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Microlocal Morse theory of wrapped
Fukaya categories

By Sheel Ganatra, John Pardon, and Vivek Shende

Abstract

The Nadler–Zaslow correspondence famously identifies the finite-dim-

ensional Floer homology groups between Lagrangians in cotangent bun-

dles with the finite-dimensional Hom spaces between corresponding con-

structible sheaves. We generalize this correspondence to incorporate the

infinite-dimensional spaces of morphisms “at infinity,” given on the Floer

side by Reeb trajectories (also known as “wrapping”) and on the sheaf

side by allowing unbounded infinite rank sheaves which are categorically

compact. When combined with existing sheaf theoretic computations, our

results confirm many new instances of homological mirror symmetry.

More precisely, given a real analytic manifold M and a subanalytic

isotropic subset Λ of its co-sphere bundle S∗M , we show that the par-

tially wrapped Fukaya category of T ∗M stopped at Λ is equivalent to the

category of compact objects in the unbounded derived category of sheaves

on M with microsupport inside Λ. By an embedding trick, we also de-

duce a sheaf theoretic description of the wrapped Fukaya category of any

Weinstein sector admitting a stable polarization.
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1. Introduction

I saw the angel in the marble,

and carved until I set him free.

—Michelangelo (attributed)

The calculation of Fukaya categories of symplectic manifolds has emerged

as a question of central interest in geometry. Within symplectic geometry it-

self, many questions may be phrased in terms of intersections of Lagrangian

submanifolds; as the Fukaya category is built from these, it is a natural tool

for their study. In low-dimensional topology, a number of invariants of smooth

manifolds and smooth knots can be extracted from Fukaya categories of associ-

ated symplectic manifolds. Homological mirror symmetry, a largely conjectural

correspondence arising from non-rigorous reasoning in mathematical physics,

further predicts that many categories of interest in algebraic geometry and

representation theory also arise as Fukaya categories.

Beyond the intrinsic interest in confirming or explaining these predictions,

knowing that a category of interest arises as a Fukaya category suggests the

existence of additional structures. For one example, morphism spaces in the

Fukaya category are Floer homology chain complexes, and as such come with a

natural basis; this often “explains” the existence of previously known “canon-

ical” bases of these Hom spaces. For another, the relative ease of constructing

symplectomorphisms (which act on the relevant Fukaya categories) gives a nat-

ural source of automorphisms of these categories that are far less apparent from

other points of view. The difficulty in calculating Fukaya categories, which is

present in all of the aforementioned settings, stems from the global and analytic

nature of the pseudo-holomorphic disks appearing in the definition.

In this paper, we obtain a combinatorial description of the partially wrapped

Fukaya categories of all stably polarized Weinstein manifolds (more generally,

sectors), by showing that they are isomorphic to certain corresponding cate-

gories of microlocal sheaves.

1.1. Weinstein manifolds and partially wrapped Fukaya categories. A vec-

tor field Z on a symplectic manifold (X,ω) is said to be Liouville when



946 SHEEL GANATRA, JOHN PARDON, and VIVEK SHENDE

LZω = ω. Recall that in this case, λ := ω(Z, ·) is a primitive for ω, and

that such symplectic manifolds are necessarily non-compact. Such a triple

(X,ω,Z) (equivalently (X,λ)) is called a Liouville manifold if, in addition,

the non-compact ends of X are identified (necessarily uniquely) by Z with the

positive end of the symplectization of a contact manifold [32]. The core of

a Liouville manifold is the locus of points cX which do not escape to infinity

under the Liouville flow. The inclusion cX ⊆ X is a homotopy equivalence,

and in some sense cX carries all of the symplectic topology of X as well.

A Liouville manifold (X,ω,Z) is said to be Weinstein if Z is gradient-

like [20]. The key feature of such manifolds is that the core cX is a union

of isotropic submanifolds, and moreover admits transverse Lagrangian disks

(“cocores”) at its smooth Lagrangian points. Prototypical examples include

cotangent bundles, affine algebraic varieties, and more generally (finite type)

Stein complex manifolds. Many examples of interest in geometric represen-

tation theory, such as conical symplectic resolutions, quiver varieties, moduli

of Higgs bundles, and cluster varieties are in this class. Moreover, any com-

pact symplectic manifold whose symplectic form has rational periods can be

presented as a compactification of a Weinstein manifold [24], [39], and hence,

through a strategy introduced in [78], understanding the Fukaya categories of

Weinstein manifolds serves as a stepping stone to studying the Fukaya cate-

gories of closed symplectic manifolds.

While various analytic difficulties in Floer theory are simplified in the

Liouville setting (due to strong topological and geometric control on pseudo-

holomorphic disks), there is a significant new layer of complexity possible,

thanks to the non-compactness of the target space. Namely, as has been un-

derstood for some time, it is desirable in this context to enlarge the Fukaya

category of compact Lagrangians by adding certain non-compact (properly

embedded, conical at infinity) Lagrangians as well. These larger Fukaya cate-

gories often have better formal properties due to there being an ample supply

of non-compact Lagrangians, and they are also required by mirror symme-

try, where non-compact Lagrangians in non-compact targets arise as mirror

objects to sheaves on non-compact or non-Calabi–Yau manifolds, whose Ext

groups could be of infinite rank or fail to satisfy Poincaré duality. Fukaya cat-

egories of non-compact Lagrangians also have bearing on questions about the

Reeb dynamics at infinity. There are many different ways to add non-compact

Lagrangians to the Fukaya category, with substantially different results; the

basic parameters are (1) in which directions at infinity to allow non-compact

Lagrangians and (2) in what direction and by how much to perturb (“wrap”)

Lagrangians at infinity when computing Floer homology.

The framework of partially wrapped Fukaya categories [14], [15], [88], [37],

[38] has emerged as a way to describe and relate different prescriptions for

asymptotics and wrapping. One specifies a subset at infinity which Lagrangians
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cannot limit to or wrap past, called the stop. In the resulting category, La-

grangians which are isotopic in the complement of the stop induce isomorphic

objects, and symplectomorphisms preserving the stop induce autoequivalences.

The resulting category is also invariant under isotopies of the complement of

the stop. A stopped Liouville manifold (X,Λ) consists of a Liouville manifold

X and a stop Λ. The relative core cX,Λ of (X,Λ) is the set of those which do

not escape to the complement of Λ at infinity under the positive Liouville flow.

The partially wrapped setting includes variants of many previous con-

structions:

• When the stop is empty, one obtains the (fully) wrapped Fukaya category

of Abouzaid–Seidel [10].

• Given a smooth Legendrian Λ, there is a naive “infinitesimally wrapped”

Fukaya category with asymptotics along Λ given equivalently by either

(1) take the stop to be the complement of a small regular neighborhood

of Λ, or (2) take the stop to be Λ and consider just the full subcategory

of Lagrangians which admit wrappings converging to Λ; see Section 6.3 for

further discussion, including a comparison with [66].1 More generally, we

can take Λ to be the core of a Liouville hypersurface.

• The Fukaya category of a Landau–Ginzburg model w : Y → C, also known

as the Fukaya–Seidel category when w is a Lefschetz fibration [79], can be

modeled as the partially wrapped Fukaya category of Y stopped at (the core

of) the Weinstein hypersurface w−1(−∞).2

Of course, partially wrapped Fukaya categories form a significantly broader

class than infinitesimal or Fukaya–Seidel categories (e.g., they can have infinite-

dimensional morphism spaces). An illustrative example: categories of coherent

complexes on arbitrary (not necessarily compact or smooth) n-dimensional

toric stacks can be shown equivalent to partially wrapped Fukaya categories

of (C∗)n = T ∗Tn, by combining the sheaf theoretic work of [54] with the main

theorem of the present article.

Of particular importance are (possibly singular) isotropic stops. Isotropic-

ity of the stop plays the same role as the Weinstein condition on the symplectic

manifold itself; for instance, the core of a Weinstein hypersurface at infinity is

a typical singular isotropic stop of interest to mirror symmetry.

1This naive category embeds fully faithfully into the category of “proper modules” over

the partially wrapped Fukaya category stopped at Λ, which should be regarded as the more

correct category. It is an open and likely hard geometric question to determine when this

embedding is an equivalence, already for Λ = ∅.
2From our point of view, this should just be taken as the definition of the Fukaya–Seidel

category. However, we note there are some technical differences between this definition and

the standard definition, and a careful proof of their equivalence is, as far as we know, a folk

result whose proof has no available reference (though a special case is treated in [38, §8.6]).
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1.2. Topological and sheaf theoretic interpretations. Despite their analytic

origins, Fukaya categories have often been found to admit topological interpre-

tations. The first prototype is the fact that the Lagrangian Floer homology

of an exact Lagrangian is nothing other than its ordinary cohomology. The

work of Nadler and Zaslow [66], [62] provides a sweeping generalization of this,

identifying infinitesimally wrapped Floer homologies of exact Lagrangians in

cotangent bundles with morphisms of sheaves on the base. In a seemingly

different direction, it was observed that wrapped Floer homology also has a

topological interpretation. Indeed, work of Abbondondalo and Schwarz [2],

[1], [3] (see also Cieliebak and Latschev [21]) found many instances where

wrapped Floer homology is isomorphic to the homology of spaces of paths and

loops. Building on these, Abouzaid showed that in fact the wrapped Fukaya

category of a cotangent bundle is naturally identified with perfect modules over

chains on the based loop space of the base [6] (see also [7]). This last result

may be restated (by the ∞ version of the van Kampen theorem): the wrapped

Fukaya category of a cotangent bundle is the global sections of the constant

cosheaf of categories on the zero section with costalk Perf Z. This formula-

tion exhibits an instance of a more general conjecture of Kontsevich [51]: the

wrapped Fukaya category of any Weinstein manifold X should be the global

sections of a cosheaf of categories on its core cX .

Nadler’s work [63] unified these points of view, by proposing that while

infinitesimally wrapped Fukaya categories are modeled by (micro)sheaves with

perfect (micro)stalks (as in [66]), the partially wrapped category should be

modeled by compact objects in the category of all (micro)sheaves with appro-

priate microsupport conditions. For essentially formal reasons, these categories

of compact objects may be organized into a cosheaf of categories, so Nadler’s

proposal is a strengthening of Kontsevich’s conjecture. At the time of Nadler’s

original proposal, microsheaves were only defined for subsets of cotangent bun-

dles, but the high codimension embedding trick from [81] has now defined a

category of microsheaves on the core of any Liouville manifold [65].

Since microlocal sheaf categories are entirely combinatorial/topological in

nature, Nadler’s proposal is a (conjectural) computation of (partially) wrapped

Fukaya categories. An illustrative example calculation is given in [63], where

it was shown that the relevant category of microlocal sheaves on the skele-

ton of the (higher dimensional) symplectic pairs of pants matched the mirror-

symmetric prediction for the wrapped Fukaya category (which was more re-

cently verified directly [55]).

Example. Remarkably, while wrapped and infinitesimal Floer homologies

are rather different creatures, the same does not appear to be the case on the

sheaf side of Nadler’s proposal. Notably, there is nothing like “wrapping” on
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the sheaf side; instead, there are purely categorical operations. As it is difficult

to appreciate the depth of the distinction at first, let us return to the example

of the cotangent bundle, with empty stop. The core is just the zero section, and

sheaves microsupported in the zero section are (almost by definition) nothing

other than locally constant sheaves. If we require these to have finite stalks,

then we are studying finite rank local systems (which coincides with the in-

finitesimally wrapped Fukaya category, i.e., in this case the Fukaya category

of compact Lagrangians). On the other hand, a typical compact object in this

category is the “tautological” local system, with fiber given by chains on the

based loop space. Usually of infinite rank, this object is best understood in

terms of the functor it co-represents: taking the stalk at a point. Note that no

“wrapping” appears in this purely categorical procedure proposed by Nadler,

yet it does in fact correctly recover the wrapped Fukaya category.

1.3. Main results. We now fix notation and state our main results more

precisely. Theorem 1.1 concerns the special case of cotangent bundles, and

its proof comprises the bulk of the paper. Theorem 1.4 is derived from Theo-

rem 1.1 and concerns more general stably polarized Liouville manifolds.

For a Liouville symplectic manifold X and closed subset Λ ⊆ ∂∞X, we

write W(X,Λ) for the (partially) wrapped Fukaya category of X, stopped

at Λ. Its objects are Lagrangians L ⊆ X which are eventually conical and

disjoint from Λ at infinity, and its morphism complexes are Floer cochains after

wrapping Lagrangians in the complement of Λ. It is an A∞ category defined in

[37], [38] (see also [10], [11], [88]); we review its definition at the beginning of

Section 5. Particularly important objects of W(X,Λ) include: the Lagrangian

linking disks to the smooth Legendrian points of Λ [38, §5.3], the Lagrangian

cocore disks when X is Weinstein, and the cotangent fibers when X = T ∗M

(which may be viewed as a special case of cocore disks). We write Perf W(X,Λ)

for the idempotent-completed pre-triangulated closure of W(X,Λ). Whenever

Λ ⊆ Λ′, there is a tautological functor W(X,Λ′)→W(X,Λ).

For a smooth manifold M , we write Sh(M) for the dg category of sheaves

of dg Z-modules on M . The microsupport of a sheaf F is a closed conical

locus ss(F) ⊆ T ∗M whose role is to encode, infinitesimally, which restriction

maps are quasi-isomorphisms. We write ShΛ(M) for the full subcategory of

Sh(M) spanned by those sheaves whose microsupport at infinity is contained

in Λ. Particularly nice functors ShΛ(M) → ModZ include the stalk functors

at points of M and the microstalk functors at smooth Legendrian points of Λ.

These definitions are reviewed in Section 4. We denote by ShΛ(M)c the cate-

gory of compact objects in ShΛ(M). The reader is cautioned that the compact

objects of ShΛ(M) do not necessarily have perfect stalks or bounded homolog-

ical degree; that is, they need not be constructible sheaves in the usual sense.
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The relevance of such objects on the sheaf side was pointed out in [63], where

Theorem 1.1 was implicitly conjectured by the terminology “wrapped sheaves”

for compact objects of ShΛ(M) and “wrapped (microlocal) skyscrapers” for co-

representatives of (micro)stalk functors.

Theorem 1.1. Let M be a real analytic manifold, and let Λ ⊆ S∗M be

a subanalytic closed isotropic subset. There there is a canonical equivalence of

categories

(1.1) Perf W(T ∗M,Λ)op = ShΛ(M)c

which carries the linking disk at any smooth Legendrian point p ∈ Λ to a co-

representative of the microstalk functor at p ∈ Λ and carries the cotangent

fiber at a point p ∈M not in the image of Λ to a co-representative of the stalk

functor.

Remark 1.2. Rather than passing to the opposite category of the Fukaya

category, we could equivalently negate either Λ or the Liouville form on T ∗M .

To prove Theorem 1.1, we do not calculate a single W(T ∗M,Λ) on its

own. Instead, we calculate the functor Λ 7→ Perf W(T ∗M,Λ)op (functoriality

is with respect to inclusions Λ ⊆ Λ′) which is a much more rigid object. In

fact, we formulate a pair of axioms which uniquely charaterize such a system

of categories Λ 7→ C(Λ) (Section 3), so the proof of Theorem 1.1 then reduces

to verifying these axioms for both Λ 7→ Perf W(T ∗M,Λ)op (Section 5) and

Λ 7→ ShΛ(M)c (Section 4).

The underlying reason this strategy can succeed is that there are spe-

cial stops Λ (specifically Λ = N∗∞S, the union of conormals to the strata of

a Whitney triangulation S) for which the Reeb dynamics in the complement

of Λ are simple, thus making it tractable to show (1.1) by direct calcula-

tion. Since every Λ is a subset of some N∗∞S, it then suffices to show that

both sides of (1.1) transform in the same way when Λ gets smaller. On the

Fukaya side, the functor W(T ∗M,Λ′) → W(T ∗M,Λ) for Λ′ ⊇ Λ is the quo-

tient by the linking disks to Λ′ \ Λ; this was established recently in [38]. On

the sheaf side, one quotients by co-representatives of microstalks; this is ulti-

mately a consequence of co-isotropicity of the microsupport [49, Thm. 6.5.1].

The identification of linking disks with microstalks matches the wrapping ex-

act triangle of [38] with the microlocal Morse description of sheaf cohomology

from [41], [49]. The conclusion is then that choosing a Whitney triangulation

S of M whose conormal N∗∞S contains Λ yields a description of both cate-

gories Perf W(T ∗M,Λ)op and ShΛ(M)c as the same localization of the category

Perf W(T ∗M,N∗∞S)op = Perf S = ShN∗∞S(M)c.

This approach to the proof of Theorem 1.1 is rather different from the

previous computations of Fukaya categories of cotangent bundles [66], [62], [6].
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In particular, we rely on no results from these articles. In fact, our ability

to add geometry to simplify the situation is such that the only Floer coho-

mology calculations which need to be made in this entire article are between

Lagrangians which intersect in at most one point, obviating, in particular, the

need to ever compute a holomorphic disc. We therefore expect that the proofs

of the results in this paper would apply to the case of more general (e.g., sphere

spectrum) coefficients, provided one has access to the definitions of the sheaf

and Fukaya categories in these settings.

The equivalence of Theorem 1.1 is also functorial under open inclusions:

Proposition 1.3. Let M ′ ↪→M be an analytic open inclusion of analytic

manifolds. For subanalytic isotropics Λ′ ⊆ S∗M ′ and Λ ⊆ S∗M with Λ′ ⊇
Λ ∩ S∗M ′, the following diagram commutes

(1.2)

Perf W(M ′,Λ′)op Perf W(M,Λ)op

ShΛ′(M
′)c ShΛ(M)c,

Theorem 1.1 Theorem 1.1

where the bottom horizontal arrow is (the restriction to compact objects of ) the

left adjoint of restriction.

In Section 6, we detail a number of applications and corollaries of The-

orem 1.1. These include a version of the original Nadler–Zaslow correspon-

dence, translations of the microsheaf theoretic work on mirror symmetry for

toric varieties and toric boundaries, and a sheaf theoretic description of the

augmentation category of the partially wrapped Floer cochains of the linking

disk to a Legendrian (expected to be equivalent to the Legendrian DGA), valid

for the jet bundle of a manifold of any dimension. After the present work, a

host of sheaf theoretic calculations [35], [84, 83], [82], [54], [64], [63], [36] can

now be understood as computations of wrapped Fukaya categories.

Finally, in Section 7, we turn from cotangent bundles to the general set-

ting of stably polarized Weinstein manifolds. We proceed by combining the

“doubling trick” of [38, Ex. 10.7 and 13.4] and the “antimicrolocalization” of

[65, §7] to reduce to the cotangent bundle case. We arrive the following sheaf

theoretic description of partially wrapped Fukaya categories:

Theorem 1.4. Let X be a real analytic Liouville manifold, and let Λ ⊆
∂∞X be a stop whose relative core cX,Λ := cX ∪ (Λ × R) ⊆ X is subanalytic

singular isotropic. For any stable polarization3 of X , there is a fully faithful

3A stable polarization of a symplectic manifold is the expression of its tangent bundle

plus Ck (some finite k) as the complexification of a real vector bundle; a choice of stable

polarization controls the “twisting” of the categories on both sides of (1.3). Many examples
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functor

(1.3) Perf W(X,Λ)op ↪→ µshcX,Λ(cX,Λ)c,

where µshcX,Λ(cX,Λ) denotes the category of microlocal sheaves on cX,Λ. This

functor sends a homological cocore at a smooth Lagrangian point p of cX,Λ to

a co-representative of the microstalk at p.

In particular, if X is Weinstein, or more generally admits homological

cocores, then (1.3) is an equivalence.

Let us comment on the hypotheses of Theorem 1.4 and, in particular,

argue that it applies to all stably polarized Weinstein sectors. The analyticity

assumptions hold in most concrete cases of interest, and abstractly speaking,

any Weinstein manifold (more generally, sector) may be perturbed so as to

be real analytic and to have subanalytic relative core (see Corollary 7.28). A

homological cocore at a smooth Lagrangian point p ∈ cX,Λ is an object of

Perf W(X,Λ) whose image in Perf W((X,Λ)× (CRe≥0,∞)) is the linking disk

at p×∞. Admitting homological cocores means that every smooth Lagrangian

point of cX,Λ has a homological cocore; this condition turns out to depend only

on X up to deformation, and holds whenever X is Weinstein. For (X,Λ) as in

Theorem 1.4, the stabilization X × C always admits homological cocores, so

there is always an equivalence

Perf W((X,Λ)× (C,±∞))op = µshcX,Λ×R(cX,Λ × R)c = µshcX,Λ(cX,Λ)c.

The embedding of Theorem 1.4 depends a priori on a choice of analytic

Liouville hypersurface embedding of X × Ck into S∗M for some auxiliary an-

alytic manifold M , compatible with stable polarizations. (Part of the proof is

to show such data always exists.) We expect our methods could be extended

to show that the embedding of Theorem 1.4 is independent of this choice.

The embedding of Theorem 1.4 associated to a given analytic Liouville

hypersurface embedding X ↪→ S∗M is, by construction, compatible with the

equivalence of Theorem 1.1 in the sense that the following diagram commutes:

(1.4)

Perf W(X,Λ)op Perf W(T ∗M, cX,Λ)op

µshcX,Λ(cX,Λ)c ShcX,Λ(M)c

Theorem 1.4 Theorem 1.1

µ∗

(see Proposition 7.24), where µ∗ denotes the left adjoint to microlocalization.

Using this compatibility, it is proven in [36] that for a Fano toric stack Y with

of interest are stably polarized, such as all cotangent bundles and all complete intersections

in Cn.
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toric divisor D, there is a commutative diagram

(1.5)

Perf W(W−1(−∞)) Perf W(X,W ) Perf W(X) 0

Coh(D) Coh(Y ) Coh(Y \D) 0,

where W : X → C is the mirror Landau–Ginzburg model (see Example 7.25).

Convention. Throughout this document, we work in the setting of dg and,

equivalently, A∞ categories over Z (or more generally any commutative ring).

We only ever consider “derived” functors, we only ever mean “homotopy”

limits or colimits, and we systematically omit the word “quas.i” By modules,

we mean dg or A∞ modules; e.g., by Z-modules we mean the category of chain

complexes of abelian Z-modules, localized at quasi-isomorphisms, except when,

as in this sentence, we qualify it with the word “abelian.” In Section A we

detail our assumptions about these categories and collect relevant categorical

notions which will appear throughout the paper.
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partially supported by a Packard Fellowship and by the National Science Foun-
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2. Stratifications

2.1. Generalities. Let X be a topological space. By a stratification S

of X, we mean a locally finite decomposition into disjoint locally closed subsets

{Xα}α∈S, called strata, such that each boundary Xα \Xα is a union of other

strata Xβ . The collection of strata S is naturally a poset, in which there is a

map β → α if and only if Xα ⊆ Xβ .

Remark 2.1. The poset S does not generally capture the homotopy type

of the space X. Conditions under which it does (contractibility of various

strata/stars) are well known and recalled below.
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We will say a subset Y ⊆ X is S-constructible when it is a union of strata

of the stratification S of X. We say that a stratification T refines a stratification

S when the strata of S are T-constructible.

We recall that an abstract simplicial complex on a vertex set V is a collec-

tion Σ of nonempty finite subsets of V, containing all singletons and all subsets

of elements of Σ. By a simplicial complex, we mean the geometric realization

|Σ| of an abstract simplicial complex Σ; it comes with a stratification by the

“open simplices” (which, of course, are locally closed, not necessarily open, sub-

sets of |Σ|). We say a stratification S on X is a triangulation when there exists

a homeomorphism |Σ| ∼−→ X identifying stratifications. We never impose any

sort of regularity condition (differentiability, smoothness, analyticity, etc.) on

this homeomorphism, even in the context of stratifications of a given regularity

class. Note that the following are not triangulations: a stratification of a circle

into single point and its complement, or into two points and their complement;

the stratification into three points and their complement is a triangulation.

The open star of a stratum is the union of strata whose closures contain

it. Taking stars reverses the inclusion: we have Xα ⊆ Xβ ⇐⇒ star(Xβ) ⊆
star(Xα). Note that star(Xα) ∩ star(Xβ) =

⋃
α←γ→β star(Xγ). For triangu-

lations, we can do better: star(Xα) ∩ star(Xβ) = star(Xγ), where γ is the

simplex spanned by the vertices of α union the vertices of β (if this simplex is

present), and otherwise star(Xα) ∩ star(Xβ) = ∅.
For a Cp manifold M , we say a stratification S is Cp if each stratum Mα

is a (locally closed) Cp submanifold.

A C1 stratification S of a C1 manifold M is called a Whitney stratification

if and only if it satisfies Whitney’s conditions (a) and (b). These are usually

stated as the following conditions on pairs of strata X and Y of S:

(a) For any sequence xi ∈ X converging to y ∈ Y such that TxiX converges

to a subspace V ⊆ TyM , we have TyY ⊆ V .

(b) For any pair of sequences xi ∈ X and yi ∈ Y both converging to y ∈ Y
such that TxiX converges to a subspace V ⊆ TyM and the secant directions

from yi to xi converge to a line L ⊆ TyM , we have L ⊆ V .

By compactness of flag varieties, we may pass to convergent subsequences, and

hence conditions (a) and (b) may be reformulated as follows:

(a) For strata Y ⊆ X, as X 3 x → y ∈ Y , the tangent spaces TxX become

arbitrarily close to containing TyY , uniformly over compact subsets of Y .

(b) For strata Y ⊆ X, as X 3 x → y ∈ Y , the secant lines between x

and y become arbitrarily close to being contained in TxX, uniformly over

compact subsets of Y .

Whitney’s condition (a) is equivalent to the assertion that the union of conor-

mals N∗S :=
⋃
αN

∗Mα ⊆ T ∗M is closed. In fact, it is not hard to see that
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Whitney’s condition (b) implies Whitney’s condition (a) [61, Prop. 2.4]. A

Whitney stratification is, by definition, at least C1; it makes sense to consider

Cp Whitney stratifications for any p ≥ 1, including p =∞.

In order to guarantee the existence of Whitney stratifications, we will ul-

timately restrict to the setting of (real) analytic manifolds and subanalytic

stratifications. We recall that a set is defined to be subanalytic when locally

(i.e., in a neighborhood of every point of its closure) it is the analytic image of

a relatively compact semianalytic set (i.e., locally defined by finitely many an-

alytic inequalities). The canonical modern reference for subanalytic geometry

is [18]. By a subanalytic stratification, we mean a stratification in which all

strata are subanalytic. Every subanalytic stratification admits a subanalytic

refinement in which all strata are locally closed analytic submanifolds. It is a

fundamental result that for any locally finite collection of subanalytic subsets

of an analytic manifold, there exists a subanalytic stratification with respect

to which all the subsets are constructible. For proofs of these results, see [18],

[85]. We also require the result that every subanalytic stratification admits a

refinement to a subanalytic Whitney triangulation [86], [22], [23].

Remark 2.2. Wherever we have written “subanalytic,” one could substi-

tute “defineable” with respect to any fixed analytic-geometric category [26],

[25]. Every defineable stratification has a defineable refinement to a Cp Whit-

ney triangulation for any given p <∞ [86], [22], [23]. The fact that this is not

known to hold for p =∞ does not create any difficulties.

Lemma 2.3. Let M be a manifold with Whitney stratification S. If N⊆M
is a locally closed submanifold transverse to every stratum of S, then the inter-

sected stratification S ∩N is a Whitney stratification of N .

Proof. It suffices to verify that S∩N satisfies Whitney (b). Thus consider a

pair of strata X∩N and Y ∩N with Y ⊆ X. Whitney (b) for the stratification S

guarantees that the secant line from x ∈ X∩N to y ∈ Y ∩N becomes arbitrarily

close to being contained in TxX as x→ y, uniformly over compact subsets of

Y ∩N . On the other hand, Whitney (b) for the stratification for S∩N requires

this secant line to become arbitrarily close to being contained in TxX ∩TxN , a

stronger condition. Since N is a submanifold, the secant line certainly becomes

arbitrarily close to being contained in TxN . Our task is thus to pass from being

close to TxX and TxN to being close to their intersection TxX ∩ TxN . It thus

suffices to show that TxX and TxN are uniformly transverse as x → y. Let

us see how this follows from Whitney (a) for S. Since N is transverse to Y ,

we have TyY + TyN = TyM . Whitney (a) for S means that TxX is arbitrarily

close to containing TyY as x → y. Thus TxX + TxN = TxM uniformly as

x→ y, as desired. �
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Remark 2.4. Here is a typical application of Lemma 2.3. Let M be a man-

ifold with a Whitney stratification S, and let N ⊆M be a closed (as a subset)

submanifold transverse to every stratum of S. Then the stratification SN of M

with strata Mα ∩N and Mα \N for α ∈ S (the poset of strata SN is thus S×
{(M \N) > N}) is Whitney. Indeed, Whitney (b) for SN is a special case of

Whitney (b) for S and S ∩ N . A slight modification of this example will also

come up later. Let B ⊆ M be a closed ball whose boundary is transverse to

a Whitney stratification S. The stratification of M by Mα ∩ ∂B, Mα ∩ B◦,
and Mα \B, for strata Mα ⊆M , is now Whitney by the same argument using

Lemma 2.3.

2.2. Microlocal approximation of constructible sets. A constructible set X

with respect to a Whitney stratification is in general quite singular. Our goal

in this section is to show how such sets can be microlocally approximated by

manifolds-with-corners Xη parametrized by small η > 0, in the sense that

Xη → X and the conormal to Xη converges to (being contained in) the conor-

mal of X as η → 0. This result will be used in the proof of Proposition 4.8 and

in Section 5.7. We fix an integer p ≥ 1, possibly p =∞, and work throughout

with stratifications of class Cp.

A Cp radius function for a locally closed Cp submanifold Y ⊆M is a pair

(U, ρ), where U ⊆ M is an open set containing Y and ρ : U → R≥0 is of class

Cp on U \ Y and satisfies the following three conditions:

• ρ−1(0) = Y .

• ρ is Lipschitz on a neighborhood of any compact subset of Y .

• The lim inf of the evaluation of dρ(x) on the secant direction from y ∈ Y to

x ∈M is bounded below by some ε > 0 as x→ y, provided y is constrained

to a compact subset of Y and the ratio d(x,y)
d(x,Y ) is bounded by some fixed

N < ∞. (This condition is well defined since ρ is assumed Lipschitz; it

implies |dρ(x)| is bounded away from zero over neighborhoods of compact

subsets of Y .)

The standard radius function for Rn × 0 ⊆ Rn × Rm is of course

(a1, . . . , an, b1, . . . , bm) 7→ (b21 + · · ·+ b2m)1/2.

Every locally closed Cp submanifold admits a Cp radius function, as can be

seen by choosing a collection of local coordinate patches and summing together

standard radius functions via a partition of unity. (A convex combination of

radius functions is a radius function.)

The following (trivial) restriction property for radius functions will be

important: if (U, ρ) is a radius function for Y ⊆M , and N ⊆M is transverse

to Y , then (U ∩N, ρ|U∩N ) is a radius function for Y ∩N ⊆ N .

When Y ⊆M is relatively compact, a radius function (U, ρ) for Y will be

called proper when for every open set V containing Y , there exists ε > 0 such
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that ρ−1([0, ε]) ⊆ V . It is easy to produce proper radius functions: for any

radius function (U, ρ), there exists an open set U ′ ⊆ U containing Y such that

(U ′, ρ|U ′) is proper.

The purpose of a radius function is to define tubular neighborhoods

ρ−1([0, ε]). The conditions in the definition of a radius function are chosen

so as to be able to prove the following two key assertions:

Lemma 2.5. Let (U, ρ) be a radius function for Y ⊆M . We have dρ(x)→
N∗Y as x→ Y , uniformly over compact subsets of Y . (Equivalently, N∗ρ−1(r)

approaches being contained in N∗Y as r → 0, uniformly over compact subsets

of Y .)

Proof. Suppose for sake of contradiction that there is a sequence xi→y∈Y
with dρ(xi)→ ξ ∈ T ∗yM \N∗yY . Since ξ /∈ N∗yY , there exist yi ∈ Y with d(xi,yi)

d(xi,Y )

uniformly bounded and the secant direction from yi to xi converging to the

kernel of ξ. This contradicts the final axiom of a radius function. �

Lemma 2.6. Let Y ⊆M be a stratum of a Whitney stratification S, and let

(U, ρ) be a radius function for Y . There exists an open set V ⊆ U containing Y

such that the submanifold ρ−1(r) is transverse to S over V for all r > 0.

Proof. The secant line to x ∈ ρ−1(r) from nearby y ∈ Y pairs positively

with dρ(x), whereas Whitney (b) requires that this secant line approach the

tangent space to the stratum containing x in the limit x → y. Since dρ is

bounded, this gives a positive lower bound on the restriction of dρ to any

stratum of S in a neighborhood of any compact subset of Y . �

Figure 1. A compact constructible set X (left) and its outward

cornering Xε (right).

We now turn to the setting of a compact set X ⊆ M constructible with

respect to a chosen Whitney stratification S. Given a proper radius function

for each stratum of S contained in X, we define the “outward cornering” of X

with respect to S (see Figure 1) to be

(2.1) Xε =
⋃

Mα⊆X
ρ−1
α ([0, εα])
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for ε = (εα)Mα⊆X , where it is tacitly required that εα > 0 be sufficiently small

as an unspecified function of (εβ)Mβ$Mα
. Note that, no matter our notion of

sufficiently small, we can always find a parametrization ε(η) where each εα > 0

is an increasing function of η > 0, limiting to zero as η → 0, such that εα(η) > 0

is sufficiently small in terms of (εβ(η))Mβ$Mα
for all η > 0 (proof: by induction

on strata).

The significance of properness of the given radius functions is that it (along

with compactness of X) ensures that the part of ∂Xε coming from ρ−1
α (εα) is

contained in a neighborhood of a compact subset of Mα ⊆ X (depending on

(εβ)Mβ$Mα
), hence falls within the scope of Lemma 2.6.

Here is the first key property of Xε:

Corollary 2.7. Fix a Whitney stratification S of M . Let X ⊆ M be a

compact constructible subset, with a choice of proper radius function for each

of its strata. Then M \ Xε is a manifold-with-corners, all of whose corner

strata are transverse to S.

Proof. We proceed by induction on the number of strata of X. Thus

let X = X0 ∪ Mα, and suppose the result is known for X0. This means,

in particular, that M \ Xε
0 is a manifold-with-corners, all of whose corner

strata are transverse to Mα. It follows that further removing the small regular

neighborhood ρ−1
α ([0, εα]) produces a manifold-with-corners M \Xε, provided

εα > 0 is sufficiently small as a function of (εβ)Mβ$Mα
.

Now let us show that the corner strata of M \ Xε are transverse to S.

The boundary stratum of M \ Xε coming from ρ−1
α (εα) is transverse to S by

Lemma 2.6. A general corner stratum of M \Xε is the intersection C∩ρ−1
α (εα),

where C is a corner stratum of M \ Xε
0. To see that such an intersection is

also transverse to S, apply Lemma 2.6 to the stratum C ∩ Mα ⊆ C of the

restriction to C of S (which is Whitney by Lemma 2.3, locally uniformly in

ε \ εα) equipped with the restriction of ρα (which remains a radius function as

noted earlier). �

Note that the conclusion of Corollary 2.7 (transversality of ∂Xε and S) is

equivalent to saying that N∗S (the union of the conormals of all strata) and

N∗Xε (the union of the conormals of all corner strata) are disjoint at infinity.

Given transversality of ∂Xε and S, we can define the “big conormal”

N∗(S|(M \ Xε)) to be the union of conormals of intersections of strata of S

and corner strata of M \Xε. The second key property of Xε is the following

convergence result:

Corollary 2.8. Fix a Whitney stratification S of M . Let X ⊆ M be a

compact constructible subset, with a choice of proper radius function for each

of its strata. Then the big conormal N∗(S|(M \ Xε)) lies in arbitrarily small

neighborhoods of N∗S as ε→ 0.
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Proof. We proceed by induction on the number of strata of X. Thus let

X = X0∪Mα, and suppose the result is known for X0. It thus suffices to show

that N∗(S|(M\Xε)) lies in an arbitrarily small neighborhood of N∗(S|(M\Xε
0))

as εα → 0 (uniformly over compact subsets of ε \ εα).

The conormal of the intersection of a stratum Mγ of S with ρ−1
α (εα) is the

sum of the conormals of Mγ and ρ−1
α (εα). These individually approach being

contained in N∗Mα in the limit εα → 0 (the first by Whitney (a) and the

second by Lemma 2.5), and they are quantitatively transverse by the axioms

of a radius function (as was the main point of the proof of Lemma 2.6). It

follows that their sum also approaches N∗Mα as εα → 0.

The general case is that of the conormal of Mγ ∩ ρ−1
α (εα) ∩C, where C is

a corner stratum of M \Xε
0. It follows by applying the same argument to the

intersection of the situation with C, as in the proof of Corollary 2.7. �

Remark 2.9. In the context of Corollary 2.8, note that any subanalytic

family of Legendrians inside S∗M , whose projections converge to X, will them-

selves converge to a subset of the conormal of X with respect to some refinement

of S. Corollary 2.8 provides a stronger convergence result (we do not need to

refine the stratification) for the particular family of outward cornerings defined

in (2.1).

2.3. Cornering and conormals of constructible open sets. Here we develop

some finer properties of the microlocal approximations constructed in the pre-

vious subsection. They will not be used until Section 5.7.

Let S be a Whitney stratification of M by locally closed smooth subman-

ifolds. For any S-constructible relatively compact open set U ⊆ M , we define

its inward cornering

(2.2) U−ε := U \ (∂U)ε,

where (∂U)ε denotes the outward cornering ∂U defined in (2.1). Thus U−ε is

(the interior of) a codimension zero submanifold-with-corners (Corollary 2.7),

depending smoothly on ε, such that as ε → 0, its conormal N∗U−ε remains

disjoint from N∗S at infinity (Corollary 2.7) yet limits inside it (Corollary 2.8).

Strictly speaking, U−ε also depends on the choices of tubular neighborhoods of

the strata comprising ∂U , however we will leave this choice out of the notation

as it is never particularly relevant. (Note that it is a convex, hence contractible,

choice.) When even the choice of ε is not relevant, we will simply write U−.

Taking ε→ 0, we learn that

Lemma 2.10. The open sets U and U− are diffeomorphic, and the diffeo-

morphism may be chosen to be the identity on any fixed compact subset of U .

When S is a triangulation, we may consider for any simplex s ∈ S its open

star, star(s).
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Lemma 2.11. For S a triangulation and any s ∈ S, there is a homotopy

equivalence ∂ star(s)− ' ∂ star(s).

Proof. Both star(s) and star(s)− are the interiors of compact (topological)

manifolds-with-boundary (namely their closures). They are also diffeomorphic:

star(s) ∼= star(s)− by Lemma 2.10. It therefore suffices to recall the stan-

dard fact that the interior of a compact manifold-with-boundary remembers

its boundary, up to homotopy equivalence.

Indeed, let M be a compact manifold-with-boundary, and let M = M\∂M
denote its interior. The “end space” e(M) is the space of proper maps R≥0 →
M . (This is a model for the homotopy inverse limit of M \ K over compact

subsets K ⊆M .) A choice of collar ∂M × [0, 1) ↪→M determines a homotopy

equivalence

(2.3) e(M)
∼←− e(∂M × (0, 1

2 ]) = C(R≥0, ∂M)× e((0, 1
2 ]),

and we have homotopy equivalences C(R≥0, ∂M) ' ∂M and e((0, 1
2 ]) ' ∗, so

we have e(M) ' ∂M . (Compare [45, §1].) �

Lemma 2.12. For S a triangulation and for simplices s, t ∈ S with star(t)∩
star(s) 6= ∅ and t 9 s, the intersection star(t)−ε ∩ ∂ star(s)−δ is contractible

for ε sufficiently small and δ sufficiently small in terms of ε.

Proof. As in the proof of Lemma 2.11, the intersection

star(t)−ε ∩ ∂ star(s)−δ

is the end space of star(t)−ε ∩ star(s)−δ. As in Lemma 2.10, this intersection

star(t)−ε ∩ star(s)−δ is diffeomorphic to star(t)−ε ∩ star(s), whose end space is

in turn given by star(t)−ε∩∂ star(s). Now we may take ε→ 0 again mimicking

the proof of Lemma 2.10 to see that this is homotopy equivalent to star(t) ∩
∂ star(s). The assumptions on s and t now imply that this is contractible. �

Lemma 2.13. If U has smooth boundary, then there is a C0-small isotopy

between U− and a small inward pushoff of U .

Proof. The definition of U− depends on choice of radius functions for the

strata comprising ∂U . Fix coordinates ∂U×R ⊆M near ∂U , and choose radius

functions whose inward derivative in the R-direction is positive inside U . Such

radius functions exist locally, hence can be patched together using a partition

of unity pulled back from ∂U (i.e., independent of the R-coordinate), which

preserves the property of having positive inward derivative inside U . Now

using these radius functions, each vertical line p×R for p ∈ ∂U intersects ∂U−

exactly once, transversally, which provides the desired isotopy. �
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Remark 2.14. It is not asserted that the isotopy in Lemma 2.13 will ensure

that the conormal remains disjoint from N∗S at infinity. This will require us

to exercise some care when applying it.

For the next result, consider a Whitney stratification S and a point q ∈M
lying in a stratum Mχ. Let Sq denote the Whitney stratification obtained from

S by replacing Mχ with Mχ \ q and {q}. Given a compact S-constructible set

X ⊆M containing q, we can consider its outward cornerings Xε and Xε,δ with

respect to S and Sq, respectively, where ε = (εα)Mα⊆X and δ > 0 is associated

to q. Evidently,

(2.4) Xε,δ = Xε ∪Bδ(q),

and according to the definition of “outward cornering” above, there is the im-

plicit requirement that εχ > 0 be sufficiently small as a function of (εβ)Mβ$Mα

and δ. The next result concerns the behavior of Xε,δ when we remove the de-

pendence of εχ on δ. The resulting neighborhoods are illustrated in Figure 2,

which should be contrasted with Figure 1.

q q q q

Figure 2. The neighborhoods Xε,δ.

Proposition 2.15. Let X ⊆M be a compact S-constructible subset, and

fix q ∈ X living in stratum χ. Let X̃ε,δ = Xε ∪̃Bδ(q), where Xε is the outward

cornering (2.1) and the notation ∪̃ indicates that the boundary of the union

ρ−1
χ ([0, εχ])∪Bδ(q) is smoothed along its potential corner locus ρ−1

χ (εχ)∪∂Bδ(q),
and then the remaining tubes are added. Then for suitable choices of radius

functions near q, these modified outward cornerings Xε,δ satisfy the conclusion

of Corollary 2.7.

Proof. Choose a local Euclidean chart near q in which q ∈ Mχ ⊆ M is

locally modelled on 0 ∈ Rk ⊆ Rn, and let us choose the usual radius (i.e.,

distance) functions in this chart. Note that we thus have a completely explicit

picture of how these tubes intersect near q; in particular, their union with

smoothed boundary is well behaved. We regard the union of tubes (with

smoothed boundary) ρ−1
χ ([0, εχ]) ∪̃ Bδ(q) as a single object associated to the

stratum χ, albeit depending on two parameters εχ and δ. This single object

satisfies the conclusion of Lemma 2.6 by Whitney (b), which is all that is used

in the inductive proof of Corollary 2.7. �
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3. Microlocal Morse categories

3.1. Strata poset categories and refinement functors. Let S be a stratifi-

cation. We fix the following notation for the Yoneda embedding:

S→ Fun(Sop, Set),(3.1)

α 7→ Hom(·, α) =: 1star(α).(3.2)

Note that

(3.3)

Hom(1star(α), 1star(β)) = 1star(β)(α) = Hom(α, β) =

{
{1} star(α) ⊆ star(β),

∅ otherwise.

For any S-constructible open set U , we introduce the functor 1U ∈ Fun(Sop, Set)

defined by the analogous formula

(3.4) Hom(1star(α), 1U ) = 1U (α) :=

{
{1} star(α) ⊆ U,
∅ otherwise.

(The action of 1U on morphism sets is in fact uniquely determined by the

above, since when α→ β, the set HomSet(1U (β), 1U (α)) always consists of one

element.) Note that star(α) ⊆ U if and only if α ⊆ U . More generally, for

U ⊆ V , there is a unique natural transformation

(3.5) 1U → 1V .

It sends 1 ∈ 1U (α) to 1 ∈ 1V (α) for any star(α) ⊆ U ⊆ V .

Now let S′ be a stratification refining S. There is a natural map r : S′ → S,

sending a stratum in S′ to the unique stratum in S containing it. We write

(3.6) r∗ : Fun(Sop, Set)→ Fun(S′op, Set)

for the pullback of functors along this map r. For τ ′ ∈ S′ and an S-constructible

open set U , we have

(3.7)

Hom(1star(τ ′), r
∗1U ) = (r∗1U )(τ ′) = 1U (r(τ ′)) =

{
{1} star(r(τ ′)) ⊆ U,
∅ otherwise.

Since U is open and S-constructible, we have star(r(τ ′)) ⊆ U if and only if

star(τ ′) ⊆ U , so we conclude that r∗1U = 1U .

We now linearize. We write Z[S] for the linearization of a poset S. We write

Mod S for the category of modules Fun(Sop,ModZ) = Fun(Z[S]op,ModZ), and

we use r∗ : Mod S → Mod S′ for pullback of modules as above. As with any

pullback of modules, this functor has a left adjoint, typically termed extension

of scalars or induction, which we write as r! : Mod S′ → Mod S, which fits into
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the commuting diagram

(3.8)
S′ Mod S′

S Mod S.

s7→1star(s)

r r!

s7→1star(s)

Restriction of scalars r∗ is co-continuous, so its left adjoint r! extension of

scalars preserves compact objects, giving a map r! : Perf S′ → Perf S (which

can also be viewed as the canonical extension of r : S′ → S to the idempotent-

completed pre-triangulated hulls).

3.2. A category for any Λ. We now wish to define a microlocal Morse cate-

gory C(Λ) for any subanalytic (possibly) singular isotropic Λ ⊆ S∗M , together

with functors C(Λ′) → C(Λ) for inclusions Λ′ ⊇ Λ. We define this system

of categories Λ 7→ C(Λ), the microlocal Morse theatre, by formulating axioms

which characterize it uniquely. (Recall that S∗M := (T ∗M \M)/R>0 denotes

the co-sphere bundle of M , and a closed subanalytic set Λ ⊆ S∗M is called

isotropic if and only if for some, or, equivalently, every, cover of Λ by locally

closed C1 submanifolds, all of them are isotropic.)

The previous subsection defined categories Perf S together with functors

r! : Perf S′ → Perf S whenever S′ is a refinement of S. For our current purpose,

these categories do not have the correct significance for general stratifications S

(compare Remark 2.1). As such, we will consider these categories only for

triangulations S.4 The microlocal Morse theatre is an extension of this functor

S 7→ Perf S on triangulations.

Definition 3.1. A microlocal Morse pre-theatre Λ 7→ C(Λ) is a functor from

the category of subanalytic singular isotropics inside S∗M to the category of dg

categories over Z. A normalized microlocal Morse pre-theatre is one equipped

with an isomorphism of functors (S 7→ C(N∗∞S)) = (S 7→ Perf S) on Whitney

triangulations S.

Remark 3.2. Any isomorphism of functors (S 7→ H∗C(N∗∞S)) = (S 7→
H∗ Perf S) automatically lifts to an isomorphism (S 7→ C(N∗∞S)) = (S 7→
Perf S) by Proposition 5.28. This will be crucial when discussing Fukaya cate-

gories (specifically Theorem 5.35).

We will characterize the microlocal Morse theatre in terms of microlocal

Morse theory.5 Let f : M → R be a function and S a stratification. An

4In fact, there are weaker conditions on a stratification S (which are satisfied if S is a

triangulation) implying that Perf S is the correct category to associate to S.
5More conventionally [41], this is called stratified Morse theory. We find the term “micro-

local” more descriptive, and also the word stratified would otherwise take on too many

meanings in this article.
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intersection of Γdf with N∗S is called an S-critical point, which is said to be

Morse if it is a transverse intersection at a smooth point of N∗S. The function

f is said to be S-Morse when all its S-critical points are Morse. When S is

subanalytic, such functions are plentiful and can be chosen analytic. (See [41,

Thm. 2.2.1] for this assertion, which is collected there from various results in

the literature.)

More generally, for any singular isotropic Λ ⊆ S∗M , a Λ-critical point of

f is by definition an intersection of Γdf with the union of the zero section and

R>0 × Λ. That is,

(3.9) critΛ(f) = Γdf ∩ (0M ∪ (R>0 × Λ)) ⊆ T ∗M.

Such a Λ-critical point is said to be Morse if the intersection is transverse and

occurs at a smooth point of 0M ∪ (R>0×Λ), and any f whose Λ-critical points

are all Morse is called Λ-Morse.

Definition 3.3. In any normalized microlocal Morse pre-theatre Λ 7→ C(Λ),

the Morse characters XΛ,p(f, ε, S) ∈ C(Λ) are defined as follows for smooth

Legendrian points p ∈ Λ.

Let f : M → R be an analytic function with a Morse Λ-critical point at p

(i.e., somewhere in R>0×{p} ⊆ T ∗M) with critical value 0, no other Λ-critical

points with critical values in the interval [−ε, ε], and with relatively compact

sublevel set f−1(−∞, ε). Let S be a Whitney triangulation for which Λ ⊆ N∗∞S

and for which both f−1(−∞,−ε) and f−1(−∞, ε) are S-constructible.

The Morse character XΛ,p(f, ε, S) is then defined as the image of

(3.10) cone(1f−1(−∞,−ε) → 1f−1(−∞,ε)) ∈ Perf S = C(N∗∞S).

under the map C(N∗∞S) → C(Λ), where 1f−1(−∞,−ε) → 1f−1(−∞,ε) is (the lin-

earization of) the unique map (3.5).

The Morse character XΛ,p(f, ε, S) ∈ C(Λ) depends a priori on the “casting

directors” (f, ε, S). Casting directors (f, ε) exist at any smooth Legendrian

point p ∈ Λ by general position, and S exists by the following argument. First,

by [49, Prop. 8.3.10] every closed subanalytic singular isotropic Λ ⊆ S∗M is

contained in N∗∞S for some subanalytic stratification S of M . Next, by refining

S the subanalytic subsets f−1(−∞,±ε) can be made constructible [18], [85].

Finally, S can be made a subanalytic Whitney triangulation by [86], [22], [23].

Definition 3.4. A microlocal Morse theatre is a normalized microlocal

Morse pre-theatre Λ 7→ C(Λ) satisfying the localization property : for any in-

clusion Λ ⊆ Λ′ and any collection of Morse characters XΛ′,p(f, ε, S) ∈ C(Λ′)

at smooth Legendrian points p ∈ Λ′ \ Λ with at least one in every component

of the smooth Legendrian locus of Λ′ \ Λ, the functor C(Λ′) → C(Λ) is the

idempotent-completed quotient by these Morse characters.



MICROLOCAL MORSE THEORY OF WRAPPED FUKAYA CATEGORIES 965

The definition of a microlocal Morse theatre allows one to readily compute

any particular microlocal Morse category C(Λ): embed Λ into some N∗∞S,

cast Morse characters in C(N∗∞S) = Perf S for all Legendrian components of

N∗∞S \ Λ, and take the quotient of Perf S by these characters and idempotent

complete. It follows that

Proposition 3.5. Any two microlocal Morse theatres Λ 7→ C(Λ) are

uniquely isomorphic.

Proof. For any normalized microlocal Morse pre-theatre C, let XΛ′\Λ ⊆
C(Λ′) denote the collection of all Morse characters at all smooth Legendrian

points of Λ′ \Λ. Now for any microlocal Morse theatre C, we have a canonical

quasi-equivalence (functorial in Λ),

(3.11) lim−→
N∗S⊇Λ

S Whitney triangulation

(C(N∗S)/XN∗S\Λ)π
∼−→ C(Λ),

and the left-hand side is independent of C since C is normalized. �

A dramatic realization is a particular construction of the microlocal Morse

theatre Λ 7→ C(Λ). We give two dramatic realizations, namely via sheaves and

via Lagrangians in Sections 4 and 5, respectively. Both these dramatic real-

izations cast the Morse characters as certain familiar objects. They moreover

show that the Morse characters in fact depend only on p (up to shifts) and are

independent of the casting directors.

Theorem 3.6. The microlocal Morse theatre Λ 7→ C(Λ) exists, and the

Morse characters XΛ,p ∈ C(Λ) are independent of the casting directors and

form a local system over the smooth Legendrian locus of Λ.

Proof. This follows from either Theorem 4.28 or Theorem 5.36. �

Proof of Theorem 1.1. Combine Theorem 4.28 and Theorem 5.36 with

Proposition 3.5. �

In fact, both dramatic realizations show that C(Λ) is invariant under con-

tact isotopy of S∗M , something which is not apparent from the present combi-

natorial prescription. This is immediate on the Fukaya side, and on the sheaf

side it is “sheaf quantization” [43]. In fact, there are even stronger invariance

statements: it is shown in [38] that in fact C(Λ) is invariant under contact

isotopy of S∗M \ Λ inside S∗M ; meanwhile, it is shown in [65] that C(Λ) is

invariant under “gapped” deformations of Λ.

Remark 3.7. The construction of this subsection makes sense in any stable

setting, e.g., over the sphere spectrum. To show existence of the microlocal

Morse theatre in such a more general setting, one could set up either microlocal

sheaf theory or the Fukaya category over the sphere spectrum. In principle,

one could also show existence directly from the stratified Morse theory of [41],
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as it already establishes results about homotopy types of spaces (not just their

cohomologies). A more interesting question is whether any symplectically in-

variant statement can be made beyond the stable setting.

3.3. Open inclusions. We now discuss functoriality of the microlocal Morse

theatre under open inclusions.

Given any analytic open inclusion of analytic manifolds M ′ ↪→M , a micro-

local Morse pre-theatre C′ on M ′ determines a microlocal Morse pre-theatre

Λ 7→ C′(Λ ∩ S∗M ′) on M ; let us call this the extension of C′ to M . For

microlocal Morse pre-theatres C′ on M ′ and C on M , a morphism C′ → C

means a morphism to C from the extension of C′ to M . In other words, such

a morphism consists of a coherent system of maps C′(Λ ∩ S∗M ′) → C(Λ) for

subanalytic singular isotropics Λ ⊆ S∗M . Equivalently, we may view such a

morphism as a coherent system of maps

(3.12) C′(Λ′)→ C(Λ)

for subanalytic singular isotropics Λ′⊆S∗M ′ and Λ⊆S∗M with Λ∩S∗M ′⊆Λ′.

If C and C′ are normalized, then restricting these maps to the case that Λ and Λ′

are both conormals of Whitney triangulations, we obtain a coherent collection

of maps

(3.13) Perf S′ = C′(N∗∞S′)→ C(N∗∞S) = Perf S

for every pair of Whitney triangulations S of M and S′ of M ′ such that S′ refines

S∩M ′. A normalized morphism C′ → C is one equipped with an isomorphism

between (3.13) and the extension to Perf of the tautological maps of posets

S′ → S (sending a stratum of S′ to the unique stratum of S containing it). A

morphism of microlocal Morse theatres C′ → C is, by definition, a normalized

morphism of underlying normalized microlocal Morse pre-theatres.

We now have the following refinement of Proposition 3.5:

Proposition 3.8. For an analytic open inclusion of analytic manifolds

M ′ ↪→M and microlocal Morse theatres C′ on M ′ and C on M , there exists a

unique morphism of microlocal Morse theatres C′ → C.

Proof. It follows from (3.13) that the maps C′(Λ′) → C(Λ) send Morse

characters to Morse characters. (Choose casting directors on M which are

“supported inside M ′” and appeal to the independence of Morse characters of

the casting directors from Theorem 3.6.) Now we have the following commu-

tative diagram, functorial in Λ and Λ′:

(3.14)

lim−→ (C(N∗∞S′)/XN∗∞S′\Λ′)
π lim−→ (C(N∗∞S)/XN∗∞S\Λ)π

C′(Λ′) C(Λ),

∼ ∼
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where both direct limits take place over pairs of Whitney triangulations S and

S′ for which S′ refines M ′ ∩ S and for which Λ ⊆ N∗∞S and Λ′ ⊆ N∗∞S′. Hence

the maps C′(Λ′)→ C(Λ) are determined uniquely. �

Proof of Proposition 1.3. Combine Propositions 4.29 and 5.37 with Propo-

sition 3.8. �

4. Sheaf categories

We recall the general formalism of sheaves and properties of stratifications.

We then recall from [49] the notion of microsupport, and the category ShΛ(M)

of sheaves on M whose microsupport at infinity is contained in Λ. We show

that the assignment Λ 7→ ShΛ(M) is a microlocal Morse theatre in the sense

of Definition 3.4.

4.1. Categories of sheaves and functors between them. Here we give a brief

review of the general formalism of sheaves. Our presentation is somewhat mod-

ern in that we never discuss sheaves of abelian groups, rather we work at the

dg level and with unbounded complexes from the beginning, but it is essen-

tially the same as any standard account such as [47], [49], [75], complemented

by [87] in order to work with unbounded complexes and, in particular, for the

proper base change theorem in this setting. Some discussion about working in

the unbounded setting can be found in [50].

Given a topological space T , we write Op(T ) for the category whose ob-

jects are open sets and morphisms are inclusions. A (Z-module valued) presheaf

on T is by definition a functor Op(T )op → ModZ. In particular, a presheaf F

takes a value F(U) ∈ ModZ on an open set U ⊆ T , termed its sections; given

open sets U ⊆ V , it gives a morphism F(V ) → F(U), termed the restriction,

etcetera. Given any subset X ⊆ T , we write F(X) = lim−→X⊆U F(U); when X is

a point, this is termed the stalk and is written Fx.

The category of sheaves is the full subcategory of presheaves on objects F

taking covers to limits:

(4.1) F

(⋃
i∈I

Ui

)
∼−→ lim
∅6=J⊆I

F

Ñ⋂
j∈J

Uj

é
.

The inclusion of sheaves into presheaves has a left adjoint termed “sheafifica-

tion,” giving, for any presheaf F, a sheaf Fsh such that any map from F to a

sheaf factors uniquely through Fsh.

We write Sh(T ) for the (dg) category of sheaves of (dg) Z-modules on T .

It is complete and co-complete. Its homotopy category is what was classically

called the unbounded derived category of sheaves on T .

For any continuous map f : S → T , there is an adjoint pair f∗ : Sh(T )↔
Sh(S) : f∗. The pushforward f∗ is given by the formula (f∗F)(U) = F(f−1(U)),
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while the pullback f∗ is the sheafification of the presheaf given by (f∗G)(V ) =

G(f(V )).

Example 4.1. Consider f : S → pt and the constant sheaf Z := f∗Z. Note

that in our conventions, Z(U) is a chain complex computing the cohomology

of U . This should illustrate where, in this account of sheaf theory, the usual

homological algebra of resolutions is hiding: it is in the sheafification.

Being a left adjoint, f∗ is co-continuous (preserves colimits, in particular,

sums). When j : U → T is the inclusion of an open set, j∗ is given by

the simpler formula (j∗F)(V ) = F(V ), no sheafification required, and hence

preserves limits as well. In particular, it must also be a right adjoint. The

corresponding left adjoint j! is easy to describe: it is the sheafification of

V 7→

{
F(V ) V ⊆ U,
0 otherwise.

The sheaf j!F is termed the extension by zero, since its stalks in U are iso-

morphic to the corresponding stalks of F, and its stalks outside of U are zero.

For a sheaf F on T , we write FU := j!j
∗F. By adjunction there is a canonical

morphism FU → F. The object ZU co-represents the functor of sections over

U , i.e., Hom(ZU ,F) = F(U).

Being a right adjoint, f∗ is continuous. When f is proper, it is in addition

co-continuous. More generally, for a morphism of locally compact spaces f :

S → T , one defines6

f! : Sh(S)→ Sh(T ),

F 7→ lim−→
U⊂⊂S

f∗FU .

Here the notation U ⊂⊂ S means that the closure of U is compact. When S

is an open subset, this recovers the original definition. When f is proper, then

f! = f∗. When f is the map to a point, then f!f
∗Z is the compactly supported

cohomology.

As f! is built from colimits, left adjoints, and pushforwards from compact

sets, it is co-continuous. As such it has a right adjoint, denoted f !. When f is

the inclusion of an open subset, we already had the right adjoint f∗, so in this

case f∗ = f !.

For any locally closed subset v : V ⊆ T , we extend the notation FV :=

v!v
∗F. This sheaf has the same stalks as F at points in V and has vanishing

stalks outside.

6This particular way of defining the ! pushforward is taken from [75]. It has the virtue of

making the co-continuity of f! obvious.
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For an open-closed decomposition U
j
↪−→ T

i←−↩ V (j open, i closed), the

functors j∗, j! and i∗, i! are fully faithful, and there is an exact triangle

(4.2) j!j
! → id→ i∗i

∗ [1]−→ .

Denoting by Op(M) the poset of open sets, there are functors

Op(M)
!−→ Sh(M), Op(M)op ∗−→ Sh(M),

U 7→ u!Z, U 7→ u∗Z,(4.3)

where u : U → M denotes the inclusion. We have the following criterion for

when (pullbacks of) these functors are fully faithful:

Lemma 4.2. Let Π be a poset with a map to Op(M), and let Z[Π] denote

its dg linearization. The following are equivalent :

• H∗(U) ∼= Z for all U ∈ Π and H∗(U)
∼−→ H∗(U \ V ) whenever U * V .

• The composition Z[Π]→ Z[Op(M)]
!−→ Sh(M) is fully faithful.

Proof. We have

HomM (ZU ,ZV ) = HomM (u!Z, v!Z) = HomU (Z, u!v!Z) = HomU (Z, u∗v!Z)

= H∗(U,ZV ∩U ) = cone(H∗(U)→ H∗(U \ V ))[−1],

(4.4)

where we have used the exact triangle (4.2). The second condition asks that

this be Z when U ⊆ V and zero otherwise, which is exactly what is asserted

in the first condition. �

Lemma 4.3. Let Π be a poset with a map to Op(M) satisfying the equiv-

alent conditions in Lemma 4.2, and suppose that W ⊆ M is an open set such

that H∗(U)
∼−→ H∗(U \W ) is an isomorphism whenever U * W . Then the

pullback of the module Hom(−,ZW ) along Z[Π]
!−→ Sh(M) is the indicator

functor

(4.5) 1W : U 7→

{
Z U ⊆W,
0 otherwise.

Proof. This is true by the same calculation as above. �

4.2. Constructible sheaves. Let T be a topological space and S : T =
∐
Tα

a stratification. Write TS for the topological space with underlying set T and

base given by the stars of strata in S. (Note that the intersection of any two

stars is expressible as a union of stars.) Note the continuous map T → TS.
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Remark 4.4. Let π : T → T ′ be any continuous bijection. For any open set

U of T ′, and any sheaf F on T , one has by definition π∗F(U) = F(U). It follows

that π∗ZU = ZU , as this sheaf co-represents the functor of sections over U .

Lemma 4.5. Pulling back sheaves under S
star−−→ Op(TS) defines an equiv-

alence

Sh(TS)
∼−→ Fun(Sop,ModZ) = Mod S,(4.6)

F 7→ (s 7→ F(star(s))) = HomTS(Zstar(−),F)(4.7)

which sends Zstar(s) to HomS(·, s) = 1star(s).

Proof. The functor in question is simply restricting a sheaf on TS to the

base consisting of stars of strata. This functor is fully faithful because a map

of sheaves is determined by its restriction to a base for the topology. It is

essentially surjective because there are no nontrivial covers of stars of strata

by stars of strata. The behavior on objects is as asserted because Zstar(s) and

s are the co-representatives of the functors of sections over s and the value of

the module at s, respectively. �

Lemma 4.6. If S′ refines S, then the following diagram commutes :

(4.8)

Sh(TS′) Mod S′,

Sh(TS) Mod S

π∗ r∗

where π∗ denotes pullback of sheaves under the continuous map π : TS′ → TS
and r∗ : Mod S→ Mod S′ denotes the pullback along the natural map r : S′ → S.

Proof. The proof follows by Remark 4.4 and the characterization of the

horizontal functors as ZU 7→ 1U . �

A sheaf is said to be constant when it is isomorphic to the star pullback

of a sheaf on a point, and locally constant when this is true after restriction to

an open cover. For a stratification S of M , we say a sheaf is S-constructible7

if it is locally constant when star restricted to each stratum of S. We write

ShS(T ) for the full subcategory of Sh(T ) on the S-constructible sheaves.

Note that the image of the pullback map Sh(TS)→ Sh(T ) is contained in

ShS(T ).

Lemma 4.7. For a triangulation S, the map Sh(TS)→ ShS(T ) is an equiv-

alence.

7Some sources, such as [49], also ask that the word constructible should mean that sheaves

should have perfect stalks and bounded cohomological degree. We do not.
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Proof. To show full faithfulness, in view of the equivalence of Lemma 4.5

it is enough to check that HomTS(Zstar(s),Zstar(t)) = HomT (Zstar(s),Zstar(t)).

The former is the indicator of star(s) ⊆ star(t) again by Lemma 4.5. To show

that HomT (Zstar(s),Zstar(t)) is as well, by Lemma 4.2 it is enough to show that

H∗(star(s))→ H∗(star(s) \ star(t)) is an isomorphism for star(s) * star(t). If

star(s) * star(t), then star(s) \ star(t) is the join of something with s and is

hence contractible.

Regarding essential surjectivity, note that the exact triangle of (4.2) serves

to decompose any sheaf into an iterated extension of (extensions by zero of)

sheaves on the strata, hence any constructible sheaf into (extensions by zero

of) locally constant sheaves on the strata. Since the strata are all contractible,

these sheaves are in fact constant. This shows that the Zs generate. To

conclude that the Zstar(s) generate, use the exact triangle Zstar(s)\s → Zstar(s) →

Zs
[1]−→ and induction on dimension of strata (noting that the first term is in

the span of Zt for dim(t) < dim(s)). �

4.3. Microsupport. The notion of microsupport is developed in [49].8 We

recall some basic facts here.

For what follows, let M denote an analytic manifold. Given a sheaf F and

a smooth function φ : M → R, consider a point m in a level set φ−1(t). We

say that m ∈M is a cohomological F-critical point of φ if, for inclusion of the

superlevel set i : φ−1(R≥t) ↪→M , one has (i!F)m 6= 0.

The microsupport ss(F) ⊆ T ∗M is by definition the closure of the locus

of differentials of functions at their cohomological F-critical points [49]. It is

conical.

If F is locally constant, then a cohomological F-critical point can only

occur where the function in question has zero derivative. Thus the microsup-

port of a locally constant sheaf is contained in the zero section (and is equal

to it where the sheaf is not locally zero). If U ⊆ M is an open set and m is

a point in the smooth locus of ∂U , then over m, the locus ss(ZU ) = ss(u!Z)

is the half-line of outward conormals to ∂U . The locus ss(u∗Z) is the inward

conormal.

For a subset X ⊆ T ∗M , we write ShX(M) for the full subcategory of

Sh(M) spanned by objects with microsupport contained in X. Similarly, for

X ⊆ S∗M , we write ShX(M) for the full subcategory of Sh(M) with micro-

support at infinity contained in X. Evidently if 0M ⊆ X, then ShX(M) =

Sh∂∞X(M).

8In [49], the authors work in the bounded derived category. As noted in [73], the only

real dependence on this was in the proof of one lemma, which is extended to the unbounded

setting in that reference.
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The following result is a strengthening of [49, Prop. 8.4.1]:

Proposition 4.8. For a Whitney stratification S of a C1 manifold M ,

we have ShS(M) = ShN∗S(M) (i.e., having microsupport contained in N∗S is

equivalent to being S-constructible).

Proof. We first show the inclusion ShS(M) ⊆ ShN∗S(M). Let us first

show that ss(ZX) ⊆ N∗S. When X is relatively compact, express X as the

ascending union of locally closed submanifolds-with-corners Xi = X \ (∂X)εi

where (∂X)εi denotes the outward cornering of ∂X = X \ X in the sense of

(2.1) and εi → 0. Corollary 2.7 implies X \ (∂X)εi are indeed locally closed

submanifolds-with-corners, and Corollary 2.8 implies that their conormals limit

inside N∗S as εi → 0, and hence that ss(ZX) = ss(lim−→ZXi) ⊆ N∗S. The

case of general X may be reduced to the relatively compact case by refining

the stratification as in Remark 2.4 (the assertion ss(ZX) ⊆ N∗S is local).

The same argument shows that for any locally constant sheaf on X, its lower

shriek pushforward to M has microsupport contained in N∗S. Since any S-

constructible sheaf is (locally) a finite iterated extension of such sheaves, we

conclude that ShS(M) ⊆ ShN∗S(M).

We now show that the inclusion ShS(M) ⊆ ShN∗S(M) implies the reverse

inclusion ShN∗S(M) ⊆ ShS(M) by a straightforward dévissage argument. Sup-

pose ss(F) ⊆ N∗S, and let us show that F is S-constructible. Let X be a

maximal stratum over which F is nonzero, and let U ⊆M be an open set con-

taining X so that X ⊆ U is the support of F |U (hence, in particular, X ⊆ U

is closed). Since ss(F) ⊆ N∗S, there exists a (derived) local system on X

whose lower shriek pushforward F0 (which is S-constructible) agrees with F

over U . Since F0 ∈ ShS(M) ⊆ ShN∗S(M), it suffices to show that the cone of

F0 → F is S-constructible. We have thus reduced to a sheaf with smaller sup-

port. Iterating, we eventually reduce to the case of F = 0 which is obviously

S-constructible. �

4.4. Microstalks. Recall that if F is a sheaf and φ is a smooth function

with φ(x) = t and dφx = ξ, and we denote the inclusion i : φ−1(R≥t) → M ,

then if (i!F )x 6= 0, we have (x, ξ) ∈ ss(F) (though not conversely). Given this,

one wants to assign the complex (i!F)x itself as an invariant of F at (x, ξ). This

is not generally possible, but it can be done when ξ is a point in the smooth

Lagrangian locus of ss(F) [49, Prop. 7.5.3]. Namely, at any smooth Lagrangian

point (x, ξ) ∈ X ⊆ T ∗M , there is a “microstalk” functor

(4.9) µ(x,ξ) : ShX(M)→ Sh(pt).

It is given by a shift of F 7→ (i!F)x for any φ with dxφ = ξ with the graph of dφ

transverse to X. The shift can be fixed using the index of the three transverse

Lagrangians (ss(F), T ∗xM,Γdφ). When ξ = 0, the microstalk functor is simply

the stalk functor.
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Lemma 4.9. The microstalk functors are co-continuous.

Proof. Every stalk functor (i∗ for i the inclusion of a point) is a left adjoint,

hence is co-continuous. To show co-continuity of the microstalk at a point

(x, ξ) ∈ Λ with ξ 6= 0, argue as follows. By applying a contact transformation,

we may reduce to the case that Λ is (locally near (x, ξ)) the conormal of a

smooth hypersurface N ⊆ M . Let B ⊆ M be an open ball with smooth

boundary whose inward conormal at x ∈ ∂B is ξ. Moreover, choose B so

that N∗∂B and Λ = N∗N intersect cleanly at (x, ξ). (That is, ∂B and N

are tangent at x, differing by a non-degenerate quadratic form.) Define B−
and B+ from B by pushing ∂B inward/outward near x. Now the cone of the

map Γc(B−,−) → Γc(B+,−) is (up to a shift) the microstalk functor µ(x,ξ).

The compactly supported sections functor Γc is co-continuous, since it is the

composition of the restriction and lower shriek pushforward functors, both of

which are co-continuous. �

Proposition 4.10. Let X ⊆ T ∗M be closed and conical, and let Λ ⊆
T ∗M \ X be closed, conical, and stratified by isotropic submanifolds. Then

ShX(M) ⊆ ShX∪Λ(M) is the kernel of all microstalks at Lagrangian points

of Λ.

Proof. If ss(F) ⊆ X, then the microstalks of F at Lagrangian points of

Λ vanish by definition of microsupport. To prove the converse, suppose that

ss(F) ⊆ X ∪ Λ and that the microstalks of F vanish at all Lagrangian points

of Λ, and let us show that ss(F) ⊆ X. By the fundamental result [49, Thm.

6.5.4] that the microsupport is co-isotropic, it is enough to show that p /∈
ss(F) for every Lagrangian point p ∈ Λ. It is not quite immediate from the

definitions that vanishing of the microstalk implies there is no microsupport,

since the microsupport is defined in terms of arbitrary test functions, whereas

microstalks are defined in terms of microlocally transverse test functions. To

see it is true, and that moreover the microstalk is locally constant along Λ, one

can apply a contact transformation so that Λ becomes locally the conormal to

a smooth hypersurface; for details, see [49, Chap. 7]. �

It will be central to our discussion to find co-representatives of the mi-

crostalk functors. Here is a first step:

Theorem 4.11 ([49, Cor. 5.4.19, Props. 5.4.20 and 7.5.3] or [41], [76]).

Let X ⊆ T ∗M be a closed conical subset, let φ : M → R be a proper function,

and assume that over φ−1([a, b)), one has Γdφ ∩X = (x, ξ), where (x, ξ) is a

smooth Lagrangian point of X .

Let A : φ−1((−∞, a))→M , A′ : φ−1((a,∞))→M , B : φ−1((−∞, b))→M ,

and B′ : φ−1((b,∞))→M be the inclusions. Then (up to a shift), the following

functors ShX(M)→ Sh(pt) are isomorphic:
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• the microstalk functor µ(x,ξ);

• Hom(cone(A!Z→ B!Z),−);

• Hom(cone(A′∗Z→ B′∗Z),−).

Here the maps are the canonical ones coming from restriction of sections.

We do not say that cone(A!Z→ B!Z) co-represents the microstalk because

it is not an element of ShX(M). As observed in [63], such co-representatives do

exist, for categorical reasons, as we now explain. First, we need to know that

the categories in question are well generated in the sense of Neeman [69, 52].

Lemma 4.12. The category ShX(M) is well generated.

Proof. The category of all sheaves Sh(M) is the derived category of a

Grothendieck abelian category, hence is well generated [68]. A sheaf F having

singular support inside X is equivalent to the restriction maps F(Uα)→ F(Vα)

being isomorphisms for some list of pairs (Uα, Vα)α depending on X. This

condition is equivalent to F being right-orthogonal to the cone of the map

ZVα → ZUα . Now the right-orthogonal complement of a set of objects in a well

generated category is well generated [69], [72, Thm. 4.9]. �

Now note that the microsupport of a sum or product is contained in the

closure of the union of the microsupports. Thus if X is closed, then the sub-

category ShX(M) ⊆ Sh(M) is closed under sums and products. In particular,

ShX(M) is complete and co-complete, and the inclusion ShX(M)→ Sh(M) is

continuous and co-continuous. More generally, if X ⊆ X ′ are closed, then the

inclusion ι : ShX(M) → ShX′(M) is continuous and co-continuous. It follows

that

Lemma 4.13. For closed X ⊆ X ′ ⊆ T ∗M , the inclusion ι : ShX(M) →
ShX′(M) has both adjoints : (ι∗, ι, ι!).

Proof. Since ShX(M) is well generated and ι is co-continuous, it has a

right adjoint ι! by Brown representability for well generated categories [69].

For the left adjoint ι∗, it would be sufficient to know Brown representabil-

ity for the opposite of ShX(M). However according to Neeman [70], it is

an open problem to establish Brown representability for the opposites of well-

generated categories. Instead, we may argue as follows. The categories in ques-

tion are presentable (co-complete and accessible [58, Def. 5.4.2.1 and 5.5.0.1];

this is a version of well generation), and so a functor has a left adjoint if and

only if it is continuous and accessible (preserves κ-filtered colimits [58, Def.

5.4.2.5 and 5.3.4.5]) by Lurie [58, Corollary 5.5.2.9].

Another proof of the existence of the left adjoint ι∗ has been given by

Efimov [28]. �
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For example, if V ⊆ M is a closed subset, then taking X = T ∗M |V and

X ′ = T ∗M recovers the adjoint triple for the pushforward along V → M ,

because ShT ∗M |V (M) = Sh(V ).

Using the left adjoint and Theorem 4.11, we can obtain a co-representative

for the microstalk as follows. Take any X ′ ⊇ ss(cone(A!Z → B!Z)), e.g.,

X ′ = T ∗M . Then ι∗ cone(A!Z→ B!Z) ∈ ShX(M) co-represents the microstalk.

We do not generally have a good understanding of (ι∗, ι, ι!), but when

X ′ \X is isotropic we have the following (special cases of which have appeared

in [63], [46]):

Theorem 4.14. Let X⊆T ∗M be closed and conical, and let Λ⊆T ∗M\ be

closed, conical, and stratified by isotropic submanifolds. The left adjoint ι∗ to

the inclusion ι : ShX(M)→ ShX∪Λ(M) realizes the quotient

(4.10) ShX∪Λ(M)/D
∼−→ ShX(M),

where D denotes co-representing objects for the microstalks at Lagrangian

points of Λ.

Proof. According to Proposition 4.10, the full subcategory ShX(M) ⊆
ShX∪Λ(M) is precisely the right-orthogonal to D. The left adjoint ι∗ to the

inclusion ι is thus termed the quotient by D. �

Remark 4.15. For our purposes in this paper, we do not need Lemma 4.13

and Theorem 4.14 in their general formulations given above, rather only in the

special case of subanalytic singular isotropic singular supports. In this setting,

we give an elementary derivation (i.e., without appealing to general Brown

representability type statements) in the next subsection.

4.5. Compact objects. Here we elaborate upon some assertions of [63].

We write ShX(M)c for the compact objects in the category ShX(M). Be

warned:

Proposition 4.16 ([68]). When M is connected and non-compact,

Sh(M)c = 0.

There are not many more compact objects in the compact case. However,

for sheaves with prescribed isotropic microsupport, the situation is different:

Proposition 4.17. For Λ ⊆ T ∗M a conic subset Whitney stratifiable by

isotropics, the category ShΛ(M) is compactly generated by the (co-representa-

tives of the) microstalk functors at the smooth Lagrangian points of Λ.

Proof. It was shown immediately after the proof of Lemma 4.13 that the

microstalk functors at smooth Lagrangian points of Λ are co-represented by ob-

jects of ShΛ(M). Since the microstalk functors are co-continuous (Lemma 4.9),

these co-representatives are compact. Any sheaf right-orthogonal to these
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co-representatives has by definition vanishing microstalks at all smooth La-

grangian points of Λ, hence has microsupport contained in the complement of

the smooth Lagrangian locus (see the proof of Proposition 4.10). This com-

plement, being stratified by subcritical isotropics, has no co-isotropic subset;

hence by the involutivity of microsupports [49, Thm. 6.5.4], the microsupport

is in fact the empty set and the sheaf vanishes. �

As promised in Remark 4.15, we now give arguments avoiding the use of

representability theorems in non-compactly-generated categories. This comes

at the cost of assuming subanalyticity in order to ensure the existence of tri-

angulations, but for the main results we will anyway need this hypothesis.

Lemma 4.18. For S a triangulation, the category ShS(M) is compactly

generated, and the objects of ShS(M)c are the sheaves with perfect stalks and

compact support.

Proof. Under the identification (Lemma 4.7) ShS(M) = Mod S, the Zstar(s)

go to compact generators. The dévissage in the proof of the same lemma shows

that Zs also generate, and can be expressed using finitely many Zstar(s), hence

are compact. The Zs evidently generate the sheaves with perfect stalks and

compact support. �

Remark 4.19. Note that while a non-compact manifold does not admit

a finite triangulation, it can sometimes be a relatively compact constructible

subset of a larger manifold.

Recall that ShS(M) = ShN∗S(M) for any Whitney stratification by Propo-

sition 4.8.

Proposition 4.20. For any subanalytic Whitney triangulation S, the cat-

egory ShS(M) is compactly generated by co-representatives of the microstalks

at smooth points of N∗S.

Proof. Consider the microstalk at some smooth point (x, ξ) ∈ N∗S. It

is possible to choose real analytic φ as in Theorem 4.11; see [41, Thm. 2.2.1]

or [49, Prop. 8.3.12]. We keep the notation of Theorem 4.11. Refine S to a

subanalytic Whitney triangulation S′ for which A!Z and B!Z are constructible.

By Lemma 4.18, cone(A!Z→ B!Z) is a compact object in ShS′(M). Lem-

mas 4.5 and 4.7 give ShS(M) = Mod S, and Lemma 4.6 states that the in-

clusion ι : ShS(M) → ShS′(M) corresponds to the map r∗ : Mod S → Mod S′

from Section 3.1. It was observed in Section 3.1 that r∗ has a left adjoint

r! : Mod S′ → Mod S, thus giving us a left adjoint ι∗ : ShS′(M) → ShS(M).

These left adjoints r!/ι
∗ preserve compact objects since r∗/ι are co-continuous.

Thus the object ι∗ cone(A!Z → B!Z) ∈ ShS(M), which co-represents the de-

sired microstalk, is compact.

Co-representatives of the microstalks at all smooth points of N∗S generate

ShS(M) by Proposition 4.10. �
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Remark 4.21. A similar argument shows that the stalk at any point of

M (not necessarily a smooth point of N∗S) is co-representable by a compact

object of ShS(M). Indeed, note that for any x ∈ M , the functor of taking

stalks at x, which is by definition Fx := lim−→F(Bε(x)), is in fact computed by

some fixed Fx = F(Bεx(x)). Indeed, further shrinking of the ball will be non-

characteristic with respect to N∗S, as follows from Whitney’s condition (b) (or

alternatively from microlocal Bertini–Sard [49, Prop. 8.3.12]). We may now

argue as above, choosing any analytic function with sublevelset Bεx(x).

Corollary 4.22. For any closed conical subanalytic isotropic Λ ⊆ T ∗M ,

the category ShΛ(M) is compactly generated by co-representatives of the mi-

crostalks at smooth points of Λ.

Proof. Fix a subanalytic Whitney triangulation S for which Λ ⊆ N∗S.

Denote by D ⊆ ShN∗S(M)c the co-representatives of the microstalks at smooth

points of N∗S \ Λ. By Proposition 4.10, ι : ShΛ(M) ⊆ ShN∗S(M) is precisely

the inclusion of the right-orthogonal to D. Since the objects of D are compact

by Proposition 4.20, Lemma A.7 applies to show that ShΛ(M) = ShN∗S(M)/D

is compactly generated by ShΛ(M)c = (ShN∗S(M)c/D)π and that the resulting

functor ι∗ : ShN∗S(M)→ ShΛ(M) is left adjoint to ι. �

Corollary 4.23. Let X ⊆ T ∗M and Λ ⊆ T ∗M \ X be closed conical

subanalytic isotropics. The inclusion ι : ShX(M) → ShX∪Λ(M) has a left

adjoint ι∗ : ShX∪Λ(M)→ ShX(M) whose restriction to compact objects defines

an equivalence

(4.11) (ShX∪Λ(M)c/D)π
∼−→ ShX(M)c,

where D denotes co-representing objects for the microstalks at Lagrangian

points of Λ.

Proof. By Corollary 4.22, ShX∪Λ(M) is compactly generated by the micro-

stalks at smooth points of X ∪Λ. Now argue as in the proof of Corollary 4.22.

�

The following result was shown in [63] using arborealization; here is a

direct argument.

Corollary 4.24. The Yoneda embedding induces an equivalence between

the full subcategory of ShΛ(M) of objects with perfect stalks and the category

Prop ShΛ(M)c.

Proof. From the argument in Proposition 4.20, we see that the microstalks

are calculated by comparing sections over precompact sets; it follows that a

sheaf microsupported in Λ (thus constructible) with perfect stalks has perfect

microstalks. The microstalk functors split-generate ShΛ(M)c by Corollary 4.22,

so we see that a sheaf with perfect stalks defines a proper module over ShΛ(M)c.
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To see the converse, recall from Remark 4.21 that the stalk functors can

be expressed in terms of sections over open sets constructible with respect to

some S satisfying N∗S ⊇ Λ. The left adjoint to ShΛ(M) ↪→ ShS(M) preserves

compact objects as observed previously, hence proper over ShΛ(M)c implies

perfect stalks. �

For compact M , we establish smoothness and/or properness for some of

these categories.

Proposition 4.25. If M is compact and S is a triangulation, then ShS(M)c

is smooth and proper.

Proof. The Zstar(s) give a finite generating exceptional collection which is

proper, and this implies smoothness by Lemma A.11. �

More generally,

Corollary 4.26. If M is compact and Λ is closed conical subanalytic

singular isotropic, then ShΛ(M)c is smooth, and hence

Prop ShΛ(M)c ⊆ Perf ShΛ(M)c

and Prop ShΛ(M)c is proper.

Proof. By Proposition 4.25 and Corollary 4.23, the category ShΛ(M)c is

a quotient of a smooth category, hence smooth (Lemma A.9). Smoothness

implies proper modules are perfect (Lemma A.8) and that the category of

proper modules is proper. �

Remark 4.27. When (M,Λ) are non-compact but finite-type in a suitable

sense, the same result is true. One can prove it by embedding into a compact

manifold as in Remark 4.19.

4.6. In conclusion. Collecting the results of this section, we have shown

Theorem 4.28. The functor Λ 7→ ShΛ(M)c is a microlocal Morse the-

atre in the sense of Definition 3.4, which casts the co-representatives of the

microstalk functors at smooth points of Λ as the Morse characters.

Proof. The most obvious functor Λ → ShΛ(M) is the one which carries

inclusions Λ ⊆ Λ′ to inclusions ShΛ(M) ↪→ ShΛ′(M); note that this is in fact a

strict diagram of categories (as all are simply full subcategories of Sh(M)) and

takes values in the category whose objects are large dg categories and whose

morphisms are continuous and co-continuous functors. Passing to left adjoints

and taking compact objects (see Corollary 4.23), we obtain a microlocal Morse

pre-theatre Λ 7→ ShΛ(M)c.
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For triangulations S, the functors

(4.12) S
s7→Zstar(s)−−−−−−→ ShS(M)

F 7→Hom(Zstar(−),F)
−−−−−−−−−−−−→ Mod S

define an equivalence Perf S = ShS(M)c by Lemmas 4.5 and 4.7. When S is a

Whitney stratification, we have ShS(M)c = ShN∗∞S(M)c by Proposition 4.8.

Taking the commutative diagram in Lemma 4.6 and passing to the left

adjoints of the vertical maps shows that this equivalence respects refinement

of Whitney triangulations. This shows that Λ 7→ ShΛ(M)c is normalized.

By Theorem 4.11, the Morse characters in Perf S correspond, under this

isomorphism, to co-representatives of the microstalks. According to Corol-

lary 4.23, the functor ShΛ′(M)c → ShΛ(M)c is the quotient by co-representa-

tives of the microstalks. Thus Λ 7→ ShΛ(M)c satisfies the localization property

and is thus a microlocal Morse theatre. �

Proposition 4.29. For any analytic open inclusion of analytic manifolds

M ′ ↪→ M , the restriction functors ShΛ(M) → ShΛ′(M
′) for subanalytic sin-

gular isotropics with Λ′ ⊇ Λ ∩ S∗M ′ have left adjoints whose restrictions to

compact objects form a morphism of microlocal Morse theatres.

Proof. The categories ShΛ(M) are compactly generated by Corollary 4.22,

and Brown representability holds for the opposites of compactly generated cat-

egories by [69], [53]. Thus since the restriction functors ShΛ(M) → ShΛ′(M
′)

are continuous, they admit left adjoints. Since restriction is co-continuous,

these left adjoints preserve compact objects. Restricting these left adjoints to

compact objects defines a morphism of microlocal Morse pre-theatres in the

sense of Section 3.3.

Let us show that this is a morphism of microlocal Morse theatres, i.e.,

that it is normalized. For a stratification S of M and a stratification S′ refining

S ∩M ′, we have the following commutative diagram:

(4.13)

ShS′(M
′) Sh(M ′S′) Mod S′

ShS(M) Sh(MS) Mod S

∼

∼

(compare Lemmas 4.5 and 4.6). When S and S′ are triangulations, the left

horizontal maps are also equivalences by Lemma 4.7. Finally, when S is Whit-

ney, we have ShS(M) = ShN∗S(M) (and the same for S′) by Proposition 4.8.

Thus passing to left adjoints of the vertical arrows and restricting to compact

objects, we conclude. �
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5. Wrapped Fukaya categories

5.1. Wrapped Floer cohomology. Here we quickly fix notation and review

basic facts (see, e.g., [37, §3] for more details). Fix a Liouville manifold or

open Liouville sector X.

For a pair of exact Lagrangians L,K ⊆ X, conical and disjoint at infin-

ity, we write HF ∗(L,K) for their Floer cohomology. We write HF ∗(L,L) to

mean HF ∗(L+, L), where L+ denotes an (unspecified) small positive (mean-

ing positive at infinity) pushoff of L. There is an isomorphism of groups

HF ∗(L,L) = H∗(L), and the group HF ∗(L,L) = HF ∗(L+, L) is a unital

algebra;9 its unit is termed the continuation element. Composition of con-

tinuation elements associated to small pushoffs defines more generally a con-

tinuation element in HF ∗(L++, L) for L++ any (not necessarily small) pos-

itive wrapping (i.e., isotopy) of L. Composition with the continuation ele-

ment associated to L  L++ gives maps HF ∗(L,K) → HF ∗(L++,K) and

HF ∗(K,L++) → HF ∗(K,L) for any K disjoint at infinity from L and L++,

which are termed continuation maps. If the entire positive isotopy L  L++

takes place in the complement of ∂∞K, then these continuation maps are

isomorphisms. More generally, if L  L′ is any isotopy taking place in the

complement of ∂∞K (for example, any compactly supported isotopy), then

there is an induced identification HF ∗(L,K) = HF ∗(L′,K) (see [37, Lem.

3.21]) which coincides with the continuation isomorphism if L L′ is positive

at infinity (see [37, Lem. 3.26]). In particular, seeing as HF ∗(L,K) = 0 tau-

tologically when K and L are disjoint, Floer cohomology HF ∗(L,K) vanishes

whenever L is disjoinable from K by an isotopy in the complement of ∂∞K.

The wrapped Floer cohomology HW ∗(L,K)X is equivalently calculated by

(5.1)

lim−→
L L++

HF ∗(L++,K) = lim−→
L L++

K−− K

HF ∗(L++,K−−) = lim−→
K−− K

HF ∗(L,K−−).

Here, the direct limits are taken using the continuation maps over positive-at-

infinity isotopies of L and negative-at-infinity isotopies of K. The freedom to

wrap in only one factor is extremely useful in practice.

Given any closed subset Λ ⊆ ∂∞X, and L,K disjoint at infinity from Λ,

we similarly define partially wrapped Floer cohomology HW ∗(L,K)X,Λ by

restricting wrappings to take place in the complement of Λ.

The following lemma allows one to explicitly describe some cofinal wrap-

ping sequences in a given (X,Λ). Its typical use is the following. To compute

HW ∗(L,K)X,Λ, if one can find a cofinal sequence Lt such that the induced

9One expects (as is known for compact L) that the isomorphism HF ∗(L,L) = H∗(L) is

further compatible with algebra structures; we are not aware of a reference for this.
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maps HF ∗(Lt,K) → HF ∗(Lt+1,K) are eventually all isomorphisms, then

HW ∗(L,K)X,Λ = HF ∗(Lt,K) for any Lt in this stable range.

Lemma 5.1 ([37, Lem. 3.29] [38, Lem. 2.2]). Let Lt be a positive isotopy

of Lagrangians in X avoiding Λ at infinity. If ∂∞Lt escapes to infinity in (i.e.,

is eventually disjoint from any given compact subset of ) ∂∞X \ Λ as t → ∞,

then it is a cofinal wrapping of L0 in (X,Λ).

5.2. Wrapped Fukaya categories. In [37], [38], for any Liouville sector X

and any closed subset Λ ⊆ (∂∞X)◦, we constructed A∞ categories W(X,Λ)

whose objects are exact Lagrangians in X\Λ, conical at infinity (by convention,

W(X) := W(X, ∅)). The cohomology-level morphisms are simply the wrapped

Floer cohomology groups as defined above: H∗W(L,K) = HW ∗(L,K)X,Λ.

For a compact manifold-with-boundary M , its cotangent bundle T ∗M is a

Liouville sector [37, Ex. 2.7].

One main point of [37] was the construction of a covariant functor W(X)→
W(Y ) for an inclusion of Liouville sectors X ⊆ Y . In [38] we remarked that the

same construction gives a functor W(X,Λ∩ (∂∞X)◦)→W(Y,Λ). This covari-

ance is a nontrivial result having to do with the fact that holomorphic disks

can be made to not cross the boundary of a Liouville sector (if the Lagrangian

boundary conditions do not). By contrast, it is immediate from the defini-

tion that if Λ ⊆ Λ′, then there is a natural map W(X,Λ′) → W(X,Λ): just

wrap more. Both covariance statements allow one to calculate in a potentially

simpler geometry and push forward the result.

Here we wish to consider categories W(T ∗M,Λ) for (possibly non-compact)

manifolds M without boundary and closed subsets Λ ⊆ S∗M = ∂∞T
∗M .

Such a cotangent bundle T ∗M is an open Liouville sector in the sense of [37,

Rem. 2.8] (meaning, concretely, it admits an exhaustion by Liouville sectors,

in this case T ∗M0 ⊆ T ∗M1 ⊆ · · · , where M0 ⊆ M1 ⊆ · · · is an exhaustion of

M by compact codimension zero submanifolds-with-boundary).

The construction of the wrapped Fukaya category of an open Liouville

sector is given in [37, §3.8]. The generalization to the case with a stop following

[38, §2] is straightforward. The result is the following definition. We consider

tuples (P, {Mp}p∈P , {Lp}p∈P , J, ξ) where

(i) P is a partially ordered set;

(ii) each Mp ⊆ M is a compact codimension zero submanifold with smooth

boundary, equipped with a choice of projection from T ∗Mp to CRe≥0 as

in [37, Def. 2.26] defined near the boundary;

(iii) each Lp ⊆ T ∗Mp is an exact Lagrangian, cylindrical at infinity, disjoint

from Λ at infinity, equipped with grading and orientation data as in

Section 5.3 below, such that for every totally ordered subset p0 > · · · >
pk ∈ P , the Lagrangians Lp0 , . . . , Lpk are mutually transverse;
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(iv) the pair (ξ, J) is a choice of compatible Floer data (strip-like coordinates

and almost complex structures) as in [37, Eq. (3.31)–(3.33)] for every

totally ordered subset p0 > · · · > pk ∈ P (so Jp0,...,pk is an almost

complex structure on T ∗Mp0), such that all moduli spaces of Fukaya A∞
disks are cut out transversally.

Any such tuple gives rise to a A∞ category whose objects are the elements

of P , whose morphism spaces from p to p′ are CF ∗(Lp, Lp′) for p > p′, are

Z for p = p′, and otherwise vanish. We may ask that such a tuple be cofi-

nite (meaning P≤p is finite for every p ∈ P ) and duplicate-free (meaning

P≤p equipped with the restriction of the remaining data are pairwise non-

isomorphic for p ∈ P ). There is a universal cofinite duplicate-free tuple

(P, {Mp}p∈P , {Lp}p∈P , J, ξ) [37, Lem. 3.42], which thus gives a canonically de-

fined A∞ category O(T ∗M,Λ). The wrapped category W(T ∗M,Λ) is defined

as the localization O(T ∗M,Λ)[C−1] (refer to [37, §3.1.3] for localizations of

A∞ categories) at the class C of all continuation elements in HF 0(Lp, Lp′) for

positive isotopies Lp′  Lp inside T ∗Mp disjoint at infinity from Λ. That this

category deserves the name W(T ∗M,Λ) is justified by [37, Prop. 3.43, Prop.

3.39, Lem. 3.37] and [38, §2]; in particular, these show that it has the correct

cohomology category.

The resulting category W(T ∗M,Λ) is moreover strictly functorial in M

and Λ: for any open inclusion of manifolds M ↪→M ′ such that Λ contains the

inverse image of Λ′, there is an induced functor W(T ∗M,Λ) → W(T ∗M ′,Λ′),

and these functors respect compositions of inclusions M ↪→M ′ ↪→M ′′.

5.3. Gradings and orientations. We briefly review the setup for defining

gradings and orientations in Floer theory; for more details, see Seidel [77] and

[79, (11e)–(11l)]. Our Floer cohomology groups and Fukaya categories are all

Z-graded and with Z coefficients.

Denote by LGr(V ) the Grassmannian of Lagrangian subspaces of a given

symplectic vector space V . A map ∂D2 = S1 → LGr(V ) defines elliptic

boundary conditions for the ∂̄-operator on the trivial vector bundle with fiber

V over D2 (choosing also a compatible complex structure on V , which is a

contractible choice), and hence a virtual vector space, namely the index (kernel

minus cokernel) of this operator, thus giving a map

(5.2) L(LGr(V ))→ Z×BO.

Identifying U/O = lim−→n
LGr(Cn) and restricting to the based loop space, the

resulting map Ω(U/O) → Z × BO is (almost [79, Rmk. 11.8]) the Bott peri-

odicity homotopy equivalence. For Floer theory with Z-grading and Z coef-

ficients, we care just about the dimension and orientation, i.e., we compose

the above map with (id, w1) : Z × BO → Z × K(Z/2, 1). Now restricting

to the based loop space Ω LGr(V ) and applying B, we obtain cohomology
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classes on LGr(V ), which are (see the related [79, Lem. 11.7] or [9, Prop.

4.2.8]) the Maslov class µ ∈ H1(LGr(V ),Z) and w2 ∈ H2(LGr(V ),Z/2) (the

second Stiefel–Whitney class of the tautological bundle L → LGr(V )). The

class w2 is represented by a map LGr(V )→ K(Z/2, 2) given by the pullback of

w2 : BO → K(Z/2, 2) under the map LGr(V )→ BO (which is well defined up

to contractible choice) classifying the tautological bundle. In contrast, the map

LGr(V ) → K(Z, 1) = S1 classified by the Maslov class µ is not well defined

up to contractible choice. Rather, given a compatible complex structure on V

(a contractible choice), the Maslov class is represented by the canonical map

(5.3) LGr(V )→ ((∧top
C V )⊗2 \ 0)/R>0

given by the composition of ∧top
R : LGr(V )→ LGr(∧top

C V ) = RP (∧top
C V ) with

the squaring map RP (∧top
C V ) → ((∧top

C V )⊗2 \ 0)/R>0. Given a “basepoint”

S ∈ LGr(V ) (so V = S ⊗R C), we obtain canonical identifications LGr(V ) =

LGr(S⊗RC) = U(S⊗RC)/O(S) and ((∧top
C V )⊗2)/R>0 = (C\0)/R>0 = U(1),

under which (5.3) is given by det2. Given a map LGr(V )→ K(Z, 1)×K(Z/2, 2)

representing (µ,w2), we obtain a (Z× RP∞)-bundle LGr(V )# → LGr(V ).

We now globalize. Let X be a symplectic manifold, and denote by LGr(X)

the bundle of Lagrangian Grassmannians of TX over X. There is a canonical

map LGr(X)→ K(Z/2, 2) restricting to w2 on each fiber, namely the pullback

of w2 : BO → K(Z/2, 2) under the map classifying the tautological bundle

over LGr(X). There need not be a map LGr(X)→ K(Z, 1) whose restriction

to each fiber represents µ; the obstruction to the existence of such a map is

given by 2c1(TX) ∈ H2(X,Z) and is represented geometrically by the complex

line bundle (∧top
C TX)⊗2. Grading/orientation data for X is, by definition, a

choice of map X → K(Z/2, 2) and map LGr(X) → K(Z, 1) whose restriction

to each fiber represents µ. The choice of map X → K(Z/2, 2) induces a

map LGr(X) → K(Z/2, 2) by pulling back and adding the canonical map

LGr(X)→ K(Z/2, 2) restricting to w2 on each fiber. Grading/orientation data

on X thus induces a map LGr(X) → K(Z, 1) × K(Z/2, 2) whose restriction

to each fiber represents (µ,w2). The pullback of the tautological (Z× RP∞)-

bundle over K(Z, 1)×K(Z/2, 2) thus defines a (Z×RP∞)-bundle LGr(X)# →
LGr(X) associated to this choice of grading/orientation data.

We now introduce Lagrangians. Fix a choice of grading/orientation for X,

giving LGr(X)# → LGr(X). Given a Lagrangian L ⊆ X, grading/orientation

data for L means a lift of the canonical section of LGr(X)|L to LGr(X)#|L.

It is explained in Seidel [79, (11e)–(11l)] (also reviewed in [37, §3.2]) how such

data determines graded orientation lines associated to transverse intersections

of ordered pairs of Lagrangians, as well as a recipe for orienting moduli spaces

of pseudo-holomorphic disks relative to these orientation lines.
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For our purposes in this paper, we will induce grading/orientation data

from Lagrangian polarizations. Recall that a (Lagrangian) polarization of a

symplectic manifold X is a global section of LGr(X); equivalently (up to ho-

motopy) it is a real vector bundle B with an isomorphism B ⊗R C = TX.

Given such a polarization, we obtain a map LGr(X) → K(Z, 1) using the

section as the fiberwise basepoint, and we obtain a map X → K(Z/2, 2) by

pulling back w2 : BO → K(Z/2, 2) under the map classifying B. By this

very definition, any Lagrangian which is everywhere tangent to the polariza-

tion admits canonical grading/orientation data (i.e., section of LGr(X)#|L).

A stable polarization (a global section of LGr(TX ⊕ Ck) for some k < ∞)

also induces grading/orientation data by restriction from LGr(TX ⊕ Ck) to

LGr(X) = LGr(TX)).

In the specific case of cotangent bundles T ∗M , there is a tautological polar-

ization given by (the tangent space of) the tautological foliation by Lagrangian

fibers of the projection T ∗M →M ; the fibers are thus equipped with canonical

grading/orientation data with respect to the grading/orientation data on T ∗M

induced by this polarization. Conormals to open sets with smooth (or cor-

nered) boundary also have canonical grading/orientation data; see Section 5.5.

We will see in Remark 5.27 and Lemma 5.10 the point in the proof of The-

orem 1.1 where it matters to have chosen this particular grading/orientation

data on T ∗M .

Remark 5.2. The notion of grading/orientation data given above may be

reformulated as follows, which connects it to the corresponding discussion of

coefficient twisting in microlocal sheaf categories as it appears in [42], [48].

The stable J-homomorphism sends a (stable) vector bundle to (the suspension

spectrum of) its Thom space, which is a family of invertible modules over the

sphere spectrum. Applying cochains, we may obtain a family of invertible dg

Z-modules. We thus have an infinite loop map

(5.4) Z×BO J−→ Pic S→ PicZ

sending a vector bundle V to the local system C∗(V, V \ 0) (where Pic denotes

the space of invertible modules). The invertible module Z[1] and the automor-

phism −1 of the invertible module Z together define an isomorphism of infinite

loop spaces Z × B(Z/2)
∼−→ PicZ. The map Z × BO → PicZ = Z × B(Z/2)

is then the evident projection to Z times the Stiefel–Whitney class w1, as

considered above. Applying B as before, we obtain a map

(5.5) U/O = B(Z×BO)→ B PicZ = BZ×B2(Z/2).

Now the tangent bundle of a symplectic manifold X is classified by a map

X → BU , which we may compose with BU → B(U/O) to obtain a map

X → B(U/O) which classifies the (stable) Lagrangian Grassmannian of X.
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Composing this with B(5.5) yields a map

(5.6) X → B2Z×B3(Z/2).

Now grading/orientation data on X is equivalently a null-homotopy of this

map. Indeed, the map to the second factor is canonically null-homotopic (since

by definition it factors through BU → B(U/O) → B2O which is canonically

null-homotopic), so a choice of null-homotopy of it is the same as a choice

of map X → ΩB3(Z/2) = B2(Z/2). The map to the first factor by definition

classifies (∧top
C TX)⊗2, a trivialization of which is the same as a map LGr(X)→

K(Z, 1) whose restriction to each fiber represents µ.

On a Lagrangian L ⊆ X, there is a tautological section of LGr(X)|L
given by the tangent space to the Lagrangian. That is, the restricted map

L→ B(U/O) has a canonical null-homotopy, inducing in turn a null-homotopy

of the map L → B2Z × B3(Z/2). Now given grading/orientation data for X,

grading/orientation data on L is equivalently a homotopy between this null-

homotopy and the restriction to L of the chosen null-homotopy of (5.6). Note

that the space of such null-homotopies has the homotopy type of maps from

L to Ω(B2Z × B3(Z/2)) = BZ × B2(Z/2), the component group of which is

H1(L,Z)⊕H2(L,Z/2). The obstruction to the existence of grading/orientation

data for L thus lies in H1(L,Z)⊕H2(L,Z/2), and if this obstruction vanishes,

the homotopy classes of choices of grading/orientation data for L form a torsor

over H0(L,Z)⊕H1(L,Z/2).

A stable polarization of X gives a global section of the stable Lagrangian

Grassmannian, hence a null-homotopy of X → B(U/O), hence of (5.6), which

by definition agrees with the canonical homotopy of its restriction to any La-

grangian L ⊆ X everywhere tangent to the polarization.

5.4. Wrapping exact triangle, stop removal, generation. The fundamental

ingredients underlying our work in this section are the wrapping exact triangle

and its consequence stop removal, both proved in [38]. The wrapping exact

triangle can be thought of as quantifying the price of wrapping through a stop;

it should be compared with Theorem 4.11.

Theorem 5.3 (Wrapping exact triangle [38, Thm. 1.10]). Let (X,Λ) be a

stopped Liouville sector, and let p ∈ Λ be a point near which Λ is a Legendrian

submanifold. If L ⊆ X is an exact Lagrangian submanifold and Lw ⊆ X is

obtained from L by passing ∂∞L through Λ transversally at p in the positive

direction, then there is an exact triangle

(5.7) Lw → L→ Dp
[1]−→

in W(X,Λ), where Dp ⊆ X denotes the small Lagrangian disk linking Λ at p

and the map Lw → L is the continuation map.
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The following result about wrapped Fukaya categories is a consequence of

the wrapping exact triangle and can be compared with Theorem 4.14.

Theorem 5.4 (Stop removal [38, Thm. 1.20]). Let (X,Λ′) be a stopped

Liouville sector. Let Λ⊆Λ′ be closed so that its complement Λ′\Λ⊆(∂∞X)◦\Λ
is an isotropic submanifold. Then pushforward induces an equivalence

(5.8) W(X,Λ′)/D
∼−→W(X,Λ),

where D denotes the collection of small Lagrangian disks linking (Legendrian

points of ) Λ′ \ Λ.

We will also need to know that

Theorem 5.5. The cotangent fibers split-generate W(T ∗M).

Proof. When M is compact (including the case with boundary), this is

[38, Thm. 1.14 and Ex. 1.15]. For a general possibly non-compact M , we

observe that any Lagrangian L ∈ W(T ∗M) is in the essential image of the

pushforward functor W(T ∗ML) → W(T ∗M) for some compact codimension

zero submanifold-with-boundary ML ⊆ M . Now push foward the fact that L

is split-generated by a fiber in W(T ∗ML). �

Remark 5.6. In fact, the argument above shows that the fibers generate

W(T ∗M), however we only need split-generation.

Another ingredient which proves useful in our computations is the Künneth

theorem for Floer cohomology and wrapped Fukaya categories, also proved

in [38].

5.5. Conormals and corners. Let U ⊆ M be a relatively compact open

set. When U has smooth boundary, we write LU ⊆ T ∗M for (a smoothing of)

the union of U ⊆ M ⊆ T ∗M with the outward conormal along its boundary.

More generally, if U is a compact manifold-with-corners with interior U , then

LU shall mean LŨ , where Ũ is obtained from U by smoothing out its boundary.

We also allow the degenerate case that U is a point p (hence, in particular, not

open), in which case Lp denotes the cotangent fiber over p. In all of the above

cases, we could also equivalently say that LU is a rounding of ss(ZU ) (compare

Section 4.3).

Remark 5.7. Various natural constructions, such as the cornering opera-

tions of Section 2.2–2.3 and taking products, introduce corners. By convention,

we conflate such cornered objects with their smoothings, usually without com-

ment. The choice of this smoothing is always a contractible choice which is

ultimately irrelevant.

Recall that for a Lagrangian L, we write L+ for an unspecified small posi-

tive Reeb pushoff of L, and L− for a negative pushoff. Thus if U is a relatively

compact open set with smooth boundary and U+ denotes its ε neighborhood
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in some metric, then LU+ = L+
U . That is, positive Reeb flow pushes outward

conormals out. In particular, (T ∗pM)+ = LBε(p).

Each LU is exact and possesses canonical grading/orientation data: the

codimension zero inclusion U ⊆ LU is a homotopy equivalence, and U is a

codimension zero submanifold of, and thereby inherits all of this data from,

the zero section. The grading/orientation data for the zero section arises from

the canonical homotopy from its tangent bundle TM ⊆ T (T ∗M)|M to the

family of tangent spaces of the cotangent fibers T ∗M ⊆ T (T ∗M)|M (which is

the chosen polarization of T ∗M) given by eiθT ∗M for θ ∈ [0, π/2] (where J is

chosen so that J(T ∗M) = TM).

5.6. Floer cohomology between conormals of balls and stable balls. Here

we study the Floer cohomology between conormals of open sets with smooth

boundary (though recall Remark 5.7 about implicit smoothing of corners). The

assertion that an open set with smooth boundary is a ball shall mean that its

closure is diffeomorphic to the standard closed unit ball. Note that a small

positive pushoff of the cotangent fiber Lp over a point p is the conormal of a

small open ball around p, so we may substitute “point” in place of “open ball”

in many of the statements below.

Lemma 5.8. Let U, V ⊆ M be balls with U ⊆ V . Then HF ∗(LV , LU )

equals Z and is canonically generated by the continuation element, lying in

degree zero.

Proof. There is a positive isotopy from L+
U to LV in the complement of

∂∞LU . Hence HF ∗(LV , LU ) = HF ∗(LU , LU ) (compare [37, Lem. 3.21]), but

this latter group (which is isomorphic to H∗(LU ) = H∗(U)) is generated by

its identity element. �

Lemma 5.9. Let U, V ⊆ M be balls with U ⊆ V , and let V ⊆ W ⊆ M .

The continuation map HF ∗(LW , LV )→ HF ∗(LW , LU ) (i.e., multiplication by

the continuation element in HF ∗(LV , LU )) is an isomorphism.

Proof. The positive isotopy LU  LV takes place in the complement of

∂∞LW , hence induces an isomorphism HF ∗(LW , LV ) = HF ∗(LW , LU ) which

agrees with multiplication by the continuation element by [37, Lem. 3.26]. �

Lemma 5.10. Let U ⊆ M be a ball, and let U ⊆ W ⊆ M . There is a

canonical isomorphism HF ∗(LW , LU ) = Z, with respect to which the continu-

ation maps from Lemma 5.9 act as the identity on Z.

Proof. The groups HF ∗(LW , Lp) form a local system of p ∈W [37, Lem.

3.21]. It suffices to show that this local system is canonically isomorphic to

the constant local system Z. Indeed, by Lemma 5.9 we have a canonical iso-

morphism HF ∗(LW , LU ) = HF ∗(LW , Lp) for any p ∈ U , which is compatible

with the local system structure of HF ∗(LW , Lp) by [37, Lem. 3.26].
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The assertion that the local system p 7→ HF ∗(LW , Lp) is canonically

trivialized is local on W , so let us consider p varying only in a small ball U⊆W .

Now the isomorphism HF ∗(LW , Lp) = HF ∗(LW , Lp′) for nearby points p and

p′ from [37, Lem. 3.21] is induced by a diffeomorphism supported in U sending p

to p′. As such, it is sent under the identifications HF ∗(LW , Lp) = HF ∗(LU , Lp)

and HF ∗(LW , Lp′) = HF ∗(LU , Lp′) (coming from the fact that, in both cases,

they are generated by the “same” Lagrangian intersection and have no Floer

differential, and we have chosen the “same” grading/orientation data on LW
and LU in Section 5.5) to the corresponding isomorphism HF ∗(LU , Lp) =

HF ∗(LU , Lp′). Now HF ∗(LU , Lp) and HF ∗(LU , Lp′) are canonically Z by

Lemma 5.9, and the isomorphism between them acts as the identity on Z by

[37, Lem. 3.26]. �

Lemma 5.11. Let V be an open set with smooth boundary, and let U be

a ε-ball centered at a point on ∂V . Then HF ∗(LU , LV ) = 0 = HF ∗(LV , LU ).

Proof. During the obvious isotopy of U outward to become disjoint from V ,

their conormals never intersect at infinity. �

By a stable ball, we mean a compact manifold-with-boundary which is

contractible; the statement that an open set with smooth boundary is a stable

ball shall mean its closure is a stable ball. The reason we study stable balls is

that we do not know how to prove that for a subanalytic Whitney triangulation,

the “inward cornering” in the sense of Section 2.3 of an open star is a ball; it

is, however, obviously a stable ball.

To compute Floer cohomology between conormals of stable balls, we re-

duce to the case of conormals to balls by stabilizing (i.e., taking their product

with conormals to standard balls in Rk) and appealing to the Künneth theorem

for Floer cohomology. We begin by showing that the stabilization of a stable

ball is indeed a ball, thus justifying the name. This uses the following famous

corollary of the h-cobordism theorem:

Theorem 5.12. A stable ball of dimension ≥ 6 with simply connected

boundary is a ball.

Corollary 5.13. Let M be a stable ball. Then M × Ik is a ball provided

dimM + k ≥ 6 and k ≥ 1.

Proof. We just need to check that the boundary of M × Ik is simply con-

nected. It suffices to show that for any stable ball N of dimension ≥ 2, the

boundary of N × I is simply connected. The boundary of N × I is, up to

homotopy, two copies of N glued along their common boundary. Since N is

contractible, the fundamental group of this gluing vanishes provided ∂N is
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connected. If ∂N were disconnected, then by Poincaré duality, the cohomol-

ogy group HdimN−1(N) would be nonzero, which contradicts contractibility as

dimN ≥ 2. �

Proposition 5.14. Let U, V ⊆ M be stable balls with U ⊆ V . Then

HF ∗(LV , LU ) = Z, and it is equipped with a canonical generator 1V U which we

call the pseudo-continuation element. (It coincides with the usual continuation

map when U and V are balls.) The pseudo-continuation elements are closed

under composition : for any triple of stable balls U, V,W ⊆M with U ⊆ V and

V ⊆W , we have 1WV 1V U = 1WU .

Proof. We multiply LU , LV by LB1(0), LB2(0) ⊆ T ∗Rk, where k is suffi-

ciently large to guarantee that U × B1(0) and V × B2(0) are balls by Corol-

lary 5.13. By the Künneth formula for Floer cohomology (see, e.g., [38, Lem.

8.3]) and freeness of HF ∗(LB2(0), LB1(0)) (compare [38, Rmk. 8.4]), we have

HF ∗(LV × LB2(0), LU × LB1(0)) = HF ∗(LV , LU )⊗HF ∗(LB2(0), LB1(0))

= HF ∗(LV , LU ).

On the other hand, by the result for balls Lemma 5.8, we have

HF ∗(LV × LB2(0), LU × LB1(0)) = HF ∗(LV×B2(0), LU×B1(0)) = Z.

After arguing that the above identification is compatible with rounding of

corners, this defines the canonical generator 1V U ∈ HF ∗(LV , LU ). The proof

that 1WV 1V U = 1WU is the same: stabilize to reduce to the corresponding fact

for honest continuation maps. �

In order to make sense of the next corollary, recall that Lemma 5.8 and

Proposition 5.14 continue to apply in the limiting situation in which LU is

replaced by a cotangent fibre Lp = T ∗pM for some p ∈ V .

Corollary 5.15. Let U ⊆ M be any stable ball. Then the pseudo-

continuation element LU → T ∗pM is an isomorphism in W(T ∗M) for any

point p ∈ U .

Proof. Note that this corollary is tautologically true if U is a ball, as

genuine continuation elements by definition are isomorphisms in the wrapped

Fukaya category. By pushing forward, it suffices to treat the case M=U+. Ap-

pealing to the fully faithful Künneth embedding (see [38, Thm. 1.5]) W(T ∗U+)

⊗ W(T ∗Ik) ↪→ W(T ∗(U+ × Ik)), it further suffices to show the result af-

ter taking (the image under this embedding of) the product of this pseudo-

continuation element with the continuation element LIk → [fiber] (which is an

isomorphism in W(T ∗Ik)). The pseudo-continuation element LU → [fiber] is,

by definition, sent by this stabilization to the continuation element LU×Ik →
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[fiber] (which is defined since the stabilized stable ball U+× Ik is a ball). This

latter map is an isomorphism, so we are done. �

Here is an improved version of Lemma 5.10:

Lemma 5.16. For any stable ball U ⊆ M whose closure is contained

in W ⊆ M , there is canonical isomorphism HF ∗(LW , LU ) = Z, such that

for an inclusion U ⊆ V of such stable balls, the pseudo-continuation map

Z = HF ∗(LW , LV ) → HF ∗(LW , LU ) = Z (multiplication by the pseudo-

continuation element in HF ∗(LV , LU )) is the identity on Z.

Proof. Stabilize to reduce to Lemma 5.10. �

There is similarly an improved version of Lemma 5.11:

Lemma 5.17. Let V be an open set with smooth boundary, and let U be

stable ball such that U ∩ ∂V is also a stable ball. Then HF ∗(LU , LV ) = 0 =

HF ∗(LV , LU ).

Proof. Stabilization (multiplying both U and V by Ik) and appealing to

the Künneth formula for Floer cohomology (as in the proof of Lemma 5.14)

reduces this proof to Lemma 5.11. (Note that U ∩ ∂V necessarily divides U

into two stable balls.) �

A more subtle result about stable balls is the following, which will be

important later:

Proposition 5.18. Let Xm ⊆ Y n be an inclusion of stable balls, with

∂X ⊆ ∂Y . Assume there exists another stable ball (with corners) Zm+1 ⊆ Y n

such that ∂Z is the union of X with a smooth submanifold of ∂Y . Then the

pseudo-continuation element LY →LBε(x) is an isomorphism in W(T ∗Y,N∗∞X)

for any x ∈ X .

Proof. By stabilization, we reduce to the case that X, Y , and Z are all

balls. This implies that, up to diffeomorphism, everything is standard: Y is

the unit ball, X is the intersection of Y with a linear subspace, and Z is the

intersection of Y with a linear halfspace. Indeed, since X and Z are balls, we

can use Z to push X to Z ∩∂Y , thus showing that X is simply a slight inward

pushoff of the ball Z ∩ ∂Y ⊆ ∂Y .

By definition, the pseudo-continuation element becomes the continuation

element under stabilization (i.e., after multiplying by the continuation iso-

morphism from the conormal of a large ball to that of a small ball as in the

proof of Corollary 5.15). Once everything is standard, the continuation map

LY → LBε(x) is an isomorphism, since there is a positive isotopy LBε(x)  LY
disjoint from N∗∞X at infinity. �
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We will apply Proposition 5.18 when (before rounding) X is a simplex in

a triangulation, Y is its star, and Z is any simplex containing X of dimension

one larger.

5.7. Fukaya categories of conormals to stars. Let S be a Whitney strat-

ification of M by locally closed smooth submanifolds. For an S-constructible

open set U , we abuse notation and denote by LU the conormal of the inward

cornering of U with respect to S in the sense of Section 2.3. More precisely,

we have LU := LU−ε for ε ∈ RS
>0 satisfying εα ≤ f((εβ)β$α). Recall that LU−ε

is disjoint from N∗S at infinity but limits to it as ε→ 0.

Lemma 5.19. Let L be any Lagrangian disjoint at infinity from N∗S.

Then for all ε > 0 sufficiently small, CF ∗(LU−ε , L)
∼−→ CW ∗(LU−ε , L)N∗∞S.

Proof. Taking ε→ 0 is a positive wrapping of LU−ε (compare Section 5.5)

which converges to (while remaining disjoint from) N∗∞S. It is thus cofinal by

Lemma 5.1. �

Now assume further that S is a triangulation, and let us consider the conor-

mals to (the inward cornernings of) open stars Lstar(s) ∈W(T ∗M,N∗∞S). Since

star(s) is contractible, Lstar(s) is the conormal to a stable ball (Lemma 2.10),

and hence the results about stable balls from Section 5.6 above apply, allowing

us to deduce the following:

Proposition 5.20. We have

(5.9) HW ∗(Lstar(s), Lstar(t))N∗∞S =

{
Z t→ s,

0 otherwise

generated in the former case by the pseudo-continuation element.

Proof. Fix a small ε>0, and let δ→0. By Lemma 5.19, the wrapped Floer

cohomology HW ∗(Lstar(s), Lstar(t)) is calculated by HF ∗(Lstar(s)−δ , Lstar(t)−ε).

Now if t→ s, then star(t)−ε ⊆ star(s)−δ is an inclusion of stable balls, so

by Proposition 5.14, HF ∗(Lstar(s)−δ , Lstar(t)−ε) = Z is generated by the pseudo-

continuation element.

Now suppose that t9 s. If star(s)∩star(t) = ∅, then the desired vanishing

is trivial. Otherwise, we have star(s)∩ star(t) = star(r), where r is the simplex

spanned by the union of the vertices of s and t. To show the desired vanishing,

it suffices by Proposition 5.17 to show that star(t)−ε ∩ ∂ star(s)−δ is a stable

ball, which is the content of Lemma 2.12. �

It will be convenient to have another perspective on the objects Lstar(s).

Let Ls denote the conormal to a small ball centered at any point on the stra-

tum s (this conormal is disjoint from N∗∞S at infinity by Whitney’s condition
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(b), compare with the proof of Lemma 2.6); this is well defined up to La-

grangian isotopy. One reason the Ls are nice to consider is the following

calculation:

Lemma 5.21. For any S-constructible open set U , we have

(5.10) HW ∗(LU , Ls)N∗∞S =

{
Z star(s) ⊆ U,
0 otherwise.

Proof. We calculate using Lemma 5.19. If s is a stratum in the interior of

U , then the ball centered at s is contained in U and, in particular, as Ls is a

small positive pushoff of a cotangent fiber to a point in s, one can arrange for

there to be a single intersection point between LU−ε (for small ε) and Ls. Hence

HW ∗(LU , Ls)N∗∞S = HF ∗(LU−ε , Ls) = Z. If s is a stratum not contained in

the closure of U , then the morphism space obviously vanishes since the two

Lagrangians (LU−ε for any ε and Ls) are disjoint.

q

Bδ(q)

Figure 3. The isotopy from U−ε,δ+η to U−ε,δ−η to U−ε.

Finally, we claim that if s is a stratum on the boundary of U , the morphism

space still vanishes. To prove this, it suffices to construct a cofinal wrapping

of LU which begins disjoint from Ls and remains forever disjoint from ∂∞Ls
(see [37, Lem. 3.26]). Such an isotopy is illustrated in Figure 3, which we now

define precisely. Fix a point q ∈ s, and consider the stratification Sq obtained

from S by declaring {q} to be its own stratum. Now the inward cornering

with respect to Sq may be denoted U−ε,δ for ε ∈ RS
>0 and δ > 0 the parameter

associated to the new stratum {q}. Fix ε, and take δ to zero, and note that

Proposition 2.15 implies this gives an isotopy of U−ε,δ whose conormals remain

disjoint at infinity from N∗S. Once δ = 0, we just have U−ε, whose conormal

has cofinal wrapping by taking ε → 0. Now take Ls to be the conormal of

Bδ(q) and take the isotopy of LU to be given the conormal of the isotopy

(5.11) U−ε,δ+η  U−ε,δ−η  U−ε

illustrated in Figure 3, followed by isotoping U−ε by taking ε→ 0. Corollary 2.7

implies that this isotopy remains disjoint at infinity from Ls = N∗Bδ(q) except

possibly at U−ε,δ, but these do not intersect at infinity due to their coorienta-

tions being opposite. �
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Another reason that the Ls are nice to consider is that we can show using

the wrapping exact triangle and stop removal that they (split-)generate:

Proposition 5.22. The objects Ls associated to strata s split-generate

W(T ∗M,N∗∞S).

Proof. Denote by S≤k the stratification where we keep all strata of dimen-

sion ≤ k and combine all other strata into a single top stratum. We consider

the sequence of categories

W(T ∗M,N∗∞S) = W(T ∗M,N∗∞S≤n−1 →W(T ∗M,N∗∞S≤n−2)

→ · · · →W(T ∗M,N∗∞S≤0)→W(T ∗M).
(5.12)

Each of these functors removes a locally closed Legendrian submanifold N∗∞S≤k
\N∗∞S≤k−1, and thus by the stop removal theorem, Theorem 5.4, is the quotient

by the corresponding linking disks.

The linking disk at a point on N∗∞S≤k \ N∗∞S≤k−1 can be described as

follows. A point on N∗∞S≤k \N∗∞S≤k−1 is simply a point x on a k-dimensional

stratum together with a covector ξ at x conormal to the stratum. Consider

a small ball Ba centered at x, and consider a smaller ball Bb ⊆ Ba disjoint

from the stratum containing x. There is a family of balls starting at Ba and

shrinking down to Bb whose boundaries are tangent to the stratum containing

x only at (x, ξ). It follows from the wrapping exact triangle Theorem 5.3 that

the cone on the resulting continuation map LBa → LBb is precisely the linking

disk at (x, ξ).

We have thus shown that the linking disks to each locally closed Legen-

drian N∗∞S≤k \ N∗∞S≤k−1 are generated by the objects Ls. By Theorem 5.5

above, these Ls also split-generate the final category W(T ∗M). We conclude

that the Ls split-generate W(T ∗M,N∗∞S), as the quotient by all of them van-

ishes. �

Remark 5.23. A small variation on the above proof and an appeal to [38,

Thm. 1.14] shows that the objects Ls in fact generate W(T ∗M,N∗∞S). We give

the weaker argument above to minimize the results we need to appeal to.

Proposition 5.24. The pseudo-continuation element Lstar(s) → Ls is an

isomorphism in W(T ∗M,N∗∞S).

Proof. We proceed by induction on the codimension of s. When s has

codimension zero, the desired statement follows from Corollary 5.15.

Now suppose that s has positive codimension. For any t of strictly smaller

codimension than s, we have Hom(Lstar(t), Lstar(s)) = 0 by Proposition 5.20 and

Hom(Lstar(t), Ls) = 0 by Lemma 5.21.
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Now by the discussion in the proof of Proposition 5.22, the functor

(5.13) W(T ∗M,N∗∞S)→W(T ∗M,N∗∞S≤dim s)

quotients by cones of Lt for t of strictly smaller codimension than s. By

the induction hypothesis and the calculations of the previous paragraph, such

cones are left-orthogonal to Ls and Lstar(s). Hence it suffices to check that

Lstar(s) → Ls is an isomorphism in W(T ∗M,N∗∞S≤dim s).

Finally, we observe that by Proposition 5.18, Lstar(s) → Ls is an iso-

morphism in W(T ∗M,N∗∞S≤dim s). Namely, we take Y = star(s)−, X =

s ∩ star(s)−, and Z = t ∩ star(s)− for any simplex t containing s and of one

higher dimension. �

Remark 5.25. For a “smooth triangulation” S, there is an obvious positive

isotopy from Ls to Lstar(s) disjoint from N∗∞S (thus proving Proposition 5.24

in this case), obtained by expanding a small ball centered at a point on s

to star(s), keeping the boundary transverse to the strata of S. We do not

know whether this proof can be generalized from smooth triangulations to

subanalytic Whitney triangulations.

5.8. Functors from poset categories to Fukaya categories.

Definition 5.26. Let M be a manifold with Whitney stratification S, and

let U : Π→ OpS(M) be a map from a poset Π to the poset of S-constructible

open subsets of M . Suppose further that each U(π)− (from Section 2.3) is a

stable ball. Define a functor on cohomology categories

(5.14) H∗FU : Z[Π]→ H∗W(T ∗M,N∗∞S)op

by H∗FU (π) := LU(π) and H∗FU (1π,π′) = 1U(π′),U(π) ∈ HW ∗(LU(π′), LU(π))

(the pseudo-continuation element).

Remark 5.27. Note that the definition of H∗FU depends on having defined

pseudo-continuation elements with the compatibility properties from Proposi-

tion 5.14, which in turn depends on having equipped the cotangent fibers

of T ∗M with continuously varying grading/orientation data (compare Sec-

tion 5.3). For general grading/orientation data on T ∗M , it may not be pos-

sible to define continuously varying grading/oriention data on the cotangent

fibers, in which case we could only define H∗FU to respect composition up to

sign. The resulting 2-cocycle, or rather its class in H2(NΠ,Z/2), would repre-

sent (the pullback of) the obstruction in H2(M,Z/2) to choosing continuously

varying relative Pin-structures on the cotangent fibers.

Proposition 5.28. For any functor f : Z[Π]→ H∗C such that

H∗C(f(x), f(y))
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is concentrated in degree zero for every pair x ≤ y ∈ Π, there exists an A∞
functor F : Z[Π] → C with H∗F = f . Moreover, given any two A∞ functors

F,G : Z[Π] → C such that H∗C(F (x), G(y)) is concentrated in degree zero for

every pair x ≤ y ∈ Π and a natural transformation t : f → g, the space of A∞
natural transformations T : F → G with H∗T = t is contractible.

Proof. We show existence of a lift F by induction. Lift the action on

objects arbitrarily. Take F 1 to be any map in the correct cohomology class

H∗F 1 = f . Having chosen F 1, . . . , F k−1, the existence of an F k satisfying the

A∞ functor equations is equivalent to a certain element of

(5.15)
∏

π0,...,πk∈Π

Hom(Z[Π](π0, π1)⊗ · · · ⊗ Z[Π](πk−1, πk),C(F (π0), F (πk)))

(namely the sum of all the terms of the A∞ functor equations with k inputs

except for those involving F k) being a coboundary. This element is always a

cocycle due to F 1, . . . , F k−1 satisfying the A∞ functor equations, so it suffices

to show that its class in cohomology vanishes. The cohomology of (5.15) is of

course simply

(5.16)
∏

π0≤···≤πk∈Π

H∗C(F (π0), F (πk)),

which is concentrated in degree zero by hypothesis. The obstruction class

thus vanishes for degree reasons for k ≥ 3. For k = 2, the obstruction class

measures the failure of H∗F to respect composition, so by hypothesis the

obstruction vanishes in this case as well. We conclude that there always exists

an F k compatible with the previously chosen F 1, . . . , F k−1. (Compare [79,

Lem. 1.9], where a variant on this obstruction theory argument is explained in

more detail.)

To construct a natural transformation [79, (1d)] T : F → G with H∗T = t,

first pick some T 0 lifting t. Given T 0, . . . , T k−1, the obstruction to the existence

of T k is a degree 1− k cohomology class in

(5.17)
∏

π0≤···≤πk∈Π

C(F (π0), G(πk)).

It hence vanishes for degree reasons for k ≥ 2, and for k = 1, it measures the

failure of H∗T to respect morphisms, hence vanishes in this case as well.

Contractibility of the space of natural transformations T with H∗T = t

is, concretely, the assertion that the complex of pre-natural transformations

Hom(F,G) is acyclic in negative (cohomological) degree and that any two

natural transformations (i.e., degree zero cocycles) T and T ′ with H∗T =

t = H∗T ′ are cohomologous. In both cases, we should produce a pre-natural

transformation Q of degree −g < 0 with prescribed value of dQ. Such Q =

(Q0, Q1, . . .) is again constructed by induction. The existence of Qk then comes
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down to the vanishing in degree 1 − k − g of the cohomology of (5.17) for all

g ≥ 1 and k ≥ 0 (except for g = 1 and k = 0, for which the relevant obstruction

measures the failure of the desired value T −T ′ of dQ to vanish on H∗C, hence

vanishes by the assumption H∗T = t = H∗T ′). �

Remark 5.29. The assertion of Proposition 5.28 over a field k (instead of

over Z) is a straightforward consequence of the fact that any A∞ category C

over k is quasi-isomorphic to an A∞ category C̃ with vanishing differential,

sometimes called a minimal model of C. In this case, the essential image of f

inside C̃ would be necessarily concentrated in degree zero on the chain level,

hence have vanishing higher order A∞ structure maps for degree reasons (and

hence this essential image inside C̃, equivalently C, is formal). It follows that

any functor on cohomology categories k[Π] → H∗C̃ would lift tautologically

to an A∞ functor by taking all higher operations to vanish. The proof above

bypasses the question of the existence of minimal models over Z.

Corollary 5.30. There is a unique up to contractible choice A∞ functor

(5.18) FU : Z[Π]→W(T ∗M,N∗∞S)op

lifting the functor on cohomology categories from Defintion 5.26.

Proof. By Corollary 5.19, the wrapped Floer cohomology group

HW ∗(LU(π), LU(π′))

is simply the Floer cohomology of two nested stable balls, which is Z by Propo-

sition 5.14. Thus Proposition 5.28 is applicable. �

Remark 5.31. To extend Corollary 5.30 to the Fukaya category with a

Z/N -grading, we would need to add to the requirement that F (and the natural

transformations F1 → F2) must lift to Z-graded categories locally. (The Z-

grading is only defined locally, over any contractible open subset of M .)

For the next corollary, let us denote by H∗ the functor from ModZ to the

category of graded abelian groups given by taking the cohomology of objects

of ModZ. The functor H∗ factors through, but does not coincide with, the

functor H∗ : ModZ→ H∗ModZ which exists for any A∞ category in place of

ModZ (and which takes cohomology of morphisms).

Corollary 5.32. Consider functors F : Z[Π]→ModZ such that H∗F (x)

is free and concentrated in degree zero for all x ∈ Π. Given any two such

functors F and G and a natural transformation t : H∗F → H∗G, the space of

natural transformations T : F → G with H∗T = t is contractible. In particular,

any such functor F is quasi-isomorphic to iH∗F : Z[Π]→ ModZ, namely the

composition of H∗F with the inclusion i of free abelian groups into ModZ (as

complexes concentrated in degree zero).
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Proof. We first argue that if P,Q ∈ ModZ are such that H∗P and H∗Q

are free and concentrated in degree zero, then the natural map

(5.19) H∗Hom(P,Q)→ Hom(H∗P,H∗Q)

is an isomorphism. Since H∗P is projective, there is a quasi-isomorphism

H∗P → P (and the same for Q). It follows that there is a quasi-isomorphism of

chain complexes Hom(P,Q) = Hom(H∗P,H∗Q) (homomorphisms in ModZ).

Since H∗P and H∗Q are projective and concentrated in degree zero, the com-

plex Hom(H∗P,H∗Q) is (quasi-isomorphic to) homomorphisms of abelian Z
modules H∗P → H∗Q concentrated in degree zero; thus (5.19) is an isomor-

phism as desired.

Now suppose F and G are as in the statement and a natural transforma-

tion t : H∗F → H∗G is given. Since H∗F and H∗G are free and concentrated

in degree zero, we see from (5.19) that the data of t is equivalent to the data

of a natural transformation t̄ : H∗F → H∗G. Now (5.19) also implies that the

hypotheses of Proposition 5.28 are satisfied, so the space of natural transfor-

mations T with H∗T = t̄ (which is, as just noted, equivalent to H∗T = t) is

contractible.

It is immediate from the definition that H∗F = H∗iH∗F , so the final

statement follows from the first. �

Definition 5.33. For a Whitney triangulation S, let

(5.20) FS : Z[S]→W(T ∗M,N∗∞S)op

denote the functor induced from Definition 5.26 and Corollary 5.30 by the map

associating to each simplex of S its open star.

Theorem 5.34. The functor FS is a Morita equivalence.

Proof. Proposition 5.20 shows full faithfulness of FS. Propositions 5.22

and 5.24 together show essential surjectivity of FS (after passing to Perf). �

We now show that FS is compatible with refinement (compare Lemma 4.6):

Theorem 5.35. For S′ a refinement of S, the following diagram commutes

up to contractible choice:

(5.21)

Z[S′] W(T ∗M,N∗∞S′)op

Z[S] W(T ∗M,N∗∞S)op.

FS′

r ρ

FS

Proof. There are two functors ρ◦FS′ and FS◦r from Z[S′] to W(T ∗M,N∗∞S).

By Proposition 5.28, it suffices to define a canonical natural isomorphism be-

tween the induced functors on cohomology categories. It is most natural to

define this canonical natural isomorphism in the direction FS ◦ r =⇒ ρ ◦ FS′ .
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To a stratum s of S′, the composition FS ◦ r associates the conormal of

starS(r(s)), and the composition ρ ◦ FS′ associates the conormal of starS′(s).

Since starS(r(s)) ⊇ starS′(s) is an inclusion of stable balls, by Proposition 5.14

we may consider the pseudo-continuation element from one to the other. Given

that pseudo-continuation elements are closed under composition by Propo-

sition 5.14, it is easy to check that this defines a natural transformation

H∗(FS ◦ r) =⇒ H∗(ρ ◦ FS′).

This natural transformation is in fact a natural isomorphism since the nat-

ural maps from both LstarS(r(s)) and LstarS′ (s)
to Ls = Lr(s) are isomorphisms

by Proposition 5.24. �

5.9. In conclusion.

Theorem 5.36. The functor Λ 7→ Perf W(T ∗M,Λ)op is a microlocal

Morse theatre in the sense of Definition 3.4, which casts the linking disks at

smooth points of Λ as the Morse characters.

Proof. Definition 5.33 and Theorems 5.34 and 5.35 give the identification

between S 7→ Perf S and S 7→ Perf W(T ∗M,N∗∞S)op via the functors FS.

Stop removal Theorem 5.4 says that W(T ∗M,Λ′) → W(T ∗M,Λ) is the

quotient by the linking disks at the smooth points of Λ′ \ Λ. It therefore

suffices to show that the Morse characters are precisely (isomorphic to) these

linking disks.

Recall from Definition 3.3 that a Morse character at a smooth point p ∈ Λ

is defined as follows. We choose a function f : M → R and an ε > 0 such that

f−1(−∞, ε) is relatively compact, f has no critical values in [−ε, ε] and df is

transverse to R>0 × Λ over f−1[−ε, ε], intersecting it only at p (where f van-

ishes). We also choose a subanalytic Whitney triangulation S such that Λ ⊆
N∗∞S and f−1(−∞,−ε) and f−1(−∞, ε) are constructible. The Morse charac-

ter associated to these choices is then defined as the image in W(T ∗M,Λ) of

(5.22) cone(1f−1(−∞,−ε) → 1f−1(−∞,ε)) ∈ Perf S = Perf W(T ∗M,N∗∞S)op,

where the morphism 1f−1(−∞,−ε) → 1f−1(−∞,ε) is (the linearization of) the

canonical one from (3.5). To show that this cone is indeed sent to the linking

disk at p in W(T ∗M,Λ), we will make use of the wrapping exact triangle The-

orem 5.3, which says that the linking disk at p is the cone of the continuation

map associated to any positive isotopy of Lagrangians in T ∗M which crosses

Λ exactly once transversely at p. Specifically, there is an obvious positive

isotopy from the conormal of f−1(−∞,−ε) to the conormal of f−1(−∞, ε),
namely f−1(−∞, t) for t ∈ [−ε, ε], since f has no critical values in the interval

[−ε, ε]; the cone of the associated continuation element in W(T ∗M,Λ) is thus

the desired linking disk.
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The conormals of f−1(−∞,±ε) are not themselves objects of the wrapped

Fukaya category associated to the triangulation W(T ∗M,N∗∞S), seeing as they

by definition touch the stop. However, in Section 5.7 we studied the conor-

mals of the inward cornerings of S-constructible open sets U , which we denoted

LU := LU−ε . These Lagrangians Lf−1(−∞,±ε) are thus, in particular, objects

of W(T ∗M,N∗∞S), and Lemma 2.13 provides an isotopy between them and

the (usual) conormals of f−1(−∞,±ε) which takes place in the complement

of Λ, thus inducing an isomorphism in W(T ∗M,Λ). Therefore to complete the

argument, it suffices to show that

(i) FS(1f−1(−∞,±ε)) ∈ Perf W(T ∗M,N∗∞S) is isomorphic to Lf−1(−∞,±ε), and

(ii) the canonical morphism 1f−1(−∞,−ε) → 1f−1(−∞,ε) is sent by FS and

the isomorphisms (i) to an element in HW ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε))N∗S
whose image in W(T ∗M,Λ) is the continuation element associated to the

natural positive isotopy between the conormals of f−1(−∞,±ε).
Regarding (i), let us establish the more general assertion that FS(1W )

is isomorphic to LW for any relatively compact open S-constructible set W .

Since FS is a Morita equivalence, it suffices by Yoneda to show that the pullback

F ∗SLW = CW ∗(LW , FS(−)) is isomorphic in Mod S to 1W . Using Lemmas 5.19

and 5.16 (for the case star(s) ⊆W ) and Proposition 5.24 and Lemma 5.21 (for

the case star(s) *W ), we have canonical isomorphisms

(5.23) HW ∗(LW , Lstar(s))N∗∞S =

{
Z star(s) ⊆W,
0 otherwise

= 1W (s).

This identifies F ∗SLW = 1W objectwise (i.e., identifies their evaluations at ev-

ery s ∈ S). To identify F ∗SLW = 1W as modules, it suffices by Corollary 5.32 to

compare the action of morphisms t→ s for star(t) ⊆ star(s) ⊆ W at the level

of cohomology. (Since the category Z[S] and both modules are cohomologically

concentrated in degree zero, there is no room for any higher homotopies.) In

other words, we should show that the map

(5.24) HW ∗(LW , Lstar(s))N∗∞S → HW ∗(LW , Lstar(t))N∗∞S

that is obtained by multiplication by the pseudo-continuation element living in

HW ∗(Lstar(s), Lstar(t))N∗∞S acts as the identity map on Z under the isomorphism

(5.23), and this is precisely what is stated in Lemma 5.16. This completes the

proof of (i).

Turning to (ii), first we note that, as ∂∞Lf−1(−∞,ε) falls immediately into

the stop N∗∞S (Lemma 5.19), we have

(5.25) HW ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε))N∗∞S = HF ∗(Lf−1(−∞,ε), Lf−1(−∞,−ε)).

The isotopies of Lemma 2.13 between the (usual) conormals of f−1(−∞,±ε)
and the inward cornerings Lf−1(−∞,±ε) do not cross each other at infinity, hence
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induce an isomorphism between HF ∗ of the conormals with the above HF ∗

group of their inward cornerings. These transfer the continuation element as-

sociated to the isotopy of conormals from f−1(−∞,−ε) to f−1(−∞, ε) to an

element of (5.25), which we will call the cornered continuation element (multi-

plication by which is called the cornered continuation map). The image of the

cornered continuation element in W(T ∗M,Λ) is, by definition, the continuation

element between the conormals of f−1(−∞,±ε) (as the isomorphisms between

HF ∗ are compatible with the map to HW ∗). It thus suffices to show that

the cornered continuation element in (5.25) is the image of the canonical map

1f−1(−∞,−ε) → 1f−1(−∞,ε) under FS and the isomorphisms of (i). Equivalently,

we are to show that the canonical map 1f−1(−∞,−ε) → 1f−1(−∞,ε) agrees under

the isomorphisms HW ∗(Lf−1(−∞,±ε), FS(−)) = 1f−1(−∞,±ε)(−) from (i) with

the pulled back cornered continuation map. Again by Corollary 5.32, it suffices

to make this comparison at the level of cohomology. That is, we are to show

that multiplication by the cornered continuation map

(5.26) HW ∗(Lf−1(−∞,−ε), Lstar(s))N∗∞S → HW ∗(Lf−1(−∞,ε), Lstar(s))N∗∞S

acts as id : Z→Z under the isomorphisms (5.23) (for star(s)⊆f−1((−∞,−ε))).
Now, the isomorphisms of both sides with Z coming from Lemma 5.16 are

compatible with pseudo-continuation elements, so by Proposition 5.24 it is

equivalent to show that multiplication by the cornered continuation map

(5.27) HF ∗(Lf−1(−∞,−ε), Ls)→ HF ∗(Lf−1(−∞,ε), Ls)

acts as the identity on Z under the isomorphisms of Lemma 5.10 (for s ⊆
f−1((−∞,−ε))). (We replaced HW ∗ with HF ∗ using Lemma 5.19.) By the

definition given in Lemma 5.10, the “identity on Z” map (5.27) is simply the

identity map on the single Floer generator we get when unperturbing Ls back

to be the cotangent fiber of a point on s. Now the cornered continuation map

(5.27) agrees by the last part of [37, Lem. 3.26] with the isomorphism (5.27)

from [37, Lem. 3.21] associated to the isotopy from Lf−1(−∞,−ε) to Lf−1(−∞,ε).

Since this isotopy takes place far away from Ls, by definition it also acts as

the identity on the single Floer generator of both sides. �

Proposition 5.37. For any analytic open inclusion of analytic manifolds

M ′ ↪→M , the pushforward functor W(T ∗M ′,Λ′)→W(T ∗M,Λ) for subanalytic

singular isotropics with Λ′ ⊇ Λ∩S∗M ′ defines a morphism of microlocal Morse

theatres.

Proof. The reasoning of Theorem 5.35 applies without change. �
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6. Examples

6.1. Cotangent bundles. Let M be a smooth manifold (assumed connected

for sake of notation). The cotangent fiber Fq∈W(T ∗M) generates by Abouzaid

[5], [6] when M is closed and by [38, Thm. 1.14] in general.

WhenM is closed, Abbondandolo–Schwarz [3] and Abouzaid [8] calculated

the endomorphism algebra of the fiber as CW ∗(Fq, Fq) = C−∗(ΩqM) (using

relative Pin structures as in Section 5.3). The present Theorem 1.1 (which

does not depend on any of [3], [8], [6], [5]) gives a proof of this fact for all (not

necessarily closed) M :

Corollary 6.1. There is a quasi-isomorphism CW ∗(Fq,Fq)=C−∗(ΩqM).

Moreover if M ⊆ N is a codimension zero inclusion, there is a commutative

diagram

(6.1)

CW ∗(Fq, Fq)T ∗M C−∗(ΩqM)

CW ∗(Fq, Fq)T ∗N C−∗(ΩqN),

where the left-hand vertical arrow is covariant inclusion and the right-hand

vertical arrow is induced by pushforward of loops.

Proof. Note that there exists a real analytic structure on M whose induced

smooth structure agrees with the given one. Taking Λ = ∅ in Theorem 1.1 gives

Perf W(T ∗M) = Sh∅(M)c. It is well known that Sh∅(M)c = Perf C−∗(ΩqM),

for example, because both are the global sections of the constant cosheaf of

linear categories with costalk Perf Z. Indeed, U 7→ U is a cosheaf of spaces,

equivalently of∞-groupoids, which upon linearizing yields U 7→ Perf C−∗(ΩU),

and U 7→ Sh∅(U)c is a cosheaf since U 7→ Mod Sh∅(U)c = Sh∅(U) is a sheaf.

We may derive the more precise assertion that C−∗(ΩqM) is endomor-

phisms of the cotangent fiber by following a fiber through the equivalence,

e.g., by considering the inclusion of the cotangent bundle of a disk, or equiva-

lently by introducing a stop along the conormal of the boundary of a disk and

then removing it. �

6.2. Plumbings. Many authors have studied Fukaya categories of plumb-

ings [7], [12], [34] and their sheaf counterparts [17]. Here we compute the

wrapped category of a plumbing.

Let Π2n be the Liouville pair (Cn, ∂∞(Rn ∪ iRn)); we term it the plumb-

ing sector. Plumbings are formed by taking a manifold M (usually discon-

nected) with spherical boundary ∂M =
∐
Sn−1, and gluing the Liouville pair

(T ∗M,∂M) to some number of plumbing sectors along the spheres.

One can model the wrapped Fukaya category of the plumbing sector di-

rectly in sheaf theory: we can view it as the pair (T ∗Rn, N∗∞{0}), and the

category ShN∗∞{0}(R
n) has a well-known description in terms of the Fourier
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transform as described in [17]. This category is equivalent to W(Π2n) by The-

orem 1.1. To apply the gluing results of [38], however, we need to know how

the wrapped Fukaya categories of the two boundary sectors include, which is

slightly more than what Theorem 1.1 tells us. Hence we give a direct compu-

tation of the wrapped Fukaya category of the plumbing sector. Take a positive

Reeb pushoff of the boundary of a cotangent fiber in T ∗Rn, so it is now the

outward conormal of a small ball. Deleting the original cotangent fiber, we

obtain the Liouville sector T ∗Sn−1×A2, where A2 denotes the Liouville sector

(C, {e2πik/3}k=0,1,2∞). We can get back to the plumbing sector Π2n by adding

back the missing fiber, which amounts to attaching a Weinstein handle along

one of the boundary sectors T ∗(Sn−1 × I). We may thus deduce from [38,

Thms. 1.28, 1.5, and Cor. 1.18] that

Lemma 6.2. The category W(Π2n) is Morita equivalent to

(6.2) colim(Perf(•)← Perf C∗(ΩS
n−1)→ Perf(• → •)⊗ Perf C∗(ΩS

n−1)).

Gluing in the remaining manifolds, we conclude

Corollary 6.3. The wrapped Fukaya category of a plumbing is Morita

equivalent to the colimit of the diagram

(6.3) ∐
Perf(•)

∐
Perf C∗(ΩS

n−1)
∐

Perf(• → •)⊗ Perf C∗(ΩS
n−1)

∐
Perf C∗(ΩS

n−1)
∐

Perf C∗(ΩMi),

where Mi are the components of M .

6.3. Proper modules and infinitesimal Fukaya categories. Recall that for

a dg or A∞ category C, we write PropC := Fun(C,Perf Z) for the category

of proper (also known as pseudo-perfect) modules. It is immediate from our

main result that Prop ShΛ(M)c = PropW(T ∗M,Λ)op.

Recall from Corollary 4.24 that any proper ShΛ(M)c-module is repre-

sentable by an object of ShΛ(M) with perfect stalks, i.e., a constructible sheaf

in the classical sense. Let us describe some objects in the Fukaya category

W(T ∗M,Λ) which necessarily give rise to proper modules (and thus to sheaves

on M with perfect stalks, microsupported inside Λ).

Definition 6.4. For any stopped Liouville manifold (X,Λ), we define the

forward stopped subcategory Wε(X,Λ) to be the full subcategory of W(X,Λ)

generated by Lagrangians which admit a positive wrapping into Λ, meaning

∂∞L becomes eventually contained in arbitrarily small neighborhoods of Λ.

By Lemma 5.1, such a wrapping is necessarily cofinal.
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Example 6.5. If Λ admits a ribbon F (or, alternatively, is itself equal to

a Liouville hypersurface F ), then Wε(X,Λ) contains all Lagrangians whose

boundary at infinity is contained in a neighborhood of a small negative Reeb

pushoff of Λ (or F ).

Example 6.6. All compact (exact) Lagrangians are contained in Wε(X,Λ),

as their boundary at infinity ∅ is wrapped into Λ by the trivial wrapping.

Proposition 6.7. All objects of Wε(X,Λ) co-represent proper modules

over W(X,Λ); that is, the restriction of the Yoneda embedding W(X,Λ) ↪→
ModW(X,Λ)op to Wε(X,Λ) has image contained in PropW(X,Λ)op.

Proof. Morphisms in the wrapped category can be computed by cofinally

positively wrapping the first factor. Any L ∈Wε(X,Λ) admits such a wrapping

{Lt}t≥0 which converges at infinity to Λ. It follows that after some time t, its

boundary at infinity stays disjoint at infinity from K, and hence CW ∗(L,K) =

CF ∗(Lt,K) for sufficiently large t. �

Corollary 6.8. The equivalence Perf W(T ∗M,Λ)op = ShΛ(M)c sends

Wε(T ∗M,Λ) into Prop ShΛ(M)c.

Recall that for a Whitney triangulation S, the category W(T ∗M,N∗∞S)op

is Morita equivalent to Z[S], hence smooth and proper. The generators Lstar(s)

of W(T ∗M,N∗∞S) used to prove this equivalence were shown in that proof to

lie in Wε(T ∗M,N∗∞S), so we have

Proposition 6.9. For a Whitney triangulation S, the inclusion

Wε(T ∗M,N∗∞S) ⊆W(T ∗M,N∗∞S)

is a Morita equivalence.

Remark 6.10. Corollary 6.8 is very similar to the original Nadler–Zaslow

correspondence [66], restricted to Lagrangians with fixed asymptotics. To be

more precise, recall that Nadler–Zaslow wish to consider an infinitesmially

wrapped Fukaya category Winf(T ∗M,Λ) of Lagrangians “asymptotic at infinity

to Λ” and then show it is equivalent to a category of sheaves on M with

microsupport inside Λ.

If Λ is a smooth Legendrian and Winf(T ∗M,Λ) is defined to consist of

Lagrangians which are conical at infinity, ending inside Λ, then there is a fully

faithful embedding Winf(T ∗M,Λ) ↪→Wε(T ∗M,Λ), sending a Lagrangian end-

ing inside Λ to its small negative pushoff, as this pushoff tautologically wraps

positively back into Λ. Hence Corollary 6.8 recovers a version of [66] when

Λ is a smooth Legendrian. One can certainly imagine constructing such an

embedding Winf(T ∗M,Λ) ↪→ Wε(T ∗M,Λ) for more general (e.g., subanalytic

isotropic) Λ, provided one is given a definition of Winf(T ∗M,Λ) for such Λ.
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Remark 6.11. We do not know when Wε(T ∗M,Λ)op ↪→ Prop ShΛ(M)c

is a Morita equivalence. Note that the assertion of such an equivalence (for

Winf(T ∗M,Λ)op) is not made in [62], although that work is occasionally mis-

quoted to suggest that it is. What is actually said is that one can get all ob-

jects of Prop ShΛ(M)c from twisted complexes of objects of Winf(T ∗M,Λ′)op

for a possibly larger Λ′ which, as twisted complexes, pair trivially with all La-

grangians contained in a neighborhood of Λ′ \ Λ. Such Lagrangians might be

said to be “Floer theoretically supported away from Λ′ \ Λ.”

To make a precise statement along the lines of Remark 6.11, realizing a

version of the Nadler–Zaslow equivalence, we have

Proposition 6.12. If S is any subanalytic Whitney triangulation of com-

pact M with Λ ⊆ N∗∞S, and D denotes the collection of linking disks to smooth

points of N∗∞S\Λ, then

(6.4) Prop ShΛ(M)c = PropW(T ∗M,Λ)op = (TwWε(T ∗M,N∗∞S)op)Ann(D),

where Tw denotes twisted complexes (i.e., any model for the the pre-trian-

gulated, non idempotent-completed, hull), and the subscript Ann(D) indicates

taking the full subcategory of objects annihilated by CW ∗(−, D) = 0 for all

D ∈ D.

Proof. For such an S, the functor j : W(T ∗M,N∗∞S)→W(T ∗M,Λ) is the

quotient by D by Theorem 5.4. Pullback of modules under any localization is a

fully faithful embedding, identifying the category of modules over the localized

category with the full subcategory of modules over the original category which

annihilate the objects quotiented by (see Section A.7 and [37, Lem. 3.12 and

3.13]). Properness of a module is also clearly equivalent to properness of its

pullback. We thus conclude that

(6.5) j∗ : PropW(T ∗M,Λ)op ↪→ PropW(T ∗M,N∗∞S)op

embeds the former as the full subcategory of the latter annihilating D.

Now W(T ∗M,N∗∞S) (Morita equivalent to Perf Sop by Proposition 5.34)

is smooth and proper by Lemma A.11 (since M is compact and thus there are

finitely many simplices). Hence PropW(T ∗M,N∗∞S)op =Perf W(T ∗M,N∗∞S)op

= Perf Wε(T ∗M,N∗∞S)op (by Proposition 6.9). Finally, we observe that idem-

potent completion is unecessary by Lemma A.10, as Perf S has a generating

exceptional collection. �

Remark 6.13. For non-compact M , the same proof implies that

Prop ShΛ(M)c = (PropWε(T ∗M,N∗∞S)op)Ann(D)

⊇ (Perf Wε(T ∗M,N∗∞S)op)Ann(D)

(6.6)
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but the inclusion is not generally an equality. Though, if at least Λ is compact,

a similar argument should relate proper modules annihilating co-representatives

of the stalks at infinity with the annihilator in Tw Wε(T ∗M,N∗∞S)op of D and

the fibers at infinity.

Example 6.14. Let us explain how our “stopped” setup can be used to

make ordinary (not wrapped) Floer cohomology calculations using sheaves.

Suppose we have two Lagrangians L,K ⊆ T ∗M for which Λ := ∂∞L ∪ ∂∞K
is subanalytic. We are interested in computing HF ∗(L+,K). Thus con-

sider the wrapped category W(T ∗M,Λ) and small negative pushoffs L−,K− ∈
W(T ∗M,∂∞L ∪ ∂∞K), and observe that

HF ∗(L+,K) = HW ∗(L−,K−)Λ.

By our main result, the right-hand side can be computed as Hom(FK ,FL) in

the sheaf category ShΛ(M), provided we can determine the sheaves FL and

FK to which L− and K− are sent by our Theorem 1.1.

Here we make only a few observations regarding how to determine these

sheaves. Because linking disks go to microstalks and L−,K− are forward

stopped, we can see immediately that FL,FK have microstalk Z along the

respective loci ∂∞L, ∂∞K ⊆ Λ. For the same reason, for p away from the front

projection of Λ = ∂∞L ∪ ∂∞K, we have

FL|p ∼= CF ∗(L, T ∗pM), FK |p ∼= CF ∗(K,T ∗pM).

In some cases, e.g., in the case where L intersects every cotangent fiber either

once or not at all, this data already suffices to determine FL. In particular, this

situation occurs in [83], where sheaf calculations are made exhibiting cluster

transformations arising from comparing different fillings of Legendrian knots.

The present discussion suffices to translate those calculations into calculations

in Lagrangian Floer theory.

6.4. Legendrians and constructible sheaves.

Corollary 6.15. Let Λ ⊆ J1Rn ⊆ S∗Rn+1 be a smooth compact Legen-

drian. Let D = D1 t · · · t Dn be a disjoint union of linking disks at distinct

points of Λ, at least one on each connected component. Consider the algebra

(6.7) AΛ := CW ∗(D,D)T ∗Rn+1,Λ =
n⊕

i,j=1

CW ∗(Di, Dj)T ∗Rn+1,Λ.

Then ModA
op
Λ is equivalent to the category ShΛ(T ∗Rn+1)0 of sheaves micro-

supported inside Λ and with vanishing stalk at infinity.

This equivalence identifies the microstalk along Λ near Di with the di-

rect summand of the forgetful functor ModA
op
Λ → ModZ corresponding to the
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idempotent ei := 1Di ∈ CW ∗(Di, Di) ⊆ AΛ (e1, . . . , en are orthogonal idempo-

tents summing to the identity ). Hence PropA
op
Λ is equivalent to the subcategory

of ShΛ(T ∗Rn+1)0 of objects with perfect microstalks along Λ (or, equivalently,

with perfect stalks ).

Proof. Our generation results [38, Thm. 1.14] imply that W(T ∗Rn+1,Λ)

is generated by D1, . . . , Dn and a cotangent fiber F near infinity. Because we

assume that Λ ⊆ J1Rn, the cotangent fiber at negative (in the last coordinate)

infinity can be cofinally positively wrapped without intersecting Λ, and likewise

the (isomorphic) cotangent fiber at positive infinity can be cofinally negatively

wrapped without intersecting Λ. These large wrappings are conormals to large

disks in Rn+1 containing the projection of Λ; they thus have vanishing wrapped

Floer cohomology (in both directions) with the linking disks Di to Λ. Thus

D = D1 t · · · tDn and F are orthogonal objects of W(T ∗Rn+1,Λ).

Denote by µ = µ1 ⊕ · · · ⊕ µn and σ ∈ ShΛ(T ∗Rn+1)c the objects cor-

responding to D = D1 ⊕ · · · ⊕ Dn and F . They are orthogonal and have

endomorphism algebras A
op
Λ and Z, respectively.

We have ShΛ(T ∗Rn+1) = Mod ShΛ(T ∗Rn+1)c = ModW(T ∗Rn+1,Λ)op =

ModA
op
Λ ⊕ModZ, and this equivalence is given concretely by F 7→ Hom(µ,F)⊕

Hom(σ,F). By Theorem 1.1, Hom(µ,F) = Hom(µ1,F) ⊕ · · · ⊕ Hom(µn,F) is

the direct sum of microstalks along Λ near D1, . . . , Dn, and Hom(σ,F) is the

stalk at infinity.

To see that having perfect stalks is equivalent to having perfect microstalks

along Λ for objects of ShΛ(T ∗Rn+1)0, argue as follows. Suppose microstalks are

perfect. Stalks are computed by Hom(ZBε(x),F) for some sufficiently small ε >

0 (in terms of Λ), since changing ε is non-characteristic by Whitney’s condition

(b) for a subanalytic Whitney stratification S whose conormal contains Λ.

Now moving Bε(x) generically to infinity picks up some number of microstalks

when its conormal passes through Λ (transversally), and eventually gives zero

since the stalk of F near infinity vanishes. Thus perfect microstalks implies

perfect stalks. That perfect stalks implies perfect microstalks was proven in

Corollary 4.24. �

Let us comment on the relation of the above result to the “augmenta-

tions are sheaves” statement in [84], [71] (and later developments such as [74],

[13]). There is an evident similarity: both relate augmentations of an alge-

bra associated to a Legendrian to categories of sheaves microsupported in that

Legendrian. But they are not exactly the same: the algebra AΛ is not by

definition the Chekanov–Eliashberg dga, and moreover in [71] the category of

augmentations is defined by a somewhat complicated procedure, not just as

proper modules over a dga. Also in [71], the authors restrict attention to aug-

mentations, i.e., 1-dimensional representations of the dga, whereas the above
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result concerns the entire representation category (the underlying Z-module of

the representation being the microstalk), specializing to a comparison of rank

k representations with rank k microstalk sheaves for every k.

In fact, AΛ was conjectured by Sylvan to be a version of the Chekanov–

Eliashberg dga with enhanced C∗(ΩΛ) coefficients. A precise statement com-

paring AΛ to such a generalized “loop space dga” can be found in [30, Conj. 3],

where it is explained that the comparison should follow from a slight variant

of the surgery techniques of [19], [29]. The relation between the multiple copy

construction of [71] and the loop space dga can also be extracted from [30].

Finally we note that a version of the above discussion serves to translate

between the arguments of [80] and [31].

6.5. Fukaya–Seidel categories of cotangent bundles. Let W : T ∗M → C
be an exact symplectic fibration with singularities. The associated Fukaya–

Seidel category is by (our) definition W(T ∗M,W−1(−∞)). According to [38,

Cor. 3.9], retracting the stop to its core does not affect the category:

W(T ∗M,W−1(−∞)) = W(T ∗M, cW−1(−∞)).

Thus if the fiber is Weinstein, then we may calculate the corresponding Fukaya–

Seidel category using Theorem 1.1 (provided the core is subanalytic).

In particular, the sheaf theoretic work on mirror symmetry for toric va-

rieties may now be translated into assertions regarding the wrapped Fukaya

category. Recall that for any n-dimensional toric variety T, [35] introduced a

certain Lagrangian ΛT ⊆ T ∗(S1)n. They conjectured,10 and [54] proved, that

Sh∂∞ΛT
((S1)n)c = Coh(T), where we use Coh to denote the dg category of

coherent complexes. By Theorem 1.1, we may conclude

Corollary 6.16. We have Perf W(T ∗(S1)n, ∂∞ΛT)op = Coh(T).

When T is smooth and Fano, it was expected that the Coh(T) should be

equivalent to the Fukaya–Seidel category of the mirror Hori–Vafa superpoten-

tial [44]. To compare this expectation with Corollary 6.16, it suffices to show

that ∂∞ΛT is in fact the core of the fiber of said superpotential in the Fano

case. This is shown under certain hypotheses in [36] and in general in [91]. We

summarize the above discussion in the right column of (7.31).

These results may be compared with [4], which for smooth projective T

gives a fully faithful embedding of Perf(T) into an infinitesimal Fukaya cate-

gory for the superpotential. In the Fano case, this is recovered and upgraded

to an equivalence by taking proper modules of the formulation in [36].

10Strictly speaking, they conjectured the proper module version of this statement.
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Note that Corollary 6.16 gives an equivalence in the general (non-Fano,

non-compact, singular, and stacky) case, although this equivalence is not yet

formulated in terms of a superpotential. Such a formulation is known to be

somewhat subtle, requiring the exclusion of some critical values; see [16, §5]

or [4]. It may be interesting to explore this using the present methods.

7. Partially wrapped Fukaya categories and microlocal sheaves

The purpose of this section is to prove Theorem 1.4. The reasoning in this

section depends only on the statement of Theorem 1.1, together with various

results from [38] and [65]; as such, it can be read independently of previous

sections of this article.

The main point in the derivation of Theorem 1.4 from Theorem 1.1 is to

properly exploit, on both the Fukaya side and the sheaf side, the “doubling

trick,” which allows one to embed the category associated (on either side)

to a Liouville manifold (possibly relative a singular isotropic stop) into the

category associated to a cotangent bundle relative an appropriate “doubled”

stop obtained from an embedding of (a stabilization of) the given Liouville

manifold into the co-sphere bundle. The use of such an embedding to reduce

to cotangent bundles was advocated for on the sheaf side in [81]. The doubling

trick has appeared in various forms on the Fukaya side [38], [89], and we develop

it systematically below. It has been used on the sheaf side in [42], [65] to embed

categories of microlocal sheaves into categories of (usual) sheaves, and we will

use it for the same purpose here.

While our eventual appeal to Theorem 1.1 will require the relative core in

question to be subanalytic isotropic, most of the intermediate results of this sec-

tion require much weaker assumptions. A subset Λ of a contact (resp. symplec-

tic) manifold will be called mostly Legendrian (resp. Lagrangian) [38, Def. 1.7]

if and only if the complement Λsubcrit := Λ \ Λcrit of the open locus Λcrit ⊆ Λ,

where Λ is a smooth Legendrian (resp. Lagrangian), can be covered by the

smooth image of a second countable smooth manifold of dimension strictly

less than Legendrian (resp. Lagrangian). A conical mostly Lagrangian subset

is (locally) the cone over a mostly Legendrian subset. (To show this, intersect

with a generic contact type hypersurface). A subanalytic isotropic subset is

mostly Legendrian/Lagrangian.

7.1. Homological cocores. We begin by introducing homological cocores,

which are a simultaneous generalization of linking disks and cocores. They are

analogous to co-representatives of microstalks in the sheaf theoretic context.

At various points in our arguments below, it will be relevant to assume a

given Liouville manifold X “admits homological cocores” in the sense defined

below. (In fact, admitting homological cocores is most naturally a condition
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on a pair (X,Λ), which turns out to be independent of Λ and invariant under

deformations of X.) Every Weinstein manifold admits homological cocores.

We begin by recalling a special case of the Künneth embedding from [38].

Let (X,Λ) be a stopped Liouville manifold. We have a Künneth functor [38,

Thm. 1.5]

(7.1) W(X,Λ) ↪→W
(
(X,Λ)× (C,∞∪ ei[

π
2
, 3π

2
]∞)

)
given by multiplication by the linking disk D∞ ∈ W(C,∞ ∪ ei[

π
2
, 3π

2
]∞) at

∞ ∈ ∂∞C; it is fully faithful since the endomorphism algebra of D∞ is Z. We

also have a fully faithful embedding

(7.2) W((X,Λ)× (CRe≥0,∞)) ⊆W
(
(X,Λ)× (C,∞∪ ei[

π
2
, 3π

2
]∞)

)
by [38, Lem. 3.7]. (To be explicit, (X,Λ)×(CRe≥0,∞) = (X×CRe≥0, (cX×∞)∪
(Λ×R>0)).) The image of the Künneth functor (7.1) is evidently contained in

this full subcategory (7.2), so we obtain a functor

(7.3) W(X,Λ) ↪→W((X,Λ)× (CRe≥0,∞))

which will be used throughout this section.

Definition 7.1 (Homological cocore). Let (X,Λ) be a stopped Liouville

manifold whose relative core cX,Λ is mostly Lagrangian. A homological cocore

at a smooth Lagrangian point p ∈ cX,Λ is an object of Perf W(X,Λ) whose

image under (Perf of) the Künneth embedding (7.3) is the linking disk at

p×∞ ∈ cX,Λ ×∞.

Recall from [38, Proof of Thm. 1.14] that if L ⊆ X is exact, cylindrical

at infinity, and intersects cX,Λ precisely once, transversely, at a smooth La-

grangian point p ∈ cX,Λ, then L is a homological cocore at p. In particular,

(properly embedded) cocores of critical Weinstein handles are homological co-

cores. Also recall from [38, §9.1] that the linking disk at a point of Λ is a

homological cocore at the corresponding point of cX,Λ.

Definition 7.2. We say that (X,Λ) (with cX,Λ mostly Lagrangian) admits

homological cocores if and only if every smooth Lagrangian point of cX,Λ has

a homological cocore.

It follows from stop removal and the vanishing of W(X×CRe≥0) [38, Lem.

9.1] that the linking disks to cX,Λ×∞ split-generate W((X,Λ)× (CRe≥0,∞)).

Hence (X,Λ) admits homological cocores if and only if the Künneth embedding

(7.3) is a Morita equivalence (and in this case Perf W(X,Λ) is split-generated

by the homological cocores). In fact, we have the following equivalent charac-

terizations of admitting homological cocores:

Proposition 7.3. For a stopped Liouville manifold (X,Λ) whose relative

core cX,Λ is mostly Lagrangian, the following are equivalent :
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• (X,Λ) admits homological cocores ;

• the Künneth embedding (7.3) is a Morita equivalence;

• the Künneth embedding is a Morita equivalence:

(7.4) W(X,Λ) ↪→W((X,Λ)× (C,±∞));

• the Künneth embedding is a Morita equivalence:

(7.5) W(X) ↪→W(X × (CRe≥0,∞));

• the Künneth embedding is a Morita equivalence:

(7.6) W(X) ↪→W(X × (C,±∞)).

Proof. The equivalence of admitting homological cocores and the Künneth

embedding (7.3) being a Morita equivalence was already argued for above.

We argue that (7.3) and (7.5) are equivalent. These are the statements

that the categories W((X,Λ)× (CRe≥0,∞)) and W(X × (CRe≥0,∞)) (respec-

tively) are split-generated by Lagrangians of the form L × [iR]. Taking L

to be a linking disk of Λ, we see that the linking disks to Λ × R>0 inside

W((X,Λ)×(CRe≥0,∞)) are of the desired form. Therefore it is split-generated

by Lagrangians of the form L × [iR] if and only if its quotient by the linking

disks to Λ × R>0 is split-generated by these objects, and this quotient is pre-

cisely W(X × (CRe≥0,∞)) by stop removal. The same argument shows that

(7.4) and (7.6) are equivalent.

We argue that (7.5) and (7.6) are equivalent. They are the statements

that the categories W(X × (CRe≥0,∞)) and W(X × (C,±∞)) (respectively)

are split-generated by Lagrangians of the form L× [iR]. These statements are

equivalent since the natural functor W(X × (CRe≥0,∞))→W(X × (C,±∞))

is an equivalence by [38, Cor. 3.9]. �

Note that condition (7.6) does not involve Λ and is invariant under de-

forming X; it holds whenever X is Weinstein by [38, Cor. 1.18].

If cX,Λ is mostly Lagrangian, the stabilization (X,Λ) × (C,±∞) admits

homological cocores since every component of the smooth Lagrangian locus of

c(X,Λ)×(C,±∞) = cX,Λ×R is unbounded. It follows that the Künneth embedding

(7.7) W((X,Λ)× (C,±∞)k) ↪→W((X,Λ)× (C,±∞)k+1)

is a Morita equivalence for every k > 0.

7.2. Liouville hypersurfaces. Recall that a Liouville hypersurface embed-

ding X ↪→ Y is a codimension one embedding of a Liouville domain (X,λ)

into a contact manifold (Y, ξ) such that there exists a contact form α on (Y, ξ)

whose restriction to X coincides with λ. A Liouville pair (Z,X) is a Liouville

manifold Z together with a Liouville hypersurface embedding X ↪→ ∂∞Z.
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We will often abuse terminology and speak of a Liouville hypersurface

embedding of a Liouville manifold into a contact manifold to mean a Liouville

hypersurface embedding of a Liouville domain whose completion is the given

Liouville manifold.

Here we record two real analytic approximation results for later use.

Lemma 7.4. Any codimension zero smooth embedding of real analytic con-

tact manifolds (U, ξU ) ↪→ (Y, ξY ) can be smoothly approximated over compact

subsets of the domain by real analytic embeddings.

Proof. First, we approximate the given embedding by a real analytic map

f which does not necessarily respect contact structures. We now have two real

analytic contact structures f∗ξY and ξU on U which are C∞-close. Interpo-

lating linearly yields a real analytic family of real analytic contact structures

ξt interpolating between f∗ξY and ξU . By Gray’s theorem, we obtain a real

analytic family of real analytic vector fields Vt defined uniquely by the prop-

erties Vt ∈ ξt and LVtξt = d
dtξt. The total flow of this family Vt thus defines

a real analytic diffeomorphism of U (possibly defined only on a large compact

subset due to lack of completeness) carrying ξU to f∗ξY . Pre-composing f by

this diffeomorphism gives the desired real analytic map. �

Corollary 7.5. Let (X,λ) be a real analytic Liouville domain, and let

(Y, ξ) be a real analytic contact manifold. Any Liouville hypersurface embed-

ding X ↪→ Y can be smoothly approximated by real analytic Liouville hyper-

surface embeddings.

Proof. Given a Liouville hypersurface embedding X ↪→ Y , there is an

induced codimension zero inclusion of contact manifolds X × [0, 1] ↪→ Y to

which we may apply Lemma 7.4. �

We now study the question of when a Liouville manifold X admits a

Liouville hypersurface embedding X ↪→ S∗M . Such an embedding determines

three pieces of “formal” data:11

(i) a smooth map f : X →M ;

(ii) a splitting f∗TM = B ⊕ R;

(iii) an isomorphism of complex vector bundles TX = B ⊗R C.

The first two pieces of data are equivalent to a homotopy class of smooth maps

X → S∗M . Indeed, up to contractible choices, a lift of f : X →M to S∗M is

the same as a non-vanishing section of f∗TM , which is the same as a trivialized

subbundle R ⊆ f∗TM , which is the same as a splitting f∗TM = R⊕ B. The

isomorphism TX = B⊗RC comes from the derivative of the embedding, which

11The term “formal” has a precise meaning in the context of the h-principle; see [33, §5.3].
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identifies TX with the pullback of the contact distribution on S∗M . There is

an existence h-principle for Liouville hypersurface embeddings (under a certain

“half-dimensional” hypothesis on the core); namely,

Lemma 7.6. Let X be a Liouville manifold whose core cX is contained

in a finite union of locally closed submanifolds of dimension at most half the

dimension of X . Every triple of formal data as above comes from a Liouville

hypersurface embedding X ↪→ S∗M .

Proof. The formal data is (homotopy) equivalent to a smooth map p :

X → S∗M together with an isomorphism q : TX = p∗ξ, where ξ is the

contact distribution of S∗M . Equivalently, it is the data of a smooth map

p : X × [0, 1] → S∗M together with an isocontact isomorphism q : T (X ×
[0, 1]) = p∗TS∗M (i.e., an isomorphism respecting contact distributions and

their conformal symplectic structure). The h-principle [33, 16.1.1] now guar-

antees that the pair (p, q) is homotopic to an isocontact immersion, i.e., one for

which p is an immersion which pulls back the contact structure on S∗M to the

contact structure λ+ dt on X × [0, 1]. The assumption on the core cX ensures

that a generic perturbation of p is an embedding in a small neighborhood of

cX × {1
2}. �

Corollary 7.7. Let X be a Liouville manifold. For any stable polariza-

tion TX = B ⊗R C, there is a Liouville hypersurface embedding of X × Ck
(some k <∞) into some S∗M , compatible with stable polarizations.

Proof. In view of Lemma 7.6 (whose hypothesis is trivially satisfied for

X × Ck once k ≥ 1
2 dimX), it suffices to show that there exists a manifold

N and a map f : X → N such that f∗TN and B are stably isomorphic (i.e.,

isomorphic after direct summing with some Rm). To see that this is true, note

that the tangent bundle to the Grassmannian of n-planes in RN is (stably)

inverse to the tautological vector bundle. �

Remark 7.8. Corollary 7.7 concerns the product polarization of X × Ck.
By contrast, there always exists a twisted stabilization, i.e., the total space

of an arbitrary polarized symplectic vector bundle over X (equivalently, the

complexification of a rank k real vector bundle) which embeds into S∗RN as in

[81], [65]. In the present article, we need to restrict to untwisted stabilization

because in [38] we have only proven an untwisted Künneth theorem. Meanwhile

in the sheaf-theoretic settings of [81], [65], the corresponding twisted Künneth

result is a formality, and it is convenient to embed into S∗RN rather than some

S∗M in order to have (homotopical) uniqueness of embeddings.

7.3. Doubling I: Fully faithful embeddings of Fukaya categories. We first

recall the doubling trick in the “absolute” (i.e., no stop) setting. Consider a
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Liouville pair (Z,X). Grading/orientation data on Z determines such data on

X by restriction; when Z = T ∗M , our primary case of interest, this means that

X is equipped with the polarization induced from the Legendrian foliation of

S∗M by co-spheres. With respect to such compatible data, there is a functor

W(X)→W(Z, cX) obtained by composing the Künneth map W(X)→W(X×
CRe≥0, cX × {∞}) with the canonical neighborhood X × CRe≥0 ↪→ Z of the

Liouville hypersurface X (an embedding of Liouville sectors).

We now consider the double D(cX) := cX t cεX , where cεX denotes a small

positive pushoff of cX . There is a functor

(7.8) W(X)→W(Z, cX t cεX)

defined by including (X×CRe≥0, cX ×{∞}) into (T ∗M, cX t cεX) as the canon-

ical neighborhood of the first copy of cX inside D(cX). When cX is mostly

Lagrangian, this functor evidently sends a homological cocore at a point of cX
to the linking disk at the corresponding point of the first copy of cX inside the

double.

Proposition 7.9. The functor (7.8) is fully faithful.

Proof. It is asserted in [38, Ex. 10.7] that the covariant pushforward

W(X) → W(Z,X t Xε) is fully faithful, where Xε denotes a small positive

pushoff of X. Combining this with the fact that the functor W(Z,X tXε)→
W(Z, cX t cεX) is an equivalence [38, Cor. 3.9], we conclude that (7.8) is fully

faithful. �

We now explain the doubling trick in the presence of a stop (“relative

doubling”).

Construction 7.10 (Doubling the relative core of a Liouville hypersurface).

Let (Z,X) be a Liouville pair, and let Λ ⊆ ∂∞X be a stop. We will define

the double D(cX,Λ) ⊆ ∂∞Z. The double is contained in a small neighborhood

of X, so it suffices to define it as a subset of ∂∞(X × CRe≥0) (and then push

forward under the standard neighborhood X × CRe≥0 ↪→ Z of X inside Z).

The double D(cX,Λ) ⊆ ∂∞(X×CRe≥0) is the stop of the product of stopped

Liouville manifolds

(7.9) (X,Λ)× (C, {±i∞}) = (X × C, (cX × {±i∞}) ∪ (Λ× iR)),

which indeed lies inside ∂∞(X ×CRe≥0) ⊆ ∂∞(X ×C). The double D(cX,Λ) is

evidently comprised of a “first copy” of cX,Λ, namely (cX×{−∞})∪(Λ×iR<0),

and a “second copy” of cX,Λ, namely (cX × {+∞}) ∪ (Λ× iR>0), joined along

their common boundary Λ = Λ× 0.

The fact that D(cX,Λ) ⊆ ∂∞(X × CRe≥0) lies on the boundary poses no

issue for defining D(cX,Λ) ⊆ ∂∞Z as its image under (the action on boundaries
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at infinity of) X × CRe≥0 ↪→ Z. We will, however, want to consider W(X ×
CRe≥0, D(cX,Λ)), and for the purpose of defining this category, we implicitly

push D(cX,Λ) inward using a choice of contact vector field transverse to the

boundary. Alternatively, we could use a different Liouville structure on CRe≥0

which is strictly isomorphic to T ∗[0, ε) near the boundary, which makes pushing

easy (simple translation).

Let us now generalize the functor (7.8) and Proposition 7.9 to the relative

setting. We consider the composition

(7.10) W(X,Λ)
(7.3)
↪→ W((X,Λ)× (CIm≤0,−i∞))

→W(X × C, (cX × {−∞,±i∞}) ∪ (Λ× iR)).

The target category is identified with W(X×CRe≥0, D(cX,Λ)) by [38, Cor. 3.9],

so we obtain a canonical functor

(7.11) W(X,Λ)→W(X × CRe≥0, D(cX,Λ)),

and hence composing with any inclusion X × CRe≥0 ↪→ Z, a functor

(7.12) W(X,Λ)→W(Z,D(cX,Λ)).

When cX,Λ is mostly Lagrangian, this functor evidently sends a homological

cocore at a point of cX,Λ to the linking disk at the corresponding point of the

first copy of cX,Λ inside the double.

Proposition 7.11. The functor (7.12) is fully faithful.

Proof. Appealing to the definition of the functor (7.3), the functor (7.12)

is the composition

(7.13) W(X,Λ)
(7.1)
↪→ W((X,Λ)× (C,−i∞∪ ei[0,π]∞))

→W(X × C, (cX × {−∞,±i∞}) ∪ (Λ× iR))→W(Z,D(cX,Λ))

of Künneth, stop removal, and pushforward. Given that Künneth is fully

faithful, it suffices to show that the composition of the latter two functors is

fully faithful when restricted to product objects L×D−i∞ ⊆ (X,Λ)×(C,−i∞∪
ei[0,π]∞). In fact, we will show they are both fully faithful on such objects.

To show full faithfulness comes down to understanding cofinal wrappings.

It was shown in [38, §7.4] that products of cofinal wrappings are cofinal. (This

was the basis for full faithfulness of the Künneth functor.) But the results of

[38, §7.4] are better: they in fact show that if wrappings of L ⊆ (X,Λ) and

D−i∞ ⊆ (C,−i∞∪ ei[0,π]∞) satisfy the cofinality criterion [38, Lem. 2.2], then

so does their product inside (X,Λ)× (C,−i∞∪ ei[0,π]∞).

Now the cofinality criterion is robust in an important way. Choose wrap-

pings of L ⊆ (X,Λ) and D−i∞ ⊆ (C, {±i∞}) satisfying the cofinality criterion.
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Their product satisfies the cofinality criterion in (X,Λ) × (C, {±i∞}), hence

also in (X×C, (cX ×{−∞,±i∞})∪ (Λ× iR)), as it stays away from the addi-

tional stop cX×{−∞}. Satisfaction of the cofinality criterion is also preserved

under cutting out a neighborhood of this additional stop at cX × {−∞} and

embedding into W(Z,D(cX,Λ)).

We have thus described cofinal wrappings of product objects in the three

categories in (7.13) other than W(X,Λ). The desired full faithfulness results

follow using [37, Lem. 3.20]. �

7.4. A first comparison. We now combine the doubling trick embeddings

with Theorem 1.1 to arrive at a first sheaf theoretic description of some par-

tially wrapped Fukaya categories. Note that the doubling construction works

real analytically by appealing to Corollary 7.4 to make the contactomorphisms

involved in Construction 7.10 real analytic. (In the below, we tacitly assume

that doubling takes place real analytically in this sense.)

Combining Proposition 7.11 and Theorem 1.1, we obtain the following:

Corollary 7.12. Let (X,Λ) be a stopped real analytic Liouville manifold

whose relative core cX,Λ is subanalytic isotropic. Let M be a real analytic

manifold and X ↪→ S∗M an analytic Liouville hypersurface embedding. There

is a fully faithful embedding

(7.14) W(X,Λ)op ↪→ ShD(cX,Λ)(M)c

which sends homological cocores of (X,Λ) to co-representatives of microstalks

at the corresponding points of the first copy of cX,Λ inside D(cX,Λ).

In particular, if (X,Λ) admits homological cocores, then (7.14) is a Morita

equivalence onto the full subcategory split-generated by co-representatives of

the microstalks at smooth points of the first copy of cX,Λ inside D(cX,Λ).

In order to bridge the gap between Corollary 7.12 and Theorem 1.4, note

first that Corollary 7.7 implies that there always exists some hypersurface

embedding X ↪→ S∗M (which can be assumed real analytic by Corollary 7.5).

The remaining work thus concerns only the sheaf side: we must relate the

sheaf category in (7.14) (which is, in particular, not a priori independent of

the choice of Liouville hypersurface embedding) to the microsheaf category

defined in [63], [81], [65]. This is accomplished in [65], which we adapt to our

purposes in the next subsection.

7.5. Doubling II: Microlocal sheaves and antimicrolocalization. Let us now

recall the definition of the microlocal sheaf categories appearing in Theo-

rem 1.4. The category which sheaf theorists typically associate to a closed

subset of S∗M is defined as follows. One forms the “Kashiwara–Schapira

stack” by sheafifying the presheaf of categories on T ∗M given by the formula
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µshpre(Ω) := Sh(M)/ ShT ∗M\Ω(M). The presheaf µshpre is already discussed

in [49]; working with its sheafification is a more modern phenomenon; see, e.g.,

[42], [63], [65]. The notion of microsupport makes sense for a section of this

sheaf, and we write µshΛ for the subsheaf of full subcategories of objects with

microsupport inside Λ. The subsheaf µshΛ ⊆ µsh is evidently supported on Λ.

The sheaf µsh is conic; in particular, given (T ∗M \M)
π−→ S∗M

ι−→ T ∗M

we have canonically π∗ι∗ µsh = µsh |T ∗M\M . We also denote the sheaf ι∗ µsh

on S∗M by µsh. Likewise for Λ ⊆ S∗M we have µshΛ. We will consider this

sheaf for Λ locally closed and will be interested in the category µshΛ(Λ).

By construction there are evident maps Sh(M) → µsh(Ω) for any open

Ω ⊆ T ∗M , and similarly ShΛ(M) → µshΛ(Λ ∩ Ω); in particular, ShΛ(M) →
µshΛ\M (Λ\M) = µshΛ∞(Λ∞) (the last of which being in the cosphere bundle).

We term all such maps “microlocalization functors.”

In fact, the category µshΛ(Λ) is defined for any space Λ equipped with

a germ of closed embedding into a contact manifold carrying a stable polar-

ization [81]. Indeed, such a contact manifold admits a homotopically unique

isocontact embedding into S∗RN as N → ∞ by the h-principle [33, 16.1.2].

The key insight of [81] is that, while the image of Λ under such an embedding

would have vanishing microsheaf category, one can obtain the correct category

by thickening Λ along the relevant Lagrangian polarization of the normal bun-

dle. The role of these polarizations on the sheaf side is entirely parallel to the

role of polarizations on the Fukaya side to determine grading/orientation data

as discussed in Section 5.3; also compare with Corollary 7.7 and Remark 7.8.

Note that we may also define µshΛ(Λ) by embedding into S∗M for any manifold

M , since such an M admits an embedding into RN .

Remark 7.13. For Liouville manifolds X and X ′ satisfying the hypotheses

of Theorem 1.4, it follows from Theorem 1.4 that if X and X ′ are within

the same Liouville deformation class, then µshcX (cX) = µshcX′
(cX′). This

equivalence is highly non-obvious from the sheaf theoretic standpoint, but is

proven directly in [65] under certain assumptions of isotropicity.

The doubling trick in the sheaf context is developed in [65], resulting in

embeddings between categories of (microlocal) sheaves parallel to the embed-

dings between Fukaya categories discussed above. Let us now recall the precise

definition of the doubling operation which is relevant in the sheaf context [65],

so as to compare it with Construction 7.10 from the Fukaya context.

We begin with a discussion of the contact manifold

(7.15) (C× V, λC + αV ),

where λC is a Liouville form on C (for the standard symplectic structure) and

(V, αV ) is a contact manifold with choice of contact form. First, note that the
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specific choice of Liouville form on C is of no importance, as for f : C → R
there is a strict contactomorphism

(C× V, λC + αV )→ (C× V, λC + df + αV ),(7.16)

(x, y) 7→ (x, e−f(x)RαV y),(7.17)

(at least, provided the Reeb flow on V is complete). Next, for a subset Λ0 ⊆ V
and a smooth arc γ in C, define

(7.18) γ ×̃ Λ0 :=
⋃
t∈γ

Ä
{t} × e−g(t)RαV Λ0

ä
,

where g : γ → R is a primitive for λC|γ , namely dg = λC|γ (so g is well-defined

up to adding a locally constant function). Note that the meaning of γ×̃Λ0 does

not depend on the choice of Liouville form on C, as the definition is compatible

with the contactomorphisms (7.16). If Λ0 is isotropic, then so is γ ×̃ Λ0.

Construction 7.14 (Doubling a subset with boundary cooordinates). Be-

gin with a contact manifold Y and a locally closed relatively compact Λ ⊆ Y .

Also fix, in a neighborhood of Λ \ Λ, coordinates on Y of the form (7.15) (re-

garded as a germ near {0} × Λ0 for compact Λ0 ⊆ V ) in which Λ = R>0 ×̃ Λ0

(so Λ0 is identified with Λ \Λ); we call these boundary coordinates for Λ. Now

the double D(Λ) is, near Λ0, defined to be γ ×̃Λ0, where γ is the immersed arc

obtained from two copies of R>0 by adding a small loop enclosing a sufficiently

small positive area near the origin (a contractible choice). Away from {0}×V ,

the double is thus ΛteεRλC+αV Λ (note that RλC+αV = RαV ), which is extended

globally by extending the contact form λC+αV globally (a contractible choice).

The double D(Λ) thus consists of Λ (the “first copy”) and a positive Reeb

pushoff of Λ (the “second copy”) joined appropriately near their boundary.

Note that when Λ is subanalytic with Cr subanalytic boundary coordi-

nates, then we may ensure that the double D(Λ) is subanalytic by choosing

both γ and the global extension of α to be Cr subanalytic.1213 We will tac-

itly assume that D(Λ) is defined in this way whenever Λ is assumed to be

subanalytic with Cr subanalytic boundary coordinates.

12A Cr subanalytic function Rn → R is one which is Cr and has subanalytic graph. This

class of functions is closed under composition, hence gives rise to a notion of Cr subanalytic

manifolds, etc.
13The integer r is tacitly assumed to be sufficiently large, and we make no attempt to

determine the minimum value of r needed for our constructions to go through (though it will

not be particularly large). Note that the tangent bundle of a Cr subanalytic manifold is a

Cr−1 subanalytic vector bundle, hence the highest regularity one can impose on a contact

form α is Cr−1 subanalytic. The exterior derivative dα, hence also the Reeb vector field Rα,

will then be Cr−2 subanalytic. This would suggest that at a very minimum we must take

r ≥ 3 to ensure we can integrate Rα.
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The relative core of a Liouville hypersurface always has boundary coor-

dinates (of the same regularity as the hypersurface) in the sense of Construc-

tion 7.14. Indeed, a neighborhood of the boundary of a Liouville hypersurface

is given by (Y × Rs × Rt, esλ + dt) (a germ near (s, t) = (0, 0), with the hy-

persurface itself being the locus Y × {s ≤ 0} × {t = 0}), and we can scale

the contact form to be λ + e−sdt, which has the desired form (7.15) near

(s, t) = (0, 0). In these coordinates, any relative core will have the desired

form Λ0 × {s ≤ 0} × {t = 0}.

Proposition 7.15. For the relative core of a Liouville hypersurface, the

doubles defined in Constructions 7.10 and 7.14 are canonically isotopic.

Proof. Fix a Liouville manifold X with a stop Λ ⊆ ∂∞X, and consider

the stopped Liouville manifold

(7.19) (X,Λ)× (C,±i∞) = (X × C, (Λ× iR) ∪ (cX × {±i∞}).

The stop, as a subset of ∂∞(X × CRe≥0), is the double of cX,Λ defined in

Construction 7.10. We will exhibit an isotopy from it to the double defined in

Construction 7.14.

We begin with the family of stops

(7.20) (Λ× {eiθ, e−iθ}R≥0) ∪ (cX × {eiθ, e−iθ}∞)

for θ from π/2 to 0. This family may be written as

(7.21) (γθ ×̃ Λ) ∪ (∂∞γθ × cX),

where γθ = {eiθ, e−iθ}R≥0 (illustrated in the top row of Figure 4) and we have

fixed a contact form on V = ∂∞X to obtain coordinates (C, λC) × (V, αV ) ⊆
∂∞(X × C).

Figure 4. The family of arcs γθ (top) and their smoothings γ̃θ
near the origin (bottom).
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Now we smooth γθ near the origin to obtain a family of immersed arcs γ̃θ
(embedded except at θ = 0) as in the bottom row of Figure 4. We would like to

consider (7.21) with γ̃θ in place of γθ. Note, however, that while γθ and γ̃θ agree

outside a compact subset of C, the same is not true of γθ ×̃Λ and γ̃θ ×̃Λ, due to

the fact that the actions of γθ and γ̃θ necessarily differ at θ = 0 (this being the

difference of areas enclosed). Thus while γθ ×̃Λ has two “arms” which coincide

at θ = 0, the twisted product γ̃θ ×̃Λ has two “arms” which near infinity differ

by a small positive Reeb pushoff at θ = 0. This small positive isotopy extends

to the ambient contact manifold ∂∞(X×C), hence we can, in particular, apply

it to the part of (7.21) lying near infinity in the C-coordinate. This defines the

desired isotopy from the double in the sense of Construction 7.10 (at θ = π/2)

to the double in the sense of Construction 7.14 (at θ = 0). �

The following “stabilize and then double” construction will be crucial in

what follows. Let Λ ⊆ S∗M be equipped with boundary coordinates. We

consider its “stabilization” Λ × (0, 1) inside S∗(M × R), where (0, 1) ⊆ R ⊆
T ∗R is contained in the zero section. This stabilization is naturally equipped

with two boundary charts, one near ∂Λ× (0, 1) (obtained from the boundary

coordinates for Λ by multiplying by T ∗(0, 1)) and one near Λ×∂(0, 1) (obtained

from the trivial chart (0, 1) ⊆ T ∗(0, 1) by multiplying by Λ ⊆ S∗M). When M

is real analytic and the boundary coordinates for Λ are Cr subanalytic, the first

chart is also Cr subanalytic; the second chart is always analytic. These two

boundary charts overlap near ∂Λ×∂(0, 1) in a chart of the form (C2,R2
≥0)×W .

Viewing the first factor as (T ∗R2,R2
≥0), we may simply smooth the corner of

R2
≥0 as in [38, §7.1] to obtain the smoothed product (Λ × (0, 1))sm. This

splices together the charts near ∂Λ× (0, 1) and Λ× ∂(0, 1) to define boundary

coordinates for (Λ× (0, 1))sm. This smoothing and splicing can be done in the

Cr subanalytic category. The double D((Λ× (0, 1))sm) is thus defined, and we

abuse notation by writing it as D(Λ× (0, 1)).

The doubling trick for sheaf categories from [65] concerns D(Λ × (0, 1)),

and its proof relies on just a short list of its properties, which are easier to see

from a different description of it, as a “movie of creation and destruction” of Λ,

denoted (Λ, ∂Λ)≺� in [65, §7.4]. Thus to apply the results of [65] we must give

an isotopy D(Λ× (0, 1)) ∼ (Λ, ∂Λ)≺�. Let us do this now:

Lemma 7.16. For Λ ⊆ S∗M equipped with boundary coordinates, the dou-

ble of the stabilization D(Λ× (0, 1)) ⊆ S∗(M ×R) is isotopic to the “movie of

creation and destruction” (Λ, ∂Λ)≺� ⊆ S∗(M × R) from [65, §7.4].

Proof. The main point is to take the picture from Construction 7.14 based

on the Lagrangian projection and translate it into the front projection.

First we translate Construction 7.14 itself into the front projection. We

add an imaginary third coordinate Rz to C to form (C × Rz, λC + dz). A
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Legendrian curve γ in (C×Rz, λC + dz) determines γ ×̃Λ0 ⊆ (C×V, λC +αV )

for Λ0 ⊆ V via (7.18). The “front projection” is the projection (Cx+iy×Rz, dz−
y dx) → Rx × Rz. The Legendrian curve relevant for Construction 7.14 has

front projection given by the two rays Rx≥0×{z = 0, ε} joined by a single cusp

in the standard way illustrated in Figure 5.

Figure 5. A standard cusp.

To understand the double of the stabilization D(Λ×(0, 1)), we may look in

the corner boundary coordinates T ∗R2
≥0 ×W . Passing to the front projection

and smoothing the corner, we see that in these coordinates, the double is given

by two parallel copies of R2
≥0 (with its corner smoothed) joined by cusps (i.e.,

the standard cusp in Figure 5 times a smoothing of the boundary of R2
≥0). Up

to fixing a standard model of this cusped object (which some readers might

call a “square-ish quarter of a flying saucer”), this is exactly the definition of

(Λ, ∂Λ)≺� ⊆ S∗(M × R) from [65, §7.4]. �

We now state the doubling trick for sheaf categories from [65] (substi-

tuting D(Λ × (0, 1)) in place of (Λ, ∂Λ)≺� in accordance with Lemma 7.16

and the preceding discussion). The crucial point for us is that it realizes a

given category of microlocal sheaves as (a full subcategory of) a certain cate-

gory of sheaves with a given singular support condition; this process is termed

“antimicrolocalization” in [65].

Theorem 7.17 ([65, Thm. 7.30]). Let Λ be a Whitney stratifiable isotropic

inside S∗M with Cr boundary coordinates. The category ShD(Λ×(0,1))(M×R) is

the orthogonal direct sum of its full subcategories Sh∅(M × R) (local systems )

and ShD(Λ×(0,1))(M × R)0 (objects with vanishing stalk at infinity ), and the

microlocalization functor

(7.22) ShD(Λ×(0,1))(M × R)0
∼−→ µshΛ×(0,1)(Λ× (0, 1)) = µshΛ(Λ)

is an equivalence.

(The Künneth equivalence µshΛ×(0,1)(Λ× (0, 1)) = µshΛ(Λ) is standard.)

Remark 7.18. The actual hypothesis of Theorem 7.17 in [65] (“sufficiently

isotropic”) is somewhat weaker than being Whitney stratifiable isotropic. In

our applications, we will in fact always have subanalyticity of Λ hence, in

particular, Whitney stratifiability.
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Corollary 7.19. Let Λ be a locally closed relatively compact subanalytic

isotropic inside S∗M with Cr subanalytic boundary coordinates. The cate-

gory µshΛ(Λ) is compactly generated by co-representatives of microstalks at

the smooth points of Λ.

Proof. By Theorem 7.17, we have µshΛ(Λ) = ShD(Λ×(0,1))(M×R)0. It thus

suffices to show that the microstalk co-representatives µξ ∈ ShD(Λ×(0,1))(M×R)

for smooth points ξ of the first copy of Λ× (0, 1) inside D(Λ× (0, 1)) lie in the

full subcategory ShD(Λ×(0,1))(M × R)0 and compactly generate it.

The category ShD(Λ×(0,1))(M×R) is compactly generated by Corollary 4.22

(which immediately implies its orthogonal full subcategories from Theorem 7.17

are also compactly generated). The µξ (which are compact) are by definition

left orthogonal to local systems, so they lie in ShD(Λ×(0,1))(M × R)0 by The-

orem 7.17. An object of ShD(Λ×(0,1))(M × R) right-orthogonal to all these

µξ must have microsupport contained in Λ × [0, 1] (the closure of the second

copy), but this implies empty microsupport since Λ × [0, 1] is isotropic and

every smooth Legendrian component has boundary (so the relevant microstalk

always vanishes, which is enough by Proposition 4.10). It follows that the µξ
compactly generate ShD(Λ×(0,1))(M × R)0 as claimed. �

Remark 7.20. One may eliminate the subanalyticity hypotheses from

Corollary 7.19 at the cost of appealing to more general representability theo-

rems as in Lemma 4.13. For example, for Λ stratifiable by isotropics, µshΛ(Λ) is

compactly generated by co-representatives of microstalks at the smooth points

of Λ. Indeed, the arguments of Lemma 4.13 imply that for any open U ⊆ Λ,

the restriction µshΛ(Λ) → µshU (U) has a left adjoint which preserves com-

pact objects. Taking U to be a contractible open subset near a given smooth

Legendrian point of Λ produces a compact co-representative of the microstalk.

These then compactly generate by Proposition 4.10.

7.6. Proof of Theorem 1.4. We begin by deriving from Theorem 7.17 a

sheaf theoretic analogue of Proposition 7.11. Although it is a purely sheaf

theoretic statement, the proof we give passes through the Fukaya category and

the results of [38].

Corollary 7.21. Let (X,Λ) be a stopped Liouville manifold. Let M

be a real analytic manifold and X ↪→ S∗M a Liouville hypersurface embed-

ding such that the image of cX,Λ is subanalytic isotropic with Cr subanalytic

boundary coordinates. The left adjoint µ∗ of the microlocalization functor

µ : ShD(cX,Λ)(M)→ µshcX,Λ(cX,Λ) is fully faithful.

We will see in the proof that µ∗ exists and preserves compact objects for

formal reasons.
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Proof. We consider the commuting diagram

(7.23)

ShD(cX,Λ)(M) ShD(cX,Λ)×(0,1)(M × (0, 1)) ShD(cX,Λ×(0,1))(M × R)

µshcX,Λ(cX,Λ) µshcX,Λ×(0,1)(cX,Λ × (0, 1))

µ

∼
r

µ

r

µ

∼
r

where the functors are restriction r and microlocalization µ. It is a standard

result of microlocal sheaf theory that the two leftmost restriction functors

r are equivalences. We note that we may indeed choose the double of the

stabilization D(cX,Λ×(0, 1)) so that over M×(0, 1) it coincides with D(cX,Λ)×
(0, 1) (compare the picture from Lemma 7.16), so the upper right restriction

functor r is defined.

Because microsupport respects limits and colimits, so too do the microlo-

calization functors µ (see, e.g., [65, Rem. 6.1] for more details) and restriction

functors r. The domain sheaf categories are compactly generated by Corol-

lary 4.22, and Brown representability holds for the opposites of compactly

generated categories by [69], [53], so all functors r and µ in (7.23) admit left

adjoints r∗ and µ∗.14 Being left adjoint to co-continuous functors, each r∗ and

µ∗ preserves compact objects.

The microlocal sheaf categories appearing in (7.23) are compactly gener-

ated by co-representatives of microstalk functors by Corollary 7.19. The images

of these compact generators under µ∗ are again co-representatives of the same

microstalk functors. To show that a given µ∗ is fully faithful, it suffices to

check on compact objects.

By Theorem 7.17, the diagonal µ in (7.23) is the projection onto an or-

thogonal direct summand of the domain. Its left adjoint µ∗ is thus the inclusion

of this orthogonal direct summand hence, in particular, is fully faithful. Thus

to prove full faithfulness of the other vertical µ∗ functors, it suffices to show

full faithfulness of

(7.24) r∗ : ShD(cX,Λ)×(0,1)(M × (0, 1))→ ShD(cX,Λ×(0,1))(M × R)

restricted to co-representatives of the microstalk functors at the first copy of

cX,Λ × (0, 1). By Proposition 1.3, this functor (restricted to compact objects)

corresponds under Theorem 1.1 to the pushforward functor

(7.25) W(T ∗(M×(0, 1)), D(cX,Λ)×(0, 1))→W(T ∗(M×R), D(cX,Λ×(0, 1))).

It thus suffices to show that the restriction of this functor to the linking disks

of the first copy of cX,Λ × (0, 1) is fully faithful.

14In fact, r∗ and µ∗ exist in general by arguing as in Lemma 4.13.
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The inclusion

(7.26) (X,Λ)× (C,±∞)× (CRe≥0,∞) ↪→ (T ∗(M × R), D(cX,Λ × (0, 1)))

around the first copy of cX,Λ × (0, 1) = c(X,Λ)×(C,±∞) induces a fully faithful

functor on W by Proposition 7.11 and the fact that (X,Λ)× (C,±∞) admits

homological cocores. Now, after a deformation, the above inclusion factors

through (T ∗(M×(0, 1)), D(cX,Λ)×(0, 1)) as the identity map on T ∗(0, 1) times

the canonical inclusion

(7.27) (X,Λ)× (CRe≥0,∞) ↪→ (T ∗M,D(cX,Λ))

around the first copy of cX,Λ. It thus suffices to show that the induced map on

wrapped Fukaya categories is also fully faithful. To do this, we multiply the

proof of Proposition 7.11 by T ∗(0, 1). Namely, we consider Lagrangians inside

T ∗(0, 1) × (X,Λ) times the linking disk of (CRe≥0,∞) and consider product

wrappings inside T ∗(0, 1)× (X,Λ)× (C, {±i∞}) which we conclude satisfy the

cofinality criterion, hence remain cofinal after removing a neighborhood of the

additional stop at cX × {−∞} and gluing onto T ∗M . �

Corollary 7.22. Let (X,Λ) be a stopped Liouville manifold. Let M be

a real analytic manifold and X ↪→ S∗M a Liouville hypersurface embedding

such that the image of cX,Λ is subanalytic isotropic with Cr subanalytic bound-

ary coordinates. There is a fully faithful functor W(X,Λ)op ↪→ µshcX,Λ(cX,Λ)c

characterized uniquely by commutativity of the diagram

(7.28)

W(X,Λ)op Perf W(T ∗M,D(cX,Λ))op

µshcX,Λ(cX,Λ)c ShD(cX,Λ)(M)c,

(7.12)

Theorem 1.1

µ∗

where µ∗ denotes the restriction to compact objects of the left adjoint of the

microlocalization functor.

Proof. Proposition 7.11 and Corollary 7.21 ensure that the horizontal ar-

rows in (7.28) are fully faithful. The essential image of (7.12) is contained in

the subcategory generated by linking disks of the first copy of cX,Λ since it

factors through W((X,Λ)× (CRe≥0,∞)), which is generated by linking disks.

The functor µ∗ obviously sends co-representatives of microstalks (which exist

by Corollary 7.19) to co-representatives of microstalks, which are identified

with linking disks under Theorem 1.1. �

Remark 7.23. The hypotheses of Corollaries 7.21 and 7.22 may be ensured

by assuming (X,λ) is analytic, cX,Λ is subanalytic isotropic, and the embedding

X ↪→ S∗M is analytic. This is how we proceed to prove Theorem 1.4, relying

on the abstract analytic approximation result of Corollary 7.5. However when

applying Corollary 7.5 in practice (and in particular in [36]), it can be more
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convenient to simply check subanalyticity of the core inside S∗M and existence

of analytic boundary coordinates (which holds vacuously if Λ = ∅).
Now the embedding of Theorem 1.4 is simply defined to be that of Corol-

lary 7.22 for a choice of Liouville hypersurface embedding, which is guaranteed

to exist by Corollary 7.7.

Proof of Theorem 1.4. By Corollary 7.7, there is a Liouville hypersurface

embedding X × Ck ↪→ S∗M compatible with polarizations for some mani-

fold M . Equip M with a real analytic structure, and use Corollary 7.5 to

perturb the embedding to be analytic. Now apply Corollary 7.22 to (X,Λ) ×
(C,±∞)k and the embedding X × Ck ↪→ S∗M to obtain an embedding

(7.29) W((X,Λ)× (C,±∞)k) ↪→ µshcX,Λ×Rk(cX,Λ × Rk),
which sends homological cocores to co-representatives of microstalks since The-

orem 1.1 sends linking disks to co-representatives of microstalks. Finally, com-

bine this with the Künneth embedding W(X,Λ) ↪→W((X,Λ)×(C,±∞)k) and

the equivalence µshcX,Λ(cX,Λ) = µshcX,Λ×Rk(cX,Λ × Rk). �

While the equivalence of Theorem 1.1 is canonical, the embedding of The-

orem 1.4 depends a priori on a choice of analytic hypersurface embedding

X × Ck ↪→ S∗M compatible with polarizations. We do strongly expect that

it is independent of these choices, and moreover that pursuing the present

methods a bit further would show this.

In some instances, there is a particularly natural choice of Liouville hy-

persurface embedding for which the category ShcX,Λ(M) is of interest. It is

then of interest to know that the embedding of Theorem 1.4 (associated to

this particular hypersurface embedding) and the equivalence of Theorem 1.1

intertwine pushforward on Fukaya categories and (the left adjoint of) microlo-

calization. We stated this compatibility in the introduction as (1.4). Here

we make a stronger statement, relevant in applications, with Corollary 7.22

in place of Theorem 1.4. Corollary 7.22 requires only that the image of the

core be subanalytic and have subanalytic boundary coordinates, rather than

requiring the hypersurface itself to be analytic.

Proposition 7.24. In the notation and assuming the hypotheses of Corol-

lary 7.22, the following diagram commutes :

(7.30)

W(X,Λ)op Perf W(T ∗M, cX,Λ)op

µshcX,Λ(cX,Λ)c ShcX,Λ(M)c.

Corollary 7.22 Theorem 1.1

µ∗

Proof. Append to the right side of (7.28) a square diagram forgetting

down from D(cX,Λ) to the first copy cX,Λ ⊆ D(cX,Λ). �
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Example 7.25 (Mirror symmetry for very affine hypersurfaces). Let WT :

(C∗)n → C∗ be the Hori–Vafa mirror superpotential to a smooth toric stack

T. In Corollary 6.16, we discussed how the results of the present article allows

one to translate the sheaf theoretic work of [35], [54] into a mirror symmetry

statement equating the Fukaya–Seidel category of WT with Coh(T). This also

depended on certain calculations of skeleta in [36], [91].

The main purpose of [36] was to provide the relevant skeletal calculations

and microlocal sheaf theoretic results to prove the expected mirror symme-

try between the wrapped Fukaya category of a generic fiber (which we de-

note W−1
T (−∞)) and the category of coherent sheaves on the toric boundary

Coh(∂T). Theorem 7.22 provides the translation between microlocal sheaf

theory and wrapped Fukaya categories. To summarize, we have the following

commutative diagram:

(7.31)

Coh(∂T) Coh T

µshΛT
(ΛT)c ShΛT

((S1)n)c

Perf W(W−1
T (−∞)) Perf W((C∗)n,W−1

T (−∞))

[36] [35], [54]

µ∗

Theorem 7.22 Theorem 1.1

in which the bottom square is (7.30), using the fact that −ΛT is the core of

W−1
T (−∞) from [36], [91]. (The absence of an “op” is due to the appearance

of the minus sign in −ΛT and a corresponding use of an antipodal map.)

7.7. Making the core subanalytic. The goal of this subsection is to show

that every Weinstein sector may be perturbed to be real analytic and have

subanalytic relative core (and hence satisfy the hypotheses of Theorem 1.4).

Proposition 7.26. Let M be a real analytic manifold, and let V be a

real analytic vector field on M which is convex and complete at infinity and

which is gradient-like with respect to a proper Morse function with finitely

many critical points. Suppose that a neighborhood of every zero of V has local

analytic coordinates in which V =
∑

i aixi
∂
∂xi

for some ai ∈ Q \ {0}. Then the

union of all stable manifolds C ⊆M is a subanalytic subset of M . In fact, for

any subanalytic subset Λ ⊆ ∂∞M , the union C ∪ (Λ× R) ⊆M is subanalytic.

Proof. Fix a proper smooth Morse function φ : M → R with respect to

which V is gradient-like. There is no real need to make φ real analytic, though

the usual real analytic approximation results allow us to do so if we like.

The core C is compact, so it is vaccuously true that CΛ := C ∪ (Λ × R)

is subanalytic over {φ > T} for some large T < ∞. By V -invariance of CΛ,

if an interval [T ′, T ] contains no critical values of φ, then CΛ subanalytic over
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{φ > T} implies CΛ is subanalytic over {φ > T ′}. Thus the point is to

understand what happens when we cross a critical value of φ. We may assume

the critical values of φ are distinct.

Fix a critical value of φ, which by translating φ we may assume is zero.

Supposing that CΛ is subanalytic over {φ > ε}, let us show that CΛ is sub-

analytic over {φ > −ε}. It is trivial that CΛ is subanalytic away from the

stable manifold of the critical point of φ in question. Thus let us work in

local analytic coordinates [−1, 1]n+m near this critical point in which V =∑
i aixi

∂
∂xi
−
∑

j bjyj
∂
∂yj

for ai, bi ∈ Q>0. We now consider the proper map

(7.32)


x2

1 + · · ·+ x2
n = 1

y2
1 + · · ·+ y2

m = 1

s, t ≥ 0

 (sa1x1, . . . , s
anxn, t

b1y1, . . . , t
bmym)

−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Rn+m,

which is analytically defineable since ai, bi ∈ Q. Note that for fixed values of

(x1, . . . , xn, y1, . . . , ym) and of the product st, the image is a flow line of V ; in

fact, this identifies the space of broken flow lines of
∑

i aixi
∂
∂xi
−
∑

j bjyj
∂
∂yj

on Rn+m with

(7.33) {x2
1 + · · ·+ x2

n = 1} × {y2
1 + · · ·+ y2

m = 1} × R≥0.

We may now show that CΛ is subanalytic in a neighborhood of the stable

manifold {x1 = · · · = xn = 0} × Rmy as follows. Choose a small real analytic

hypersurface H transverse to V near

{x2
1 + · · ·+ x2

n = 1} × {y1 = · · · = ym = 0}.

Since H lies in the locus where φ is positive, the intersection CΛ ∩H is sub-

analytic. Now the image of CΛ ∩ H under the backward flow of V may be

described by projecting it to (7.33), taking its inverse image in the domain of

(7.32), and taking its image under (7.32); the result is subanalytic since (7.32)

is proper. Near the stable manifold, CΛ is the union of this subanalytic set

(the image of CΛ ∩H under the backward flow of V ) with the stable manifold,

hence is subanalytic. �

Corollary 7.27. Every Weinstein manifold can be perturbed to admit

a real analytic structure such that for every subanalytic subset at infinity, the

associated relative core is subanalytic.

Proof. The standard Weinstein handle

(7.34)(
R2k×R2(n−k),

n∑
i=1

dxi ∧ dyi,
k∑
i=1

1

2
(−xi∂xi + 3yi∂yi)+

n∑
i=k+1

1

2
(xi∂xi + yi∂yi)

)
is real analytic. Any critical point of a Weinstein manifold may be perturbed so

as to coincide locally with (7.34) (see [20] and [40, Lemma 6.6]). We may thus
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construct (after perturbation) any Weinstein manifold by iteratively attaching

such standard handles. Now the attaching maps may be perturbed to be real

analytic by Lemma 7.4. We therefore obtain a real analytic Weinstein manifold

(X,ω,Z) to which Proposition 7.26 applies. �

Corollary 7.28. Every Weinstein sector is equivalent to a stopped Wein-

stein manifold with subanalytic isotropic relative core.

Proof. A Weinstein sector is (equivalent to) a Liouville pair (X,F ) where

X and F are both Weinstein. Apply Corollary 7.27 to X and F individually,

and apply Corollary 7.5 to the embedding F ↪→ ∂∞X. �

Appendix A. Review of categorical notions

We will assume the reader is familiar with the basic definitions of dif-

ferential graded (dg) and/or A∞ categories, functors between them, modules,

and bimodules, for which there are many references. In this section we review

notation, assumptions, and relevant notions/results.

All of our dg or A∞ categories C have morphism cochain complexes linear

over a fixed commutative ring (which we take for simplicity of notation to be Z),

which are Z-graded and cofibrant in the sense of [37, §3.1] (an assumption

which is vacuous if working over a field). We further assume that all such C

are at least cohomologically unital, meaning that the underlying cohomology-

level category H∗(C) has identity morphisms. (This follows if C itself is strictly

unital, as is the case in the dg setting.) We say objects in C are isomorphic if

they are isomorphic in H∗(C).

A.1. Functors, modules, and bimodules. For two (A∞ or dg) categories C

and D, we use the notation

(A.1) Fun(C,D)

to refer to the (A∞) category of A∞ functors from C to D. (Compare [79,

§(1d)], noting that here we consider homologically unital functors.) Note that

Fun(C,D) is in fact a dg category whenever D is. The morphism space between

f, g ∈ Fun(C,D) is the derived space of natural transformations (as opposed

to the space of strict natural transformations, which can be defined in the dg

setting but not in the more general A∞ setting).

An A∞ functor f : C→ D is called fully faithful (essentially surjective, an

equivalence) if the induced functor on cohomology categories H∗(f) : H∗(C)→
H∗(D) is. We freely use the similar notion of a bilinear A∞ functor C×D→ E

(see [59]), which are themselves objects of an A∞ category which is dg if E is.

Denote by ModZ the dg category of dg Z-modules, i.e., the category of

(implicitly Z-graded) unbounded complexes of Z-modules localized at acyclic
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complexes. When relevant, we take cofibrant complexes of Z-modules as our

model of this category.

A left (respectively right) module over a category C is, by definition, a

functor from Cop (respectively C) to ModZ. More generally, a (C,D) bimodule

is a bilinear functor Cop ×D→ ModZ; this notion specializes to the previous

two notions by taking C or D = Z (meaning the category with one object ∗ and

endomorphism algebra Z); see [37, §3.1]. By the above discussion, left modules,

right modules, and bimodules are each objects of dg categories, denoted

ModC = Fun(Cop,ModZ),(A.2)

ModCop = Fun(C,ModZ),(A.3)

[C,D] = Fun(Cop ×D,ModZ),(A.4)

respectively. We will most frequently discuss left modules, which we simply

call modules. There are canonical fully faithful Yoneda embeddings (see, e.g.,

[79, §(1l)] for a more detailed description on morphism spaces):

C ↪→ ModC X 7→ homC(−, X),(A.5)

Cop ↪→ ModCop Y 7→ homC(Y,−),(A.6)

C×Dop ↪→ [C,D] (X,Y ) 7→ homC(−, X)⊗Z homD(Y,−),(A.7)

and we call any (bi)module in the essential image of these embeddings rep-

resentable. Recall that any C possesses a canonical (not necessarily repre-

sentable) (C,C) bimodule, the diagonal bimodule C∆ (defined on the level of

objects by C∆(−,−) = homC(−,−)).

A (D,C) bimodule B induces, via convolution (also known as tensor prod-

uct), a functor

B⊗C − : ModC→ ModD,(A.8)

M 7→ B(−,−)⊗C M(−)(A.9)

(note that this is a version of the derived tensor product), and more generally

a functor [C,E] → [D,E] for any category E. This functor always has a right

adjoint, given by N 7→ homModD(B,N).15 As one might expect, convolving

with the diagonal bimodule is (isomorphic to) the identity. Not every functor

ModC → ModD comes from a bimodule, however there is a characterization

of those which do:

Theorem A.1 (compare [90, Thm. 1.4]). The convolution map [D,C] →
Fun(ModC,ModD) is fully faithful, and its essential image is precisely the

co-continuous functors, i.e., those which preserve small direct sums.

15We say f : C → D has right adjoint (or is the left adjoint of) g : D → C if there is in

isomorphism in [C,D] between homD(f(−),−) and homC(−, g(−)).
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(By “F preserves small direct sums” we mean “the natural map
⊕

α F (Xα)

→ F (
⊕

αXα) is an isomorphism.”)

Proof Sketch. If Funco-cont(ModC,ModD) denotes the co-continuous func-

tors, observe that restriction to (the Yoneda image of) C induces tautologically

a map (which is an equivalence) Funco-cont(ModC,ModD)→ Fun(C,ModD) =

Fun(C,Fun(Dop,ModZ)) = [D,C]; in other words, co-continuous functors from

ModC are determined by what they do on C. One checks that this is a two-

sided inverse to the convolution map, up to homotopy. �

Given an A∞ functor f : C → D, there is a pair of (adjoint) induced

functors on module categories: first, there is an induced restriction map

(A.10) f∗ : ModD→ ModC

given by pre-composing with fop; one can show this is isomorphic to tensoring

with the graph (C,D) bimodule (fop, id)∗D∆ = D∆(f(−),−) (see [37, Lem.

3.7]). In particular, there is a natural functor D→ ModC given by composing

(A.10) with the Yoneda embedding for D. There is also (left adjoint to f∗) an

induction map

(A.11) f! : ModC→ ModD

given by tensoring with the graph (D,C) bimodule (id, f)∗D∆ = D∆(−, f(−)).

One can directly compute that f! sends a representable over X ∈ C to an object

isomorphic to the representable over f(X). Conversely, we have

Lemma A.2. If a (D,C) bimodule B has the property that B(−, c) is rep-

resentable by an object f(c) ∈ D for each c ∈ C, then convolving with B is

isomorphic in Fun(ModC,ModD) to the induction of a (unique up to isomor-

phism) A∞ functor f : C → D sending c to f(c). In particular, f! = B ⊗C −
admits a right adjoint, namely f∗.

Note that f∗ also admits a right adjoint f∗, called co-induction, induced

by taking hom from (fop, id)∗D∆, by the earlier discussion.

A.2. Pre-triangulated, idempotent complete, and co-complete categories.

A category C is called pre-triangulated if and only if it is closed under taking

mapping cones; in this case H0C is triangulated in the usual sense. Every cat-

egory has a well-defined pre-triangulated closure Tw C,16 which can be defined

as the closure of the image of C in ModC under taking mapping cones (see

[79, §3]). An object of ModC which is in the closure of A ⊆ C under taking

mapping cones is said to be generated by A.

16The notation Tw C is usually taken to mean the specific model of the pre-triangulated

closure of C given by the category of so-called “twisted complexes” of objects of C.
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A category C is called idempotent complete if and only if H0C is closed

under retracts. (Usually this property is only considered when C is already pre-

triangulated.) Every category has a well-defined idempotent completion Cπ,

which can be defined similarly as a full subcategory of Mod C (see [79, §4]). An

object of ModC is said to be split-generated by A ⊆ C when it is in the closure

of A under the operations of taking mapping cones and retracts. The category

of perfect modules Perf C ⊆ ModC is by definition the full subcategory spanned

by objects split-generated by C; in other words, Perf C = (Tw C)π.

A category C is called co-complete if and only if it is pre-triangulated

and has all (small) direct sums. Equivalently, C is co-complete if and only if

it has all small colimits. In particular, a co-complete category is idempotent

complete (compare [69, Prop. 1.6.8]). We will also call co-complete categories

large categories.

A.3. Compactly generated categories. Any category of modules ModC (or

more generally bimodules, etc.) over a small category C inherits from ModZ
the property of being co-complete. Large (i.e., co-complete) categories of the

form ModC may be characterized intrinsically as follows.

Let C be a large category. We say an object X ∈ C is compact if

homC(X,−) commutes with arbitrary direct sums (i.e., is co-continuous). De-

noting by Cc ⊆ C the full subcategory of compact objects, we say that a

co-complete category C is compactly generated if there is a small collection

(i.e., a set) of compact objects C ⊆ Cc satisfying the following equivalent

conditions:

• An object X ∈ C is zero if and only if it is right-orthogonal to C (meaning

homC(−, X) annihilates C).

• The natural map C→ ModC sending Y 7→ homC(−, Y ) is an equivalence.

Thus compactly generated categories C are precisely those of the form Mod C

for some small category C.

It is natural to ask to what extent Mod C determines C. This is answered

by the following well-known fact:

Lemma A.3. The compact objects of ModC are precisely Perf C.

Proof. Let M ∈ ModC be compact. There is a natural quasi-isomorphism

C∆⊗C M
∼−→M [37, Lem. 3.7], [38, Lem. A.1] which expresses M as an infinite

twisted complex of Yoneda modules. Since M is compact, the inverse quasi-

isomorphism factors through some finite subcomplex, so M is a retract of a

finite twisted complex of Yoneda modules. �

In particular, the inclusion C⊆Perf C induces an equivalence Mod Perf C=

ModC.
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A.4. Morita equivalence. We say categories C and D are Morita equivalent

if there exist a (C,D) bimodule P and a (D,C) bimodule Q inducing, via

convolution, an inverse pair of equivalences

(A.12) ModC
'←→ ModD.

Actually, every equivalence Mod C
∼−→ ModD is isomorphic to convolution by a

bimodule by Theorem A.1 (since an equivalence is necessarily co-continuous),

so C and D are Morita equivalent if and only if there is an equivalence Mod C =

ModD.

Lemma A.4. Categories C and D are Morita equivalent if and only if

there is an equivalence Perf C = Perf D.

Proof. An equivalence preserves compact objects, so an equivalence be-

tween ModC and ModD restricts to an equivalence Perf C = Perf D. Con-

versely, any equivalence Perf C = Perf D induces an equivalence ModC =

Mod Perf C = Mod Perf D = ModD. �

In particular, the canonical inclusion C ↪→ Perf C is a Morita equivalence.

In light of the above lemma, we will also refer to an equivalence Perf C = Perf D

as a Morita equivalence between C and D. We say a property of C is “a Morita-

invariant notion” if its validity only depends on Perf C up to equivalence.

A.5. Adjoints and compact objects. The following is a useful criterion for

when a functor preserves compact objects.

Lemma A.5. If a functor f : C→ D has a co-continuous right adjoint g,

then f sends compact objects to compact objects.

Proof. For c ∈ C a compact object, we have

(A.13) homD

(
f(c),

⊕
α

dα

)
= homC

(
c, g
(⊕
α

dα
))

= homC

(
c,
⊕
α

g(dα)
)

=
⊕
α

homC(c, g(dα)) =
⊕
α

homD(f(c), dα)

as desired. �

For example, if f : C→ D is a functor of small categories, the pullback on

module categories f∗ : ModD→ ModC is co-continuous and has a left adjoint

f! : ModC → ModD extending f (see Section A.1) which thus preserves

compact objects (a fact which can also be seen from Lemma A.3).

A.6. Brown representability. On the level of large categories, a version

of Brown representability gives effective criteria for deducing the existence of

adjoints to functors.
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Theorem A.6 (Compare [69, Thm. 8.4.4] or [58, Cor. 5.5.2.9]). Let C and

D be large categories with C compactly generated. If an A∞ functor f : C→ D

is co-continuous, then f admits a right adjoint.

Sketch of proof. We suppose that D is also compactly generated, so one

can write C = ModC, D = ModD with C = Cc and D = Dc. Then we observe

that if f is co-continuous, it comes (by Theorem A.1) from convolving with a

bimodule, which always has a right adjoint as described above. �

Theorem A.6 also holds under the weaker hypothesis that C is well gen-

erated rather than compactly generated, by work of Neeman adapted to the

dg/A∞ case. (For a definition of this notion, see [69, §8], and for a proof of

Theorem A.6 in that setting, see [69, Prop. 8.4.2 and Thm. 8.4.4].)

A.7. Quotients and localization. Given a (small) A∞ (or dg) category C

and a full subcategory D ⊆ C, there is a well-defined notion of the quotient

(dg or A∞) category C/D which comes equipped with a functor

(A.14) q : C→ C/D.

(See [27], [60] for an explicit model in the dg and A∞ cases respectively, also

discussed in [37, §3.1.3].) The pair C/D and q satisfy the following universal

property: any functor C → E which sends D to 0 factors essentially uniquely

through C/D via q; more precisely, the pre-composition q∗ : Fun(C/D,E) ↪→
Fun(C,E) fully faithfully embeds the former category as the full subcategory

FunAnn(D)(C,E) of the latter consisting of functors from C to E which annihi-

late D. Taking E to be (ModZ)op, we note, in particular, that the pullback map

(A.15) q∗ : Mod(C/D)→ ModC

is a fully faithful embedding whose essential image is the C modules which

annihilate D (see [37, Lem. 3.12 and 3.13]). It follows from these universal

properties that the quotient C/D depends only on the full subcategory of C

split-generated by D. If C is pre-triangulated, then so is C/D, however be

warned that C/D need not be idempotent complete even if C is.

In light of (A.15), we have the following equivalent perspective on local-

ization in terms of large categories. Let C be a compactly generated large

category, and let D ⊆ C be a full subcategory closed under cones and arbi-

trary direct sums (hence itself a large category) which is compactly generated

by a subset of C’s compact objects D ⊆ C := Cc. (Conversely, any full sub-

category D ⊆ C gives rise to such a D ⊆ C, namely the image of the induced

functor ModD→ ModC, which is co-continuous since it is left adjoint to pull-

back of modules, and is fully faithful because the unit of this adjunction is

an isomorphism [37, Lem. 3.7].) The quotient of C by D, denoted C/D, is

by definition the full subcategory of C which is right-orthogonal to D. (We
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may also write this as C/D; note that the universal property of direct sum

implies that the right-orthogonal of D is the same as the right-orthogonal of

D.) According to (A.15), this quotient C/D is precisely Mod(C/D). Thus the

large quotient C/D is compactly generated, and passing to compact objects

recovers the quotient of categories of compact objects, up to Morita equiva-

lence. By the discussion in Section A.1, the embedding q∗ : C/D ↪→ C is right

adjoint to a functor q! : C→ C/D extending q : C→ C/D. We thus conclude

Lemma A.7 (Compatibility of large quotients with compact objects, com-

pare [67, Thm. 2.1]). Let D ⊆ C be a co-continuous inclusion of compactly gen-

erated large categories which sends compact objects to compact objects. The

large quotient C/D (by definition the right-orthogonal to D ⊆ C) is also a

compactly generated large category with co-continuous inclusion into C. The

fully faithful inclusion q∗ : C/D → C is right adjoint to a “quotient functor”

q! : C → C/D whose restriction to compact objects is the corresponding quo-

tient functor on small categories q : C → (C/D)π (with idempotent-completed

target).

If C is a pre-triangulated dg/A∞ category and Z is a set of morphisms

in H0(C), one can form the localization of C with respect to Z by taking the

quotient

(A.16) C[Z−1] := C/conesZ,

where conesZ denotes any set of cones of morphisms in C representing the

elements in Z. (Regardless of how one chooses such a subset, one notices that

conesZ is a well-defined full subcategory of C and, in particular, C[Z−1] is

unaffected by the choice.) If C is not pre-triangulated, one can still define this

localization by taking the essential image of C under

(A.17) C→ Tw C→ Tw C/(conesZ).

The tautological localization map C→ C[Z−1] possesses a host of nice proper-

ties, simply as a special case of the properties of quotients discussed above; we

leave it to the reader to spell out the details.

A.8. Proper modules. Recall that Perf Z ⊆ ModZ is the subcategory of

perfect Z-linear chain complexes, namely those chain complexes which are

quasi-isomorphic to a bounded complex of finite projective Z-modules.

We say a module or bimodule is proper (sometimes called pseudo-perfect in

the literature) if as a functor to ModZ, it takes values in the full subcategory

Perf Z (i.e., for a module M if M(X) is a perfect chain complex for every

X ∈ C). Denote the full subcategory of proper modules by

(A.18) PropC := Fun(Cop,Perf Z) ⊆ ModC.
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A.9. Smooth and proper categories. We say a category C is smooth (some-

times called homologically smooth) if its diagonal bimodule C∆ is perfect. (A

(C,D) bimodule is called perfect if it is split-generated by tensor products of

representable bimodules homC(−, X)⊗ homD(Y,−).)

We say C is proper (sometimes called compact) if its diagonal bimodule

C∆ is proper, or if equivalently homC(X,Y ) is a perfect Z-module for any two

objects X,Y ∈ C. Smoothness and properness are Morita-invariant notions; in

particular, C is smooth (resp. proper) if and only if Perf C is.

In general, the subcategories of modules Perf C and PropC do not coin-

cide,17 however they are related under the above finiteness assumptions on C:

Lemma A.8. If C is proper, then Perf C ⊆ PropC, and if C is smooth,

then PropC ⊆ Perf C. In particular, if C is smooth and proper, then PropC =

Perf C.

Lemma A.9. Properness is inherited by full subcategories, and smoothness

passes to quotients/localizations.

A.10. Exceptional collections. We say a (full) subcategory of finitely many

objects A ⊆ C is an exceptional collection if there exists a partial ordering of

the objects of A such that

hom(X,X) = Z〈idX〉,(A.19)

hom(X,Y ) = 0 unless X ≤ Y.(A.20)

Lemma A.10. If N ∈ ModC is split-generated by an exceptional collec-

tion A ⊆ C, then N is generated by A (i.e., it is not necessary to add direct

summands ).

Proof. Let X ∈ A be any maximal (with respect to the given partial order)

object. We consider the functor

FX : ModC→ ModZ,(A.21)

M 7→M(X).(A.22)

Certainly if M is generated by A (i.e., by the Yoneda modules homC(−, A)

for A ∈ A), then FX(M) ∈ Perf Z by maximality of X, as all of the Yoneda

modules except homC(−, X) contribute trivially to FX , and each homC(−, X)

contributes a perfect Z-module.

There is a tautological map of C modules homC(−, X)⊗FX(M)→M(−);

denote its cone by M|A−{X}. Now given any maximal object Y of A − {X},

17Rather, they are in some sense “Morita dual” in that Prop C = Fun(Perf Cop,Perf Z).
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we may define a functor

FY : ModC→ ModZ,(A.23)

M 7→M|A−{X}(Y ).(A.24)

Again, if M is generated by A, then FY (M) ∈ Perf Z. To see this, simply

note that given a twisted complex M of objects of A, the object M|A−{X} is

just the same twisted complex but with all instances of X deleted. We may

now similarly define M|A−{X,Y } to be the cone of homC(−, Y ) ⊗ FY (M) →
M|A−{X}(−).

Iterating this procedure defines a sequence of functors FX : ModC →
ModZ for all X ∈ A. (In fact, these are independent of the order in which we

pick off maximal elements, however we will not use this.) The above arguments

show that for any M generated by A, all FX(M) are in Perf Z (and hence the

same holds for M split-generated by A). They also show (for arbitrary M)

that if all FX(M) are in Perf Z, then there exists M′ ∈ ModC generated by A

and a map M′ →M which is an isomorphism in ModA.

We may now conclude: if N is split-generated by A, then FX(N) ∈ Perf Z,

so there is N′ ∈ ModC generated by A and a map N′ → N which is an isomor-

phism in ModA, and since N′ and N are split-generated by A, an isomorphism

in ModA is an isomorphism in ModC. �

Lemma A.11. If A is an exceptional collection which is proper, then it is

smooth.

Proof. In the case where A has one object, this is true because Z is trivially

smooth. Now inductively apply the following assertion: If C and D are both

smooth, and E denotes the semi-orthogonal gluing of C with D along a (C,D)

bimodule B which is perfect, then E is smooth as well. (See [56, Prop. 3.11]

and [57, Thm. 3.24] for the dg case, which immediately extends to this setting.)

In the assertion, observe it suffices that B be proper, since proper bimodules

over smooth categories are automatically perfect (by the bimodule version

of Lemma A.8). Hence, one can induct from Z to any proper exceptional

collection A. �
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