 3.6: 

Δ𝜕 = 𝜕 ⋅ 𝜕⋆ + 𝜕⋆ ⋅ 𝜕

= (∑
j

𝜉j) ⋅ (∑
k

𝜉⋆
k ) + (∑

k
𝜉⋆

k ) ⋅ (∑
j

𝜉j)

= ∑
j,k

𝜉j ⋅ 𝜉⋆
k + ∑

j,k
𝜉⋆

k ⋅ 𝜉j

= ∑
j

(𝜉j ⋅ 𝜉⋆
j + 𝜉⋆

j ⋅ 𝜉j) + ∑
j≠k

(𝜉j ⋅ 𝜉⋆
k + 𝜉⋆

k ⋅ 𝜉j)

= ∑
j

Δ𝜉j
.
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We denote by ℋ𝛼,𝛽(X) the space of harmonic differential forms of refined type (𝛼,𝛽), that is, 

ℋ𝛼,𝛽(X) := {𝜓 ∈ A𝛼,𝛽(X) ∣ Δd𝜓 = 0}.

Note that ℋ𝛼,𝛽(X) = ℋ𝛽,𝛼(X) since the Laplacian operator Δd is real.

Corollary 3.8 The de Rham cohomology of any compact rigidified Kähler manifold X
admits a canonical direct sum decomposition 

Hk
dR(X/ℂ) = ⨁

|𝛼+𝛽|=k
ℋ𝛼,𝛽(X), 𝛼,𝛽 ∈ {0, 1}dimX

in terms of harmonic differential forms of refined types.

Proof. The usual Hodge decomposition describes the de Rham cohomology of Kähler 
manifolds in terms of harmonic differential forms. As the Laplacian operator Δd respects 
differential forms of refined types when X is rigidified Kähler (Corollary 3.7), the claim 
follows.

Remark 3.9 When X is a compact QSV, Corollary 3.8 can also be deduced from 
Matsushima–Shimura [21] or Nekovář–Scholl [22, Section 2]. The case of non-compact 
Hilbert modular varieties was studied by Davidescu–Scholl in [7].

Lemma 3.10 The refined Hodge decomposition does not depend on the choice of a distinctive Kähler 
metric, that is, it only depends on the rigidified complex structure.

Proof. Voisin’s proof ([28], Proposition 6.11) of the independence of the Hodge 
decomposition from the choice of Kähler metric can be easily adapted to our setting. We aim 
to show that the subspace of de Rham cohomology classes which are representable by a 
closed form of refined type (𝛼,𝛽) coincides with ℋ𝛼,𝛽(X). Let 𝜓 be a closed form of refined 
type (𝛼,𝛽). We can write in a unique way 𝜓 = 𝜂 + Δd𝜁 with 𝜂 harmonic. Since Δd respects 
refined types (Proposition 3.7), we can further suppose that both 𝜂 and 𝜁 are of refined type 
(𝛼,𝛽). As ker(Δd) ⊆ ker(d), we see that d𝜂 = 0 and compute that Δd𝜁 is closed: 

d ∘ Δd𝜁 = d𝜂 +d ∘ Δd𝜁 = d𝜓 = 0.

Since d2 = 0, we further deduce that d⋆d𝜁 ∈ ker(d). As the intersection 
ker(d) ∩ Im(d⋆) is trivial, we obtain d⋆d𝜁 = 0. Hence, 𝜓 = 𝜂 +dd⋆𝜁, that is, 𝜓 and 𝜂 are in 
the same de Rham class.

In other words, we have shown that the cohomology of a compact rigidified Kähler manifold is 
endowed with a canonical plectic Hodge structure refining its classical Hodge structure.

3.2. Functoriality of plectic Hodge structures

Definition 3.11 Let X , Y  be n-dimensional rigidified complex manifolds. A morphism from X
to Y  is a function 𝜑 : X → Y  such that for every point x ∈ X  there is a chart (U ,𝜙) on X
with x ∈ U  and a chart (V ,𝜓) on Y  with 𝜑(x) ∈ V  such that 𝜑(U) ⊆ V  and the 
composition 𝜓 ∘ 𝜑 ∘ 𝜙−1 is a rigid holomorphic function.

Remark 3.12 In the rest of this section we will commit a slight abuse of notation and denote 
the maximal torsion-free quotients of the cohomology groups Hk(X ,ℤ) by the same 
symbols.
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What follows is a simple adaptation of [28, Section 7.3.2]. Let X , Y  be n-dimensional compact 
rigidified Kähler manifolds and 𝜑 : X → Y  a morphism of rigidified complex manifolds. Using the de 
Rham cohomology description of pullbacks, it is clear that 𝜑* : Hk(Y ,ℤ) → Hk(X ,ℤ) is a morphism 
of n-plectic Hodge structures of degree 0.

Lemma 3.13 For every k ≥ 0 the pushforward 𝜑* : Hk(X ,ℤ) → Hk(Y ,ℤ) is a morphism of 
n-plectic Hodge structures of degree 0.

Proof. Recall that Poincaré duality ⟨ , ⟩X : Hk(X ,ℤ) ×H2n−k(X ,ℤ) → ℤ gives an 
isomorphism Hk(X ,ℤ) ≅ H2n−k(X ,ℤ)∨ between the maximal torsion-free quotients of the 
cohomology groups which is used to characterize the pushforward 𝜑* map: 

⟨𝜑*𝜅,𝜂⟩Y = ⟨𝜅,𝜑*𝜂⟩X ∀ 𝜅 ∈ Hk(X ,ℤ), 𝜂 ∈ H2n−k(Y ,ℤ).

Suppose now that 𝜅 ∈ ℋ𝛼,𝛽(X), then to prove the lemma we need to show that 
𝜑*𝜅 ∈ ℋ𝛼,𝛽(Y ). This is a direct consequence of equality (4), and the fact that the pullback 
map 𝜑* is a morphism of plectic Hodge structures of weight 0.

For 𝛼 ∈ {0, 1}n denote by 𝛼c ∈ {0, 1}n the unique element such that 𝛼 + 𝛼c = 1. We 
claim that for any (𝛼,𝛽) satisfying |𝛼 + 𝛽| = k we have 

ℋ𝛼,𝛽 = ( ⨁
(𝛾,𝛿)≠(𝛼c,𝛽c)

ℋ𝛾,𝛿)
⟂

, (4)

where the pairs (𝛾,𝛿) also satisfy |𝛾 + 𝛿| = 2n − k and the orthogonality is taken with respect 
to Poincaré pairing. To prove the claim we note that ℋ𝛼,𝛽 is contained on the right-hand 
side (RHS), and the dimensions of the two spaces coincide 

dimRHS = dimℋ𝛼c,𝛽c
= dimℋ𝛼,𝛽. (5)

The first equality of (5) follows from the non-degeneracy of the Poincaré pairing, while 
the second arises from the isomorphism ⋆ : ℋ𝛼,𝛽 ≅ ℋ𝛼c,𝛽c

 given by the Hodge star 
operator induced by the distinguished Kähler metric.

4 . A LG E BR A I C I T Y O F CO M P L E X TO R I W I T H R E A L 
M U LT I P L I C AT I O N

While the content of this section is well-known to experts, we decided to include it for the convenience 
of the reader. Recall that for any complex torus T = V /Λ there is an injective ring homomorphism 

End(T) ↪ Endℤ(Λ).

In particular, the ring End(T) is torsion-free and finitely generated as a ℤ-module.

Definition 4.1 A complex torus T has real multiplication if there exists a totally real field L
with [L : ℚ] = dimT  and a unital ring homomorphism 𝜃 : L → End(T)ℚ. We say that T
has real multiplication by an order 𝒪 if T has real multiplication and 𝒪 := 𝜃−1(End(T)).

Lemma 4.2 Any complex torus T with real multiplication is isogenous to a complex torus T′ with 
real multiplication by the ring of integers of a totally real number field.

Proof. Let T = V /Λ be a complex torus with real multiplication given by 𝜃 : L → End(T)ℚ. 
As 𝒪 := 𝜃−1(End(T)) is an order in L, it has finite index in the ring of integers 𝒪L. Write 
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n = [𝒪L : 𝒪] and consider 

Λ′ := ⋃
x∈𝒪L/𝒪

xΛ.

We have Λ ⊆ Λ′ ⊆ 1
n
Λ, hence Λ′ is a lattice in V  commensurable with Λ. Moreover, 

T′ := V /Λ′ is a complex torus with real multiplication by 𝒪L, isogenous to T.

Proposition 4.3 ([19], Theorem 7.2) Let R be a Dedekind ring. For a finitely generated 
R-module M the following are equivalent:

• M is R-projective,
• M is R-flat,
• M is R-torsion-free.

Moreover, any finitely generated and torsion-free R-module M is isomorphic to Rn−1 ⊕𝔄 for some 
fractional ideal 𝔄 of R and n = rkRM.

Corollary 4.4 Let T = V /Λ be a complex torus with real multiplication by 𝒪L, the ring of 
integers of a totally real number field. Then, Λ is 𝒪L-projective of rank two.

Proof. By considering the inclusion End(T) ↪ Endℤ(Λ) ≅ MrkΛ(ℤ), we see that the 
non-zero elements of 𝒪L act on Λ via elements of MrkΛ(ℤ) ∩GLrkΛ(ℚ). Hence, Λ is 
𝒪L-torsion-free. Now, [12, Corollary 2.6] tells us that V = Λ ⊗ℤℝ is a free 
𝒪L ⊗ℤℂ-module of rank one. Therefore, we compute that 

rk𝒪L
Λ = rk𝒪L⊗ℤℝ V = 2 ⋅ rk𝒪L⊗ℤℂ V = 2.

Proposition 4.3 then finishes the proof.

The following result can also be found in [27, Ch. IX, Lemma 1.4].

Theorem 4.5 Every complex torus T with real multiplication is an abelian variety.

Proof. Up to isogeny ([2], Ch. 2, Proposition 1.1), we can assume that T = V /Λ has real 
multiplication by a maximal order 𝒪L (Lemma 4.2), then Λ ≅ 𝒪L ⊕𝔄 for some fractional 
ideal 𝔄 (Corollary 4.4 & Proposition 4.3). Set Σ = Homℚ(L,ℂ). As V  is a free 
𝒪L ⊗ℤℂ-module of rank one, it admits a decomposition into one-dimensional ℂ-subspaces 

V = ⨁
𝜎∈Σ

V 𝜎,

such that an element x ∈ 𝒪L acts on V 𝜎 as multiplication by 𝜎(x). From a choice of 
isomorphism 𝜙 : Λ

∼
→ 𝒪L ⊕𝔄 of 𝒪L-modules, we obtain an ℝ-linear isomorphism 

(𝜙 ⊗ 1)𝜎 : V 𝜎 ∼
→ ℝ2 for every 𝜎 ∈ Σ by extending scalars to ℝ. Moreover, transporting the 

complex structure from V 𝜎 to ℝ2, we can promote them to ℂ-linear identifications 
(𝜙 ⊗ 1)𝜎 : V 𝜎 ∼

→ ℂ. Thus, there are 𝜆,𝜇 ∈ (ℂ×)Σ such that 𝜆𝜎,𝜇𝜎 ∈ ℂ× are ℝ-linearly 
independent ∀𝜎 ∈ Σ and 

𝜇−1(𝜙 ⊗ 1)Λ = 𝒪L ⋅ (𝜆𝜇−1) +𝔄 ⋅ 1.

As L is dense in L ⊗ℚℝ, the composition L× → (L ⊗ℚℝ)× → {±1}Σ is surjective, and 
we can choose x ∈ L such that every component of x(𝜆𝜇−1) ∈ ℂΣ has positive imaginary 
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part. Hence, we have shown the existence of z ∈ ℋΣ, a fractional ideal 𝔅 of 𝒪L and an 
isomorphism of complex tori 

T ≅ ℂΣ/Λz where Λz = 𝒪L ⋅ z +𝔅.

We deduce that T is an abelian variety using [12, Corollary 2.10].

Remark 4.6 Every compact complex manifold has at most one algebraic structure because the 
analytification functor is fully faithful ([13], Corollaire 4.5).

Definition 4.7 A rational Hodge structure Hℚ of weight 1 has real multiplication if there is a 
totally real field L with 2[L : ℚ] = dimℚHℚ and a unital ring homomorphism 
𝜃 : L → End(Hℚ).

Corollary 4.8 The isogeny class of complex tori associated with an effective rational Hodge 
structure of weight 1 with real multiplication consists of abelian varieties.

Proof. Let Hℚ be an effective rational Hodge structure of weight 1 with real multiplication. 
Directly from the definitions, the Jacobian associated with any lattice Λ ⊂ Hℚ is a complex 
torus with real multiplication. The claim then follows from Theorem 4.5.

5 . A R C H I M E D E A N P L ECT I C JACO BI A N S
Recall that an n-plectic Hodge structure H is called effective of weight 1 ∈ ℤn if 

H𝛼,𝛽 ≠ 0 ⟹ 𝛼,𝛽 ∈ ℕn & 𝛼 + 𝛽 = 1.

We can think of an n-plectic Hodge structure of weight 1 ∈ ℤn as a collection of n classical Hodge 
structures of weight 1 on the same underlying module by setting for any j = 1,… , n

F1j = F1j(H) := ⨁
𝛼j≥1

H𝛼,𝛽. (6)

Then, for any j = 1,… , n the plectic Jacobian J⚭(H, j) associated with an effective n-plectic Hodge 
structure H of weight 1 ∈ ℤn is the complex torus defined by 

J⚭(H, j) := H\(H ⊗ℤℂ)/F1j .

Note that if Hj = (H, F1j) denotes the j-th Hodge structure of weight 1, we deduce that points of 
plectic Jacobians parametrize extensions of mixed Hodge structures ([26], Example 3.34) 

J⚭(H, j) = ExtMHS(ℤ(−1), Hj).

5.1. Example: products of complex tori
Recall that the Jacobian of the weight one Hodge structure appearing in the first cohomology group 
H1(T,ℤ) of a complex torus T recovers the dual torus T∨ ([28], Section 7.2). If we consider a product 
X = T1 × ⋯ × Tn of complex tori, then the tensor product 

Hn(X ,ℤ)1 :=
n

⨂
j=1

H1(Tj,ℤ)

is an effective n-plectic Hodge structure of weight 1 ∈ ℤn satisfying 

F1jHn(X ,ℂ)1 = F1H1(Tj,ℂ) ⊗ℤ ⨂
k≠j

H1(Tk,ℤ),

and whose plectic Jacobians can be explicitly described. For any index j = 1,… , n let us define the 
plectic Jacobian J⚭(X , j) as the plectic Jacobian associated with the plectic Hodge structure Hn(X ,ℤ)1. 
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A direct calculation shows that 

J⚭(X , j) ≅ T∨
j ⊗ℤ ⨂

k≠j
H1(Tk,ℤ).

In particular, if T j is an abelian variety defined over a number field, then J⚭(X , j) is also an abelian 
variety with a distinguished model over the same number field.

5.2. Compact QSVs
Let F be a totally real number field of degree d = [F : ℚ] and, to simplify the exposition, of narrow 
class number one. Let B/F be a non-split quaternion F-algebra, denote by Σ = {𝜈1,… ,𝜈r} the set of 
Archimedean places of F at which B/F splits, and fix isomorphisms 

𝜄𝜈 : B ⊗F,𝜈 ℝ ≅ M2(ℝ) for 𝜈 ∈ Σ.

Given an Eichler order R in B, we denote by Γ̃ the subgroup of R× consisting of those elements with 
totally positive reduced norm. The group Γ̃ maps in ∏𝜈∈Σ(B ⊗F,𝜈 ℝ)× ≅ GL2(ℝ)Σ, and hence it 
acts on r-copies of the Poincaré upper half plane ℋΣ = ℋ𝜈1

× ⋯ ×ℋ𝜈r
 via Möbius transformations. 

Let Z denote the center of GL2(ℝ)Σ. We suppose that Γ := Γ̃/(Γ̃ ∩ Z) is torsion-free so that the 
quotient XB := Γ\ℋΣ is a compact complex manifold. The holomorphic tangent bundle 𝒯 of XB has 
a canonical decomposition into line bundles 

𝒯 = ⨁
𝜈∈Σ

ℒ𝜈,

where ℒ𝜈 is the holomorphic line bundle associated with the 𝜈-th automorphy factor, and the image 
of first Chern class c1(ℒ𝜈) ∈ H2(XB,ℤ) in H2

dR(XB/ℂ) can be represented by 

1
4𝜋i

dz𝜈 ∧dz𝜈

y2
𝜈

. (7)

Furthermore, for every k ≥ 0, the maximal torsion-free quotient of Hk(XB,ℤ) carries a canonical r-
plectic Hodge structure (Corollary 3.8) which is preserved by Hecke operators (Section 3.2). Denote 
by L𝜈 : Hr(XB,ℤ) → Hr+2(XB,ℤ) the morphism of r-plectic Hodge structures of bidegree (1𝜈, 1𝜈)
given by the cup product with the class c1(ℒ𝜈), and define the strongly primitive component 

Hr
sp(XB,ℤ) (8)

of Hr(XB,ℤ) as the maximal torsion-free quotient of the kernel of ⊕𝜈∈ΣL𝜈.

Lemma 5.1 The strongly primitive cohomology Hr
sp(XB,ℤ) carries a canonical effective r-plectic 

Hodge structure of weight 1 ∈ ℤr  and is preserved by the action of Hecke operators.

Proof. Since the L𝜈s are morphisms of plectic Hodge structures of bidegree (1𝜈, 1𝜈) the 
strongly primitive cohomology is endowed with an r-plectic Hodge structure. We can 
determine its weight by noticing that the explicit formula given in (7) allows us to compute 

ker(L𝜈 : Hr(XB,ℂ) → Hr+2(XB,ℂ)) = ⨁
𝛼𝜈=1 or 𝛽𝜈=1

H𝛼,𝛽.

To prove that Hecke operators preserve the strongly primitive cohomology, note that any 
prime ideal 𝔭 of 𝒪F  admits a totally positive generator 𝜛𝔭 because F has narrow class 
number one. It is well-known that the maps 𝜋,𝜋𝔭 describing the Hecke correspondence
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T𝔭 𝔭
𝔭XB XB XB

𝜋𝜋

are, respectively, uniformized by the identity ℋΣ → ℋΣ, (z𝜈)𝜈 ↦ (z𝜈)𝜈 and the morphism 

ℋΣ → ℋΣ, (z𝜈)𝜈 ↦ (𝜈(𝜛𝔭) ⋅ z𝜈)𝜈.

Thus, from equation (7) we deduce that 

(𝜋)*c1(ℒ𝜈) = (𝜋𝔭)*c1(ℒ𝜈) ∀ 𝜈 ∈ Σ. (9)

As the action of T𝔭 is given by the formula T𝔭 = (𝜋𝔭)* ∘ (𝜋)*, equation (9) implies that 

T𝔭(𝜔) ∪ c1(ℒ𝜈) = T𝔭(𝜔 ∪ c1(ℒ𝜈)) ∀ 𝜔 ∈ Hr(XB,ℤ), ∀ 𝜈 ∈ Σ,

that is, that the Hecke operator T𝔭 commutes with the morphisms L𝜈s.

Remark 5.2 Matsushima and Shimura described the cohomology of XB in terms of 
automorphic forms in [21]. An inspection of their result shows that the strongly primitive 
cohomology is the part of the cohomology of XB which is controlled by cuspidal 
automorphic representations.

For every 𝜈 ∈ Σ let 𝛾𝜈 ∈ R× be an element such that det(𝜄𝜈(𝛾𝜈)) < 0, and det(𝜄𝜇(𝛾𝜈)) > 0 if 𝜇 ≠
𝜈. Such an element exists because F has narrow class number one. We define the non-holomorphic 
involution Fr𝜈j

 of XB by setting 

Fr𝜈j
(𝜏𝜈1

,… ,𝜏𝜈r
) = (𝜄𝜈1

(𝛾𝜈j
)𝜏𝜈1

,… , 𝜄𝜈j
(𝛾𝜈j

)𝜏𝜈j
,… , 𝜄𝜈r

(𝛾𝜈j
)𝜏𝜈r

). (10)

The involutions {Fr𝜈}𝜈∈Σ acting on the cohomology of XB all commute with each other and with 
the Hecke operators (see for example [14, Equation 5 and Section 3]), but they are not morphisms of 
plectic Hodge structures. Indeed, if we write Fr𝛽 = ∏𝜈, 𝛽𝜈=1Fr𝜈 for any 𝛽 ∈ {0, 1}r , we find that 

Hr
sp(XB,ℂ) = ⨁

𝛼+𝛽=1
Fr*

𝛽(H1,0), (11)

that is, the base change to ℂ of the strongly primitive cohomology is spanned by translates of holomor-
phic differential forms ([21] and [25, Theorem 1.3]). Nevertheless, for any fixed 𝜈 ∈ Σ, the operators 
{Fr𝜇}𝜇≠𝜈 are automorphisms of the 𝜈-th Hodge structure of weight one 

Hℤ(XB,𝜈) := (Hr
sp(XB,ℤ), F1𝜈) (12)

attached to the strongly primitive cohomology as in (6) since 

F1𝜈Hr
sp(XB,ℂ) = ⨁

𝛽, 𝛽𝜈=0
Fr*

𝛽(H1,0).

Definition 5.3 For every 𝜈 ∈ Σ, we define the plectic Jacobian J⚭(XB,𝜈) as the Jacobian of 
the Hodge structure Hℤ(XB,𝜈).

Proposition 5.4 For every 𝜈 ∈ Σ, the plectic Jacobian J⚭(XB,𝜈) is an abelian variety.
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Proof. There is a decomposition of rational Hodge structures 

Hℚ(XB,𝜈) = ⨁
𝜒

Hℚ(XB,𝜈)𝜒

indexed by characters 𝜒 = ∏𝜇≠𝜈 𝜒𝜇 : ∏𝜇≠𝜈{±1} → {±1} such that Fr𝜇 acts on 
Hℚ(XB,𝜈)𝜒 as multiplication by 𝜒𝜇(−1). Moreover, 

dimℚ Hℚ(XB,𝜈)𝜒 = 2 ⋅dimℂ H1,0.

Let 𝕋good
ℚ  denote the ℚ-algebra generated by the Hecke operators associated with primes 

not dividing disc(B) ⋅ level(R) acting faithfully on Hr
sp(XB,ℚ) via endomorphisms of 

plectic Hodge structures. We claim that

• Hℚ(XB,𝜈)𝜒 is a free 𝕋good
ℚ -module of rank 2 and

• 𝕋good
ℚ  is isomorphic to a product ∏𝜉 L𝜉 of totally real number fields.

Indeed, equation (11) and the compatibility between the Hecke action and the action of 
the involutions {Fr𝜈}𝜈 show that 𝕋good

ℚ  is determined by its faithful action on the space H1,0

of holomorphic differential forms. The Jacquet–Langlands correspondence produces a 
Hecke-equivariant (for the good Hecke operators) isomorphism between H1,0 and the space 
of Hilbert cuspforms of weight 2, level disc(B) ⋅ level(R), trivial character, which are new at 
the primes dividing disc(B). Then, the claim follows from Miyake’s results ([20], Section 2). 
Note that 𝕋good

ℚ  is a product of totally real number fields because the relevant Hilbert 
modular forms have trivial character. The proposition now follows from Corollary 4.8 
because Hℚ(XB,𝜈)𝜒 decomposes as a direct sum of effective rational Hodge structure of 
weight 1 with real multiplication.

5.2.1. Plectic Oda conjecture
Let E/F  be a modular elliptic curve corresponding to a quaternionic newform f  of some level Γ for 
an indefinite quaternion algebra B/F. For every Archimedean place of F 𝜈 ∈ Σ where B/F is split, we 
consider the base change E𝜈 = E ×F,𝜈 ℂ, and we denote by c𝜈 the involution of H1(E𝜈,ℚ) induced 
by action of complex conjugation on E𝜈(ℂ). Let 𝕋ℚ denote the Hecke ℚ-algebra generated by Hecke 
operators for primes not dividing the discriminant of B/F acting faithfully on Hr(XB,ℚ) and denote 
by Hr

sp(XB,ℚ)f  the f -isotypic component of the strongly primitive cohomology. The following is a 
refinement of a classical conjecture of Oda ([25], Conjecture A).

Conjecture 5.5. ([Plectic Oda])  There is an isomorphism of rational r-plectic Hodge structures 

Hr
sp(XB,ℚ)f ≅ ⨂

𝜈∈Σ
H1(E𝜈,ℚ)

intertwining the action of Fr𝜈 with that of c𝜈 for every 𝜈 ∈ Σ.

We note that Conjecture 5.5 together with the computation in Section 5.1 implies the existence of a 
morphism of abelian varieties 

𝜑𝜈 : J⚭(XB,𝜈) ⟶ E𝜈(ℂ) ⊗ℤ ⨂
𝜇∈Σ\{𝜈}

H1(E𝜇,ℤ), (13)

which should be thought of as a generalization of the parameterization of elliptic curves by Jacobians of 
Shimura curves. Moreover, it suggests the following conjecture which aims at elucidating the relation 
between the various plectic Jacobians attached to XB.
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Conjecture 5.6. There exists an abelian variety J⚭(XB) defined over F endowed with an 
F-rational Hecke action and a Hecke equivariant morphism 𝜑 : J⚭(XB) → E2|Σ|−1

 such that the 
analytification of 𝜑 ⊗F,𝜈 ℂ is canonically isomorphic to 𝜑𝜈 for every 𝜈 ∈ Σ.

6 . P L ECT I C A BE L –JACO BI M A P S
Recall that XB = Γ\ℋΣ is a compact QSV. The group Γ is assumed to be torsion-free, and it acts on 
ℋ𝜈 through its image 𝜈(Γ) ≤ PGL2(ℝ).

Definition 6.1 For any 𝜈 ∈ Σ we denote by ℋ∘
𝜈 ⊆ ℋ𝜈 the subset of those points with trivial 

stabilizer in Γ. We set ℋ∘
Σ := ∏𝜈∈Σℋ

∘
𝜈 and X∘

B := Γ\ℋ∘
Σ,

Remark 6.2 Let XCM
B ⊆ XB denote the subset of CM points, then XCM

B ⊆ X∘
B.

Let M be a Γ-module. The subset ℋ∘
𝜈 has been singled out because the higher homology groups of 

the tensor product Div(ℋ∘
𝜈) ⊗ℤ M with diagonal Γ-action vanish, that is, 

Hk(Γ, Div(ℋ∘
𝜈) ⊗ℤ M) = 0 ∀ k ≥ 1. (14)

Indeed, by definition there is an isomorphism of Γ-modules 

Div(ℋ∘
𝜈) ≅ ⨁

x∈Γ\ℋ∘
𝜈

ℤ[Γ],

and the Γ-module ℤ[Γ] ⊗ℤ M with diagonal Γ-action is isomorphic to the induced Γ-module 
IndΓ

{1}(M).

Definition 6.3 Let S ⊆ Σ be a subset with complement denoted by Sc. We define 

ℤS[ℋ∘
Σ] := ⨂

𝜈∈S
Div(ℋ∘

𝜈) ⊗ ⨂
𝜈∈Sc

Div0(ℋ∘
𝜈).

where Div0(ℋ∘
𝜈) denotes the group of divisors of degree zero.

Proposition 6.4 There is a short exact sequence 

H H ΓΓ ℤ ℤ ℤ
ΣΣ

X B
∘0 ℋ

Proof. Note that the free group ℤ[ℋ∘
Σ] equals ℤΣ[ℋ∘

Σ] and that ℤ[X∘
B] = H0(Γ,ℤ[ℋ∘

Σ]). 
Then, to prove the proposition, it suffices to show that for any non-empty S ⊆ Σ and any 
𝜈 ∈ S

ker(H0(Γ, ℤS\{𝜈}[ℋ∘
Σ]) ⟶ H0(Γ, ℤS[ℋ∘

Σ])) = {Hr(Γ,ℤ) if S = {𝜈},
0 otherwise.

(15)

To see that the claim holds, consider the short exact sequence of Γ-modules

0 0ℤ ℤS S S S
0deg

ℋ ℋ ℋ ℋ
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If |S| > 1, then we are done thanks to the observation (14). If S = {𝜈} we are left to prove 
that 

H1(Γ, ⨂
𝜇≠𝜈

Div0(ℋ∘
𝜇)) ≅ Hr(Γ,ℤ). (16)

For this, let S ⊆ Σ be arbitrary, 𝜇 ∉ S, and consider the short exact sequence of 
Γ-modules

0 00 0
S S S

deg

ℋ ℋ ℋ ℋ

Once more, observation (14) shows that taking homology we obtain the connecting 
isomorphisms 

Hm+1(Γ, ⨂
𝜈∈S

Div0(ℋ∘
𝜈)) ≅ Hm(Γ, ⨂

𝜈∈S∪{𝜇}
Div0(ℋ∘

𝜈)) ∀ m ≥ 1. (17)

Thus, the isomorphism in (16) follows by repeatedly applying (17).

Using the cup product in de Rham cohomology we make the following identification: 

J⚭(XB,𝜈) ≅ (F1𝜈Hr
sp(XB,ℂ))∨/Hr(XB,ℤ),

and consider the homomorphism 

∫
Σ

: H0(Γ,ℤ∅[ℋ∘
Σ]) ⟶ J⚭(XB,𝜈), ⊗r

j=1(x𝜈j
− y𝜈j

) ↦ [∫
x𝜈1

y𝜈1

⋯∫
x𝜈r

y𝜈r

(−)] . (18)

It will be convenient for the proof of the next lemma to compute the singular homology of XB with 
the chain complex (C∞

• (XB),𝜕•) of smooth cubical chains on XB [18]. An element c ∈ C∞
n (XB) is 

a non-degenerate smooth function c : [0, 1]n → XB and the differential 𝜕n : C∞
n (XB) → C∞

n−1(XB) is 
given by the formula 

𝜕n(c) =
n

∑
k=1

(−1)k[Ak(c) − Bk(c)], (19)

where Ak(c)(x1,… , xn−1) = c(x1,… , xk−1, 0, xk+1,… , xn−1) can be thought of as the k-th ‘front’ face of 
the cubical n-chain c and Bk(c)(x1,… , xn−1) = c(x1,… , xk−1, 1, xk+1,… , xn−1) as the k-th ‘back’ face.

Theorem 6.5 We have 

Hr(Γ,ℤ) ⊆ ker∫
Σ

.

Proof. Integration over smooth cubical n-chains gives a morphism Υ : C∞
r (XB) →

Hr
dR(XB/ℂ)∨. Moreover, Stokes’ theorem implies that 𝜕r+1C∞

r+1(XB) ⊆ kerΥ, and de 
Rham’s theorem gives the following exact sequence:

C C𝜕
𝜕
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The homomorphism ∫Σ : H0(Γ,ℤ∅[ℋ∘
Σ]) ⟶ J⚭(XB,𝜈) naturally factors through 

𝜉 : H0(Γ,ℤ∅[ℋ∘
Σ]) ⟶ C∞

r (XB)/kerΥ.

Motivated by the description of the boundary map 𝜕r  given in (19), we define 

𝜁 : H0(Γ,ℤ∅[ℋ∘
Σ]) ⟶

r

⨁
j=1

H0(Γ,ℤ{𝜈j}[ℋ
∘
Σ]), Δ ↦ ((−1)jΔ)r

j=1.

Note that ker𝜁 = Hr(Γ,ℤ) by equation (15). Then, the claim follows because there exists 
a morphism 𝜛 : Im(𝜁) → 𝜕r(C∞

r (XB)/kerΥ) making the following diagram (with exact 
rows) commute 

ℤ ℤ

ℤ

H H

H

ℋ

Definition 6.6 Let ℤ⚭[X∘
B] := Im(ℤ∅[ℋ∘

Σ] → ℤ[X∘
B]) denote the group of plectic zero 

cycles supported on X∘
B. For any 𝜈 ∈ Σ the 𝜈-th plectic Abel–Jacobi map is the 

homomorphism 

AJ𝜈
⚭ : ℤ⚭[X∘

B] ⟶ J⚭(XB,𝜈)

obtained from (18) using Proposition 6.4 and Theorem 6.5.
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