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ABSTRACT
With the rapiddevelopmentof data collection techniques, complexdataobjects that arenot in theEuclidean
space are frequently encountered in new statistical applications. Fréchet regression model (Petersen and
Müller) provides a promising framework for regression analysis with metric space-valued responses. In
this article, we introduce a flexible sufficient dimension reduction (SDR) method for Fréchet regression
to achieve two purposes: to mitigate the curse of dimensionality caused by high-dimensional predictors,
and to provide a visual inspection tool for Fréchet regression. Our approach is flexible enough to turn
any existing SDR method for Euclidean (X , Y) into one for Euclidean X and metric space-valued Y . The
basic idea is to first map the metric space-valued random object Y to a real-valued random variable
f (Y) using a class of functions, and then perform classical SDR to the transformed data. If the class of
functions is sufficiently rich, then we are guaranteed to uncover the Fréchet SDR space. We showed that
such a class, which we call an ensemble, can be generated by a universal kernel (cc-universal kernel).
We established the consistency and asymptotic convergence rate of the proposed methods. The finite-
sample performance of the proposed methods is illustrated through simulation studies for several com-
monly encountered metric spaces that include Wasserstein space, the space of symmetric positive definite
matrices, and the sphere. We illustrated the data visualization aspect of ourmethod by the humanmortality
distribution data from the United Nations Databases. Supplementary materials for this article are available
online.

ARTICLE HISTORY
Received September 2021
Accepted October 2023

KEYWORDS
Ensembled sufficient
dimension reduction; Inverse
regression; Statistical objects;
Universal kernel; Wasserstein
space

1. Introduction

With the rapid development of data collection techniques, com-
plex data objects that are not in the Euclidean space are fre-
quently encountered in new statistical applications, such as the
graph Laplacians of networks, the covariance or correlation
matrices for the brain functional connectivity in neuroscience
(Ferreira and Busatto 2013), and probability distributions in
CT hematoma density data (Petersen and Müller 2019). These
data objects, also known as random objects, do not obey the
operation rules of a vector space with an inner product or a
norm, but instead reside in a general metric space. In a pre-
scient paper, Fréchet (1948) proposed the Fréchet mean as a
natural generalization of the expectation of a random vector. By
extending the Fréchet mean to the conditional Fréchet mean,
Petersen and Müller (2019) introduced the Fréchet regression
model with random objects as the response and Euclidean vec-
tors as predictors, which provides a promising framework for
regression analysis with metric space-valued responses. Dubey
andMüller (2019) showed the consistency of the sample Fréchet
mean using the results of Petersen and Müller (2019), derived
a central limit theorem for the sample Fréchet variance that
quantifies the variation around the Fréchet mean, and further
developed the Fréchet analysis of variance for random objects.
Dubey and Müller (2020a) designed a method for change-point
detection and inference in a sequence of metric-space-valued
data objects.

CONTACT Lingzhou Xue lzxue@psu.edu Department of Statistics, The Pennsylvania State University, University Park, PA.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

The Fréchet regression employs the global least squares and
the local linear or polynomial regression to fit the conditional
Fréchet mean. It is well known that the global least squares
is based on a restrictive assumption of the regression relation.
Although the local regression is more flexible, it is effective
only when the dimension of the predictor is relatively low. As
this dimension gets higher, its accuracy drops significantly—a
phenomenon known as the curse of dimensionality. To address
this issue, it is essential to reduce the dimension of the predictor
without losing the information about the response. For classi-
cal regression, this task is performed by sufficient dimension
reduction (SDR; see Li 1991; Cook 1996 and Li 2018 among
others). SDR projects the high-dimensional predictor onto a
low-dimensional subspace that preserves the information about
the response through the use of sufficiency.

Besides assisting regression in overcoming the curse of
dimensionality, another important function of SDR for classical
regression is to provide a data visualization tool to gain insights
into how the regression surface looks in high-dimensional space
before even fitting a model. By inspecting the sufficient plots
of the response objects against the sufficient predictors, we can
gain insights into the general trends of the response as the
most informative part of the predictor varies, whether there are
outlying observations, and whether there are subjects with high
leverage that have undue influence on the regression estimates-
the usual information a statistician looks for in the exploratory
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and model checking stages of the regression analysis. This func-
tion is also needed in Fréchet regression. In fact, it can be
argued that data visualization is even more important for the
regression of random objects, as the regression relation may be
even more difficult to discern among the complex details of the
objects.

To fulfill these demands, we systematically develop the the-
ories and methodologies of sufficient dimension reduction for
Fréchet regression in this article. To set the stage, we first give an
outline of SDR for classical regression. Let X be a p-dimensional
random vector inRp andY a random variable inR. The classical
SDR aims to find a dimension reduction subspace S of Rp such
that Y and X are independent conditioning on PSX, that is,
Y |�X|PSX, where PS is the projection on to S with respect to
the usual inner product inR

p. This way, PSX can be used as the
synthetic predictor without losing regression information about
the response Y . Under mild conditions, the intersection of all
such dimension reduction subspaces is also a dimension reduc-
tion subspace, and the intersection is called the central subspace
denoted by SY|X (Cook 1996; Yin, Li, and Cook 2008). For the
situation where the primary interest is in estimating the regres-
sion function, Cook and Li (2002) introduced a weaker form of
SDR, the mean dimension reduction subspace. A subspace S of
R
p is a mean SDR subspace if it satisfies E(Y|X) = E(Y|PSX),

and the intersection of all such spaces if it is still a mean SDR
subspace, is the central mean subspace, denoted by SE(Y|X). The
central mean subspace SE(Y|X) is always contained in central
subspace SY|X when they exist. Many estimating methods for
the central subspace and the central mean subspace have been
developed over the past decades. For example, for the central
subspace, we have the sliced inverse regression (SIR; Li 1991),
the sliced average variance estimate (SAVE; Cook andWeisberg
1991), the contour regression (CR; Li, Zha, and Chiaromonte
2005), and the directional regression (DR; Li and Wang 2007).
For the central mean subspace, we have the ordinary least
squares (OLS; Li and Duan 1989), the principal Hessian direc-
tions (PHD; Li 1992), the iterative Hessian transformation (IHT
Cook and Li 2002), the outer product of gradients (OPG) and
the minimum average variance estimator (MAVE) of Xia et al.
(2002).

SDR has been extended to accommodate some complex data
structures in the past, for example, to functional data (Ferré and
Yao 2003; Hsing and Ren 2009; Li and Song 2017), to tensorial
data (Li, Kim, and Altman 2010; Ding and Cook 2015), and to
panel data (Fan, Xue, and Yao 2017; Yu, Yao, and Xue 2020; Luo
et al. 2021). Most recently, Ying and Yu (2022) extended SIR to
the case where the response takes values in a metric space, and
Zhang, Li, and Xue (2022) extended the generalized SIR (Lee,
Li, and Chiaromonte 2013) to the case where the response and
predictors are distributional data. Taking a substantial step for-
ward, in this article, we introduce a comprehensive and flexible
method that can adapt any existing SDR estimators to metric
space-valued responses.

The basic idea of our method stems from the ensemble SDR
for Euclidean X and Y of Yin and Li (2011), which recovers
the central subspace SY|X by repeatedly estimating the central
mean subspace SE[f (Y)|X] for a family F of functions f that is
rich enough to determine the conditional distribution of Y|X.
Such a family F is called an ensemble and satisfies SY|X =

∪{SE[f (Y)|X] : f ∈ F}. Using this relation, we can turn any
method for estimating the central mean space into one that
estimates the central subspace.

While borrowing the idea of the ensemble, our goal is differ-
ent from Yin and Li (2011): we are not interested in turning an
estimator for the central mean subspace into one for the central
subspace. Instead, we are interested in turning any existing SDR
method for Euclidean (X,Y) into one for EuclideanX andmetric
space-valuedY . LetX be a random vector inRp andY a random
object that takes values in a metric space (�Y , d). Still use the
symbol SY|X to represent the intersection of all subspaces of
R
p satisfying Y |�X|PSX. We call SY|X the central subspace for

Fréchet SDR, or simply the Fréchet central subspace. Let F be a
family of functions f : �Y → R that aremeasurablewith respect
to the Borel σ -field on the metric space. We use two types of
ensembles to connect classical SDR with Fréchet SDR:

• Central Mean Space ensemble (CMS-ensemble) is a family F
that is rich enough so that SY|X = ∪{SE[f (Y)|X] : f ∈ F}.
Note that we know how to estimate the spaces SE(f (Y)|X)

using the existing SDR methods since f (Y) is a number.
We use this ensemble to turn an SDR method that targets
the central mean subspace into one that targets the Fréchet
central subspace. We will focus on two forward regression
methods: OPG and MAVE, and three moment estimators of
the CMS.

• Central Space ensemble (CS-ensemble) is a family F that
is rich enough so that SY|X = ∪{Sf (Y)|X : f ∈ F}. We
use this ensemble to turn an SDR method that targets the
central subspace for real-valued response into one that targets
the Fréchet central subspace. We will focus on three inverse
regression methods: SIR, SAVE, and DR.

A key step in implementing both of the above schemes is to con-
struct an ensemble F in each case. For this purpose, we assume
that the metric space (�Y , d) is continuously embeddable into
a Hilbert space. Under this assumption, one can construct a
universal reproducing kernel, which leads to an F that satisfies
the required characterizing property.

As with classical SDR, the Fréchet SDR can also be used to
assist data visualization. To illustrate this aspect, we consider
an application involving factors that influence the mortality
distributions of 162 countries (see Section 7 for details). For
each country, the response is a histogram with the numbers of
deaths for each five-year period from age 0 to age 100, which is
smoothed to produce a density estimate, as shown in panel (a)
of Figure 1. We considered nine predictors characterizing each
country’s demography, economy, labor market, health care, and
environment. Using our ensemble method, we obtained a set
of sufficient predictors. In panel (b) of Figure 1, we show the
mortality densities plotted against the first sufficient predictor.
A clear pattern is shown in the plot: for countries with low
values of the first sufficient predictor, the modes of the mortality
distributions are at lower ages, and there are upticks at age 0,
indicating high infant mortality rates; for countries with high
values of the first sufficient predictor, the modes of the mortality
distributions are significantly higher, and there are no upticks at
age 0, indicating very low infantmortality rates. The information
provided by the plot is useful, and many further insights can be
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Figure 1. Data visualization in Fréchet regression for mortality distributions of 162 countries. Panel (a) plots mortality densities that are placed in random order, and Panel
(b) plots mortality densities versus the first sufficient predictor estimated by our ensemble method.

gained about what affects the mortality distribution by taking a
careful look at the loadings of the first sufficient predictor, as will
be detailed in Section 7.

The rest of this article is organized as follows. Section 2
defines the Fréchet SDR problem and provides sufficient con-
ditions for a family F to characterize the central subspace. Sec-
tion 3 then constructs ensemble F for the Wasserstein space of
univariate distributions, the space of covariance matrix, and a
special Riemannianmanifold, the sphere. Section 4 proposes the
CMS-ensembles by extending five SDR methods that target the
central mean space for real-valued response: OLS, PHD, IHT,
OPG, and MAVE, and CS-ensembles by extending three SDR
methods that target the central space for real-valued response:
SIR, SAVE, and DR. Section 5 establishes the convergence rate
of the proposed methods. Section 6 uses simulation studies to
examine the numerical performances of different ensemble esti-
mators in different settings, including distributional responses
and covariance matrix responses. In Section 7, we analyze the
mortality distribution data to demonstrate the usefulness of
our methods. Section 8 includes a few concluding remarks and
discussion. All the proofs and additional simulation studies and
real applications are presented in the supplementary material.

2. Characterization of the Fréchet Central Subspace

Let (�,F ,P) be a probability space. Let (�Y , d) be a metric
space with metric d and BY the Borel σ -field generated by
the open sets in �Y . Let �X be a subset of Rp and BX the
Borel σ -field generated by the open sets in �X . Let (X,Y) be
a random element mapping from � to �X × �Y measurable
with respect to the product σ -field BX × BY . We denote the
marginal distributions of X and Y by PX and PY , respectively,
and the conditional distributions of Y|X and X|Y by PY|X and
PX|Y , respectively. We formulate the Fréchet SDR problem as
finding a subspace S of Rp such that Y and X are independent
conditioning on PSX:

Y |�X|PSX, (1)

where PS is the projection on to S with respect to the inner
product inRp. As in the classical SDR, the intersection of all such
subspaces S still satisfies (1) under mild conditions (Cook and
Li 2002). Indeed, it does not require any structure of the space
�Y . A sufficient condition shown in Yin, Li, and Cook (2008) is
thatX is supported by amatching set. For example, if the support
of X is convex, then this sufficient condition is satisfied. We call
this subspace the Fréchet central subspace and denote it bySY|X .
Similar to Cook (1996), it can be shown that if the support of X is
open and convex, the Fréchet central subspace SY|X satisfies (1).

2.1. Two Types of Ensembles and their Sufficient
Conditions

Let F be a family of measurable functions f : �Y → R, and
for an f ∈ F, let SE[f (Y)|X] be the central mean subspace of
f (Y) versus X. As mentioned in Section 1, we use two types of
ensembles to recover the Fréchet central subspace. The first type
is any F that satisfies

span{SE(f (Y)|X) : f ∈ F} = SY|X . (2)

This is the same ensemble as that in Yin and Li (2011), except
that, here, the right-hand side is the Fréchet central subspace.
The relation (2) allows us to recover the Fréchet central subspace
SY|X by a collection of classical central mean subspaces. We call
a class F that satisfies (2) a CMS-ensemble. The second type of
ensemble is any family F that satisfies

span{Sf (Y)|X : f ∈ F} = SY|X , (3)

which we call a CS-ensemble. Proposition 1 shows that a CMS
ensemble is a CS-ensemble.

Proposition 1. If F is a CMS-ensemble, then it is a CS-ensemble.

We next develop a sufficient condition for an F to
be a CMS-ensemble and hence also a CS-ensemble. Let
B = {IB : B is Borel set in �Y} be the family of
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measurable indicator functions on �Y , and let span(F) ={∑k
i=1 αifi : k ∈ N,α1, . . . ,αk ∈ R, f1, . . . , fk ∈ F

}
be the linear

span of F, where N = {1, 2, . . . }. Yin and Li (2011) showed that
if F is a subset of L2(PY) that is dense in B, then (2) holds for
the classical SY|X . Here, we generalize that result to our setting
by requiring only span(F) to be dense inB.

Lemma 1. If F is a subset of L2(PY) and span{F} is dense in B

with respect to the L2(PY)-metric, then F is a CMS-ensemble
and hence also a CS-ensemble.

2.2. Construction of the CMS-Ensemble

To construct a CMS-ensemble, we resort to the notion of the
universal kernel. Let C(�Y) be the family of continuous real-
valued functions on�Y . When�Y is compact, Steinwart (2001)
defined a continuous kernel κ as universal (we refer to it as c-
universal) if its associated RKHS HY is dense in C(�Y) under
the uniform norm. To relax the compactness assumption, Mic-
chelli, Xu, and Zhang (2006) proposed the following notion of
universality, which is referred to cc-univsersal in Sriperumbudur,
Fukumizu, and Lanckriet (2011). For any compact set K ⊆ �Y ,
let HY(K) be the RKHS generated by {κ(·, y) : y ∈ K}. We
should note that a member f of HY(K) is supported on �Y ,
rather thanK. Let f |K denote the restriction of f onK, andC(K)

the class of all continuous functions with respect to the topology
in (�Y , d) restricted on K.

Definition 1. (Micchelli, Xu, and Zhang 2006) We say that κ is
cc-universal if, for any compact set K ⊆ �Y , any member f of
C(K), and any ε > 0, there is an h ∈ HY(K) such that ‖f −
(h|K)‖∞ = supy∈K |f (y) − h(y)| < ε.

When�Y is compact, Sriperumbudur, Fukumizu, andLanck-
riet (2011) showed that two notions of universality are equiva-
lent. In the following, we look into the conditions under which
a metric space has a cc-universal kernel and how to construct
such a kernel when it does.

Micchelli, Xu, and Zhang (2006) showed that when �Y =
R
d, many standard kernels, including Laplacian kernels and

Gaussian RBF kernels, are cc-universal. Unfortunately, when
�Y is a general metric space, direct extensions of these types
of kernels, for example, k(y, y′) = exp(−γ d(y, y′)2), are no
longer guaranteed to be cc-universal. Christmann and Steinwart
(2010) showed that for compact �Y , if there exists a separable
Hilbert space H and a continuous injection ρ : �Y → H,
then for any analytic function F : R → R whose Taylor series
at zero has strictly positive coefficients, the function κ(y, y′) =
F(〈ρ(y), ρ(y′)〉H) defines a c-universal kernel on �Y . They also
provide an analogous definition of the Gaussian-type kernel in
the above case. We extend this result to construct cc-universal
kernels on non-compact metric space. The proof is given in the
supplementary material.

Proposition 2. Suppose (�Y , d) is a complete and separable
metric space, and there exists a separable Hilbert space H and
a continuous injection ρ : �Y → H. If F : R → R is an analytic
function of the form F(t) = ∑∞

n=0 antn, an ≥ 0 for all n ≥ 1,
then the function κ : �Y × �Y → R defined by κ(y, y′) =

F(〈ρ(y), ρ(y′)〉H) is a positive definite kernel. Furthermore, if
an > 0 for all n ≥ 1, then κ is a cc-universal kernel on �Y .

As an example, Corollary 1 shows that the Gaussian-type
kernel is cc-universal on �Y .

Corollary 1. Suppose the conditions in Proposition 2 are satis-
fied, then the Gaussian-type kernel κγ (y, y′) = exp(−γ ‖ρ(y) −
ρ(y′)‖2H), where γ > 0, is cc-universal. Furthermore, if
the continuous function ρ : �Y → H is isometric, that
is, d(y, y′) = ‖ρ(y) − ρ(y′)‖H, then Gaussian-type kernel
κγ (y, y′) = exp(−γ d2(y, y′)) is cc-universal.

The second part of Corollary 1 is straightforward since an
isometry is an injection. Similar results can be established for
Laplacian-type kernel κγ (y, y′) = exp(−γ ‖ρ(y) − ρ(y′)‖H).

As far as we know, the idea of embedding a (semi) metric
space to a Hilbert space was first proposed in Berg, Christensen,
and Ressel (1984) and has been revisited by Sejdinovic et al.
(2013) and Dubey and Müller (2020b). By Berg, Christensen,
and Ressel (1984, Theorem 2.2), exp(−γ d2(·, ·)) is positive def-
inite for all γ > 0 if and only if d2(·, ·) is negative definite,
which is guaranteed when the metric space can be isometrically
embedded into a Hilbert space.

The continuous embedding condition in Proposition 2 covers
several metric spaces often encountered in statistical applica-
tions. Section 3 employs it to construct cc-universal kernels on
the space of univariate distributions endowed withWasserstein-
2 distance, correlation matrices endowed with Frobenius dis-
tance, and spheres endowed with geodesic distance.

By using the notion of regular probability measure, we con-
nect the cc-universal kernel on (�Y , d)with the CMS-ensemble,
which is the theoretical foundation of our method. Recall that a
measure PY on (�Y , d) is regular if, for any Borel subset B ⊆ �Y

and any ε > 0, there is a compact set K ⊆ B and an open set
G ⊇ B, such that P(G\K) < ε.

Theorem 1. Suppose, onmetric space (�Y , d), (1) κ is a bounded
cc-universal kernel and (2) PY is a regular probability measure.
Then the family F = {κ(·, y) : y ∈ �Y} is a CMS-ensemble.

The proof of Theorem 1 is given in the supplementary mate-
rial. Condition (2), which requires PY to be regular, is quitemild:
it is known that any Borel measure on a complete and separable
metric space is regular (see Granirer (1970, chap. 2: Theorems
1.2 and 3.2)). Thus, a sufficient condition of Condition (2) is
(�Y , d) being complete and separable, which is satisfied by all
the metric spaces we consider. Specifically, note that ifM is sep-
arable and complete, then so is the Wasserstein-2 spaceW2(M)

(Panaretos and Zemel 2020, Proposition 2.2.8, Theorem 2.2.7).
Therefore,W2(R) is complete and separable. Similarly, the SPD
matrix space endowed with Frobenius distance and the sphere
endowed with geodesic distance are complete and separable
metric spaces. Furthermore, the Gaussian kernel and Laplacian
kernel we considered satisfy Condition (1) in Theorem 1.

Thus, Proposition 2 and Theorem 1 provide a general mech-
anism to construct the CMS-ensemble over any separable and
complete metric space without a linear structure, provided it
can be continuously embedded in a separable Hilbert space. For
the case where multiple cc-universal kernels exist, we design a
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cross-validation framework in Section 6 to choose the kernel
type and the bandwidth γ .

3. Important Metric Spaces and their CMS Ensembles

This section gives the construction of CMS-ensembles for three
commonly used metric spaces.

3.1. Wasserstein Space

Let I be R or a closed interval of R, B(I) the σ -field of Borel
subsets of I, and P(I) the collection of all probability measures
on (I,B(I)). The Wasserstein space W2(I) is defined as the
subset ofP(I)with finite secondmoment, that is,W2(I) = {μ ∈
P(I) :

∫
I t

2 dμ(t) < ∞}, endowed with the quadratic Wasser-

stein distance dW(μ1,μ2) =
(∫ 1

0
[
F−1

μ1 (s) − F−1
μ2 (s)

]2 ds
)1/2

,
where μ1 and μ2 are members of W2(I) and F−1

μ1 and F−1
μ2

are the quantile functions of μ1 and μ2, which we assume
to be well defined. This distance can be equivalently written

as dW(μ1,μ2) =
(∫

I
[
F−1

μ1 ◦ Fμ2(t) − t
]2 dμ2(t)

)1/2
. The set

W2(I) endowed with dW is a metric space with a formal Rie-
mannian structure (Ambrosio, Gigli, and Savaré 2004).

Here, we present some basic results that characterizeW2(I),
whose proofs can be found, for example, in Ambrosio, Gigli,
and Savaré (2004) and Bigot et al. (2017). For μ1, μ2 ∈ W2(I),
we say that a B(I)-measurable map r : I → I transports
μ1 to μ2 if μ2 = μ1 ◦ r−1. This relation is often written
as μ2 = r#μ1. Let μ0 ∈ W2(I) be a reference measure
with a continuous Fμ0 . The tangent space at μ0 is Tμ0 =
clL2(μ0){λ(F−1

μ ◦ Fμ0 − id) : μ ∈ W2(I), λ > 0}, where, for a set
A ⊆ L2(μ0), clL2(μ0)(A) denotes the L2(μ0)-closure of A.
The exponential map expμ0 from Tμ0 to W2(I), defined by
expμ0(r) = (r + id)#μ0, is surjective. Therefore, its inverse,
logμ0

: W2(I) → Tμ0 , defined by logμ0
(μ) = F−1

μ ◦
Fμ0 − id, is well defined on W2(I). It is well known that the
exponential map, restricted to the image of log map, denoted
as expμ0 |logμ0 (μ)(W2(I)), is an isometric homeomorphism (Bigot
et al. 2017). Therefore, logμ0

is a continuous injection from
W2(I) to L2(μ0). We can then construct CMS-ensembles using
the general constructive method provided by Theorem 1 and
Proposition 2. The next proposition gives two such construc-
tions, where the subscripts “G” and “L” for the two kernels refer
to “Gaussian” and “Laplacian”, respectively.

Proposition 3. For I ⊆ R, κG(y, y′) = exp(−γ ‖ logμ0
(y) −

logμ0
(y′)‖2L2

μ0
) = exp(−γ dW(y, y′)2) and κL(y, y′) =

exp(−γ ‖ logμ0(y) − logμ0(y
′)‖L2

μ0
) = exp(−γ dW(y, y′)) are

both cc-universal kernels on W2(I). Consequently, the fami-
lies FG = {exp(−γ dW(·, t)2) : t ∈ W2(I)} and FL =
{exp(−γ dW(·, t)) : t ∈ W2(I)} are CMS-ensembles.

3.2. Space of Symmetric Positive DefiniteMatrices

We first introduce some notations. Let Sym(r) be the set of r× r
invertible symmetric matrices with real entries and Sym+(r) the

set of r × r symmetric positive definite (SPD) matrices. For any
Y ∈ R

r×r, the matrix exponential of Y is defined as the infinite
power series exp(Y) = ∑∞

k=0 Yk/k!. For any X ∈ Sym+(r), the
matrix logarithm of X is defined as any r × r matrix Y such that
exp(Y) = X and denoted by log(X).

Let dF be the Frobenius metric. Then (Sym+(r), dF) is
a metric space continuously embedded by identity mapping
in Sym+(r), which is a Hilbert space with the Frobenius
inner product 〈A,B〉 = tr(ATB). Also, the identity mapping
id : Sym+(r) → Sym(r) is obviously isometric. There-
fore, by Corollary 1, the two types of radial basis function
kernels for Wasserstein space can be similarly extended to
Sym+(r). That is, let κG(y, y′) = exp(−γ dF(y, y′)2) and
κL(y, y′) = exp(−γ dF(y, y′)), then FG = {κG(y, y′), y′ ∈
Sym+(r)} and FL = {κL(y, y′), y′ ∈ Sym+(r)} are
CMS-ensembles.

Another widely used metric over Sym+(r) is the log-
Euclidean distance defined as dlog(Y1,Y2) = ‖ log(Y1) −
log(Y2)‖F. It pulls the Frobenius metric on Sym(r) back
to Sym+(r) by the matrix logarithm map. The matrix
logarithm log(·) is a continuous injection to Hilbert
Sym(r). By Corollary 1, the two types of radial basis
function kernels κG,log(y, y′) = exp(−γ dlog(y, y′)2)
and κL,log(y, y′) = exp(−γ dlog(y, y′)) are cc-universal.
Then, FG,log = {κG,log(y, y′), y′ ∈ W2(I)} and FL,log =
{κL,log(y, y′), y′ ∈ W2(I)} are CMS-ensembles.

3.3. The Sphere

Consider the random vector taking values in the sphere Sn =
{x ∈ R

n : ‖x‖ = 1}. To respect the nonzero curvature of
S
n, the geodesic distance dg(Y1,Y2) = arccos(Y T

1Y2), which
is derived from its Riemannian geometry, is often used rather
than the Euclidean distance. However, the popular Gaussian-
type RBF kernel κG(y, y′) = exp(−γ dg(y, y′)2) is not positive
definite on S

n (Jayasumana et al. 2013). In fact, Feragen, Lauze,
andHauberg (2015) proved that for complete Riemannianman-
ifold M with its associated geodesic distance dg , κG(y, y′) =
exp(−γ dg(y, y′)2) is positive semidefinite only ifM is isometric
to a Euclidean space. Honeine and Richard (2010) and Jaya-
sumana et al. (2013) proved that the Laplacian-type kernel
κL(y, y′) = exp(−γ dg(y, y′)) is positive definite on the sphere
S
n. We show in the following proposition that κL(y, y′) is cc-

universal.

Proposition 4. The Laplacian-type kernel κL(y, y′) : Sn × S
n →

R, defined by κL(y, y′) = exp(−γ dg(y, y′)), where dg is the
geodesic distance on S

n, is a cc-universal kernel for any γ >

0. Consequently, FL = {exp(−γ dg(·, t)), t ∈ S
n} is a CMS-

ensemble.

We note that the scope of Proposition 2 goes beyondRieman-
nian manifolds. For example, the Gaussian type kernel on the
space of Borel probability measures on a compact metric space
with Prohorov metric is universal (Christmann and Steinwart
2010). We construct an explicit embedding and a universal
kernel for any metric space of negative type in Theorem 4 in the
supplementary material.
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4. Fréchet Sufficient Dimension Reduction

In this section, we develop the Fréchet SDR estimators based
on the CMS-ensembles and CS-ensembles and establish their
Fisher consistency.

4.1. EnsembledMoment Estimators via CMS Ensembles

We first develop a general class of Fréchet SDR estimators based
on the ensembled moment estimators of the CMS, such as the
OLS, PHD, and IHT. LetPXY be the collection of all distributions
of (X,Y), and let M : PXY → R

p×p be a measurable function
to be used as an estimator of the Fréchet central subspace SY|X .
A function defined on PXY is called statistical functional; see,
for example, chap. 9 of Li (2018). In the SDR literature, such a
function is also called a candidate matrix (Ye and Weiss 2003).
Let FXY be a generic member of PXY , F(0)

XY the true distribution
of (X,Y), and F̂(n)

XY the empirical distribution of (X,Y) based on
an iid sample (X1,Y1), . . . , (Xn,Yn). Extending the terminology
of classical SDR (see, e.g., Li 2018, chap. 2), we say that the
estimate M(F̂(n)

XY ) is unbiased if M(F(0)
XY) ⊆ SY|X , exhaustive if

M(F(0)
XY) ⊇ SY|X , and Fisher consistent if M(F(0)

XY) = SY|X . We
refer toM as the Fréchet candidate matrix.

Supposewe are given aCMS-ensembleF. LetM0 : PXY×F →
R

p×p be a function to be used as an estimator of SE[f (Y)|X] for
each f . In the classical sense, this is not a statistical functional,
as it involves an additional set F. So, we redefine unbiased-
ness, exhaustiveness, and Fisher consistency for this type of
augmented statistical functional.

Definition 2. We say that M0 is unbiased for estimating
{SE[f (Y)|X] : f ∈ F} if, for each f ∈ F, span{M0(F(0)

XY , f )} ⊆ SE[f (Y)|X].
Exhaustiveness and Fisher consistency of M0 are defined by
replacing ⊆ in the above by ⊇ and =, respectively.

Note thatM0(·, f ) is an estimator of the classical central mean
subspace SE[f (Y)|X], as f (Y) is a random number rather than a
randomobject.We refer toM0 as the ensemble candidatematrix,
or, when confusion is possible, CMS-ensemble candidatematrix.
Our goal is to construct a Fréchet candidate matrixM : PXY →
R

p×p from the ensemble candidate matrixM0 : PXY ×F → R
p×p.

To do so, we assume F is of the form {κ(·, y) : y ∈ �Y}, where
κ : �Y × �Y → R is a cc-universal kernel. Given such an F and
M0, we defineM as follows

M(FXY) =
∫

�Y

M0(FXY , κ(·, y))dFY(y),

where FY is the distribution of Y derived from FXY .
We now adapt several estimates for the classical central mean

subspace to the estimation of Fréchet SDR: the ordinary least
squares (OLS; Li and Duan 1989), the principal Hessian direc-
tions (PHD; Li 1992), and the Iterative Hessian Transformation
(IHT; Cook and Li 2002). These estimates are based on sample
moments and require additional conditions on the predictor
X for their unbiasedness. Specifically, we make the following
assumptions :

Assumption 1. 1. Linear Conditional Mean (LCM): E(X|βTX) is
a linear function of βTX, where β is a basis matrix of the Fréchet
central subspace SY|X ;

2. Constant Conditional Variance (CCV): var(X|βTX) is a
nonrandom matrix.

Under the first assumption, the ensemble OLS and IHT are
unbiased for estimating the Fréchet central subspace; under
both assumptions, the ensemble PHD is unbiased for estimat-
ing SY|X . More detailed discussions on the unbiasedness and
fisher consistency of ensemble estimators are presented in Sec-
tion 4.4. In practice, the two assumptions above cannot be
checked directly since we do not know β . However, as was
shown by Eaton (1986), if Assumption 1 holds for all β , then
the distribution of X is elliptical, and vice versa. If further
X is multivariate normal, then Assumption 2 (supplementary
materials) is satisfied. Thismeans once themarginal distribution
of predictor X is regular, Assumption 1 holds without being
affected by the nonlinear nature of the response. Currently, the
scatterplot matrix is themost commonly used empirical method
to check the elliptical distribution assumption. If non-elliptical
features are observed, one can use marginal transformations of
the predictors, such as the Box-Cox transformation, to mitigate
the non-ellipticity problem. Furthermore, in practice, the SDR
methods that require ellipticity usually still work reasonably well
evenwhen the elliptical distribution assumption is violated. This
occurs particularly when the dimension p of X is high. See Hall
and Li (1993) and Li and Yin (2007) for the theoretical supports.
Our simulation results in Section 6 support this phenomenon.

It is most convenient to construct these ensemble estimators
using standardized predictors. As stated in the next proposition,
the theoretical basis for doing so is an equivariant property of
the Fréchet central subspace.

Proposition 5. If SY|X is the Fréchet central subspace, A ∈ R
p×p

is a nonsingular matrix, and b is a vector in R
p, then SY|AX+b =

ATSY|X .

The proof is essentially the same as that for the classical
central subspace (see, e.g., Li 2018, p. 24) and is omitted. Using
this property, we first transform X to Z = var(X)−1/2(X − EX),
estimate the Fréchet central subspace SY|Z, and then transform
it by var(X)1/2SY|Z, which is the same as SY|X . The candidate
matrices M0 and M for ensemble OLS, PHD, and IHT are
formulated in Remark 1. Detailed motivation for each can be
found in Li (2018, chap. 8). The sample estimates can then be
constructed by replacing the expectations in M0 and M with
sample moments whenever possible. Algorithm 1 summarizes
the steps to implement an ensembled moment estimator, where
κc(y, y′) stands for the centered kernel κ(y, y′) − Enκ(Y , y′).

Algorithm 1: Fréchet OLS, PHD, IHT, SIR, SAVE, DR
Step 1. Standardize predictors. Compute sample mean
μ̂ = En(X) and sample variance �̂ = varn(X). Then let
Zi = �̂−1/2(Xi − μ̂).
Step 2. Compute M̂0(y) for y = Y1, . . . ,Yn according to
Remarks 1 and 2.
Step 3. Compute M̂ = 1

n
∑n

i=1 M̂0(Yi).
Step 4. Let v̂1, . . . , v̂d0 be the leading d0 eigenvectors of
M̂, and let uk = �̂1/2vk, for k = 1, . . . , d0. Then use
{u1, . . . , ud0} to estimate a basis of SY|X .
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Remark 1. The candidate matrices M0(y) for Fréchet
OLS, PHD, and IHT are C(y)C(y)T with C(y) =
cov[Z, κ(Y , y)], E[ZZTκc(Y , y)], and W(y)W(y) with W(y) =
(C(y),H(y)C(y), . . . ,H(y)rC(y)) and H(y) = E[ZZTκc(Y , y)],
respectively.

4.2. Ensembled Forward Regression Estimators via CMS
Ensembles

We adopt the OPG (Xia et al. 2002), a popular method for
estimating the classical CMS based on nonparametric forward
regression, to the estimation of the Fréchet central subspace,
which does not require LCMandCCV conditions. The adaption
of another forward regression method MAVE is similar and
presented in Section S.3.2 of the supplementary material. The
framework of the statistical functional M0(FXY , f ) is no longer
sufficient to cover this case becausewenowhave a tuning param-
eter here. So, we adopt the notion of tuned statistical functional
in sec. 11.2 of Li (2018) to accommodate a tuning parameter.

Let PXY , FXY , F(0)
XY , and F̂(n)

XY be as defined in Section 4.1. For
simplicity, we assume the tuning parameter h to be a scalar, but
it could also be a vector. Given a CMS-ensemble F, let T0 :
PXY × F × R → R

p×p be a tuned functional to be used as an
estimator of SE[f (Y)|X] for each f . We refer to T0 as the ensemble-
tuned candidate matrix. The unbiasedness, exhaustiveness, and
Fisher consistency of T0 are defined as follows.

Definition 3. We say thatT0 is unbiased for estimating {SE[f (Y)|X] :
f ∈ F} if, for each f ∈ F, span{limh→0 T0(F(0)

XY , f , h)} ⊆
SE[f (Y)|X]. Exhaustiveness and Fisher consistency ofT0 are defined
by replacing ⊆ in the above by ⊇ and =, respectively.

Given F = {κ(·, y) : y ∈ �Y} and T0, we define the
tuned Fréchet candidate matrix T : PXY × R → R

p×p

as T(FXY , h) = ∫
�Y

T0(FXY , κ(·, y), h)dFY(y). We say that the
estimate T(T(n)

XY , h) is unbiased if span(limh→0 T(F(0)
XY , h)) ⊆ SY|X ,

exhaustive if span(limh→0 T(F(0)
XY , h)) ⊇ SY|X , and Fisher consis-

tent if span(limh→0 T(F(0)
XY , h)) = SY|X .

In the following, for a function h(x), we use ∂h(X)/∂X to
denote ∂h(x)/∂x evaluated at x = X. The OPG aims to estimate
central mean subspace SE[κ(Y ,y)|X] by E

[
∂E(κ(Y ,y)|X)

∂X
∂E(κ(Y ,y)|X)

∂XT

]
where the gradient ∂E(κ(Y , y)|X)/∂X is estimated by local linear
approximation as follows. Let K0 : R → [0,∞) be a kernel
function as used in kernel estimation. For any v ∈ R

p and
bandwidth h > 0, letKh(v) = h−pK0(‖v‖/h). At the population
level, for fixed x ∈ �X and y ∈ �Y , we minimize the objective
function

E{[κ(Y , y) − a − bT(X − x)]2Kh(X − x)}/EKh(X − x) (4)
over all a ∈ R and b ∈ R

d0 . The minimizer depends on x, y and
we write it as (ah(x, y), bh(x, y)). The ensemble tuned candidate
matrix for estimating the central mean subspace SE[κ(Y ,y)|X] is
T0(FXY , κ(·, y), h) = E[bh(X, y)bh(X, y)T] and the tuned Fréchet
candidate matrix is T(FXY , h) = E[bh(X,Y)bh(X,Y)T].

At the sample level, we minimize, for each j, k = 1, . . . , n, the
empirical objective function

n∑
i=1

wh(Xi,Xj)
[
κγ (Yi,Yk) − ajk − bT

jk(Xi − Xj)
]2

(5)

over ajk ∈ R and bjk ∈ R
p, where wh(Xi,Xj) = Kh(Xi −

Xj)/
∑n

l=1 Kh(Xl − Xj). Following Xia et al. (2002), we take the
bandwidth to be h = c0n−1/(p0+6) where p0 = max{p, 3} and
c0 = 2.34, which is slightly larger than the optimal n−1/(p+4)

in terms of the mean integrated squared errors. As proposed
in Li (2018, Lemma 11.6), instead of solving bjk from (5) n2
times, we solve multivariate weighted least squares to obtain
bj1, . . . , bjn simultaneously. The tuned Fréchet candidate matrix
is then estimated by T̂(F̂(n)

XY , h) = n−2 ∑n
j,k=1 b̂jkb̂T

jk. The first d
eigenvectors of T̂(F̂(n)

XY , h) form an estimate of the Fréchet central
subspace.

We can further enhance the performance by projecting the
original predictors onto the directions produced by T̂(F̂(n)

XY , h) to
re-estimate SY|X . Specifically, after compute T̂(F̂(n)

XY , h), we form
the matrix B̂ = (v̂1, . . . , v̂d) to contain the first d eigenvectors of
T̂(F̂(n)

XY , h). We then replace the kernelKh(Xj−Xi) byKh(B̂T(Xj−
Xi)) with an updated bandwidth h, and complete b̂jk from (5)
again, which leads to an updated B̂. We then iterate this process
until convergence. In this way, we reduce the dimension of the
kernel from p to d0 and mitigate the “curse of dimensionality.”
For classical SDR problems, this procedure is called refined
OPG, see Li (2018, chap. 11.4). We call this refined estimator
Fréchet OPG or FOPG. The algorithm for FOPG is summarized
as Algorithm 2 in the supplementary material.

4.3. Ensembled Inverse Regression Estimators via CS
Ensembles

In this section, we adapt several well-known estimators for the
classical central subspace to Fréchet SDR, which include SIR
(Li 1991), SAVE (Cook and Weisberg 1991), and DR (Li and
Wang 2007). We use the CS-ensemble to combine these classical
estimates through (3). Let F = {κ(·, y) : y ∈ �Y} be a CS
ensemble, where κ is a cc-universal kernel. Let M0 : PXY ×
F → R

p×p be a CS-ensemble candidate matrix. Let M(FXY) =∫
M0(FXY , κ(·, y))dFY(y) be the Fréchet candidate matrix.
Again, we work with the standard predictor Z. The candidate

matricesM0(y) for ensemble SIR, SAVE, and DR are formulated
in Remark 2. Detailed motivation for each can be found in Li
(2018, chap. 3,5,6). At the sample level, we replace any uncon-
ditional moment E by the sample average En, and replace any
conditional moment, such as E(Z|κ(Y , y)), by the slice mean.
The algorithms are also included in Algorithm 1.

Remark 2. The candidate matrices M0(y) for Fréchet SIR,
SAVE, and DR are var[E(Z|κ(Y , y)], [Ip − var(Z|κ(Y , y))]2,
and 2E{E[ZZT|κ(Y , y)]}2 + 2E2{E[Z|κ(Y , y)]E[ZT|κ(Y , y)]} +
2E{E[ZT|κ(Y , y)]E[Z|κ(Y , y)]}E{E[Z|κ(Y , y)]E[ZT|κ(Y , y)]} −
2Ip, respectively.

Remark 3. Regarding the time complexity of the Fréchet SDR
methods, by construction, the ensemble estimator requires n
times the computing time of the original estimator because it
needs to reapply the original estimator for each κ(·, yi), i =
1, . . . , n. For example, if SAVE is used as the original estimator,
then the largest matrixmultiplication isAp×nBn×p which requires
p2n basic computation units; the largest matrix to invert or
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eigendecomposition to perform is a p×pmatrix, which requires
p3 basic computation units. So the net computation complexity
is n × max(O(np2),O(p3)).

4.4. Fisher Consistency

In this section, we establish the unbiasedness and Fisher con-
sistency of the tuned Fréchet candidate matrix. As a special
case, the Fréchet candidate matrix constructed by any moment-
basedmethods in Section 4.1 can be considered as tuned Fréchet
candidate matrix with the tuning parameter h taken to be 0. The
next theorem shows that if T0 is unbiased (or Fisher consistent),
then T is unbiased (or Fisher consistent). In the following, we
say that a measure μ on �Y is strictly positive if and only if for
any nonempty open set U ⊆ �Y , μ(U) > 0. For a matrix A,
‖A‖ represents the operator norm.

Theorem 2. Suppose F = {κ(·, y) : y ∈ �Y} is a CMS-ensemble,
where κ is a cc-universal kernel. We have the following results
regarding unbiasedness and Fisher consistency for T.

1. If T0 is unbiased for {SE[κ(Y ,y)|X] : f ∈ F} and
‖T0(F(0)

XY , κ(·,Y ′), h)‖ ≤ G(Y ′), where G(Y ′) is a real-valued
function with E[G(Y ′)] < ∞, then T is unbiased for SY|X ;

2. If (a) T0 is Fisher consistent for {SE[κ(Y ,y)|X] : f ∈ F}, (b)
T0(FXY , κ(·, y), h) is positive semidefinite for each y ∈ �Y ,
h ∈ R and FXY ∈ PXY , (c) lim suph→0‖T0(F(0)

XY , κ(·,Y ′), h)‖ ≤
G(Y ′) with E[G(Y ′)] < ∞, (d) FY is strictly positive on
�Y , and (e) the mapping y′ �→ limh→0 T0(FXY , κ(·, y′), h) is
continuous, then T is Fisher consistent for SY|X .

We similarly develop Fisher consistency for Fréchet SDR
based on the CS-ensemble, including methods in Section 4.3.
The next corollary says that if M0 is Fréchet consistent for
{Sκ(Y ,y)|X : y ∈ �Y}, then M is Fréchet consistent for SY|X . The
proof is similar to that of Theorem 2 and is omitted.

Corollary 2. Suppose F = {κ(·, y) : y ∈ �Y} is a CS-ensemble,
where κ is a cc-universal kernel. We have the following results
regarding unbiasedness and Fisher consistency forM.

1. IfM0 is unbiased for {Sκ(Y ,y)|X : f ∈ F}, thenM is unbiased for
SY|X ;

2. IfM0 is Fisher consistent for {Sκ(Y ,y)|X : f ∈ F},M0(FXY , κ(·, y))
is positive semidefinite for each y ∈ �X and FXY ∈ PXY , FY
is strictly positive, and the mapping y′ �→ M0(FXY , κ(·, y′)) is
continuous, thenM is Fisher consistent for SY|X .

Unbiasedness and Fisher consistency of T0 orM0 are satisfied
by different sets of sufficient conditions for the moment-based
or forward-regression-based estimators. We outline these con-
ditions below.

1. For ensembled moment estimators in Section 4.1 and ensem-
bled inverse regression estimators in Section 4.3, most of
them are unbiased under either the LCM assumption or both
the LCM and CCV assumption. For example, the unbiased-
ness of SIR, OLS, and IHT requires the LCM assumption,
whereas the unbiasedness of SAVE, DR, and PHD requires
both the LCMand the CCV assumptions. The estimators SIR,
OLS, IHT, and PHD are generally not exhaustive (recall that

unbiased along with exhaustiveness is equivalent to Fisher
consistency). But sufficient conditions for SAVE and DR to
be exhaustive are reasonably mild (see Li and Wang (2007)
and Li (2018, chap. 6)).

2. Sufficient conditions for Fisher consistency forOPG are given
in Li (2018, sec. 11.2). Specifically, it requires: (a) the smooth
kernel functionK0 is a spherically-contoured p.d.f. with finite
fourth moments; (b) the pdf of X is supported on R

p and
has continuous bounded secondderivatives.Note that neither
LCM nor CCV assumption is needed for the OPG estimator.

In practice, when we observe a severe violation of the elliptical
assumption among the predictors, for example, by exploratory
data analysis tools such as the scatterplot matrix, it is favorable
to use forward regression methods such as FOPG. Otherwise,
moment-based methods are recommended since they are faster
to compute and have a parametric (n−1/2) convergence rate. Our
experiences also indicate that the performance of the moment-
based methods is relatively robust against the violation of ellip-
ticity as long as it is not very severe.

5. Convergence Rates of the Ensemble Estimates

In this section, we develop the convergence rates of the ensemble
estimates for Fréchet SDR. To save space, we will only consider
the CMS-ensemble; the results for the CS-ensemble are largely
parallel. To simplify the asymptotic development, we slightly
modify the ensemble estimator, which does not result in any
significant numerical difference from the original ensembles
developed in the previous sections. For each i = 1, . . . , n, let
F̂(−i)
XY be the empirical distribution based on the sample with

ith subject removed: {(X1,Y1), . . . , (Xn,Yn)} \ {(Xi,Yi)}. Our
modified ensemble estimate is of the form

T(F̂(n)
XY , hn) = n−1∑n

i=1T0(F̂(−i)
XY , κ(·,Yi), hn).

The purpose of this modification is to break the dependence
between the ensemble member κ(·,Yi) and the CMS estimate,
which substantially simplifies the asymptotic argument. Here,
we let the tuning parameter hn depend on n. Again, the Fréceht
candidatematrix constructed bymoment-basedmethods can be
considered as a special case with hn = 0.

Rather than deriving the convergence rate of each individ-
ual ensemble estimate case by case, we will show that, under
some mild conditions, the ensemble convergence rate is the
same as the corresponding CMS-estimate’s rate. Since the con-
vergence rates of many CMS-estimates are well established,
including all the forward regression and sample moment-based
estimates mentioned earlier, our general result covers all the
CMS-ensemble estimates.

In this following, for a matrix A, ‖A‖ represents the oper-
ator norm and ‖A‖F the Frobenius norm. If {an} and {bn}
are sequences of positive numbers, we write an ≺ bn if
limn→∞ an/bn = 0; we write an � bn if an/bn is a bounded
sequence. We write bn � an (or bn � an) if an ≺ bn (or an � bn).
We write an � bn if an � bn and bn � an. Let T∗

0 (F
(0)
XY , κ(·, y)) =

limh→0 T0(F(0)
XY , κ(·, y), h) and T∗(F(0)

XY) = limh→0 T(F(0)
XY , h).

Theorem3. LetCn(y) = E‖T0(F̂(n)
XY , κ(·, y), hn)−T∗

0 (F
(0)
XY , κ(·, y))‖

and {an} be a positive sequence of numbers satisfying an+1/an �
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1 and an � n−1/2. Suppose the entries of T∗
0 (F

(0)
XY , κ(·,Y)) have

finite variances. If E[Cn(Y)] = O(an), then ‖T(F̂(n)
XY , hn) −

T∗(F(0)
XY)‖ = OP(an).

The above theorem says that, under some conditions, the
convergence rate of an ensemble Fréchet SDR estimator is the
same as the corresponding CMS estimator. This covers all the
estimators developed in Section 4. Specifically:

1. For all moment-based ensemblemethods, such as OLS, PHD,
IHT, SIR, SAVE, DR, the ensemble candidate matrices can
be written in the form T0(F̂(n)

XY , κ(·, y)) = �̂(y)�̂(y)T, where
�̂(y) is a matrix possessing the second order von Mises
expansion, implying E[Cn(Y)] = O(n−1/2). See, for example,
Li (2018)

2. For nonparametric forward regression ensemble methods,
OPG, the convergence rate of Cn(y) was reported in Xia et al.
(2002) as O(h2

n + h−1
n δ2

n) where δn = √
(log n)/nhp

n. Although
the convergence was established in terms of convergence in
probability, undermild conditions such as uniformly integra-
bility, we can obtain the same rate for E[Cn(Y)].

6. Simulations

We evaluate the performance of the proposed Fréchet SDR
methods with distributions and symmetric positive definite
matrices as responses. For space consideration, the additional
simulation for spherical data is presented in the Supplementary
Material.

6.1. Computational Details

Choice of tuning parameters and kernel types. We first
implement a unified cross-validation procedure to select the
kernel type and bandwidth γ in the kernel. For both dis-
tributional response and symmetric positive definite matrix
response, we consider Gaussian radial basis kernel κG(y, y′) =
exp(−γ d(y, y′)2) and Laplacian radial basis kernel κL(y, y′) as
candidates to construct the ensembles. For the bandwidth γ , we
set the default value as

γG = ρY

2σ 2
G
, where σ 2

G =
(
n
2

)−1 ∑
i<j

d(Yi,Yj)
2, ρY = 1,

(6)
in the Gaussian radial basis kernel, and

γL = ρY
2σL

, where σL =
(
n
2

)−1 ∑
i<j

d(Yi,Yj), ρY = 1,

in the Laplacian radial basis kernel. The same choices were used
in Lee, Li, and Chiaromonte (2013) and Li and Song (2017).
We then fine-tune ρY and kernel types together via the k-fold
cross-validation as follows. Randomly split the whole sample
into k subsets of roughly equal sizes, say D1, . . . ,Dk. For each
i = 1, . . . , k, use Di as the test set and its complement as
the training set. We first use the training set to implement the
Fréchet SDR with an initial dimension d, say 5. This choice
of a relatively large dimension helps to guarantee the unbi-
asedness of the estimated Fréchet central subspace. We then

substitute the estimated β̂ into the testing set to produce the
sufficient predictor β̂TX and then fit a global Fréchet regression
model (Petersen and Müller 2019) to predict the response in
the testing set. Compute the prediction error for each i and
aggregate the error for all rotations i = 1, . . . , k, which yields
an overall cross-validation error. This overall error depends on
the tuning parameter ρY and kernel type, and is then minimized
over a grid {10−2, 10−1, 1, 10} × {κG, κL} to obtain the optimal
combinations.

Estimation of the dimensions. For the ensemble estima-
tors that possess a candidate matrix (such as the ensemble
moment estimators in Section 4.1), the recently developed
order-determination methods, such as the ladle estimate (Luo
and Li 2016), and predictor augmentation estimator (Luo and Li
2021) can be directly applied to estimate d0. In addition, the BIC-
criterion introduced by Zhu, Miao, and Peng (2006) can also be
used for this purpose.

In this article, we adapted the predictor augmentation esti-
mator to the current setting. A detailed introduction of the
predictor augmentation method and more simulation results
are included in the supplementary material. For the predictor
augmentation estimator, we take the times of augmentations
s = 10 and the dimension of augmented predictors r = �p/2�,
where p is the original dimension of predictors.

Estimation error assessment. We used the error measure-
ment for subspace estimation as in Li, Zha, and Chiaromonte
(2005): if S1 and S2 are two subspaces of Rp of the same dimen-
sion, then their distance is defined as d(S1,S2) = ‖PS1 −
PS2‖F, where PS is the projection on to S , and ‖ · ‖F is the
Frobenius matrix norm. If B1 and B2 are two matrices whose
columns form bases of S1 and S2 respectively, this distance can
be equivalently written as ‖B1(BT

1B1)
−1BT

1 −B2(BT
2B2)

−1BT
2‖F. This

distance is coordinate-free, as it is invariant to the basis matrices
involved.

To facilitate the comparison, we also include the bench-
mark error, which is set as the expectation of the above dis-
tance when B1 is taken as any basis matrix of the true central
subspace, and entries of B2 are generated randomly from iid
N(0, 1). This expectation is computed byMonte Carlo with 1000
repeats.

6.2. Scenario I: Fréchet SDR for Distributions

Let (�Y , dW) be the metric space of univariate distributions
endowed withWasserstein metric dW, as described in Section 3.
The construction of the ensembles requires computing the
Wasserstein distances dW(Yi,Yj) for i, j = 1, . . . , n. However,
the distributions Y1, . . . ,Yn are usually not fully observed in
practice, which means we need to estimate them in the imple-
mentation of the proposed methods. There are multiple ways to
do so, such as by estimating the c.d.f.’s, the quantile functions
(Parzen 1979), or the p.d.f ’s (Petersen and Müller 2016; Chen,
Lin, and Müller 2021). For computation simplicity, we use the
Wasserstein distances between the empirical measures. Specif-
ically, suppose we observe (X1, {W1j}m1

j=1), . . . , (Xn, {Wnj}mn
j=1),

where {Wij}mi
j=1 are independent samples from the distribution
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Yi. Let Ŷi be the empirical measure mi−1 ∑mi
j=1 δWij , where

δa is the Dirac measure at a, then we estimate dW(Yi,Yk) by
dW(Ŷi, Ŷk). For the theoretical justification, see Fournier and
Guillin (2015) and Lei (2020). For simplicity, we assume the
sample sizes m1, . . . ,mn to be the same and denote the com-
mon sample size by m. Then the distance between empirical
measures Ŷi and Ŷk is a simple function of the order statistics:

dW(Ŷi, Ŷk) =
{∑m

j=1(Wi(j) −Wk(j))
2
}1/2

, whereWi(j) is the jth
order statistics of the sampleWi1 . . . ,Wim.

Let βT
1 = (1, 1, 0, . . . , 0), βT

2 = (0, . . . , 0, 1, 1), βT
3 =

(1, 2, 0, . . . , 0, 2) and βT
4 = (0, 0, 1, 2, 2, . . . , 0). To generate

univariate distributional response Y , we let Y = N(μY , σ 2
Y),

where μY and σ 2
Y are random variables dependent on X, and

σY > 0 almost surely, defined by the following models:

I-1: μY |X ∼ N(exp(βT
1X), 1) and σY = 1.

I-2: μY |X ∼ N(exp(βT
1X), 1) and σY = 10−1 ·1{ς(X) < 10−1}+

ς(X) · 1{10−1 ≤ ς(X) ≤ 10} + 10 · 1{ς(X) > 10} where
ς(X) = exp(βT

2X).

To generate the predictor X, we consider both scenarios where
Assumption 1 is satisfied and violated. Specifically, forModel I-1
and I-2, X is generated by the following two scenarios:

(a) X ∼ N(0, 1); in this case both LCM and CCV in Assump-
tion 1 are satisfied;

(b) we first generate U1, . . . ,Up from the AR(1) model with
mean 0 and covariance matrix � = (0.5|i−j|)i,j, and then
generate X by (sin(U1), |U2|,U3, . . . ,Up). For this model,
both LCM and CCS are violated.

Ying and Yu (2022) considered similar models to Model I-
1 and Model I-2. For Model I-1, B0 = β1 and d0 = 1; for

Model I-2, B0 = (β1,β2) and d0 = 2. In the simulation, we first
generateX1, . . . ,Xn, then generate (μY1 , σY1), . . . , (μYn , σYn). For
each i = 1, . . . , n, we then generateWi1, . . . ,Wim independently
from N(μYi , σ

2
Yi
). We take (n, p) = (200, 10), (400, 20) andm =

100.
We compare performances of the CMS ensemble methods

and CS ensemble methods described in Section 4, including
FOLS, FPHD, FIHT, FSIR, FSAVE, FDR, and FOPG (with
refinement). We first implement the predictor augmentation
(PA) method to estimate the dimension of the Fréchet central
subspace. Then with estimated d̂, we evaluate the estimation
error. For FOPG, the number of iterations is set as 5, which
is large enough to guarantee numerical convergence. For FSIR,
FSAVE, the number of slices is chosen as �n/2p�; for FDR,
the number of slices is chosen as �n/6p�. We also implement
the weighted inverse regression ensemble (WIRE) method pro-
posed by Ying and Yu (2022) for comparison. We repeat the
experiments 500 times and summarize the proportion of correct
identification of order and the mean and standard deviation of
estimation error in Table 1. A smaller distance indicates a more
accurate estimate, and the estimate with the smallest distance is
shown in boldface. The benchmark distances are shown at the
bottom of the table.

For Models I-1 and I-2, the best performer FOPG achieves
100% correct order determination percentage and enjoys the
smallest estimation error. The moment-based ensemble meth-
ods are slightly less accurate than FOPG. Compared with the
benchmark, all methods can successfully estimate the true cen-
tral subspace except FPHD. Compared to the results from pre-
dictor settings (a) and (b), we see that most moment-based
methods and inverse-regression-basedmethods have larger esti-
mation error and less percentage of correct order determination

Table 1. The percentages of correct order determination, and the mean (standard deviation) of estimation error as measured by ‖PB0 − PB̂‖F for Models I-1 and I-2 with
settings (a) and (b); the benchmark for Model I-1 with p = 10, 20 are 1.334, 1.373, respectively, and for Model I-2 with p = 10, 20 are 1.785, 1.893, respectively.

Model (p, n) FOLS FPHD FIHT FSIR FSAVE FDR FOPG WIRE

I-1-(a) 100% 97% 100% 100% 95% 97% 100% 100%
(10,200) 0.334 0.593 0.341 0.260 0.437 0.336 0.167 0.236

(0.088) (0.158) (0.09) (0.081) (0.199) (0.144) (0.054) (0.057)

100% 97% 100% 100% 97% 98% 100% 100%
(20,400) 0.365 0.634 0.371 0.263 0.433 0.342 0.227 0.251

(0.075) (0.136) (0.075) (0.046) (0.149) (0.115) (0.05) (0.041)

I-1-(b) 99% 99% 99% 97% 95% 98% 100% 97%
(10,200) 0.380 0.638 0.399 0.239 0.361 0.280 0.136 0.204

(0.122) (0.122) (0.126) (0.145) (0.187) (0.12) (0.039) (0.147)

99% 99% 99% 98% 95% 99% 100% 97%
(20,400) 0.387 0.648 0.404 0.237 0.365 0.275 0.194 0.211

(0.098) (0.096) (0.094) (0.123) (0.176) (0.092) (0.053) (0.151)

I-2-(a) 100% 91% 100% 100% 99% 100% 100% 100%
(10,200) 0.409 1.032 0.412 0.370 0.528 0.413 0.267 0.304

(0.11) (0.254) (0.109) (0.082) (0.134) (0.09) (0.112) (0.061)

100% 90% 100% 100% 100% 100% 100% 100%
(20,400) 0.431 1.157 0.435 0.371 0.548 0.434 0.298 0.320

(0.069) (0.23) (0.069) (0.049) (0.086) (0.059) (0.072) (0.038)

I-2-(b) 100% 91% 100% 99% 100% 100% 100% 100%
(10,200) 0.551 1.122 0.557 0.464 0.630 0.507 0.290 0.370

(0.111) (0.203) (0.11) (0.119) (0.133) (0.102) (0.086) (0.084)

100% 91% 100% 100% 100% 100% 100% 100%
(20,400) 0.561 1.179 0.567 0.458 0.645 0.521 0.330 0.381

(0.081) (0.164) (0.08) (0.072) (0.089) (0.07) (0.051) (0.058)

NOTE: The bold-faced number indicates the best performer.
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under setting (b), but FOPG, which is free from the elliptical
assumption of predictors, still give the most precise estimation.
Overall, the correlation between predictors and non-ellipticity
does not affect the results much compared with the benchmark
error.

6.3. Scenario II: Fréchet SDR for Positive DefiniteMatrices

Let �Y be the space Sym+(r) endowed with Frobenius distance
dF(Y1,Y2) = ‖Y1 − Y2‖F. To accommodate the anatomi-
cal intersubject variability, Schwartzman (2006) introduced the
symmetric matrix variate Normal distributions. We adopt this
distribution to construct the regression model with correlation
matrix response. We say that Z ∈ Sym(r) has the standard sym-
metric matrix variate Normal distribution Nrr(0; Ir) if it has den-
sity ϕ(Z) = (2π)−q/2 exp(−tr(Z)2/2) with respect to Lebesgue
measure onRp(p+1). As pointed out in Schwartzman (2006), this
definition is equivalent to a symmetric matrix with independent
N(0, 1) diagonal elements and N(0, 1/2) off-diagonal elements.
We say Y ∈ Sym(r) has symmetric matrix variate Normal
distribution Nrr(M;�) if Y = GZGT + M whereM ∈ Sym(r),
G ∈ R(r×r) is a nonsingularmatrix, and� = GTG. As a special
case, we say Y ∈ Sym(r) ∼ Nrr(M; σ 2) if Y = σZ + M.

We generate predictorsX as in settings (a) and (b) of Scenario
II. We generate log(Y) following Ndd(log{D(X)}, 0.25), where
log(·) is the matrix logarithm defined in Section 3, and D(X)

is specified by the following models:

II-1: D(X) =
(

1 ρ(X)

ρ(X) 1

)
, where ρ(X) = [exp(βT

1X) −
1]/[exp(βT

1X) + 1].

II-2: D(X) =
⎛
⎝ 1 ρ1(X) ρ2(X)

ρ1(X) 1 ρ1(X)

ρ2(X) ρ1(X) 1

⎞
⎠, where ρ1(X) =

0.4[exp(βT
1X)−1]/[exp(βT

1X)+1] and ρ2(X) = 0.4 sin(βT
3X).

InModel II-1, B0 = β1 and d0 = 1; inModel II-2, B0 = (β1,β2)
and d0 = 2. We note that D(x) is not necessarily the Fréchet
conditional mean of Y given X, but still measures the central
tendency of the conditional distribution Y|X. We also compare
performances of the CMS ensemble methods and CS ensemble
methods, with (n, p) = (200, 10), (400, 20). The experiments
are repeated 500 times. The proportion of correct identification
of order and the means and standard deviations of estimation
errors are summarized in Table 2.

We conclude that all ensemble methods give reasonable esti-
mation except FPHD. FOPG performs best in all settings except
Model II-1-(b). To illustrate the relation between the response
and estimated sufficient predictor β̂T

1X, we adopt the ellipsoidal
representation of SPD matrices. Each A ∈ Sym+(d) can be
associated with an ellipsoid centered at the origin EA = {x :
xTA−1x ≤ 1}. Figure 2 plots the responses ellipsoid versus
the estimated sufficient predictor in panel (a), compared with
the responses versus predictor X10 for Model II-1-(a). We can
tell a clear pattern of change in shape and rotation of response
ellipsoids versus β̂T

1X.

7. Application to the HumanMortality Data

This section presents an application concerning human
life spans. Another two applications concerning the
intracerebral hemorrhage and the movements in an urban

Table 2. Mean(± standard deviation) of estimation error measured by ‖PB0 − PB̂‖F for different methods for Scenario II.

Model (p, n) FOLS FPHD FIHT FSIR FSAVE FDR FOPG WIRE

II-1-(a) 100% 71% 100% 99% 87% 98% 100% 100%
(10,200) 0.157 0.865 0.157 0.170 0.299 0.171 0.154 0.152

(0.055) (0.288) (0.055) (0.093) (0.285) (0.138) (0.041) (0.038)

100% 68% 100% 100% 92% 99% 100% 100%
(20,400) 0.162 0.921 0.162 0.167 0.258 0.165 0.153 0.160

(0.029) (0.262) (0.029) (0.031) (0.221) (0.089) (0.027) (0.028)

II-1-(b) 99% 58% 99% 92% 51% 67% 97% 98%
(10,200) 0.236 1.044 0.236 0.288 0.735 0.506 0.224 0.220

(0.115) (0.271) (0.115) (0.219) (0.348) (0.376) (0.162) (0.133)

100% 52% 100% 96% 51% 70% 96% 99%
(20,400) 0.235 1.126 0.235 0.260 0.726 0.472 0.233 0.222

(0.047) (0.245) (0.047) (0.155) (0.336) (0.364) (0.157) (0.09)

II-2-(a) 100% 20% 100% 100% 78% 99% 100% 100%
(10,200) 0.292 1.20 0.292 0.306 0.615 0.358 0.151 0.290

(0.078) (0.155) (0.078) (0.088) (0.285) (0.122) (0.05) (0.078)

100% 20% 100% 100% 85% 100% 100% 100%
(20,400) 0.308 1.218 0.308 0.318 0.618 0.375 0.179 0.307

(0.057) (0.15) (0.057) (0.058) (0.218) (0.075) (0.029) (0.057)

II-2-(b) 99% 35% 98% 100% 58% 80% 98% 100%
(10,200) 0.680 1.462 0.682 0.707 1.182 0.941 0.275 0.675

(0.184) (0.19) (0.186) (0.185) (0.233) (0.245) (0.137) (0.181)

100% 42% 100% 100% 50% 92% 100% 100%
(20,400) 0.694 1.505 0.694 0.710 1.228 0.933 0.336 0.691

(0.128) (0.187) (0.128) (0.126) (0.189) (0.194) (0.079) (0.128)

NOTE: The benchmark for Model II-1 with p = 10, 20 are 1.334, 1.373, respectively, for Model II-2 with p = 10, 20 are 1.785, 1.893, respectively. The bold-faced number
indicates the best performer.
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Figure 2. Ellipsoidal plots of the SPD matrix response versus the FOPG predictor β̂T
1X and X10 using Model II-1-(a) with (n = 200, p = 10). Each horizontal ellipse is an

Ellipsoidal representation of an SPDmatrix, and the vertical axis is the value of (a) β̂T
1X ; (b) X10, colored according to the vertical axis values.

network are presented in Section S.6 of the supplementary
material.

Compared with summary statistics such as the crude death
rate, viewing the entire age-at-death distributions as data
objects gives us a more comprehensive understanding of human
longevity and health conditions. Mortality distributions are
affected by many factors, such as economics, the health care
system, and social and environmental factors. To investigate
the potential factors that are related to the mortality distri-
butions across different countries, we collect nine predictors
listed below, covering demography, economics, labor market,
nutrition, health, and environmental factors in 2015: (a) Popu-
lation Density: population per square Kilometer; (b) Sex Ratio:
number of males per 100 females in the population; (c) Mean
Childbearing Age: the average age of mothers at the birth of
their children; (d) Gross Domestic Product (GDP) per Capita;
(e) Gross Value Added (GVA) by Agriculture: the percentage
of agriculture, hunting, forestry, and fishing activities of gross
value added, (f) Consumer price index: treat 2010 as the base
year; (g) Unemployment Rate; (h) Expenditure on Health (per-
centage of GDP); (i) Arable Land (percentage of total land
area). The data are collected from United Nation Databases
(http://data.un.org/) and UN World Population Prospects 2019
Databases (https://population.un.org/wpp/Download). For each
country and age, the life table contains the number of deaths
d(x, n) aggregated every five years. We treat these data as his-
tograms of the number of deaths at age, with bin widths equal
to 5 years. We smooth the histograms using the “frechet” pack-
age available at (https://cran.r-project.org/web/packages/frechet/
index.html) to obtain smoothed probability density functions
and then calculate the Wasserstein distances between them. We
collected the data for 152 countries in 2015 after removing 10
countries with extreme values in feature PopulationDensity, Sex
Ratio, CPI, and Expenditure on Health.

By checking the scatterplotsmatrix, we observe nonellipticity
in the predictors. So we choose FOPG to analyze the data,
which does not rely on Assumption 1. We use the Gaussian
kernel κ(y, y′) = exp(−γ d2

W(y, y′)) for the ensemble, where
γ is chosen according to (6) in Section 6.1. We standardize
all covariates separately, then use the predictor augmentation
method combined with FOPG to estimate the dimension of the
Fréchet central subspace, which is estimated as 2. The first two

directions obtained by FOPG are

β̂1 = (0.841,−0.155,−0.100, 0.885,−0.361,−0.075,
− 0.108, 0.214,−0.055)T,

β̂2 = (0.838,−0.706,−0.395,−0.424,−0.758,−0.005,
− 0.218,−0.102,−0.034)T.

A plot of mortality densities versus the first sufficient pre-
dictor β̂T

1 X is shown in Figure 3(a). Clear and useful patterns
emerge from Figure 3(a): the mode of the mortality distribution
shifts from right to left (with left indicating a longer life span)
as the value of the first sufficient predictor increases. Moreover,
there is a significant uptick at the right-most end as the first
sufficient predictor decreases, indicating high infant mortality.
Meanwhile, the loadings of the first sufficient predictor are
strongly positive for the GDP per capita, which indicates the
levels of economic development and health care of a country,
with larger values associated withmore developed countries and
smaller values associated with less developed countries. From
Figure 3(c), we see that the mean of the mortality distribution
increases and the standard deviation decreases with the value
of the first sufficient predictor. This also makes sense: the mean
life span increases with the level of development, consistent
with Figure 3(a). The standard deviation decreases with the first
predictor because, as the development level increases, the life
span is increasingly concentrated on the high values. Moreover,
the high mortality in the lower region of the first sufficient
predictor also contributes to the larger standard deviation in this
region.

We fit the global and local Fréchet regressions (GFR/LFR)
with all nine predictors and two sufficient predictors, respec-
tively. The 10-fold cross-validation prediction errors are col-
lected in the following Table 3. We see that using sufficient
predictors achieves more accurate prediction results, especially
in the local Fréchet regression model. The LFR gives more
accurate predictions than the GFR, which indicates that the LFR
is more flexible when a nonlinear regression pattern exists. This
result is consistent with the recent findings in Bhattacharjee
and Müller (2021). The predicted mortality densities versus
the first sufficient predictor are shown in Figure 3(b). We also
compared the cross-validation prediction errors by LFR using

http://data.un.org/
https://population.un.org/wpp/Download
https://cran.r-project.org/web/packages/frechet/index.html
https://cran.r-project.org/web/packages/frechet/index.html
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Figure 3. (a)Mortality distributions versus the first sufficient predictors; (b) Cross-validation predictedmortality using sufficient predictors; (c)Mean and standard deviation
of responses versus the first sufficient predictor.

Table 3. 10-fold cross-validation prediction errors of GFR/LFR for mortality data.

GFR LFR

9-dim full predictor 30.475 28.745
2-dim sufficient predictor 27.200 23.852

sufficient predictors of FOPG with those of FSIR and WIRE
in Ying and Yu (2022), which require the linear conditional
mean assumption. The 10-fold cross-validation prediction error
using WIRE and FSIR are 24.765 and 24.342, respectively.
Compared with 23.852 by FOPG, we see that FOPG performs
better than FSIR and WIRE, while the latter two perform
similarly.

8. Discussion

In the classical regression setting, sufficient dimension reduc-
tion has been used as a tool for exploratory data analysis,

regression diagnostics, and a mechanism to overcome the curse
of dimensionality in regression. As a regression tool, it can help
us to treat collinearity in the predictor effectively, detect het-
eroscedasticity in the response, find the most important linear
combinations of predictors, and understand the general shape
of the regression surface without fitting an elaborate regression
model. Although regression with a metric-space valued random
object is a new problem, as a regression problem, it shares the
same set of issues, such as the need for exploratory analysis
before regression, formodel diagnostics after the regression, and
for mitigating the curse of dimensionality. As shown in Figure 1
in the article, the first sufficient predictor clearly reveals useful
information about a general trend of mortality distributions
among countries.

The proposed methodology is very flexible and versatile: it
can be used to turn any existing SDR method into one that can
deal with the metric-space-valued response variable. Further-
more, it applies to any separable and complete metric space of
negative type with an explicit CMS ensemble. It significantly
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broadens the current field of sufficient dimension reduction and
provides a useful set of tools for Fréchet regression.

The proposedmethod also has its limitations, one of which is
that it only applies to metric spaces that permit the construction
of a universal kernel. Another possible criticism is that the
ensemble constructed by metric in the embedded Hilbert space
is extrinsic to the original metric space. However, we do not
regard this as a serious drawback for two reasons. First, the
role played by the ensemble family is rather like that played by
characteristic function, which need not be of the same nature as
the original random variable. Second, in some important special
cases (e.g., the Wasserstein space of univariate distributions and
the space of SPD matrices), the embedding is isometric, so we
are building the kernel using the original metric even though
we work with the embedded Hilbert space. Nevertheless, when
it is possible to use the original metric (such as in the isometric
embedding case), it seems intuitively appealing to take that as
our first choice, as we have done in all three examples.

Supplementary Materials

The supplementary materials provide technical proofs of lemmas and the-
orems, more technical details, and additional numerical results.
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