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ABSTRACT. Let C be a curve defined over a number field k. We say a closed point x € C of
degree d is isolated if it does not belong to an infinite family of degree d points parametrized by
the projective line or a positive rank abelian subvariety of the curve’s Jacobian. Building on work
of [I1], we characterize elliptic curves with rational j-invariant which give rise to an isolated point
of odd degree on X1 (N)/Q for some positive integer N.

1. INTRODUCTION

Let C be a curve defined over a number field k, and let x € C be a closed point of degree d.
Following [I1], we say z is isolated if it does not belong to an infinite family of degree d points
parametrized by P! or a positive rank abelian subvariety of the curve’s Jacobian. (See §2.5 for
details.) Motivated by the well-known problem of classifying torsion subgroups of elliptic curves
over number fields, we seek to describe isolated points on the modular curve X;(N)/Q. As a first
case, we focus on those isolated points corresponding to elliptic curves with rational j-invariant.
That is, we consider isolated points # € X1 (V) such that j(z) € Q, where j : X1(N) — X1(1) = P!
denotes the j-map. Though there are infinitely many isolated points with this condition—indeed,
there are infinitely many isolated points above any j-invariant associated to an elliptic curve with
complex multiplication (CM) by [IIl, Thm. 7.1]—there is strong evidence that all isolated points
x € X1(N) with j(z) € Q arise from points on one of a finite number of elliptic curves, even as N
ranges over all positive integers.

Theorem 1 (Bourdon, Ejder, Liu, Odumodu, Viray [11]). Let Z denote the set of all isolated points
on all modular curves X1(N) for N € Z*. Suppose there exists a constant C = C(Q) such that for
all non-CM elliptic curves E/Q, the mod p Galois representation associated to E is surjective for
primes p > C. Then j(Z) N Q is finite.

The existence of a constant C' as in the theorem statement was first suggested in a question of
Serre [51], and in [52] he asked whether C(Q) = 37. Significant partial results combined with
computational evidence have led to this increasingly standard assumption becoming known as
Serre’s Uniformity Conjecture. See for example [, [5], [2], [62], [58], [39], [40].

A natural problem in light of Theorem [1|is to identify the (likely finite) set j(Z) N Q. By [11]
Thm. 7.1], the set contains all 13 CM j-invariants in Q as well as at least two non-CM j-invariants:
—32.59/23 corresponding to two isolated points of degree 3 on X7 (21) identified by Najman [47],
and —7 - 113, corresponding to degree 6 points on X1(37) lying above one of the two non-cuspidal
rational points on X (37) as in work of van Hoeij [60]. Here, we give an unconditional version of
Theorem [I| by restricting our attention to points of odd degree. Our main result is the following;:

Theorem 2. Let T,q3q denote the set of all isolated points of odd degree on all modular curves
X1(N) for N € Z*. Then j(Z,qq) N Q contains at most the j-invariants in the following list:
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non-CM j-invariants CM j-invariants
_32 K 56/23 _218 . 33 K 53
33.13/22 —215.33.53. 113

—21%.3%.5%.23%.29°

Conversely, j(Zoqq) N Q contains —32 - 5/23 and 33 - 13/22.

The j-invariant 33-13 /22 corresponds to a degree 9 point on X;(28). The existence of such a point
was noted during an extensive computational search performed by Najman and Gonzalez-Jiménez
(see [29]), and in fact it can be realized by a rational elliptic curve under base extension. However,
this is the first instance this point has been identified as isolated. The CM j-invariants give points
of degree 21 on X;(43), degree 33 on X;(67), and degree 81 on X;(163), respectively. They are in
J(Zoaq) N Q if and only if these points are isolated. One difficulty in determining whether they are
in fact isolated stems from the fact that the Jacobian variety of each of the last three curves has
positive rank; see Remark

The first step in the proof of Theorem [2] is to establish a connection between points on X;(N)
of odd degree and rational isogenies. This is analogous to the connection found in the case of odd
degree CM points on modular curves [I, Cor. 9.4], and it relies on the classification of rational
isogenies of elliptic curves over Q due to Mazur [46], Kenku [36], and others.

Theorem 3. Let € X1(n) be a point of odd degree with j(x) € Q. If j(x) # 3%-5-7°/27, then
there exists y € Xo(p)(Q) with j(x) = j(y) for every odd prime p dividing n (of which there might
not be any). Moreover:

(i) If j(x) # j(2) for all z € Xo(21)(Q), then n = 2°p" for p € {3,5,7,11,13,19,43,67,163}
and nonnegative integers a,b with a < 3. If b > 0, then a < 2.

(i3) If there exists z € Xo(21)(Q) with j(x) = j(z), then n = 2%3°7¢ for nonnegative integers
a,b,c with a < 1.

If j(z) = 3%-5-7°/27, then n = 2°7° for nonnegative integers a,b with a < 1.

Remark 4. From work of Zywina [62], it is known that the mod 7 Galois representation of a non-CM
elliptic curve over QQ is properly contained in the normalizer of a split Cartan subgroup if and only
if j(E)=33%-5-7°/2".

Remark 5. There are precisely 4 non-cuspidal points in X(21)(Q) which correspond to non-CM
elliptic curves with j-invariants —32 - 56/23 33 .53/2 —3%2.53.1013/22! —33.53.3833/27. As
mentioned above, the first of these is known to correspond to an isolated point.

Provided j(x) # 33-5-7°/27, j(z) is not in j(X((21)(Q)), and does not correspond to a CM elliptic
curve, we can deduce information about the degree of € X;(2%p") using work of Greenberg [31]
and Greenberg, Rubin, Silverberg, and Stoll [32] which concerns the image of Galois representations
of an elliptic curve over Q with a rational isogeny. Often, the degree of = is as large as possible
given the degree of its image in X1(2%p) or X1(2%?), which means an isolated point would remain
isolated under the natural projection map [I1]. We must then determine whether isolated points
corresponding to elliptic curves with rational j-invariant exist on this curve of lower level. If p = 3,
we rely on the classification of 3-adic images of elliptic curves over Q due to Rouse, Sutherland,
and Zureick-Brown [49]. Our proof involves finding all rational points on an explicit genus 4 curve
which characterizes a certain kind of “entanglement” of torsion point fields; see Proposition
Other notable cases include elliptic curves with rational cyclic isogenies of degree 21 or 25. In
the first case, we show in §4.2 that explicit computations for particular elliptic curves produce
bounds on the level of certain Galois representations which improve those of [11l Prop. 6.1]. For
elliptic curves with a rational cyclic 25-isogeny, our arguments use intermediate modular curves
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lying between X;(N) and Xo(N) in addition to refined results of Greenberg [31]; see Proposition
21l

The results on CM elliptic curves follow from work of Kwon [37], Aoki [1], and recent work of
the first author and Pete L. Clark [§], [9].

Our work involves a number of explicit computations with Magma [7]. Supporting computations
can be found at https://users.wfu.edu/rouseja/isolated /. Filenames listed in the paper refer to files
found at this repository.
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2. BACKGROUND AND NOTATION

2.1. Galois representations of elliptic curves. Let k be a number field and let E/k be an
elliptic curve. Then for any fixed N € Z* the points of E(k) with order dividing N, denoted E[N],
form a free Z/NZ-module of rank 2. By choosing a basis for E[N], the action of the absolute Galois
group of k, denoted Galy, is recorded in the mod N Galois representation associated to F

peN : Galy — Aut(E[N]) = GL2(Z/NZ).

Taking the inverse limit over all N, we obtain the adelic Galois representation associated to F,
which gives the Galois action on all torsion points of

p : Galy = Aut(E(F)ors) = GLa(Z).

For any positive integer m, we may compose pgr with projection onto the restricted product

pEme : Galy 72 GLy(Z) = [[ GLa(Zp) 22 ] GL2(Z,)

p prime plm

obtaining the m-adic representation associated to E. More generally, if m,n are relatively prime
positive integers, we write ,oE mnoe for pp composed with the natural projection

GLy(Z) = [[ GLa(2Zy) — GLa(Z/mZ) x || GLa(Zp).

p prime p|n

Throughout we use 7 to denote the natural reduction map.

For a fixed non-CM elliptic curve E/k, Serre’s Open Image Theorem [51] states that im pg
is open in GLQ(z). Thus there exists a positive integer N such that im pp = 7~ !(im pg n). The
smallest such N is called the level of the adelic Galois representation. Similarly, the smallest positive
integer n such that im pg me = 7 (im pg ) is called the level of the m-adic Galois representation
associated to E. In fact, for any fixed integer m, there exists a bound on the level of pg e~ that
depends only on the degree of k. See [13, Thm. 1.1], [16, Thm 2.3] in the case where m is prime
and [I1, Prop. 6.1] for the general case.
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A consequence of Serre’s Open Image Theorem is that, given a non-CM elliptic curve E/k, the
mod p Galois representation is surjective for all sufficiently large primes. In [51], Serre asked whether
there might exist some uniform constant C' depending only on k such that im pg, = GL2(Z/pZ)
for all primes p > C and all non-CM elliptic curves E/k. In the case where k = Q, both significant
theoretical results and computational evidence make it appear likely that the answer is yes, and
this is now often referred to as Serre’s Uniformity Conjecture. It is even believed that C' can be
taken to be 37 in the case of non-CM elliptic curves over Q. See, for example, [62, Conj. 1.12] and
[58, Conj. 1.1].

If im pg p is not all of GLa(Z/pZ), then it is contained in one of its known maximal subgroups.
These include the Borel subgroup, the normalizer of a split or non-split Cartan subgroup, or an
exceptional subgroup; see [51), Section 2] for details. For primes p < 13, the groups that arise as
im pgp for a non-CM elliptic curve E/Q are known. The case of primes p < 11 was completed
by Zywina [62]; see also Sutherland [58]. At the time, the classification for p = 13 was complete
aside from ruling out the existence of non-CM elliptic curves £/Q with im pg, contained in the
normalizer of a (split or non-split) Cartan subgroup. Baran [3] showed that such an elliptic curve
would correspond to a rational point on an explicit genus 3 curve, and work of Balakrishnan, Dogra,
Miiller, Tuitman, and Vonk [2] showed that this genus 3 curve had no non-cuspidal, non-CM points.
For a list of the groups that arise as im pg , for primes p < 13, as well as degrees of fields of definition
for points of order p, see Tables 1 and 2 in [30]. Throughout, we use the notation of Sutherland
[58] to denote subgroups of GLa(Z/pZ), which is also the notation used in LMFDB.

More generally, one could seek to classify which groups arise as im pg e for a non-CM elliptic

curve E/QEI One of the first results in this direction was work of Rouse and Zureick-Brown
[50] which gave the complete classification for p = 2. The groups which arise infinitely often as
im pp po were classified by Sutherland and Zywina [59]. For p = 3, evidence suggests that the
groups identified in [59] are in fact the only groups which arise; see forthcoming work of Rouse,
Sutherland, and Zureick-Brown [49].
2.2. Isogenies of elliptic curves. Let E/k be an elliptic curve, and let P € E(k) be a point of
order N. If the subgroup generated by P is fixed (as a group) by Galg, then we say E possesses
a rational cyclic subgroup of order N. Alternatively, since such a subgroup is the kernel of a k-
rational isogeny from FE to another elliptic curve defined over k, we may say E has a k-rational
cyclic N-isogeny. In the case of elliptic curves E/Q, we have a complete determination of the
rational cyclic subgroups that can occur.

Theorem 6 (Mazur [46], Kenku [36], and others; see Section 9 of [43]). If E/Q is an elliptic curve
possessing a Q-rational cyclic subgroup of order N, then N < 19 or N € {21,25,27,37,43,67,163}.

Let p > 5 be prime, and let E/Q be a non-CM elliptic curve with a rational cyclic p-isogeny.
Work of Greenberg, Rubin, Silverberg, and Stoll [31], [32] shows that im pg ;e is as large as possible
given the isogenies over Q with degree a power of p. In particular, their work implies the following
theorem which plays a crucial role in the proof of our main results.

Theorem 7 (Greenberg [31], Greenberg, Rubin, Silverberg, Stoll [32]). Let E/Q be a non-CM
elliptic curve with a Q-rational cyclic isogeny of prime degree p.

(i) If p > 7, then for any choice of basis the image of pg pe contains Iy + pMa(Zy).

(i) Suppose p = 5. If E/Q does not have a rational cyclic 25-isogeny, then for any choice of
basis the image of pg s~ contains Ia + 5Mo(Zs). Otherwise, the image of pg s~ contains
Iy + 25M5(Zs).

IThe case of a CM elliptic curve E defined over Q(j(E)) is addressed in recent work of Lozano-Robledo [44].
4



Proof. Let E/Q be a non-CM elliptic curve with a rational cyclic p-isogeny. Note that any Sylow
pro-p subgroup of GLy(Z,) contains Iy + pMs(Z,). Thus if p > 7, the theorem statement can be
deduced from Theorem 1 in [31] and the discussion which follows [31} p.1186-1187]. For p = 7, this
is given by Theorem 5.5 in [32]. So suppose p = 5. If none of the elliptic curves in the Q-isogeny
class of E has 2 independent isogenies of degree 5, then the statement follows from Theorem 2 of
[31]. So suppose there exists an elliptic curve Q-isogenous to E with 2 independent isogenies of
degree 5. Then either E has a rational cyclic 25-isogeny, and the claim follows from Proposition
5.1.1 of [31], or else E has 2 independent isogenies of degree 5. Suppose the latter holds. Then
pE s~ : Galg = GL2(Zs) has level 5" which we identify with a subgroup G of GLo(Z/5"Z). Let
K C G be the kernel of reduction map modulo 5. Then, [G : K] has order coprime to 5 because E
has two independent 5-isogenies (see Table 1 in [30]). It follows that K is a Sylow 5-subgroup of
G and Theorem 2 of [31] gives that the index of K in GLo(Z/5"Z) is divisible by 5 but not 25. If
we let L = {g € GLo(Z/5"Z) : g = I (mod 5)}, then K C L and |K| = |L|. Thus, K = L and the
image of pg 5 contains all matrices congruent to the identity modulo 5. O

Remark 8. This shows that if £/Q is a non-CM elliptic curve with a rational cyclic p-isogeny for
some prime p > 5, then im pg peo is the complete pre-image of im pp pm in GL2(Z,), where m is
the maximum integer such that F possesses a Q-rational cyclic p”-isogeny. This does not hold if
p = 3. For example, by Sutherland and Zywina [59] there exist non-CM elliptic curves E/Q such
that the associated 3-adic Galois representation has level 27. However, no non-CM elliptic curves
over Q have a rational cyclic 27-isogeny (see Table 4 of [43] for a convenient listing; the model for
X0(27) and its rational points were first worked out by Ligozat in [42, pg. 45, 55]).

2.3. Modular curves. Here we briefly recall the constructions of the modular curves X;(N) and
Xo(N), along with some useful formulas regarding maps between modular curves. For more details,
see, for example, [25, §7.7], [24], [54, §6.7], [21].

For any N € Z*, the curve Y;(N) parametrizes C-isomorphism classes of elliptic curves with a
distinguished point of order N. An explicit construction is given by

Yl(N) = H/Fl(N),
where H denotes the upper half plane and

T1(N) ::{[‘Cl Z]GSLg(Z):CEO (mod N) anda=d =1 (modN)}

acts on H via linear fractional transformations. The resulting Riemann surface is not compact. By
adding in a finite number of points—the cusps—we obtain its compactification X;(/N). This can
be identified with a smooth projective curve defined over Q.

Proposition 9. For positive integers a and b, there is a natural Q-rational map f : X1(ab) — X1(a)
defined by sending [E, P| to [E,bP]. Moreover

deg(f) =cs-0* ] (1—p12>,

plb, pta
where ¢y = 1/2 if a <2 and ab > 2 and ¢y = 1 otherwise.

Proof. The fact that the map is QQ-rational follows from the moduli interpretation. The degree
calculation can be deduced from [25, p.66]. O

Similarly, the curve Yy(IN) parametrizes C-isomorphism classes of elliptic curves with a cyclic
subgroup of order N. Specifically,
Yo(N) = H/To(N),
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where
To(N) = {[i Z] €SLy(Z):¢=0 (mod N)} .
The compactification Xo(N) can be identified with a smooth projective curve over Q.

Proposition 10. For a positive integer N, there is a natural Q-rational map f : X1(N) — Xo(N)
defined by sending [E, P| to [E,(P)]. If N < 2, then deg(f) = 1. Otherwise deg(f) = ¢(N)/2,
where ¢ denotes the Euler phi function.

Proof. As with the previous proposition, the fact that the map is Q-rational follows from the moduli
interpretation, and the degree calculation can be deduced from [25, p.66]. ]

2.4. Closed points on curves. Let C be a curve defined over a number field k, i.e., a projective
nonsingular geometrically integral 1-dimensional scheme over k. Throughout, we consider closed
points z € C, which are in bijection with Galy-orbits of points in C(k). By the degree of x we mean
the degree of the associated residue field k(z) over k. In the case where C' = X;(V) and k = Q,
the following lemma gives a way to compute the degree of a closed point x € X;(NN) associated to
a non-CM elliptic curve E and point P of order N. Here, K(P) denotes the field extension of K

generated by the coordinates of P.

Lemma 11. [II, Lemma 2.1] Let E be a non-CM elliptic curve defined over the number field
K =Q(j(F)), let P € E be a point of order N, and let v = [E, P] € X1(N) denote the associated
closed point. Then

deg(z) = co[K(P) : Q]
where ¢z = 1/2 if 2P # O and there exists o € Galy, such that o(P) = —P and c; = 1 otherwise.

Remark 12. It is important not to confuse the closed point x € X (V) associated to [E, P| with
the K(P)-valued point of X;(V) associated to [E, P]. Recall a K(P)-valued point of X;(N) is
a morphism of Q-schemes s : Spec(K(P)) — X1(N). The closed point z € X; (V) associated to
[E, P] is the image of s.

More generally, it is often useful to construct the residue field of a closed point on X;(N) using
Weber functions. For an elliptic curve E defined over Q(j(E)), let b : E — E/Aut(E) = P! be
a Weber function; see [54, p.107] or [55, Example 5.5.1 and 5.5.2] for more details. If E : y? =
23+ Ax + B and P = (z,y) € E, then b can be taken to be

x AB#0
h(P)=<2z?> B=0
2 A=0

We have B = 0 if and only if j(F) = 1728 and A = 0 if and only if j(E) = 0. Then for
x = [E, P] € X{(N), the residue field Q(x) is

Qi(E), b(P)).
It follows from [21], Proposition VI.3.2] that there is a model of E over Q(z) such that P € E(Q(x)).

2.5. Isolated points. Let C/k be a curve, and suppose Py € C’(kz)ﬂ For any positive integer d,
we let (@ denote the dth symmetric product of C, a variety whose points correspond to effective
divisors of degree d on C. Any closed point € C of degree d gives a k-rational point of C?), and
we have a natural map to the Jacobian variety

®: C@ = Jac(0)

2For the case where C' does not have a k-rational point, see §4 of [I1].
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defined by sending = Py + --- + P, to the divisor class [P} + - -+ + P; — dPy)], where Py,..., Py
denote the points in the Galy orbit z.
If C has infinitely many closed points of degree d, then one of the following must be true:

(i) ®(x) = ®(y) for distinct closed points = and y. As effective degree d divisors, x and y have
distinct support, so it follows there is a function f of degree d such that div(f) = z — y.
Hence f : C — P! is a dominant morphism of degree d, and by Hilbert’s irreducibility
theorem [53, Ch.9] f~1(P!(k)) contains infinitely many points of degree d. That is, there
exists an infinite family of degree d points “parametrized by P!.”

(ii) @ is injective on the set of degree d points. Since im® is a closed subscheme of Jac(C),
Faltings’s Theorem [27] implies there exist a finite number of k-rational abelian subvarieties
A; C Jac(C') and k-rational points z; € im ® such that

n
(im @) (k) = | [z + Ai(k))
i=1
Thus one of the A; has positive rank, and this gives an infinite family of degree d points
“parametrized by A;.”

Thus we see that the existence of infinitely many degree d points implies we either have a degree
d function f : C — P! or else im ® contains the translate of a positive rank abelian subvariety of
Jac(C). In fact, the converse holds as Wellﬂ Following [I1], we say a closed point z € C' of degree
d is isolated if it does not belong to one of these infinite families of degree d points, that is, if
(1) there is no other point y € C9 (k) such that ®(z) = ®(y) and (2) there is no positive rank
abelian subvariety A C Jac(C') such that ®(z) + A C im(®). Moreover, we say points satisfying
condition (1) are P'-isolated, and points satisfying condition (2) are AV-isolated. The following
characterization of isolated points strengthens an observation of Frey [28].

Theorem 13 (Bourdon, Ejder, Liu, Odumodu, Viray, [I1, Theorem 4.2]). Let C' be a curve over
a number field.

(i) There are infinitely many degree d points on C' if and only if there is a degree d point on C
that is not isolated.
(ii) There are only finitely many isolated points on C.

In particular, if there exist only finitely many points of degree d, then each degree d point is isolated.
However, having infinitely many degree d points does not preclude the existence of additional
isolated degree d points. Some places in the literature (such as [26, 22| [15, 56l [12]) use the term
sporadic to denote a closed point & € C' such that there are only finitely many points of degree at
most deg(z). By Theorem we see that every sporadic point is in fact an isolated point.

One ingredient in the proof of the second part of Theorem is a bound on the degree of an
isolated point. We will make frequent use of this bound.

Lemma 14. Let C be a curve over a number field k with genus g. If x € C(k) is a closed point
with degree > g+ 1, then x is not P'-isolated.

Proof. Let D be the degree d effective divisor corresponding to x. Since deg(D) > g + 1, the
Riemann-Roch theorem implies that dim L(D) > deg(D) — g+ 1 > 2. In particular, there is a non-
constant function f : C — P! with pole divisor D. Define y := f*([0 : 1]). Then y — x = div(f),
and it follows that ®(y) = ®(x). Thus z is not P!-isolated. O

3The main challenge in justifying the converse is the case where no degree d map f : C — P! exists, yet im ®
contains the translate of a positive rank abelian subvariety of Jac(C'). It follows immediately that C has infinitely
many points of degree < d, but the implication that C has infinitely many points of degree exactly d takes more
work. See [II, Theorem 4.2].
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A key tool in studying isolated points is the following criterion for when the image of isolated
points remain isolated.

Theorem 15 (Bourdon, Ejder, Liu, Odumodu, Viray, [I1, Theorem 4.3]). Let f: C — D be a
finite map of curves and let x € C' be an isolated point. If deg(x) = deg(f(x)) - deg(f), then f(x)
is an isolated point of D.

The following proposition from [I1] gives a convenient way to check the hypothesis that deg(z) =
deg(f(z)) - deg(f).

Proposition 16 (Bourdon, Ejder, Liu, Odumodu, Viray, [I1, Proposition 5.8]). Let E be a non-
CM elliptic curve over a number field k, let S be a finite set of primes, and let mg = [[,cqf. Let
M = Mg(S) be a positive integer with Supp(M) C S such that

Im ppmy = 7! (im pp,ar)

and let a and b be positive integers with ged(ab, M)|a and Supp(ab) C S. Let x € X;(ab) be a
closed point with j(x) = j(E) and let f denote the natural map X;(ab) — Xi(a). Then

deg(x) = deg(f) deg(f(x)).

2.6. CM elliptic curves. Let E be an elliptic curve defined over a number field F'. We say E has
complex multiplication, or CM, if Endz(F) is strictly larger than Z. In this case, Endz#(F) = O,
an order in an imaginary quadratic field K. If Ok denotes the ring of integers in K, then O is a
subring of Ok of index f, where f is called the conductor of O, and it is the unique subring of Ok
of this index. Explicitly, we have

Thus an order O in K can be uniquely determined by its discriminant

A = Ag,

where Ak denotes the discriminant of K. See [I8, Lemma 7.2] for details.

If E/F is an O-CM elliptic curve, then elements of Galpg commute with elements of O in their
action on E[N], a free O/NO-module of rank 1 by [48, Lemma 1]. This implies the mod N Galois
representation of F/FK can be expressed as

pE.N : Galpr — Autp/no(E[N]) = (O/NO)*.

Thus we may interpret the action of Galpx on N-torsion points of an O-CM elliptic curve as the
action of (O/NO)* on a free O/NO-module of rank 1. We denote (O/NO)* by Cn(0O) and call
it the mod N Cartan subgroup.

If we fix a model of E defined over K (j(E)), the action of O on points of E is rationally defined.
Denote by E[N] the orbits of points in E[N] under the action of O*. The action of O/NO on
E[N] induces an action of the reduced mod N Cartan subgroup Cn(O) on E[N], where

Cn(0) = Cn(0)/qn(07)

and gy : O — O/NO is the natural map. For any point P € E of order N, the degree of

K(§(E))(h(P)) over K(j(E)) is equal to the size of the Cy(O)-orbit of P € E[N]. From this we
can deduce the degree of [E, P] on Xi(N) viewed as a curve over K. See Section 7A of [§] for
details.
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3. PoiNTs oF ODD DEGREE ON X (V)

In this section we will prove Theorem [3] We begin with preliminary lemmas in §3.1-3.2, and the
theorem itself is proved in §3.3. A refinement of Theorem [3|is given in §3.4. A key observation
is that aside from one exceptional j-invariant, to have a point z = [E, P] € X;(n) of odd degree
with j(z) € Q, there must exist a model of E//Q with a rational cyclic p-isogeny for all odd primes
p dividing n. Thus Theorem [0] significantly restricts the possibilities for n. In the case of CM
elliptic curves, our results can be deduced from work of Aoki [I]. For non-CM elliptic curves,
Theorem 3| follows from classification results for Galois representations of elliptic curves over QQ, as
outlined in §2.1, along with various computations which address special cases. In particular, many
of the fiber product computations we require were originally performed by Daniels and Gonzélez-
Jiménez [19], [20]. We also employ a useful result about lifting rational points due to Najman and
Gonzalez-Jiménez [30, Prop. 4.6].

3.1. Connection with rational cyclic isogenies.

Lemma 17. Let E/Q be an elliptic curve and P € E(Q) a point of order pn where p > 3 is prime
and n € Z". Then one of the following occurs:
(i) p € {3,5,7,11,13,19,43,67,163} and E has a rational p-isogeny,
(ii)) p=7 and j(E) =33-5-75/27 or
(iii) the residue field of [E, P] € X1(pn) has even degree.

Proof. If E has complex multiplication and the residue field of [E, P] € X;(pn) has odd degree,
then by §2.4 there is a number field F' of odd degree and a model of E/F where P € E(F). By
Aoki [T, Cor. 9.4], E has CM by an order in K = Q(y/—p). Since j(E) € Q, the field K has class
number 1, and p € {3,7,11,19,43,67,163}. Moreover the model of E over Q has a rational cyclic
p-isogeny; see for example [10, Prop. 5.7]. From now on we assume FE is non-CM and fix a model
of E/Q.

If pgp is surjective, then the residue field of [E,nP] € X;(p) has even degree by [43, Theorem
5.1] and Lemma |11} and hence the residue field of [E, P] € X;(pn) has even degree. Thus we may
assume pg j is not surjective.

First, suppose p < 13. Then as discussed in §2.1, the subgroups that arise as im pg , are known.
By checking each case, see for example [30, Tables 1 & 2] and Lemmal[11] we see that we are in case
(i) or (iii) except when p =7 and im pg 7 is conjugate to 7Ns.2.1 or 7Ns.3.1 (here we use LMFDB
labels, also following [58]). By [62, Theorem 1.5], im pg 7 is conjugate to one of these groups only
if j(E)=3%.5.7°/27.

Next, suppose p > 17. Here, pg, is known to have at least 4 possible images aside from
GL2(Z/pZ), each of which is contained in a Borel subgroup. For each of these, we are in case
(iii). (See, e.g., [30, Table 2] and Lemma [11}) If im pg, is not one of these known groups, then
it is conjugate to one of two subgroups of the normalizer of a non-split Cartan subgroup. See for
example [30, Theorem 3.2]. The degree of the residue field of [E,nP] is even in either case by [30),
Theorem 5.6] and Lemma O

3.2. Elliptic curves with rational cyclic isogenies of degree 15 or 21.

Proposition 18. Let E/Q be an elliptic curve, and suppose [E, P| € X1(n) has odd degree.
(i) If E has a rational cyclic 15-isogeny, then n = 2%3% or 295¢ where a < 1.
(ii) If E has a rational cyclic 21-isogeny, then n = 2%3Y7¢ where a < 1.

Proof. If E has a rational cyclic 15-isogeny or 21-isogeny, then j(E) is one of the eight values listed

in [43, Table 4]. Since the residue field is model independent as discussed in §2.4, we are free to

use any Weierstrass equation over Q with j-invariant j(F) to compute the degree of Q(j(E), h(P)).
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Note that since E is non-CM, we may take h((x,y)) = x, so the degree of this extension can be
explicitly computed by factoring division polynomials.

Each representative in case (i) has a rational cyclic p-isogeny for a prime p if and only if p = 3
or 5. Similarly, each representative in case (ii) has a rational cyclic p-isogeny if and only if p = 3
or 7. By Lemma since j(E) # 3%-5-7°/27, the prime divisors of n are {2,3,5} or {2,3,7}, so
we consider numbers of the form n = 293%5¢ in case (i) and n = 2%3°7¢ in case (ii). Computing
the 15" division polynomial for each representative in case (i), we see that the point on X (15)
corresponding to E has even degree. So n = 2%3% or 2%5¢. Finally, computing the 4" division
polynomial for all eight representatives shows that the point on X;(4) corresponding to F has even
degree. Thus a < 1 in both cases. O

Remark 19. Computing the 215 division polynomial for each representative in case (i), we see
that the point on X;(21) corresponding to E can have odd degree.

3.3. Proof of Theorem (3, Let x = [E, P] € Xi(n) be a point of odd degree with j(z) € Q. First
suppose F has complex multiplication. Then there is a number field F' of odd degree and a model
of E/F where P € E(F). By Aoki [T, Cor. 9.4], n = 29" for an odd prime p and a < 2. If
b > 0, then ¢ < 1 and E has CM by an order in K = Q(y/—p). Since j(F) € Q, it follows that
K has class number 1, and so p € {3,7,11,19,43,67,163}. Moreover any model of E over Q has
a rational cyclic p-isogeny; see for example [10, Prop. 5.7]. From [43, Table 4], E' does not have a
cyclic 15-isogeny or 21-isogeny defined over Q.

From now on we will assume E is non-CM. We fix a model of £/Q. First suppose j(E) #
33.5.75/27. If p | n where p > 3 is prime, then E has a rational cyclic p-isogeny by Lemma
Since F is non-CM, p € {3,5,7,11, 13} (see, for example, [43, Table 4]). If p; and ps divide n where
pi > 3 are distinct primes, then E has a rational cyclic pips-isogeny. By Theorem [6] this cannot
happen unless F has a rational cyclic isogeny of degree 15 or degree 21. Such elliptic curves are
addressed in Proposition It follows that unless E has a rational cyclic isogeny of degree 21,
then n = 29" for p € {3,5,7,11,13} and E has a rational cyclic p-isogeny.

We next address the exponent of 2. First suppose E has a rational cyclic 2-isogeny, which means
that any point of order 2 defined over an extension of odd degree is in fact defined over Q. By [30),
Prop. 4.6], we see that [Q(P) : Q(2P)] divides 4, and so [Q(h(P)) : Q(h(2P))] divides 8 by Lemma
here b denotes a Weber function. Under the assumptions, Q(z) = Q(h(P)) is an extension
of odd degree, and so it must be that Q(h(P)) = Q(h(2P)). Hence any point on E of order 2¢
corresponding to a point on X;(2%) of odd degree must in fact be a point in X;(2%)(Q). By [41],
there is no elliptic curve over Q with a rational point of order 16, so a < 3. If E does not have a
rational cyclic 2-isogeny, then by the classification of 2-adic images of non-CM elliptic curves over
Q due to Rouse and Zureick-Brown [50], a point of order 4 will occur only in even degree unless
the 2-adic image has label X20, X20a, or X20b. A Magma computation considering the actions
of these groups on (Z/87)? and using Lemma [11] shows that if E is an elliptic curve whose 2-adic
image has label X20, X20a or X20b, then for every point P on FE of order 8, [E, P] is a degree 12
point on X;(8). (See the file X20deg.txt.) This implies [F, Q] has even degree if () has order 2¢
and a > 3. Thus, a < 2 if E has no 2-isogeny.

It remains to show that if b > 0, then a < 2. By the previous paragraph, we may assume F has
a rational 2-isogeny. Since E is non-CM elliptic curve which also has a rational cyclic p-isogeny,
Theorem |§| and [43, Table 4] imply p < 5.

e Suppose p = 5. Since E gives a rational point on X;(2) and deg(X;(4) — X1(2)) = 2 by
Proposition |§|, E gives a point on X;(4) of degree 1 or 2. If it is of degree 1, then E has a
4-isogeny, which contradicts Theorem @ Thus any point on X;(4) corresponding to E has
even degree and a < 1.
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e Suppose p = 3. As in the previous case, the only way E can give a point of odd degree on
X1(4) is if it gives a rational point on X;(4). By [30, Prop. 4.6], the only way E can give
a point on X1 (8) of odd degree is if it is in degree 1, which cannot happen by Theorem @
Thus a < 2.
If j(E) = 3%-5-7°/27, it suffices to pick a particular elliptic curve F/Q with this j-invariant.
Since F has no rational isogenies, Supp(n) C {2, 7} by Lemma Computing division polynomials
shows that any point on X;(4) corresponding to E has degree 6, so a < 1.

3.4. Refined bounds on exponent of 2. Often we may improve the bound on the exponent of
2 found in Theorem [l

Proposition 20. Let x € X1(2%) be a point of odd degree where a,b are nonnegative integers and
p > 5 is prime. Suppose

jlx) e Q\ {—3%13-4793/2 33 .13/2%).
If b > 0, then a < 1.

Proof. Let x = [E, P] € X1(2%p") be as in the theorem statement, where b > 0. If E has CM, the
claim follows from Aoki [1, Cor. 9.4], so henceforth we assume E is non-CM and fix a model of
E/Q. If j(E) = 3%-5-7°/27, then computing division polynomials shows that any point on X7 (4)
corresponding to E has degree 6, so a < 1. If j(E) # 3%-5-75/27  then by Lemma E has a
rational p-isogeny, and so p € {5,7,11,13} by [43, Table 4].

If p =5 and F has a rational 2-isogeny, then ¢ < 1 by the proof in §3.3. Suppose therefore that
p > 5. By Theorem [6] and [43], Table 4], it follows that E has no rational 2-isogeny. By the classi-
fication of 2-adic images due to Rouse and Zureick-Brown [50], any point on X;(4) corresponding
to E is of even degree unless F corresponds to a rational point on X20. So it suffices to consider
the fiber product of X20 and Xy(p). We consider each prime separately:

(i) If p = 5, then Daniels and Gonzélez-Jiménez [19, Proposition 6(k)] show the fiber product
of X20 and X((5) has only cusps. So a < 1.

(ii) If p = 7, Daniels and Gonzélez-Jiménez [19, Proposition 6(s)] compute the fiber product of
Xo(7) and X20. They show the non-cuspidal rational points on this curve correspond to
j-invariants —33 - 13 - 4793 /214 and 32 - 13/22, which appear in the theorem statement. So
aside from these two j-invariants, a < 1.

(iii) If p = 11, there are only a finite number of elliptic curves over Q with a rational cyclic
11-isogeny. See [43] Table 4]. Computing division polynomials shows that a < 1.

(iv) If p = 13, it will suffice to show the fiber product of X(13) and X3 has no non-cuspidal
rational points, since X20 covers X3. By Daniels and Gonzalez-Jiménez [20, Table 8], this
curve only has 2 rational points, and both are cusps. Indeed, there are two rational cusps
0,00 on X((13), and X3 = Pb. This means there are two cuspidal points (0, 00), (00, 00) in
the fiber product and a < 1. O

4. NON-CM ISOoLATED POINTS IN ODD DEGREE

Here, we build on the results of Section 3 to prove that the non-CM j-invariants in j(Zyqq) N Q
are —32 - 50/23 and 32 - 13/22, giving the non-CM part of Theorem [2} In §4.1, we address the case
of elliptic curves E/Q with a rational cyclic 25-isogeny. The argument uses constraints on im pg 500
due to Greenberg [31] in addition to work of Jeon, Kim, and Schweizer concerning intermediate
modular curves [34], [35]. Following this, in §4.2-4.5, we show that aside from the two exceptional
j-invariants noted above, any isolated point z € X;(n) corresponding to a non-CM elliptic curve
with deg(z) odd and j(x) € Q must map to an isolated point on X;(54) or X;(162). We use
explicit bounds on the level of the m-adic Galois representation as computed in [I1], which at times
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can be improved by accounting for constraints on ramification in torsion point fields (see Lemma
22)), in addition to classification results concerning the 2-adic [50] and 3-adic [49] images of Galois
representations of non-CM elliptic curves. In §4.6, we show that any isolated point z on X;(54) or
X1(162) with deg(z) odd and j(z) € Q must map to an isolated point on X;(54) for which Q(E[2])
is an Ss-extension contained in Q(E[27]). In §4.7, we show this occurrence would give a rational
point on a genus 4 modular curve of level 54, but in fact all such rational points correspond to cusps.
This leaves only points associated to j-invariants —32 - 56/23 and 33 - 13/22. The first corresponds
to an isolated point of degree 3 on X;(21) identified by Najman [47]. In §4.8, we show that there
is a point x € X71(28) of degree 9 with j(z) = 3% - 13/22 such that the associated Riemann-Roch
space is 1-dimensional. Since the Jacobian of X7(28) has rank 0, this is enough to conclude the
point is isolated.

4.1. Elliptic curves with a rational cyclic 25-isogeny.

Proposition 21. Let x € X1(2%5%) be a point corresponding to a non-CM elliptic curve with deg(z)
odd and j(x) € Q. If there exists y € Xo(25)(Q) with j(y) = j(x), then x is not isolated.

Proof. Suppose by way of contradiction that z is isolated, and fix a model for E/Q. If b = 0, then
a < 3 by Theorem [3|and X1 (2%) has genus 0 (and thus x is not isolated). So we may assume b > 0.
Then a <1 by Proposition Suppose first that a = 0. Since X(5) has genus 0 (and hence has no
isolated points), we may assume b > 1. Let f : X1(5°) — X1(25) be the natural map. By Theorem
impp s =71 (im pg 52) and so deg(z) = deg(f) deg(f(x)) by Proposition By Theorem
since z is isolated, f(x) € X1(25) is also isolated. We claim that deg(f(z)) = 5.

Let f(z) = [E,P] € X1(25). Since f(z) has odd degree, the classification of images of mod 5
Galois representations (see, for example, Table 1 in [30]) shows it corresponds to a point of degree
1 or5on Xi(5). Let y € Xi(5) be the point corresponding to f(z) and consider the tower of
fields Q € Q(y) € Q(5P) C Q(P). By Lemma [Q(5P) : Q(y)] < 2. By Proposition 4.6 in [30],
[Q(P) : Q(5P)] divides either 52 or 4 - 5. Thus [Q(P) : Q] divides 8 - 125. As Q(f(z)) C Q(P),
deg(f(x)) = 5% for some k < 3 (since by assumption deg(f(x)) is odd). By Mazur’s result on
torsion points over Q [45], deg(f(z)) # 1. If the degree is 52 or 53, then Lemma [14] implies that
f(z) is not Pl-isolated, since X;(25) has genus 12. Thus we must have deg(f(z)) = 5.

We will next show [E, (P)] € X((25)(Q). Suppose not. Then since the residue field of this point is
a subfield of Q(f(z)), the degree of [E, (P)] must be 5. By assumption, E corresponds to a rational
point on X(25), so there must be a point @ € E of order 25 such that [E, (Q)] € Xo(25)(Q).
As @ and P both have order 25, the group G := (Q, P) is isomorphic to one of Z/25Z x Z/5°Z,
s =0,1, or 2. We consider cases according to (Q)N(P). If (Q) and (P) have nontrivial intersection,
then either (Q) N (P) = (Q) in which case, [E, (P)] is Q-rational, contradicting our assumption,
or (@) N (P)| =5. As (Q) and (P) are each cyclic of order 25, they contain a unique subgroup
of order 5, and thus (5Q) = (Q) N (P) = (5P). Since [E, (5Q)] € Xo(5)(Q), the group (5P)
is Q-rational. Let ¢ : Xo(25) — Xo(5) be the natural map (note that ¢ has degree 5). Then
[E,(P)] and [E, (Q)] are in the support of ¢*([E, (5P)]), which means deg(¢*([E, (5P)]) > 1 + 5.
Since deg(¢*(y)) = deg(¢)deg(y) = 51 for any closed point y € X¢(5)(Q), we have reached a
contradiction.

If (Q) and (P) have trivial intersection, then G is isomorphic to Z/25Z x Z/25Z. Since the
isogeny character associated to a cyclic subgroup of order N can be trivialized over an extension
of degree dividing ¢(N), we have [Q(Q) : Q]|¢(25). Moreover, [Q(P) : Q]|10 since by assumption,
[E, P] has degree 5 and P requires at most a degree 2 extension of this degree 5 extension. Thus
F =Q(Q, P) = Q(E[25]) has degree at most 200. Since 5% { [F : Q],

5°.3.25

[GLQ(Z/25Z) :im pE,25] = W
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is divisible by 52. This contradicts Theorem 2 in [31]. Thus we may assume [E, (P)] € X((25)(Q).
Consider the map

X1(25) — XAQ (25) — X0(25),

where Xa,(25) denotes the intermediate modular curve associated to Ay = {£1,+4, +6,4+9, +11}.
See [34], [35] for more on intermediate modular curves including the degrees of natural maps and
genus information. Since deg(Xa,(25) — Xo(25)) = 2, [E, P] must correspond to a degree 1 point
under the map X1(25) — Xa,(25) (otherwise the residue field M/Q of the image of [E, P] on
Xa,(25) is a quadratic extension, but the residue field of [E, P] on X1(25), which we assumed to
have degree 5, contains M). Since this map X;(25) — Xa,(25) is of degree 5, Theorem (15| implies
the image of f(x) is isolated on Xa,(25); as this curve has genus 0, this is impossible.

Next, suppose a = 1. So x = [E,P] € X1(2-5%) is isolated. Since X;(10) has genus 0, we
may assume b > 1. Let g : X1(2-5%) — X;(50) denote the natural map. We will first show that
deg(r) = deg(g)deg(g(z)). By Theorem [7,  maps to a point y = [E,2P] € X;(5°) such that
deg(y) = deg(f)deg(f(y)) where f is the natural map f : X1(5*) — X1(25). By Proposition @,
we have that 52°~* divides [Q(z) : Q(f(v))] = [Q(z) : Q(h(g(z)))], where h : X1(50) — X;(25).
Since deg(h) = 3 (again, by Proposition éﬂ}, it follows that 52~* divides [Q(z) : Q(g(x))], and

as [Q(z) : Qg(x))] < deg(g) = 521, it follows that [Q(z) : Q(g(x))] = deg(g) and deg(z) =
deg( )deg(g(z)). Thus g(z) € X;(50) is isolated by Theorem Next, by the assumption that
deg(x) is odd we have that deg(g(x)) is odd. Then, since [Q(g(z)) : Q(h(g(x)))] < deg(h) = 3, either
deg(g(x)) = deg(h(g(x)) or deg(g(x)) = 3 - deg(h(g(z)) = deg(h) deg(h(g(x))). We will show that
deg(g(x)) = deg(h)deg(h(g(x))). Suppose by way of contradiction that deg(g(x)) = deg(h(g(z))).
By the argument given above, deg(h(g(z))) = 5* for some k € ZT. This implies E corresponds
to a point on Xi(2) of degree dividing 5*. Since deg(X1(2) — Xi(1)) = 3, it follows that F has
a 2-isogeny over Q. By assumption F has a 25-isogeny over Q, so this implies £ has a 50-isogeny
over Q, contradicting Theorem [6] Thus deg(g(z)) = deg(h) deg(h(g(z))). By Theorem h(g(x))
is an isolated point on X7(25), but as shown above, there are no odd degree isolated points on
X1 (5%) for any b € Z+. O

4.2. Elliptic curves with a rational cyclic 21-isogeny. In Proposition we show that there
are no isolated points of odd degree on X;(n) corresponding to elliptic curves with j-invariant
33.53/2, —32.53.1013/22%, or —33.53.3833/27. This relies on the following lemma, where we give
improved bounds on the level of pg 14.30 using the approach of Prop. 6.1 in [11].

Lemma 22. Let E/Q be an elliptic curve with LMFDB label 162.c1, 162.c2, or 162.c4. Then
im ppg 1430 = 7L (im PE14.32) and im pp 7300 = 71 (im PE7.32)-

Proof. Let E/Q be one of the curves listed above. Magma confirms Q({9)" is a subfield of one of
the points on X7 (7) associated to F, so Q({o)" C Q(E[7]) NQ(E[9]) by the Weil pairing. Following
the proof of [11], Prop. 6.1, for all s € ZT we let

Ly :=ker(imppg 14.3s = impg 3s),

K, =ker(im pg 14.3s = im pg 14),

K = ker(im pg 14.30c — im pp 14).
13



We may view L, as a subgroup of im pg 14 and K, as a subgroup of im pg 3s. Moreover, we have
the following diagram, where the vertical isomorphisms follow from Goursat’s Lemma.

imppg3s /Ks —impp 3/ K

o

imppg14/Ls — impp 14/ Ly

The kernel of the top map is a power of 3, and so the kernel of the bottom map is as well. Thus
[L; : Lg] is a power of 3, and more generally [Ls, : Lg,] is a power of 3 for all 1 < s1 < s9.

We will show the maximal chain of proper containments Ly 2 La 2 --- D L, has length r = 2.
Magma confirms [Q(E[2]) : Q] = 6, and moreover that Q(E[2]) N Q(E[9]) = Q. As above, we let

L; := ker(im PE2.35 — im PE3%),
K. ==Xker(im pg 2.3: — impg2),
K" :=Xker(im pp 2.3~ — im pg2).

As before, [L} : L ] is a power of 3 for all 1 < s1 < s9. Since Q(E[2]) N Q(E[9]) = Q, we have
#L5H = #L) = 6. It follows that L] = L, which gives the following diagram.

im pp 32/ Ky —>impp3/K}

T

im pE72/L/2 ———1im pE72/L/1

Since Magma shows [Q(E[9]) : Q(E[3])] = 3%, it follows that im pg 32 = 7~ *(im pg,3). Thus the

diagram implies
ker(K’ mod 3% — K’ mod 3) = I + My(37Z/3%7).
By Prop. 3.5 of [11],
ker(K' — K’ mod 3) = I + 3Ma(Z3),

and 0 im pg o300 = 7 1(im pg 2.3). This means Q(E[2]) N Q(E[3?%]) = Q for all s.

Let (c;,0) for 1 < < 3 be the points on E of order 2. Magma confirms Q(¢7)TQ(«;) has degree
9 over Q, and the only subfields of degree 3 are Q(¢7)* and Q(«a;). Neither Q(a;) nor Q(¢7)™ is a
subfield of Q(F[3*]) since E has good reduction at 7, so their compositum is linearly disjoint from
Q(E[3%]). Thus 32 divides the size of L for all s. Since ords(#L;) < ords(# GL2(Z/14Z)) = 3
and [Ls, : Ls,| is a power of 3 for all 1 < s1 < s9, we have r < 2.

Thus the maximal chain of proper containments L; 2 Ly 2 --- 2 L, has length » = 2. In
particular, we have the following diagram.

im pp 33/ K3 —impp 32/ K>

i~ l~

im pg 14/ L3 im pg 14/ Lo

As above, this implies
ker(K mod 3° — K mod 3%) = I + My(3%Z/337).
Prop. 3.5 of [I1] now gives that
ker(K — K mod 3%) = I + 3°Ma(Z3),

and so im pg 14.300 = 71 (im pE14.32)- The second claim follows immediately. ([l
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Proposition 23. Ifz € X1(293%7¢) is a point of odd degree with b,c > 0 and j(z) € {3%-5%/2, —32
53 .1013/22 —33 . 53 . 3833 /27}, then x is not isolated.

Proof. Let * = [E,P] € X1(2%3°7°) be such an isolated point, and choose the model of E/Q
labeled 162.c1, 162.c2, or 162.c4. Note E has a rational 3-isogeny and a rational 7-isogeny. From
the classification in [49], we see that pg 3~ has level 3, and by Theorem |7, pg 7~ has level 7. Then
by Proposition 6.1 in [11],

. —1/.
M PR 4200 = T (im PE,2a3B7)

where § < 4. Let g : X1(2937¢) — X1(gcd(23°7¢,2%357)) be the natural map. By Proposition
5.8 in [11],

deg(x) = deg(g) deg(g(x)),

and so  maps to an isolated point on Xj(ged(293°7¢,22357)) by Theorem We have a <1 by
Proposition and since we have assumed b, ¢ > 0, the possibilities for gcd(2¢3°7¢,2%357) are 37-7
or2-3%.7fr1<d< 4. By Lemma and Theorem we may further assume d < 2. We
consider each j-invariant separately:

e Suppose E = 162.cl. Factoring division polynomials shows that any odd degree point on
X1 (n) for n' € {21,63,42,126} must have degree 63, 567, 189, or 1701, respectively. Since
567 = 963 and 1701 = 9 - 189, by Theorem we need only consider n’ = 3 -7 and
n’ =2-3-7. However, X;(21) has genus 5 and X;(42) has genus 25, so points of degree 63
and 189 (respectively) cannot be isolated by Lemma We have reached a contradiction.

e Suppose FE = 162.¢2. Here, any point of odd degree on X;(n’) must have degree 21, 189,
63, or 567, respectively. As in the previous case, we reach a contradiction.

e Suppose E = 162.c4. In this case, an odd degree point on X;(n’) will have degree 9, 81, 27,
or 243, respectively. Again, we will reach a contradiction. ]

4.3. On the level of the Galois representations for E£/Q with j(E) =33.5.7°/27.

Lemma 24. If E/Q is an elliptic curve with j(E) = 33-5-7°/27, then for any choice of basis the
image of pgze contains Iy + TMa(Z7).

Proof. Let E : y> + xy = 2% — 22 — 1072 — 379 be a particular elliptic curve E/Q with j(E) =
33 .5-7°/27. There is a degree 9 extension of Q which contains the z-coordinate of a point of
order 7 on E. Theorem 1.5 of [62] shows that the mod 7 image of Galois for E is the subgroup H
generated by B g], [[1) g], and {_01 _01] By [38, Part I, §6, Lemmas 2 & 3], it will suffice to
show that im pg 49 is the complete preimage of im pg 7.

If not, then the mod 49 image is contained in a maximal subgroup of the mod 49 preimage of
H, which we denote H. This subgroup has 8 maximal subgroups. We verify that for H, the set
{(trace(g),det(g)) : g € H} has 483 elements, while for every maximal subgroup M, the size of
{(trace(g),det(g)) : g € M} has at most 357 elements. For any prime p # 7 of good reduction,

trace(pp a9(Froby)) = ap(E) (mod 49)
det(pg a9(Frob,)) =p (mod 49).

We compute a,(E) and determine a lower bound for the size of the set {(trace(g),det(g)) : g €
im ppag}. Testing all primes p < 10°, we find that the latter set contains 483 entries, and this

proves that the image of pg 49 must be H. The Magma code used is in the file 0dd7.txt. ([l
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4.4. Isolated points on X;(2%p") for p > 3.

Theorem 25. Let x € X(n) be an isolated point corresponding to a non-CM elliptic curve with
deg(x) odd and j(z) € Q. Then n = 2%3" for nonnegative integers a,b or j(x) € {—3%.56/23 33.
13/2%}.

Proof. Let x = [E, P] € X1(n) be an isolated point corresponding to a non-CM elliptic curve with
deg(z) odd and j(x) € Q. We fix a model for E/Q. For now, we assume j(x) # —33-13-4793 /2% and
that j(x) is not one of the two j-invariants in the theorem statement. By Theorem [3| Proposition
and [43, Table 4], n = 2%p® for p € {3,5,7,11,13} and nonnegative integers a,b. It suffices to
consider the case where b > 0 and p > 5. Then a < 1 by Proposition (since we have assumed
for now that j(z) # —33-13-4793/2!4 and 33 - 13/22 appears in the theorem statement), and
j(z) = 3%-5-7°/27 or E corresponds to a rational point on Xo(p) by Theorem [3, For p = 5, we
may suppose further that F does not have a Q-rational cyclic 25-isogeny by Proposition [21]

First suppose n = pP, and let f : X;(p®) — Xi(p) be the natural map. Theorem |7| and Lemma
give that impppe = 7 1(impg,p), so deg(x) = deg(f) - deg(f(x)) by Proposition Thus
f(z) € Xi(p) is isolated by Theorem However, X;(p) has no isolated points of odd degree
if p € {5,7,11,13}, as we will now demonstrate. X;(5) and X;(7) have genus 0 and thus have
no isolated points. Since X;(11) and X;(13) have no non-cuspidal rational points by [45], the
assumption of odd degree gives deg(f(z)) > 3. However, since X;(11) has genus 1 and X;(13) has
genus 2, by Lemma [14] the point f(z) is not P!-isolated. We have reached a contradiction.

So suppose n = 2p’. Let g : X1(2p®) — X1(2p) be the natural map. We will show that
deg(z) = deg(g) - deg(g(x)). As above, Theorem [7| and Lemma [24 show = maps to a point 2/ =
[E,2P] € X1(p") such that deg(z') = deg(f) - deg(f(z')). By Proposition |§|7 we have

P72 Q) : Q(f ()] = [Q(x) : Q(A(g(2)))],

where h @ X1(2p) — Xi(p). Since deg(h) = 3 by Proposition |§|, it follows that p**~2 | [Q(x) :
Qg(x))]. Since [Qx) : Qg(x))] < deg(g) = p»2, it follows that [Q(z) : Q(g(x))] = deg(g), ot
that deg(z) = deg(g) - deg(g(x)). Thus g(z) € X1(2p) is isolated by Theorem We will reach a
contradiction by considering each prime separately.

(i) Suppose p =5. Then X;(10) has genus 0 and thus has no isolated points.

(ii) Suppose p = 7. Then X;(14) has genus 1. By Mazur [45], there are no non-cuspidal
rational points on X3(14), so the assumption of odd degree forces deg(g(z)) > 3. Thus the
Riemann-Roch space L(g(z)) has dimension at least 3, and so g(z) is not P'-isolated.

(iii) Suppose p = 11. Since E corresponds to a rational point on Xy(11) and is non-CM, we have
§j(E) = =112 or j(E) = —11 - 1313 by [43, Table 4]. By computing division polynomials
associated to a fixed model of E/Q for each j-invariant, we find deg(g(x)) > 15. Since
X1(22) has genus 6, the Riemann-Roch space L(g(x)) has dimension at least 10, and so
g(z) is not Pl-isolated.

(iv) Suppose p = 13. Since deg(g(z)) is odd, the classification of images of mod 13 Galois
representations for elliptic curves over QQ implies g(z) maps to a point of degree 3 or 39 on
X1(13). See for example [30, Tables 1 & 2]. If it is degree 39, then g(z) € X(26) has degree
at least 39. But X;(26) has genus 10, and so by Lemmathe point g(z) is not P!-isolated.
So g(z) must map to a point of degree 3 on X;(13). Since there are no degree 3 points on
X1(26) associated to elliptic curves with rational j-invariant by Theorem 1.3 in [33], we have
deg(g(x)) = 9. But then if h : X;(26) — X1(13), we have deg(g(z)) = deg(h) - deg(h(g(x)),
and so h(g(z)) € X;(13) is isolated by Theorem As in the second paragraph, no such
isolated point exists.

In each case, we arrive at a contradiction.
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If j(z) = —33-13-4793 /2! then E corresponds to a rational point on X(p) only if p = 7. Thus
Theorem [3| shows that n = 2%, 7%, 2- 7%, or 22 . 7" for b > 0. The first three cases follow as above,
so it remains to consider the case when n = 22 - 7°. We will show that 2 maps to an isolated point
on X1(28). Let g: X1(4-7°) — X1(4-7) and h : X1(4-7) — X1(7) be the natural maps. Since
the z-coordinate of a point of order 4 satisfies a polynomial of degree 6, the degree of Q(g(x)) over
Q(h(g(z)) is not divisible by 7. Then as in the third paragraph of this proof,

[Q(z) : Qg(x))] = 77 = deg(y).

By Theorem g(z) is isolated. Since X;(28) has genus 10 and factorization of division polynomials
shows that deg(g(z)) = 63, g(z) is not P'-isolated by Lemma O

4.5. Isolated points on X;(2%3%). To study isolated points on X1(2%3%) we rely on the results
of [49], which give a complete classification of the image of the 3-adic Galois representation for
non-CM elliptic curves E/Q with a rational 3-isogeny. The only cases that arise are parametrized
by genus 0 modular curves, and Sutherland and Zywina [59] exhibit all such subgroups containing
—1I. (Note for any E/Q there exists a twist E'/Q such that —I € im pg/, and the choice of twist
does not affect the degree of a point on X;(V).) A table giving a list of these images appears in
the appendix.

Proposition 26. Let x € X1(2%3%) be an isolated point corresponding to a non-CM elliptic curve
with deg(z) odd and j(z) € Q. Then x maps to an isolated point on one of X1(54) or X1(162).

Proof. Let x = [E, P] € X1(2%3%) be an isolated point corresponding to a non-CM elliptic curve
with deg(z) odd and j(z) € Q. We fix a model of E/Q. If b = 0, then x is not isolated as in the proof
of Proposition Next, suppose a = 0, and let 3¢ be the level of the 3-adic Galois representation
associated to E. Then deg(z) = deg(f)deg(f(x)), where f : X1(3%) — X;(ged(3%,3%)) is the
natural map; see Proposition 5.8 in [I1]. By Lemma E has a rational 3-isogeny and from the
classification in [49] it follows that d < 3. Thus f(x) € X;(3%) is isolated by Theorem [15] for some
d" < 3 by Proposition If d < 2, then we have reached a contradiction since X (3d ) has genus
0, so suppose d = 3. Note this is only possible if the image of the 3-adic Galois representation
associated to E has level 27, which implies that it is 27A4%-27a. By looking at orbit sizes of points
of order 9 and points of order 27 (see Appendix), we see that in fact f(z) will again map to an
isolated point on X;(9), which is a contradiction.

Thus we may assume a,b > 0, and E has a rational 3-isogeny by Lemma[I7] By the classification
in [49], the 3-adic Galois representation has level 3¢ for d € {1,2,3}. Then by Proposition 6.1 in
I,

. R
imppee =7 (impp ga3s)
where 8 < d+ 1. Let g : X1(2%3%) — X;(ged(223°,293%)) be the natural map. By Proposition 5.8
in [11],
deg(z) = deg(g) deg(g(x)),
and so x maps to an isolated point on X1 (gcd(2¢3%,2%3%)) by Theorem Since a < 2 by Theorem
and 3 < 4, it follows that  maps to an isolated point on X;(2™3™) for m < 2 and n < 4. We
have already shown we cannot have m = 0 or n = 0, so after removing curves of genus 0 we are
left with
X1(2-3%), X1(2-3%), X1(2-3%)
X1(22-3%), X1(2%-3%), and X;(22-3%).
Now X (18) has no non-cuspidal points of degree 1 by [45], so any point of odd degree must have

degree at least 3. Since X1(18) has genus 2, the point g(z) is not P!-isolated by Lemma It
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remains to rule out curves of the form X7 (22 -3"). Note that if g(z) € X1(22-3") is of odd degree,
then its image on X;(4) has odd degree.

First suppose E does not have a rational point of order 2. Then the only way F can correspond
to a point on X;(4) of odd degree is if FE gives a rational point on X20 by [50]. However, the
fiber product of X((3) and X20 has non-cuspidal points corresponding only to j = 32 - 233/26 and
j = —3%.113/22 [19, Prop. 6]. Using the classification of 3-adic images in [49], we confirm the
3-adic Galois representation associated to an elliptic curve with each of these j-invariants has level
3. Thus it suffices to rule out isolated points on X7(36) corresponding to these j-invariants. Note
X1(36) has genus 17. By computing division polynomials, we see that in either case the degree of
a point on X;(36) is at least 27, and so by Lemma |14] the point is not isolated.

Suppose FE has a rational point of order 2. Since deg(X7(4) — X1(2)) has degree 2, 2 corresponds
to a point of odd degree on X3 (4) only if it has degree 1. We now consider the possible images of the
3-adic Galois representation associated to E in the case where it has a 4-isogeny and a 3-isogeny. It
suffices to consider only those subgroups containing —I (since if —I is not contained in the 3-adic
image, a twist of ' can be chosen so that it does). Then:

e the 3-adic image cannot be contained in 9B°-9a, since that would imply E had a rational
cyclic 36-isogeny, contradicting Theorem [6]

e the 3-adic image cannot be contained in 3D%3a, since that would imply E had a 3-isogeny
and an independent 12-isogeny. This cannot occur. See [36, Theorem 2].

e the 3-adic image cannot be contained in 9C°-9a because the fiber product of X(4) and
Xgco.g, covers the fiber product of X(2) and Xgco_g, and that curve has no non-cuspidal,
non-CM rational points. It is genus 2 with 5 rational points: 3 cusps, j = 0 and j = 24.33.53.
Code is available in the file x02andX9C. txt.

Thus the image of the 3-adic Galois representation associated to E must be 3B°-3a. In particular,
it has level 3. This is the case where 8 < 2, so x maps to an isolated point on X7 (4 - 32) of degree
at least 9. We consider two cases.

(i) Suppose x lies above a point of degree 1 on X7(3). Since x also lies above a point of degree
1 on X;(4), then the assumption that  has odd degree means it corresponds to a point
of degree 1 on X;(12). Then z corresponds to a point of degree 9 on X;(36), and since
deg(X1(36) — X1(12)) = 9, by Theorem [15| 2 maps to an isolated point on X;(12). This is
a contradiction since X;(12) has genus 0.

(ii) Suppose z lies above a point of degree 3 on X1(3). Then x corresponds to a point of degree
at least 27 on X1(36). Since X1(36) has genus 17, by Lemma[14] the point on X1 (36) is not
isolated.

In every case, we have reached a contradiction, so we are left with the curves X;(2 - 3%) and
X1(2-3%), as in the theorem statement. O

4.6. Isolated points on X;(54) and X;(162).

Proposition 27. Any odd degree, non-cuspidal, non-CM isolated point on X1(162) with j(x) € Q
maps to an isolated point on X1(54). Moreover, there are no non-cuspidal, non-CM isolated points
on X1(54) for which the corresponding j(x) € Q and the elliptic curve E satisfies [Q(E[2]) N

Q(E[27) : Q] € {1,2,3}.

Proof. If E is an elliptic curve and j(z) € Q, then the degree of Q(E[3*])/Q(j) is a divisor of
| GLo(Z/3FZ)| = 2% - 3*=3. This implies that if = is an odd degree point with j(z) € Q, then the
degree of x is a power of 3.
First suppose that x = [E, P] is a non-cuspidal, non-CM isolated point on X;(162), and fix
a model of £/Q. We will show that the image of x on X;(54) is isolated. As in the proof of
Proposition if the level of the 3-adic Galois representation associated to E is 3¢ for d < 3, the
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level of the 6-adic Galois representation is 2%3°, where § < d + 1. Thus = maps to an isolated
point on X1 (ged(2¢3%,243%)). Proposition [26| shows d # 1, and if d = 2, then = would map to an
isolated point on X;(54), as desired. Thus we may assume d = 3. This implies the 3-adic image
is equal to 27A%-27a (up to £I). The fiber product Xo740.974 X x,(1) X0(2) is the genus 2 curve
y? = 25 + 1023 + 1 whose Jacobian has rank zero and has exactly four rational points (all of them
cusps). For details, see the file x02andX27A. txt It follows that E does not have a rational 2-isogeny.
Let G be the image of the mod 162 Galois representation attached to E. Let m; : G — GL2(Z/81Z)
and m 1 G — GL2(Z/2Z) be the natural reduction maps. From the classification of the 3-adic
representation, the image of m contains all matrices = I (mod 27). Let H be the preimage under
mg of a subgroup of GL2(Z/2Z) of index 3. Then H has index 3 in G and so 71 (H) is either equal
to the mod 81 image of Galois or an index 3 subgroup thereof. However, every maximal subgroup
of 27A%-27a has level 27 and this means that 71 (H) contains all matrices congruent to the identity
mod 27. If ¢ € H is congruent to the identity modulo 27 then ¢? is congruent to the identity
modulo 54 and from this we see that G contains all matrices congruent to the identity modulo 54.
This implies that the degree of x on X;(162) is deg(X1(162) — X;(54)) times the degree of the
image of z on X;(54) and so the image of x on X;(54) is isolated by Theorem

For the remainder of the proof, we will assume that x is an odd degree, non-cuspidal, non-CM
isolated point on X;(54) with j(x) € Q. We fix a model of E/Q.

Suppose that E has a rational point of order 2. The fact that X;(18) has no odd degree isolated
points with rational j-invariant implies that the level of the 3-adic Galois representation must be
27 but as mentioned above, the fiber product X7 40.974 X x,(1) Xo(2) has no non-cuspidal rational
points, which is a contradiction.

Next, suppose that the elliptic curve E has no rational point of order 2 and that Q(E[2]) N
Q(E[27]) is either Q or a quadratic extension of Q. This implies that the residue field of [E,2P]
on X;(27) does not contain the z-coordinate of a 2-torsion point, and so the residue field of [E, P]
on X;(54) is a cubic extension of that for [F,2P] on X;(27), and by Theorem the image of
on X1(27) must be isolated. From the 3-adic classification, this does not occur.

Next, suppose that Q(E[2]) N Q(E[27]) is a cyclic cubic extension of Q. This implies that E
has square discriminant A(FE). A straightforward computation shows that (j(E) — 1728)A(F) is a
square, from which it follows that j(E) = 1728+t for some ¢t € Q. There are infinitely many elliptic
curves with square discriminant and with 3-adic image contained in 9C°-9a, but the modular curves
parametrizing elliptic curves with square discriminant and a 9-isogeny, or square discriminant and
a pair of two independent 3-isogenies both have genus 1 and are isomorphic to y? = 2% — 27. This
elliptic curve has two rational points and in both cases, these rational points are cusps. (See the
files X9B0squaredisc.txt/ and X3D0squaredisc.txt.) It remains to consider subgroups of 9C°-9a, and
these are 9J°-9a, 9.J°-9b and 9.J°-9¢. The latter two would give rise to points on X1 (54) of degree
81 or higher, so it suffices to consider the fiber product of Xg 09, and the curve j = 1728 + ¢2.
This curve has genus 2 and is isomorphic to y? = 2® 4 42* + 323 — 22 — . The Jacobian has
rank zero and the curve has precisely three rational points, all of which are cusps. (See the file
X9J09asquaredisc.txt for details.) Therefore, this case does not occur. O

4.7. A certain entanglement related to odd degree isolated points on X;(54). We must
handle the final case not covered by Proposition Before we begin the proof, we provide an
overview. If F/Q is an elliptic curve with a cyclic 9-isogeny, then E gives rise to a point of degree
< 81 on X1(54). In particular, since deg(Xo(27) — X¢(9)) = 3, there is a cubic extension K;/Q
over which F acquires a cyclic 27-isogeny. Since deg(X1(27) — Xo(27)) = 9, there is a degree < 9
extension Ky/K; over which E acquires a point of order 27. Finally, there is an extension K3/K»
of degree < 3 over which E acquires a point of order 2. If this point has degree 81, then it is not
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isolated (by Lemma since the genus of X;(54) is 52. However, we must rule out the possibility
that this degree is 27 or less.

We will show that the only way the degree of this point is < 27 is if the cubic extension of Q
over which E acquires a cyclic 27-isogeny is the same as the cubic extension over which F acquires
a 2-torsion point. Elliptic curves with this property are parametrized by a modular curve Xg
of genus 4, where K is a particular subgroup of GLo(Z/54Z). In the course of the proof of the
proposition below, we will write down an equation for X and show that its only rational points
are cusps. This leads to a contradiction.

To start, we give a general criterion that determines the values of a parameter x for which two
cubic extensions of Q(x) have isomorphic specializations.

Lemma 28. Suppose that p1(t,z) = 1>+ Aot + Az and pa(t,x) = t3 + Bat + B3 are two irreducible
cubic polynomials in Q(z)[t]. For xo € Q for which p1(t,zo) and p2(t,xo) remain irreducible, the
number fields defined by pi1(t,zo) and p2(t,zo) are isomorphic if and only if

f(t,20) = t° — 6AyBot* — 27 A3 B3t + 9A3B3t? + 81 A3 A3 BoBat — 4A3B3 — 27TA3B3 — 27A3B3
has a rational root.

Proof. Let L/Q be the degree three extension containing a root of both p1 (¢, z¢) and pa(t, zo) and
let M/Q be its Galois closure. Let t1, to and t3 be the roots of p;(t,xo) in M and t4, t5, and tg be
the roots of pa(t,x0) in M and view Gal(M/Q) C S3 x S35 C Sg. Order these roots so that there
is some o € Gal(M/Q) so that o(t1) = to, o(t2) = t3, o(ts) = t5 and o(t5) = t¢. It follows that
01 = tity + tats + tste = trp g(tita) € Q. Let 0, 03, 04, 05 and O be the other elements in the
orbit of 1 under the action of Sz X S3; these are the polynomials ¢1¢;(4) + tatr(s) + 3t ) for ma
non-identity permutation of {4,5,6}. Tt follows that [["_,(t — 6;) € Q[t] and has a rational root
and a linear algebra calculation carried out in Magma (see the file deg3iso.txt for details) shows
that T[], (t — 6;) = £(t,x0)-

Conversely, if f(t,70) has a rational root and the roots of f(t, 7o) are distinct, then t1t, ) +
tatr(5) + tstre) € Q for some permutation 7 of {4,5,6}. This element must be fixed by Gal(M/Q)
and the set of permutations in S3 x S3 that fix t11;(4) + totr(5) + {3t () form a subgroup isomorphic
to S3. Therefore Gal(M/Q) is isomorphic to a subgroup of S3 and in particular contains a unique
subgroup of index 3. Hence the number fields defined by p;(t, z9) and pa(t, zo) are isomorphic. If
f(t, o) has a repeated root, then its discriminant is zero. Computing the discriminant of f (¢, x¢)

3 3
shows that either p;(t,zo) has a repeated root, ps(t, () has a repeated root, or that % = %
3 3
which implies that the number fields defined by p;(¢, o) and pa(t, o) are isomorphic in this case
as well. O

Proposition 29. There are no odd degree, non-cuspidal, non-CM isolated points x on X1(54)
for which j(z) € Q and the corresponding elliptic curve E has [Q(E[2]) : Q] = 6 and Q(E[2]) C
Q(E[27]).

Proof. Since x must give rise to a point of degree < 27 on X (54), it follows that F must have a point
of order 9 in degree 1 or 3. This forces the 3-adic image to equal (up to 1) 9B%°-9a, 9H°-9b, 91°-9a,
91°-9b, 91°-9¢, 9.J°-9a, or 27A°-27a. We next consider the possibilities K for the image of the mod
54 Galois representation attached to E. If m : K — GL2(Z/2Z) and 7y : K — GLo(Z/27Z)
are the reductions modulo 2 and 27, respectively, then the assumption that Q(E[2]) C Q(FE[27])
implies that ker mo C ker ;. For each option for the 3-adic image above, we enumerate subgroups
K with this property. We rule out any which would force x yields a degree 27 point on X;(54)
and a degree 3 point on X (18) since in that case, the image on X;(18) must be isolated. The
genus of X;(18) is 2 and so this contradicts Lemma [14] Every subgroup K we find is conjugate in
GL2(Z/547) to a subgroup of one particular subgroup of index 72 that corresponds to the 3-adic
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image of Galois equalling 9B%-9a, which corresponds to E having a cyclic 9-isogeny. (See the file
S3entanglement . txt for details.) For the rest of the proof, K will denote this particular subgroup
of GLo(Z/54Z). The corresponding modular curve X has genus 4. There is an element ¥ of order
2 in (Z/547)? whose stabilizer in K is contained in { [i Z] € GL2(Z/54Z) : ¢ =0 (mod 54)}. In
particular, if E/Q is an elliptic curve with im pg 54 C K, then E has a rational 9-isogeny and the
cubic field over which E acquires a rational point of order 2, and the cubic field over which E
acquires a cyclic 27-isogeny are isomorphic. To write down an equation for the modular curve X,
we wish to apply Lemma Since E has a cyclic 9-isogeny, we choose a parameter xg for which
Q(X0(9)) = Q(=9) consistent with Magma’s small modular curves database. We represent these
two (a priori different) cubic extensions as degree 3 extensions of Q(xyg).
Magma’s small modular curves database gives the map to the j-line j : X(9) — Xo(1) as

(w9 4+ 9)3(xd + 24323 + 2187zy + 6561)3

B z3 (23 + 9zg + 27) '
The curve Xo(27) has equation y? + y = 23 — 7. Define ¢ : Xo(27) — Xo(9) by é(z,y) =
—34 (y+5)/x. Then jo ¢ is the map from X((27) to the j-line. We wish to represent X((27) as a

degree 3 cover of X4(9) via this map, and a Grobner basis computation shows that if xg € Q, the
z-coordinate of a preimage of g under ¢ satisfies

2® — (2§ + 629 + 9)2* + (929 + 27)2 — 27 = 0.

We make a change of variables, setting t = 3z — (x9 + 3)? and obtain
pi(t, mg) = t3 — (3xg + 3625 + 16223 + 24319t — (22§ + 3623 + 270xg + 99923 4 170123 + 729z9) = 0.

This makes the coefficient of #2 equal to 0. Using an equation for X(2), one finds that the degree
3 subfield of Q(E[2]) is given by pa(t,9) = t3 — jt — 165 = 0. We can now apply Lemma . This
gives rise to an equation involving ¢ and xg which has degree 41 in zg and degree 6 in t. We wish
to find all of the rational points on the curve defined by this equation. Using the methods in van
Hoeij and Novocin’s preprint [61], we are able to find a much simpler polynomial that defines the
same function field. We find the polynomial

Xpe 1 15 + (=223 — 1822 — b4wo)t® + x5 + 182 + 13524 + 51323 + 97223 + 72929 = 0.
The map (t,29) — (t3,29) is clearly a map to the curve
Y i y? 4 (=223 — 1823 — 5dwg)y + 2§ + 1825 4 13523 + 51323 + 97223 + 72929 = 0

This curve Y has genus 1 and is isomorphic to y? = 22 + 1. This elliptic curve has rank zero and
Mordell-Weil group Z/6Z. The six rational points on Y are (=324:-9:1), (0:0:1), (1:0:0),
(=162 :-9:1), (0: =3 :1), and (=54 : —3 : 1). Of these six points, two are rational cusps, two
have image j = 0, and two have image j = —2!5-3-53. Only two of the rational points on Y lift to
rational points on X, and those are the rational cusps. In particular, the only rational points on
X are cusps, and there are no non-CM elliptic curves E with j(E) € Q that give rise to an odd
degree isolated point on X;(54) and for which Q(E[2])/Q is an S3 extension contained in Q(E[27]).
A script documenting this computation is in the file genus4. txt. ]

Although the curve Xx has no non-cuspidal rational points, points on X over a number field k
do give rise to points on X1(54) that have degree < 27 over k. For example, there is a cubic point

3/
w. This corresponds to the elliptic curve

. . 3
3/105° + 42105 + 211>

on Xg with g =

2 3
ky = k= —
Yy +rxy+ Ky =x°, < 1131
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and it can be verified that this elliptic curve has a point of order 54 over a degree 27 extension of

Q(+/105).
4.8. Non-CM isolated points of odd degree.

Theorem 30. Let Z,5q denote the set of all isolated points of odd degree on all modular curves
X1(N) for N € Z*. Then the non-CM j-invariants in j(Zoaq) N Q are —32 - 55/23 and 33 - 13/22.

Proof. The fact that j(Z,qq) N Q C {—3%-56/23 33 .13/22} follows from Theorem Proposition
Proposition and Proposition It remains to show that these two j-invariants correspond
to isolated points of odd degree. By work of Najman [47], there is an isolated (in fact, sporadic)
point # € X;(21) with deg(z) = 3 and j(z) = —32-5%/23. We have also identified a degree
9 point x € X;(28) corresponding to the elliptic curve F with LMFDB label 338.e2. Since the
Jacobian of X7(28) has rank 0 [23, Lemma 1], it suffices to show x is P*-isolated. We use the model
of X7(28) computed by Sutherland [57] (see Table 6). The universal elliptic curve has the form
B, y* +xy +uy = 23 + ux? for some u € Q(X1(28)). We first find the choices of u in the degree
9 number field Q(z) for which j(E,) = 3 - 13/22. There are two such, but only one gives points in
the desired degree 9 number field. In the end, we find 6 points on X;(28) over the desired number
field that are interchanged by diamond automorphisms and choose one of them to create a degree
9 divisor D over Q on X(28). Since the natural reduction of a principal divisor is principal over
any prime of good reduction [6, Thm. 9.5.1], it suffices to show that the Riemann-Roch space L(D)
over F1; is one-dimensional. This can be verified in Magma,; [see the file X128.txt for details.| Thus
there are no non-constant functions f : X;(28) — P! over Q with poles only at D and so the degree
9 point on X (28) is isolated. O

5. THE CM CASE

In this section we show that any CM j-invariant in j(Z,qq) N Q belongs to the set
{—2"¥3%5°, —2193%5%11°%, —2¥3%5723%29°},
completing the proof of Theorem These are the elliptic curves with CM by the orders of dis-
criminant —43, —67, —163, respectively. Our results follow from work of the first author and Clark

18], [9.
5.1. Preliminaries on Cartan orbits. We first recall the necessary ingredients from [§], §7]. Let
O be an order in an imaginary quadratic field and let N be a positive integer. If P € O/NO
is a point of order N (which by §2.6 corresponds to a point of order N on an O-CM elliptic
curve), then define Mp = {zP | x € O} to be the O-submodule of O/NO generated by P and
Ip :={x € O|zP = 0}. There is a canonical O-module isomorphism

Mp=0O/Ip
defined by P +— 1+ Ip. We may use this isomorphism to determine the size of the (O/NQO)*-orbit
on P. Recall we denote (O/NO)* by Cn(O).
Lemma 31. Let p be an odd prime, and let O be an imaginary quadratic order of discriminant
A such that (%) = 0. Let P € O/p*O be a point of order p*. Then as abelian groups, Mp =
Z)p*Z x 7Jp°Z for some integers 0 < b < a, and the Cpa(QO)-orbit on P has size p®**~1(p — 1).

Proof. The fact that Mp =y Z/p*7Z x Z/pr for some 0 < b < a is Lemma 7.5 in [§]. Since (%) =0,
O/Ip is local with residue field Z/pZ. Thus
#(0/1p)" =#0/Ip - (p—1).

By [8, Lemma 7.4], the size of the Cx(O)-orbit on P is equal to the size of (O/Ip)*. O
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Lemma 32. Let p be an odd prime, and let O be an imaginary quadratic order of discriminant A
such that (%) # 1. Let P € O/p®O be a point of order p* for a € ZT. Suppose for some integer

0 < m < a the Cpym(O)-orbit on p*~™P € O/p™O has size greater than ¢(p™). Then the size of
the Cpa(O)-orbit on P is equal to p*®~™) times the size of the Cym (O)-orbit on p® ™ P.

Proof. If (%) = —1, this follows from [8, Theorem 7.8], so henceforth we may assume (%) = 0.

Following [8, §7D], we observe that z — p® ™z gives an O-module isomorphism
O/pmO — p*~™O/p*O.

This allows us to view O/p™O as an O-submodule of O/p®O. Since we have assumed the Cpm (O)-
orbit on p*~™P € O/p™O has size greater than ¢(p™), Lemma 31| shows

Mp = 7./p°Z x 7./ p°Z,
Myamp 27 Z/p™Z x Z/p" 7

for some 0 < b < aand 1 <V < m. Since p* "™ Mp = Mpa—mp, we see that b = b’ +a—m. Another
application of Lemma [31] shows that P lies in a Cpa(O)-orbit of size p?(@=™) times the size of the
Cpm (O)-orbit on p*~™P. O

5.2. CM version of Theorem [7} The following theorem shows that, as in the case of non-CM
elliptic curves over Q, points on Xi(p?®) corresponding to a CM elliptic curve E with a rational
cyclic p-isogeny over Q(j(F)) often arise in largest possible degree allowed by the isogenies. For
relevant background information on CM elliptic curves, see Section [2.6

Proposition 33. Let p be an odd prime and let E be a K-CM elliptic curve. Define m to be the
mazximum integer such that there exists y € Xo(p™)(Q(j(E)) with j(y) = ](E)H If m > 1 and
(ATK) # 1, then for any integer a > m and any point x € X1 (p®) with j(z) = j(E), we have

deg(z) = deg(f(x)) - deg(/f),
where f: X1(p*) — X1(p™) is the natural map.

Proof. Let x = [E,P] € X1(p*). The assumption that m > 1 means there exists a model of
E/Q(j(F)) with a rational cyclic p-isogeny. Since p is odd, (%) = 0 by Proposition 6.8 of [9].
Furthermore, if A = —3, then m = 2; see, for example, [9, Corollary 5.11].

As in the proof of Lemma we may identify P with an element of O/p®O of order p® and
p®~™P with an element of O/p™O of order p™. Suppose first that the Cpm (O)-orbit on p*~™ P has
size greater than ¢(p™). Thus by [8, Lemma 7.6] and Lemma [32| we have the lower bound

[K(h(P)) : K(b(p* " P))] = p>*~™ < [Q(0(P)) : Qb(p* ™ P))].
Since p*(@=™) = deg(X;(p®) — X1(p™)), we also have the upper bound

[Q(h(P)) : Qh(p"™P))] < p*le=™)

Thus equality holds, and deg(z) = deg(f(x)) - deg(f).

So suppose the Cpm (O)-orbit of p*~™P has size less than or equal to go(pm)ﬂ Suppose for the
sake of contradiction that the size of the Cpe(O)-orbit on P is strictly smaller than p*@=™) times
the size of the Cpm (O)-orbit on p*~™P. Then the Cpa(O)-orbit on P has size less than

2(a— 2a—m—1
P o(p™) = P (p - 1),
4For the explicit values of m, see Propositions 6.4 and 6.8 in [9]. These can mostly be deduced from [37].
®In fact, this implies the orbit size must be exactly ¢(p™) since Cpm (O) contains all scalar matrices.
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With the values of m given in [9, Proposition 6.4], we find this contradicts [8, Theorem 7.2] since
we have also assumed (ATK) # 1. Thus the Cpa(O)-orbit on P is equal to p2(@=™) times the size of
the Cpm (O)-orbit on p®»~™P, and the argument follows as before. d

Remark 34. The statement of Proposition [33| does not hold if (A;TK) = 1. In this case, for such a
K-CM elliptic curve E, there exists v € X1 (pM)(K(j(E)) with j(y) = j(E) for all M € Z*. See
Proposition 6.4 in [9]. These extra isogenies picked up over K (j(E)) prevent the degree condition
of Proposition [33] from being satisfied, and they may be used to produce sporadic points associated
to any CM j-invariant. See Theorem 7.1 in [11].

5.3. Isolated CM points of odd degree. There are 13 CM j-invariants in Q corresponding to
imaginary quadratic orders of discriminant

A€ {-3,-4,-7,-8,—11,-12,—16,—19, —27, —28, —43, —67, —163}.

For most of these, we can show there is no corresponding isolated point in odd degree using the
following theorem.

Theorem 35. Let x € X1(N) be an isolated point of odd degree corresponding to an elliptic curve E
with CM by the order in K of discriminant A. Then K = Q(y/—p) for a prime p =3 (mod 4) and
N =p" or2p". Moreover, if m is the mazimum integer such that there exists y € Xo(p™)(Q(j(E))
with j(y) = j(E), then:
(i) If (§) = —1, then f(z) € X1(ged(N,p™)) is isolated where f : X1(N) — X1(ged(N, p™))
1s the natural map.
(ii) If () # —1, then f(x) € X1(ged(N,2p™)) is isolated where f : X1(N) — X1(gcd(N,2p™))
is the natural map.

Remark 36. As noted above, for explicit values of m, see Propositions 6.4 and 6.8 in [9]; also [37].

Proof. Let x = [E, P] € X;(N) be an isolated point of odd degree associated to an elliptic curve
with CM by the order in K of discriminant A. Note there are no isolated points on X (2) or X;(4)
as they have genus 0. Thus by [I, Cor. 9.4], the assumption of odd degree implies N = p" or 2p"
where K = Q(y/—p) and p = 3 (mod 4) is prime. If N = p”", we may assume m < r, for otherwise
the statement is clearly true. Since (A—K) = 0, we have m > 1 (see for example [9, Prop. 6.4]), so
we may apply Proposition Then by Theorem x maps to an isolated point on X;(p™), and
the statement holds.

Next, suppose N = 2p". Note we may assume r > 1, and if p = 3, we may assume r > 1
since X1(6) has genus 0. If (%) = —1, then by [8, Lemma 7.1, Proposition 7.7], the size of the
Cn(O)-orbit of P is equal to 3 times the size of the Cpr(O)-orbit of 2P. Lemma 7.6 of [§] shows
that

[KG(E)(b(P)) - KG(E))] =3 [K(G(E)HEP)) : K(5(E))].
Since we have assumed [Q(j(E))(h(P)) : Q] has odd degree, it follows that

deg(z) = deg(g) - deg(g(z))

where g : X1(2p") — Xi(p") is the natural map. By Theorem g(x) € Xq1(p") is isolated. If
m > r, we are done. Otherwise the argument follows as before.

If (%) # —1, we may assume m < r. Then [0, Theorem 6.2, 6.6] shows there is a point in
X1(2)(Q(j(E)) corresponding to E, and the assumption that x has odd degree forces [E,p"P| €
X1(2) to have degree [Q(j(E) : Q]. Thus by Proposition we have deg(x) = deg(g(x)) - deg(g)
where ¢ : X1(2p") — X1(2p™) is the natural map. By Theorem |15 g(x) € X;(2p™) is isolated, as
desired. O
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A p | m | genus of X1(p™) | da | genus of X (2p™) if (%) #+—1
-3 3 2 0 3 -
77 1 0 3 1
11 )11 |1 1 5 -
12 [ 3 |1 0 1 0
-19 119 | 1 7 9 -
=27 3 3 13 9 -
28 7 [1 0 3 1
43 | 43 | 1 57 21 -
-67 | 67 | 1 155 33 -
-163 | 163 | 1 1027 81 -

TABLE 1. Let m be as in Theorem [35] and let da be the least degree of a A-CM
point on X (p™). For values of m, see [37] and [J, Proposition 6.4]. The value da
is given in [9, Theorem 7.1].

Corollary 37. There are no isolated points x € X1(N) of odd degree corresponding to an elliptic
curve with CM by the order of discriminant A € {-3,—4,-7,—-8,—11,—-12, —16,—19, —27, —28}.

Proof. Let € X1(IN) be an isolated point of odd degree corresponding to an elliptic curve with
CM by the order of discriminant A € {—3,—4, —7,—8,—11,—12, —16, —19, —28}. Since X(2) and
X1(3) have genus 0, we may assume N > 3. By Theorem we may assume A ¢ {—4, —8,—16},
and x maps to an isolated point f(x) in X;(ged(N,p™)) if (%) = —1 or in Xj(gcd(N,2p™)) if
(%) # —1 for m, p as in the theorem statement. By Table 1, we see that the degree of f(x) is larger
than the genus of the curve, which means the dimension of the associated Riemann-Roch space is
at least 2. Thus f(z) is not P!-isolated and we have reached a contradiction.

Now, let x € X1(NN) be an isolated point of odd degree corresponding to an elliptic curve with
CM by the order of discriminant A = —27. Then j(z) = —2'-3-53, and by Theorem [35|and Table
1, f(x) € X1(ged(N, 3%)) is isolated where f : X1(N) — Xi(gcd(N, 3%)) is the natural map. X;(3)
and X7(9) are genus 0 and thus have no isolated points, so it suffices to show there are no isolated
points of odd degree on X(27) associated to this j-invariant. By computing division polynomials,
we see that any point 2’ € X1(27) of odd degree with j(z') = —2'5-3-53 has degree 9 or 243. Since
X1(27) has genus 13, Lemma |[14] implies that points of degree 243 are not isolated, so we need only
consider the point on X (27) of degree 9.

Since the Jacobian of X7(27) has rank 0 [23, Lemma 1], it suffices to show z’ is not P'-isolated.
We do this by forming the associated divisor and computing its Riemann-Roch space. First we find
the Tate normal form of an elliptic curve E(b, ¢) with (0, 0) of order 27. This is done by constructing
a polynomial fa7 € Q[b, ¢] that vanishes when (0,0) has order 27 on E(b,c), as in [I4, Lemma 2.4].
Using E(b, ¢), we find the associated point on a model of X;(27) computed by Sutherland [57]. This
allows us to create a degree 9 divisor D over Q on X(27), and a Magma computation shows that
the Riemann-Roch space L(D) over Q has dimension 3. Hence there is a function f : X;(27) — P!
of degree 9 with poles at the points in the support of D and this implies that D is not P'-isolated.
See the file X127.txt for details. g

Remark 38. Suppose x € X;(N) is an isolated point of odd degree corresponding to an elliptic curve

with CM by the order of discriminant A € {—43, —67,—163}. These discriminants correspond to

elliptic curves with j-invariants —2'83353, —2193353113, and —2'83353233293, respectively. By

Theorem N = p" or 2p" where p = 43,67, or 163, respectively. Moreover, since m = 1 in each

case [37], Theorem [35| shows f(x) € X1(gcd(N,p)) is isolated, where f : X;(N) — Xi(ged(N,p))
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is the natural map. Thus —2'%3353 2153353113 and —2'83353233293 are in j(Z,q4q¢) N Q if and
only if they correspond to an isolated point of odd degree on Xj(p). In each case, the Jacobian of
X1(p) has positive rank; see Proposition 6.2.1 in [I7]. Thus to find j(Z,q4) N Q, one must determine
whether these points belong to an infinite family parametrized by a positive rank abelian subvariety

of Jac(X1(p)).

APPENDIX A. 3-ADIC IMAGES OF GALOIS

In [49, Corollary 1.10], the authors determine the 3-adic image of Galois for every non-CM elliptic
curve E/Q that has a rational 3-isogeny. Every case that occurs arises from a genus 0 modular
curve with infinitely many rational points. The prime power level modular curves with infinitely
many rational points for subgroups that contain —I were determined by Sutherland and Zywina
[59]. The following table contains information from page 2 of the online supplement to [59] that
specifies a label, the index, the level, generators, and a map to a covering modular curve. We also
give the labels of the corresponding groups given in [49], which have the form N.i.g.n, where N
is the level, 7 is the index, g is the genus of the corresponding modular curve and n is a tiebreak.
(For more detail see Subsection 2.6 of [49].)

The labels 3B%-3a, 3D%-3a, 9B°-9a, and 9I°-9¢ denote the curves Xo(3), Xo(3,3), Xo(9), and
X1(9), respectively. For each 3-adic image with level 3%, we also give the degrees on X (3*) of each
Galois orbit of points order 3*.

SZ label RSZB label covering covering Orbit sizes
group
3B%3a  3.4.0.1 (t+3)3(t+27)/t j-line [1,3]
3D%-3a  3.12.0.1  729/(t3 —27) 3B%3a [1,1,2]
9B%9a  9.12.0.1  t(t? + 9t +27) 3B%3a  [3,6,27]
9C%9a  9.12.0.2 3 3B%3a [9,27]
9H%-9a  9.36.0.2  3(t3+9)/t? 3D%3a [9,9,18]
9HY-9b  9.36.0.1 33 +92 -9t —9)/(#3 -9t2—9t+9) 3D%3a [3,3,3,6,18]
9HY-9¢  9.36.0.3  —6(t3—9t)/(t3 +9t> — 9t — 9) 3D%3a [9,9,18]
91°-9q 9.36.0.5  —6(t> —9t)/(t> — 3t> — 9t + 3) 9B%9a [3,6,9,9,9]
91°-9b 9.36.0.6  —3(t3+9t2 -9t —9)/(t3 +3t> -9t —3) 9B°9a [3,6,27]
91°-9¢ 9.36.0.4 (3 —-6t2+3t+1)/(t*—1) 9B%9a [1,1,1,6,27]
9J%9a  9.36.0.7 (2 —-3t+1)/(t2—1) 9C%9a  [3,3,3,27]
9J%9b  9.36.0.9  —18(t* —1)/(t3 — 3t> — 9t + 3) 9C%9a [9,9,9,9]
9J%9c  9.36.0.8 3(t3+3t2-9t—-3)/(#3 -3t2 -9t +3) 9C°9a [9,27]
27A%-27a 27.36.0.1 3 9B%9a  [27,54,243)
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