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Multipartite entangled states are an es-
sential resource for sensing, quantum error
correction, and cryptography. Color cen-
ters in solids are one of the leading plat-
forms for quantum networking due to the
availability of a nuclear spin memory that
can be entangled with the optically active
electronic spin through dynamical decou-
pling sequences. Creating electron-nuclear
entangled states in these systems is a dif-
ficult task as the always-on hyperfine in-
teractions prohibit complete isolation of
the target dynamics from the unwanted
spin bath. While this emergent cross-talk
can be alleviated by prolonging the en-
tanglement generation, the gate durations
quickly exceed coherence times. Here we
show how to prepare high-quality GHZ),-
like states with minimal cross-talk. We in-
troduce the M-tangling power of an evo-
lution operator, which allows us to verify
genuine all-way correlations. Using exper-
imentally measured hyperfine parameters
of an NV center spin in diamond coupled
to carbon-13 lattice spins, we show how to
use sequential or single-shot entangling op-
erations to prepare GHZ,,-like states of up
to M = 10 qubits within time constraints
that saturate bounds on M-way corre-
lations. We study the entanglement of
mixed electron-nuclear states and develop
a non-unitary M-tangling power which
additionally captures correlations arising
from all unwanted nuclear spins. We
further derive a non-unitary M-tangling
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power which incorporates the impact of
electronic dephasing errors on the M-way
correlations. Finally, we inspect the per-
formance of our protocols in the presence
of experimentally reported pulse errors,
finding that XY decoupling sequences can
lead to high-fidelity GHZ state prepara-
tion.

1 Introduction

Generating and distributing entanglement is one
of the most fundamental yet non-trivial require-
ments for building large-scale quantum networks.
Entanglement is the key ingredient of quan-
tum teleportation, robust quantum communica-
tion protocols, or alternative quantum computa-
tion models such as the one-way quantum com-
puter [1, 2, 3], or fusion-based quantum compu-
tation [4]. In the context of cryptography, en-
tangled states ensure secure communications via
quantum key distribution or quantum secret shar-
ing protocols [5, 6, 7, 8, 9, 10, 11]. Error detec-
tion [12, 13] and correction |14, 15, 16, 17, 18, 19]
schemes are based on the encoding of informa-
tion onto entangled states, such that errors can
be detected or corrected by utilizing correlations
present in entangled states. At the same time,
distributed entanglement increases the sensitiv-
ity and precision of measurements |20, 21].
Defect platforms offer an electronic qubit fea-
turing a spin-photon interface that enables the
generation of distant entanglement [22, 23, 24|,
as well as nuclear spins that serve as the long-
lived memories needed for information storage
and buffering. Several protocols based on re-
mote entanglement or entanglement within the
electron-nuclear spin system have already been
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demonstrated in these platforms, including quan-
tum teleportation [25], quantum error correc-
tion [17, 18, 19|, enhanced sensing |26, 27, 2§|,
and entanglement distillation [29]. The electron-
nuclear spin entanglement is usually realized
through dynamical decoupling (DD) sequences;
large entangled states can be created by applying
consecutive sequences with the appropriate inter-
pulse spacings. By tuning the interpulse spac-
ings, one can select different nuclear spins to par-
ticipate in entangling gates while decoupling the
electron from the remaining always-on coupled
nuclear spin bath [30].

A major issue is that entangled states often
decohere faster than product states [31, 32|, so
entanglement must be preserved for long enough
times to complete quantum information tasks.
Additionally, in defect platforms, the unwanted
spin bath sets a lower bound on the duration of
entangling gates, which should be long enough
to suppress unwanted interactions that lower the
quality of target entangled states. Despite this
challenge, generation of electron-nuclear entan-
gled states has been realized experimentally in
NV [33], in SiV centers in diamond [34, 35|, and
in SiC defects [36]. In particular, Bradley et al.
demonstrated experimentally in an NV defect in
diamond electron-nuclear GHZ states involving
up to 7 qubits [33] by combining DD sequences
with direct RF driving of the nuclear spins, ac-
companied by refocusing pulses to extend the en-
tanglement lifetime. This direct driving was nec-
essary to improve the selective coupling of indi-
vidual nuclear spins. Although successful, this
method introduces experimental overhead and
heating of the sample due to the direct RF driv-
ing of the nuclei, potentially creating scalability
issues. Another problem is that as the number
of parties contributing to the entangled state in-
creases, a larger gate count and longer sequences
are needed, exacerbating dephasing. Failure to
provide optimal isolation from unwanted nuclei
further deteriorates the electron-nuclear entan-
gled states. Therefore, a more efficient approach
to generating electron-nuclear spin entanglement
within time constraints and verifying its existence
is necessary for large-scale applications.

In this paper, we address these challenges by in-
troducing a framework for preparing high-quality
GHZ states of up to 10 qubits within time con-
straints. Using experimental parameters from

a 27 nuclear spin register well-characterized by
Taminiau et al. [37], we show how to improve
sequential entanglement generation methods by
minimizing the cross-talk induced by the un-
wanted nuclear spin bath. We find that it is
possible to prepare GHZ-like states with max-
imal all-way correlations in excess of 95% and
gate errors lower than 0.05% due to residual en-
tanglement with unwanted nuclei. We show how
to prepare GHZ-like states with single-shot op-
erations, reducing the gate times at least two-
fold compared to the sequential scheme while of-
fering decoupling capabilities comparable to the
latter. We present a closed-form expression for
the M-tangling power of the evolution operator
and use this to develop a method for verifying
genuine multipartite entanglement. Remarkably,
this metric depends only on two-qubit Makhlin
invariants and is closely related to the one-tangles
we introduced in Ref. [38]. This simplification
allows us to systematically determine the DD se-
quences that maximize all-way correlations as de-
sired for generating multipartite entangled states.
Further, we analyze the entanglement of mixed
electron-nuclear states and derive a non-unitary
M-tangling power that captures residual entan-
glement links arising from unwanted nuclei. We
incorporate electronic dephasing errors into the
M-tangling power and derive a simple closed-
form expression. Finally, we study the impact of
pulse control errors on the M-way correlations.

The paper is organized as follows. In Sec. 2, we
discuss methods for generating electron-nuclear
spin entangled states using DD sequences. In
Sec. 3, we introduce the M-tangling power of
an evolution operator. In Sec. 4, we show how
to prepare GHZj-like states through sequential
or single-shot entanglement protocols. In Sec. 5,
we quantify the entanglement of electron-nuclear
mixed states by tracing out unwanted spins. In
Sec. 6, we study the non-unitary M-tangling
power of the electron-nuclear target subspace,
which encodes correlations arising from the en-
tire electron-nuclear system. Finally, in Sec. 7
we study the effect of electronic dephasing errors
as well as pulse control errors on the M-tangling
power.
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Figure 1: Schematics of two protocols for generating GHZ y;-like states (shown for M = 4 and using the CPMG
sequence). (a) The multi-spin scheme is capable of generating direct entanglement between the electron and a
subset of nuclei from the nuclear spin register in a single shot. (b) The sequential scheme requires M — 1 consecutive

entangling gates to prepare a GHZ ;-like state.

2 Establishing electron-nuclear entan-
glement

One way to generate electron-nuclear entangle-
ment is through DD sequences, which are trains
of m-pulses applied on the electron spin that are
interleaved by free evolution periods. These se-
quences are constructed by concatenating a basic
m-pulse unit of time ¢ a certain number of iter-
ations, N. Well-known examples are the Carr-
Purcell-Meiboom-Gill (CPMG) [39, 40, 41, 42]
and Uhrig (UDD) [43, 44] sequences, which
have been used experimentally for example in
Refs. [45, 30, 17, 33, 46], or proposed for defects
in Ref. [47]. In the defect-nuclear spin system,
DD sequences serve a two-fold purpose; i) they
average out the interactions between the electron
and unwanted nuclei and, ii) under so-called reso-
nance conditions, they selectively entangle a tar-
get nuclear spin with the electron [30]. These
resonances correspond to specific values of ¢, and
they are generally distinct for each nuclear spin,
as they depend on the hyperfine (HF) parameters
of each nucleus. By composing consecutive se-
quences with different parameters (i.e., unit times
t and iterations V), we can thus create entangle-
ment between the electron and multiple nuclei.
We refer to this standard experimental approach
of entangling one nuclear spin at a time with the
electron as “sequential". In Ref. [38], we showed
that alternatively single-shot operations can be
used to entangle the electron with a subset of nu-
clei from the register, significantly reducing gate

times compared to the sequential approach. Fig-
ure 1 summarizes the two approaches to generat-
ing electron-nuclear entanglement.

Figure 1(a) depicts the multi-spin scheme im-
plemented by a single-shot entangling opera-
tion, and Fig. 1(b) shows the sequential scheme
which requires M — 1 entangling gates to pre-
pare GHZ-like states. The M — 1 entangling
gates are realized by composing sequences of dif-
ferent interpulse spacings and iterations of the
unit, such that a different nuclear spin is selected
from the register based on the resonance condi-
tion.

GHZ,; states are created by initializing the
electron in the |+) state, polarizing the nuclear
spins in the |0) state [48, 17], and then perform-
ing electron-nuclear entangling gates via DD se-
quences. Probabilistic (deterministic) initializa-
tion of the nuclear spins in |0) can be achieved
through measurement-based (SWAP-based) ini-
tialization [49]. After state initialization, one can
perform a DD sequence to generate entanglement.
Setting the sequence unit time t to be a nuclear
spin resonance time forces that nuclear spin to
rotate along an axis conditioned on the electron
spin state. If the axes are anti-parallel and along
the £x direction, and the unit is iterated an ap-
propriate number of times, the nuclear spin can
accumulate a rotation angle of ¢ = 7/2, real-
izing a CRy(£7/2) electron-nuclear entangling
gate [30]. Repeating this process by changing the
unit time ¢ and iterations N of the subsequent se-
quence (and assuming the k-th target spin is ro-
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tated only during the k-th evolution; trivial non-
entangling rotations could happen on the k-th nu-
cleus during the remaining evolutions) creates a
state equivalent to GHZj; = (|0)®M +]1)@M) /\/2
up to local operations:

T ®k k;
CRx(mk2> 0= 3 mPy)

6{0 1}
(1)

where my, = +1, mg-k) can be +1 or —1 for the k-
th nucleus, and we defined |+y) = (]0)4i[1))/v/2.
For example, if all the gates are CR,(7/2), then
the resulting state is (|0)|—y)®* + [1)|y)®*) /2.
This is the idea behind the sequential entangle-
ment protocol. The multi-spin entanglement pro-
tocol produces a more complicated state since the
electron-nuclear evolution now becomes a CR,,
gate (see Ref. [38]), but the resulting state is still
locally equivalent to GHZ ;. In this latter setup,
multiple nuclei are simultaneously entangled with
the electron via a single-shot operation.

Quantifying the quality of GHZs-like states
using a fidelity overlap is computationally costly
since we would need to optimize over local gates.
This optimization becomes more difficult for
larger entangled states. In the following section,
we introduce an entanglement metric that allows
us to quantify genuine all-way correlations in an
arbitrarily large electron-nuclear spin system, us-
ing only the information of the evolution operator
generated by m-sequences. With this analysis we
are able to translate the M-tangling capability of
such an evolution operator irrespective of the to-
tal system size, into simple spin-spin correlation
metrics between the central spin and each of the
M —1 nuclear spins. Our analysis throughout the
paper is completely general and is not restricted
by the choice of DD sequence or by the choice of
the defect system. It is further generically valid
for any type of nuclear spins present in the regis-
ter (provided they have spin I = 1/2). The code
used to simulate all our following results can be
found in [50].

3 M-tangling power

Genuine multipartite entanglement of GHZ ;-
like states can be verified with metrics such
as entanglement witnesses [51, 52, 53|, concen-
tratable entanglement [54], or the so-called M-
tangles [55, 56, 57]. We choose to work with the

latter, which are usually defined in terms of a
state vector (or, more generally, a density opera-
tor). The M-tangles, 7ar(|1)) € [0, 1], distinguish
the GHZ entanglement class from other entangle-
ment classes. For example, the three-tangle satu-
rates to 1 for the GHZ3 state, whereas it vanishes
for the [W) = 1/4/3(]100) + |010) + |001)) state.
The M-tangles are invariant under permutations
of the qubits and SLOCC, and are entanglement
monotones’ [58]. Since they are defined based on
a state vector, their calculation requires that we
make an assumption about the initial state of the
register, which is then evolved under the w-pulse
sequence. We circumvent this issue by focusing
instead on the capability of a gate to saturate all-
way correlations and thus prepare states locally
equivalent to GHZ ;.

We introduce the M-tangling power of a uni-
tary, which we define to be the average of the M-
tangle e, 1/ (U) = (1a(UpoUT)), over all initial
product states, pg. The formulas of M-tangles ex-
pressed in terms of the state vector can be found
in Appendix A.1 and in Refs. [55, 57, 56].

In our system, the total evolution operator (of
the electron and M — 1 nuclear spins) produced
by DD sequences has the form:

U= oo RY), (2)
7€0,1

where oj; = |j)(j| are projectors onto two of
the levels in the electron spin multiplet, and
Ry .= eii‘by)/Q(a'ny)) is the rotation that acts on
n; -
the [-th nuclear spin and, in general, depends on
the electron spin state. Due to the fact that the
evolution is controlled only on the electron, we
find that we can compactly express the M-tangle

of a given state as [see Appendix A.2]|:

Tar(p) = tr[p®?P], 3)

where p®2 is the density matrix of two copies of
the M-qubit system living in the Hilbert space
Hoarz. P is the product of projectors onto the
antisymmetric (or symmetric) space of the i-th
subspace and its copy, i.e.

P ]_[] 1 JJ+M, evenM )
11+MHJ =2 ”+M odd M,

"More precisely, the M-tangles monotonically decrease
under SLOCC, due to single qubit measurements.
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where Pj(JiJ)rM = 1/2(1 £ SWAP; j 1), and with
SWAP;jin = 2o petoy [0)518) 540 (Bli (el
Note that we have fixed system “1” to be the elec-
tron’s subspace. (If the control qubit corresponds
to a different subspace, then for odd M, the prod-
uct of antisymmetric projectors needs to exclude
the control system from the copies, and instead
we apply P() on the sectors of the control qubit).
For even M > 4, Eq. (3), holds for density ma-
trices p obtained by any arbitrary U, whereas
for odd M, Eq. (3) holds strictly for states ob-
tained by CR-evolutions. (We verified this nu-
merically, comparing with the exact expressions
of 75y that hold for states obtained by arbitrary
evolutions.) By averaging Eq. (3) over all prod-
uct initial states, we prove that the M-tangling
power of an operator U has the simple expression
[Appendix A.2|:

ep i (U) = 2MTe[U92Q0(UNH®2P],  (5)
with Q0 = (d+ 1) [}, P{7) |/ where d = 2
(dimension of qubit subspace). Equation (5) is
exact for any arbitrary U(M), for M even and
M > 4, whereas for odd M it holds only for CR-
type evolution operators of the form of Eq. (2).
The simple structure of CR-type evolution oper-
ators generated by m-sequences allows us to de-
rive analytically a closed-form expression for the
M-tangling power for an arbitrarily large nuclear
spin register coupled to the electron. In Ap-
pendix A.3, we prove that the M-tangling power
of the operator U of Eq. (2), is given by:

M M-1
on®)=(555) M- ©
k=1

where G is the so-called Makhlin invariant [59],
which we have shown that for a m-pulse sequence
is given by [38]:

k) k)

( ( (k) (k) 2
ng) = (cos %T cos % + (ng - n1)® sin %T sin %) )

(7)
with G € [0,1]. Here gi)(()k) (gbgk)) is the rota-
tion angle that the kth nuclear spin undergoes
when the electron is in the |0) (|1)) state, and

n(()k) (ngk)) is the corresponding nuclear rotation
axis. ng) characterizes the evolution of the kth

nuclear spin under the DD sequence and is related
to the bipartition entangling power of the nuclear
spin with the remaining register, i.e., the nuclear
one-tangle given by epdear = 2/9(1 — G1) [38].

The nuclear one-tangle is a faithful metric of se-
lectivity; its minimization ensures that the spin is
decoupled from the register, while its maximiza-
tion implies that the particular spin attains max-
imal correlations with the register.

The remarkable simplicity of Eq. (6) allows
us to check whether a controlled unitary of the
form of Eq. (2) is capable of preparing GHZ -
like states. Saturating the bounds of all-way cor-
relations between the electronic defect and the
nuclear register translates into minimizing Gy
(or, equivalently maximizing egucmar) of the nu-
clei that will be part of the GHZ state, and
implies that the maximum M-tangling power is
[d/(d + 1)}

At this point, we should mention a caveat
of the M-tangle metric. In Ref. [56] it was
mentioned that the four-tangle cannot discrim-
inate the entanglement of a GHZ4-like state from
that of bi-separable maximally entangled states,
e.g., |®T)®2 where |®*) is one of the four
Bell states; in both cases the four-tangle is 1.
Similarly, 76(|GHZg)) = 1 = 76(|®1)®3), but
76(|GHZ3)®?) = 0. Analogously, the even M-
tangle cannot discriminate the entanglement of
a GHZ)s state from the entanglement of M /2
copies of two-qubit maximally entangled states
IBell)®M/2 (see also Ref. [60]). Nevertheless, in
our system we have the extra condition that Gy
of all M — 1 nuclei should be minimized to satu-
rate all-way correlations. Hence, if we fail to min-
imize at least one out of the M — 1 {G1} quan-
tities, we know that the evolution operator will
never be able to prepare genuine multipartite en-
tanglement between all M parties. Another way
to understand this is to consider the example of
4 qubits, and the entangling gate CR,(7/2)®3 =
000 ®3_1 Ry (7/2) + 011 ®F_y Rp(—7/2). If we act
with CR,(7/2)®3 on arbtirary initial states, we
can at most prepare a GHZ4-like state, but we
will never be able to prepare two individual Bell
pairs, since correlations are constrained to be dis-
tributed among all parties connected by the elec-
tron (since we are dealing with a central spin type
system). Similar statements hold for the multi-
spin method that utilizes CR,, gates. There-
fore, we can safely use the M-tangle metrics to
detect genuine multipartite electron-nuclear (and
nuclear-nuclear) spin entanglement.

Let us further comment that the M-tangling
power is derived by averaging over all product
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(and pure) states, so it only tells us how well the
dynamics of U can saturate the all-way correla-
tions of pure product states. No conclusion can
be made, however, if one has a statistical mixture
of such states (i.e., a mixed state).

In the following section, we show how to op-
timize the sequential or multi-spin schemes and
guide the selection of nuclei from the register to
generate genuine all-way correlations within time
constraints.

4 Creation of GHZ,,-like states

Symbol Meaning
|GHZ| GHZ size
Lyue Total # of nuclei
j Spin index € [1, Ly
N Sequence iterations
k Resonance #
(ng -n1)@ | Dot product of rotation axes for j-th spin
e;uc(j ) Nuclear one-tangle of j-th spin
{N:G)} Iterations for k-th resonance where
e;,mc(j ) is maximal
Ot Ju Tolerance of target/unwanted one-tangles
o Gate error tolerance
t Unit time
t;cj ) Unit time at k-th resonance of j-th spin
T Gate time of total sequence
Tinaz Gate time tolerance
ng ) Makhlin-invariant of j-th spin

Table 1: Meaning of the symbols that we use in the
flowchart of Fig. 2 to describe the optimization steps for
the sequential and multi-spin protocols.

4.1 Sequential scheme for GHZ; states

We first begin with the task of generating GHZ ;-
like states using the sequential scheme, which re-
quires M — 1 consecutive gates. Hereafter, we
refer to the collection of M — 1 entangling gates
as the composite evolution.

Under this scheme, to entangle the nuclei with
the electron, we need to ensure that during each
evolution we rotate conditionally only one par-
ticular nuclear spin, meaning we maximize its
one-tangle. At the same time, all other nuclear
one-tangles should be minimal in each evolution,
so that we suppress cross-talk arising from the
nuclear spin bath. The procedure of identifying
optimal nuclear spin candidates and sequence pa-
rameters is shown in Fig. 2 and explained in more

detail in Appendix G. Depending on the size of
the GHZ state, we set different tolerances for un-
wanted /target one-tangles, and gate time restric-
tions within 75 of the nuclei (see Table 2 of Ap-
pendix G). At the end of this procedure, we are
left with different options for selectively entan-
gling a single nuclear spin with the electron.

After identifying the optimal sequence param-
eters and nuclear spin candidates, we compose
the M — 1 entangling gates and create a “case” of
a composite evolution operator, from which we
can extract the Makhlin invariants G associated
with the evolution of each nuclear spin. This pro-
cess allows us to calculate the M-tangling power
of the composite gate (using Eq. (6)) and verify
if it can prepare genuine multipartite entangle-
ment. Further, as we showed in Ref. [38|, we can
analytically calculate the induced gate error due
to residual entanglement links with the unwanted
nuclei. This unresolved entanglement could make
the target gate deviate from the ideal evolution,
which we take to be the composite M — 1 en-
tangling operations in the absence of unwanted
spins; minimization of this gate error thus en-
sures a better quality of the GHZ-like states that
we produce.

We start with the simplest case of generat-
ing GHZs3-like states using the sequential scheme.
Throughout the rest of the paper, we focus on the
CPMG sequence (t/4—7—t/2—7n—1t/4)N where
t is the unit time, 7 represents a m-pulse, and N
is the number of iterations of the basic unit. For
concreteness, we consider an NV center in dia-
mond and define the qubit states of the electron
to be |0) = |ms = 0) and |1) = |ms = —1).
We further use the hyperfine parameters of the
13C nuclear spins from the 27 nuclear spin reg-
ister characterized by the Taminiau group [37],
and following their conventions we label the nu-
clear spins as Cj with j € [1,27]. Despite these
choices, the analysis that follows is general and
valid for any m-sequence or electronic defect in
diamond or SiC, and for nuclei with spin [ = 1/2
(e.g., 13C in diamond, *C and ?Si in silicon car-
bide).

In Fig. 3(a), we show the nuclear one-tangles
(scaled by the maximum value of 2/9) for 39 dif-
ferent composite evolutions (labeled as “cases”)
that can prepare GHZs-like states. Each realiza-
tion corresponds to a unique nuclear spin com-
bination that is entangled with the electron (the
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\_ to next step €27 ME > 8y & Ly — (IGHZ|-1) one-tangles that
§ satisfy ey 1€ < §,,

Form all possible combinations of sets selecting

! &
|GHZ|-1 nuclei that satisfy ¥; £, - N'; < Tax Pass all acceptabli{(t, N)} to next step |

2 2 . Re-arrange acceptable cases in terms of unique spin
Compose U(tiguzi-1) A7 LU )Y combinations entangled with the electron
for each nuclear spin & all possible combinations : : _1 -
] For each unique combination choose an optimal (t, N)
For each case: (e.g., such that €, 5, (U) is maximal)
eunw-nuc < § ? (Vv unwanted spins) No . |
P w ==  Reject case - T - -
tar. nuc 2 f ) For each unique combination pass the information of
e2r > §,7 (V target spins) . ! )
Yes § the evolution of unwanted spins to gate error calculation
No .
Gate error< §;? ===| Reject case INo| -
| Gate error< §;? ===  Reject case |

Yes§ Yes §
Accept case Accept case /

Figure 2: Flowcharts that summarize the steps we follow to find optimal sequences that prepare GHZ j;-like states,
utilizing the sequential or multi-spin scheme. The various symbols are defined in Table 1.

(d) Case #

(e) - Case #
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) o
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Figure 3: Generation of GHZ3-like states via the sequential protocol. Each case # corresponds to a different composite
DD sequence that sequentially entangles a pair of nuclei with the electron to generate GHZ3-like states. (a) Nuclear
one-tangles (scaled by 2/9) after the two entangling gates. The first (second) bar of each case corresponds to a
particular nuclear spin, labeled as Cj. (b) Nuclear rotation angles (¢ := ¢g) and (c) dot products of nuclear rotation
axes at the end of the composite evolution of the two entangling gates. (d) M-tangling power for each case of
composite evolution. (e) Total gate time of the sequence and (f) gate error of the composite evolution due to
residual entanglement with the remaining nuclear spins that are not part of the GHZ3-like state.
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Figure 4. Generation of GHZ3-like states using the multi-spin protocol. Each case # corresponds to a different DD
sequence that simultaneously entangles a pair of nuclei with the electron to generate GHZ3-like states. (a) Nuclear
one-tangles (scaled by 2/9) after the single-shot operation. (b) Nuclear rotation angles and (c) dot products of
nuclear rotation axes at the end of the single-shot entangling operation. (d) M-tangling power for each case. (e)
Total gate time of the sequence and (f) gate error of the evolution due to residual entanglement with the remaining

nuclear spins that are not part of the GHZ3-like state.

text above the bars indicates which 3C nuclear
spins are involved). The first (second) bar of
each case corresponds to the one-tangle of the
first (second) target nuclear spin at the end of
the composite evolution of two entangling gates.
Each entangling gate is implemened using an op-
timal unit time t of the sequence and an optimal
number N of iterations of the unit. Since we op-
timize ¢ close to the resonance time of the respec-
tive nuclear spin, the dot product of the nuclear
axes is ng - n; ~ —1. Thus, the maximization of
the first (second) one-tangle happens when the
first (second) nuclear spin rotates by ¢ = /2
[see Eq. (7)], during the first (second) evolution.
(Note that for each CPMG evolution it holds that
do = ¢1 = ¢, see also Ref. [38]).

The composition of the two entangling opera-
tions gives rise to total rotation angles ¢g # ¢1
for each nuclear spin. The nuclear rotation an-
gles ¢ := ¢ are shown in Fig. 3(b), and the
dot products of the rotation axes are depicted
in Fig. 3(c). Due to the composite evolution, the
total nuclear rotation angles deviate from 7/2,
and the rotation axes are no longer anti-parallel
for all cases. However, as we noted in Ref. [38],

(1 can be minimized as long as ng - n; < 0. Due
to the unwanted one-tangle tolerances we impose,
we ensure that only one out of the M — 1 gates
will conditionally rotate the target spin we in-
tend to entangle with the electron. The remain-
ing evolutions will approximately leave the en-
tanglement of that specific spin with the elec-
tron intact. For example, the first (second) tar-
get spin will evolve approximately trivially (i.e.,
in an unconditional manner) during the second
(first) evolution, hence preserving the high en-
tanglement between all parties at the end of all
the gates. This behavior is confirmed in Fig. 3(d)
where we show the M-tangling power (scaled by
[d/(d+ 1)]M, which is higher than 0.99 across all
different cases. In Fig. 3(e), we further show the
total gate time, which we have restricted to less
than 2 ms so that we are within the coherence
times of the nuclei (75 € [3,17] ms; see Ref. [61]).
Further, in Fig. 3(f), we show the gate error due
to residual entanglement of the target subspace
We note that for vari-
ous realizations, the gate fidelity can exceed 95%
(e.g., cases “2”, “7” “19”, “23" 30”7, “37”), imply-
ing small levels of cross-talk with the remaining

with unwanted nuclei.
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25 unwanted nuclear spins.

4.2 Multi-spin scheme for GHZ; states

Next, we proceed with the multi-spin scheme,
which can prepare GHZs-like states with a single-
shot entangling operation. To identify optimal
nuclear spin candidates and sequence parameters,
we follow a slightly different procedure, shown in
Fig. 2 and explained more in Appendix G. In this
case, we require that two nuclear one-tangles are
maximized for the same sequence parameters and
under the gate time restriction of 2 ms. At the
same time, we require small values of unwanted
one-tangles to minimize the cross-talk with the
remaining nuclear spin bath. We summarize the
results of this method in Fig. 4. In Fig. 4(a), we
show the one-tangles of two nuclei that are max-
imized by a single-shot gate for 15 different DD
sequences. To accept these cases as “optimal”,
we require that the target one-tangles are greater
than a threshold, here set to 0.9. Figure 4(b)
shows the nuclear rotation angles, and Fig. 4(c)
shows the dot products of the nuclear rotation
axes for each case. Since now the sequence unit
time will not in principle coincide with the res-
onance of both target spins (since their HF pa-
rameters are distinct), the nuclear rotation axes
will not be anti-parallel for both nuclei. However,
when ng - ny < 0 for a particular nuclear spin,
then if it is also rotated by the appropriate angle,
the one-tangle can be maximal (see for example
cases “2”, “77, “8” “11” and Ref. [38| for a more
detailed explanation). Thus, the feature of non-
antiparallel axes can be compensated by rotating
the nuclear spins by angles that deviate from 7 /2.
On the other hand, if ng - n; > 0, G; cannot go
to 0, and the one-tangle can never be 1 (see case
“4” for nuclear spin C5). In Fig. 4(d) we show
the M-tangling power (scaled by [d/(d + 1)]M)
of the multi-spin gate. As expected, the M-
tangling power saturates to 1 when the nuclear
one-tangles are also maximal. In Fig. 4(e), we
show the gate time of the multi-spin operation,
and in Figure 4(f), the gate error. We note that
for various cases, the multi-spin gate duration is
at least two times shorter (see for example, cases
“47“117, “22” ) compared to the sequential one.
Thus, the multi-spin gates can be equally reliable
as the sequential gates, but with the additional
advantage of being significantly faster compared
to the latter.

4.3 Generating GHZ,, states

We can use similar ideas to extend the size of the
GHZj-like states. In Fig. 5(a), we show the M-
tangling power of composite evolutions that can
prepare GHZ,-like states up to M = 10 qubits.
The nuclear one-tangles for all different realiza-
tions are provided in Appendix H. Figure 5(b)
shows the gate error of the composite evolution
due to the presence of the remaining 27— (M —1)
nuclear spins, whereas Fig. 5(c) shows the total
gate time of the composite sequences. As the size
of the GHZ-like states increases, it becomes more
difficult to eliminate the cross-talk between the
target nuclei since we need to ensure that only
one out of the M — 1 evolutions rotates condi-
tionally one of the M — 1 target nuclei. However,
we still find acceptable cases that can prepare up
to GHZp-like states with M-tangling power over
0.95. The infidelity tends to increase as we per-
form more entangling gates because it becomes
more likely that at least one of the M — 1 en-
tangling operators will induce cross-talk between
the target subspace and the remaining nuclear
spin bath. However, it is still possible to create
GHZg-like states within ~ 2 ms, and even GHZg-
or GHZp-like states within 4 ms, a significant
improvement compared to gate times reported in
Ref. [33], which could be as high as 2.371 ms for
controlling only a single nuclear spin.

We also study the possibility of creating
GHZjs-like states for M > 3 via the multi-spin
scheme. In principle, due to the more constrained
optimization that requires the simultaneous max-
imization of M — 1 nuclear one-tangles, we expect
that we will find fewer acceptable cases that re-
spect the bounds we set for target /unwanted one-
tangles. In Fig. 6(a), we show the nuclear one-
tangles for various cases of single-shot entangling
operations, which can create up to GHZg-like
states. Figure 6(b) shows the M-tangling power
of the single-shot gate, whereas Fig. 6(c) shows
the gate error. We note that the infidelity can
in principle be less than 0.1, but the M-tangling
power is not high enough in all cases, due to im-
perfect entanglement between target nuclei and
the electron.

Figure 6(d) shows the gate time of the multi-
spin operation. Once again, the gates are signifi-
cantly faster compared to the sequential scheme.
While for the sequential protocol increasing the
number of parties of the GHZ j;-like states implies
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durations of the total gate that only increase, the
multi-spin operations follow a different trend. To
understand this, note that the sequential scheme
requires higher-order resonances (i.e., longer unit
times) to suppress unintended couplings with un-
wanted nuclei. Higher-order resonances are also
needed to ensure that only one target nuclear spin
is rotated conditionally by each of the M — 1 se-
quential gates. Thus, increasing the GHZ size
makes the requirement to resort to higher-order
sequences, in principle, more stringent. On the
other hand, increasing the size of the GHZ ,-like
state in the multi-spin protocol means that we
need to gradually reduce how well we decouple
the electron from the spin bath and allow inter-
actions of the electron with increasingly more nu-
clear spins. In contrast to the sequential scheme,
we thus need to shorten the unit time, which gives
us acceptable cases of realizing GHZ s-like states.
Of course, the duration of the single-shot gate
also depends on the number of times, N, we re-
peat the unit and on the constraints we impose
on the target all-way correlations and unwanted
nuclear one-tangles. In principle, a shorter ba-
sic unit can lead to faster operations. For exam-
ple, it is remarkable that multi-partite entangled
states can be prepared within 1 ms or even faster
with only one entangling gate (see for example,
the case of the GHZg-like state). Experimentally,
depending on the nuclear HF parameters, this
method could be highly beneficial for preparing
entangled states involving nuclear spin clusters
fast, whereas the entanglement could be boosted
using distillation protocols [29].

Overall, both the sequential and multi-spin
protocols can generate high-quality GHZs-like
states with reasonable gate times. Our formal-
ism based on the M-tangling power allows us to
identify optimal scenarios of preparing entangled
states with minimal cross-talk. Interestingly, a
hybrid entanglement generation scheme involving
both single-shot and sequential gates could offer
a more realistic path to scalability by drastically
reducing the number of entangling operations and
gate times.

5 Entanglement of mixed states

So far we have made no assumption about the
initial state of the system and focused instead
on the capability of the gates to produce entan-

gled states. We have used the gate error due
to residual entanglement links and the unwanted
nuclear one-tangles as a metric of mixedness in
the GHZs-like states prepared by DD sequences.
We now work with a density matrix for the total
system and inspect the entanglement of a target
subspace after we trace out the unwanted nuclear
spins. This partial trace operation will result, in
general, in a mixed state for the target subspace,
for which we cannot use directly the M-tangles
that are defined for pure states.

In the case of mixed states, the M-tangles
are calculated via so-called convex roof construc-
tions [55, 62]:

mar(p) = min 3 pir(|vs), (8)

where the minimum is taken over all ensembles
with probabilities p; and pure states |1);) that re-
construct the mixed state density operator. The
ensemble that gives the minimum value of the
tangle is known as optimal. Such convex roof
extensions are necessary to ensure an entangle-
ment monotone, but since the minimum of a
sum of convex functions is not always convex, we
need to take the convex hull of Eq. (8) (see also
Refs. |63, 62]).

Finding the optimal ensemble is a non-trivial
task as it entails searching over all possible de-
compositions of the mixed state. This task be-
comes even harder when the rank of the reduced
density matrix is large. However, for our prob-
lem, we find that starting from an arbitrary pure
state of the total system and tracing out any num-
ber of nuclei, the maximum rank of the reduced
density matrix is 2. This is due to the form of
the total evolution operator, which can produce
at most GHZ);-like states (if extra single-qubit
gates are not allowed) given the appropriate ini-
tial state. Further, the maximum rank proves
that the creation of |W)-like states is impossi-
ble if one allows only entangling gates generated
by DD sequences. In Appendix [ we derive the
eigenvectors and eigenvalues of the density ma-
trix, of which two are nonzero, provided the elec-
tron starts from a superposition of |0) and |1).

The analytical expression of the eigenvalues
and eigenvectors of the reduced density matrix
of the target subspace allows us to find the opti-
mal ensemble that minimizes the M-tangle of the
mixed state. This can be done using the meth-
ods developed in Ref. [62]. The first step is to di-
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agonalize the reduced density matrix of the sys-
tem. Based on the eigendecomposition we can
then construct the trial state:

i) = Aglvg) —eX/T=Asfos),  (9)

where |vy) are the eigenvectors of the rank-2
mixed state and Ay the two nonzero eigenvalues.
Since any ensemble can be obtained by acting
with unitaries on the diagonalized reduced den-
sity matrix, minimizing the entanglement of the
trial state by varying the angle y implies that we
obtain the entanglement of the optimal ensemble
that reconstructs the mixed state. The angle x
controls the relative phase of the eigenvectors.

Our system consists of 28 qubits, so simulating
the total density matrix is computationally hard.
The fact that we obtain the reduced density ma-
trix analytically [see Appendix I] allows us t~ £~
the impact of the unwanted spins on the t
subspace. Working with a density matrix 1
sitates that we specify the system’s initial
In the literature, it is often assumed that tt
clear spin bath starts from the maximally 1
state. This assumption, however, would
in maximal entanglement in the target sub
(provided we perform close to perfect gate
once the electron-nuclear target register i
rified) free from cross-talk, since the maxi
mixed state of the unwanted spins would re
invariant under any unitary evolution. This
from true since the target subspace suffers
cross-talk from unwanted nuclei introduce
the entangling gates. On the other hand, cc
ering a pure state for the entire electron-nt
register is again unrealistic, but we choos
convention to find how classical correlation
to the partial trace operation manifest in th
get subspace.

For the following analysis, we will use t
cases we found for creating GHZ3-like states
eralization to larger dimension of the target sub-
space is straightforward) from Sec. 4 via the se-
quential scheme. We further use the analytical
expression of the three-tangle, first introduced in
Ref. [55]. To prepare an entangled state with
genuine all-way correlations, we need to find the
appropriate initial state for the target subspace,
upon which we act with the entangling oper-
ations. In most cases, this state needs to be
[4)[0Y®M =1 (Recall that the CR,(7/2) gates
are locally equivalent to CNOT.) If this initial

state does not give rise to a three-tangle of at
least 0.95, we then optimize over the initial three-
qubit state (we assume a sampling of 0.057 for
6 € [0,7] and 0.17 for v € [0, 27] for each qubit
state |€) = cos(6/2)]0) + e sin(0/2)[1)). It is
thus possible that other initial states might give
slightly larger three-tangles than the ones we will
show later on. We further assume that the initial
state of the bath is |0)®27—(M=1),

We begin with the following setup. In Sec. 4,
we found 39 cases of preparing GHZs-like states
using the sequential scheme, via the composition
of two consecutive DD sequences. The composite
evolution rotates both target and unwanted nu-
clei. Some unwanted spins might evolve slightly
conditionally on the electron. Thus, we need to
update the initial state of all spins under the
composite evolution. Using the analytical expres-
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Figure 7: (a) Three-tangle of the pure state of the target
subspace ignoring unwanted nuclei (purple), and three-
tangle of either eigenvector (blue) of the mixed state for
each of the 39 cases of Fig. 3. The 39 cases are sorted
in terms of largest eigenvalue, A4 = p, shown along the
x-axis. (b) Three-tangle of the mixed electron-nuclear
state (red), obtained by minimizing the entanglement of
the trial state of Eq. (9) for each value of p. The dashed
line shows the convex hull.

In Fig. 7(a), we show the three-tangle of the
pure state prepared using the composite evolu-
tions of Fig. 3 by ignoring the presence of un-
Using the three-tangle, we ver-
ify that all-way correlations are maximal across
all cases, as expected based on the fact that we

wanted nuclei.
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approximately saturated the M-tangling power
(and we also use the appropriate three-qubit ini-
tial state). We further show the three-tangle of
the two eigenvectors, |vi), as a function of the
largest eigenvalue p, obtained by diagonalizing
the mixed state (after tracing out unwanted nu-
clei). The three-tangle of |vy) coincides with
the three-tangle of |v_), which means that the
unwanted bath creates a mixture of two terms,
which both have the same M-way entanglement
and are GHZs-like states. Another feature we
observe is that the all-way correlations of the
eigenvectors |v4) coincide with those of the pure
GHZs-like state of the target electron-nuclear reg-
ister. Hence, tracing out the unwanted spins
makes the reduced state classically correlated,
but the amount of entanglement in each term of
the mixed state is unaffected.

In Fig. 7(b), we then use the two eigenvectors
to build the trial state and find the minimum of
the three-tangle as we vary x for each value of
p. Since we are tracing out 25 unwanted nuclei,
we see that the entanglement of the mixed state
reduces substantially. One simple way to under-
stand this feature is to think of a trial (pure) two-
qubit state which is a superposition of two Bell
states. When we have the equal superposition,
the two-qubit concurrence goes to 0, whereas for
different weights between the two terms, the con-
currence is 0 < C(]¢)) < 1. A similar thing
happens here, with the difference that the su-
perposition terms are two GHZs-like states. In
Appendix J, we show that the three-tangle of the
superposition of two orthogonal GHZj states is
much more sensitive compared to the concurrence
of the superposition of two orthogonal Bell states
for the two-qubit case. Even for large values of p
(i.e. p=0.9) the minimum three-tangle is around
~ 0.64 for the GHZ3 mixture compared to the
minimum concurrence which is ~ 0.8 for the Bell
mixture. In Fig. 7(b), we further show the convex
hull of the minimum value of the three-tangle. In
the scenario we are studying, the minimum value
of the three-tangle is not convex since the pure
state of the target subspace does not have per-
fect correlations due to slightly imperfect gates
(i.e., gates that cause over- or under-rotation of
the nuclei). If the gates create perfect all-way
entanglement then both eigenvectors are perfect
GHZs-like states, and the minimum of the three-
tangle is convex in terms of p, and is given by

Tmin(p) = (1 — 2p)? (see Appendix J).

We should further comment that our results
depend highly on the initial state of the system.
Since the evolution is conditional on the electron,
if the initial state of the unwanted spins is not the
appropriate one to generate the maximum possi-
ble entanglement, cross-talk will be suppressed.
Also, as the system’s initial state is generically
mixed, the rank of the reduced density matrix
after tracing out unwanted nuclei will be larger
than 2. However, the simple model we assumed
in this section captures qualitatively how the M-
way entanglement changes as the target subspace
becomes more mixed, as a result of residual en-
tanglement with unwanted nuclei.

In the next section, we show another way
of understanding the unwanted residual entan-
glement in terms of the non-unitary entangling
power of the entire quantum channel, where now
the partial trace operation is translated into the
operator-sum representation |64].

6 Non-unitary entangling power

An alternative way to include the impact of un-
wanted nuclei on the target subspace is to use the
Kraus operators associated with the partial trace
channel. In Ref. [38|, we derived the Kraus oper-
ators for an arbitrary number of nuclei coupled to
a single electron spin. Here, we use this result to
derive the M-tangling power of the evolution that
the target system undergoes due to the presence
of the unwanted nuclei. Because this is a gener-
alization for non-unitary dynamics, we will refer
to this metric for brevity as the non-unitary M-
tangling power.

The density matrix of the total system evolves
under the unitary U given by Eq. (2). If we
trace out the unwanted nuclei, the target sub-
space evolves under the quantum channel £(p) =
ZiLZBKfl EprET, where Ej are the Kraus oper-
ators corresponding to unwanted nuclei, L is the
number of total nuclei in the bath, and K is the
number of target nuclear spins. In this case, the
M-tangling power (where M = K + 1) of the
quantum channel reads [65]:

ep () 1= 2M Y2 I TY[(E, © Ey)Qy0(Er © E,)TP),

(10)
with the same definitions for {2,9 and P we intro-
duced in Sec. 3. Since the total evolution is con-
trolled on the electron, it is possible to derive a
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closed-form expression for the M-tangling power
of the channel, which reads (see Appendix A.4):

ep,M<€>=W2<U)<1+ 0 {Ggﬂuwm})
je

unw. nuc.
(11)
with W) given by:
, , (49) () , ) (9)
W) = <ni]()) cos % sin % — ng% cos % sin %
— (n({)ln?(f()) — ng())nz(ﬁ) sin % sin %)
(12)

We find that the M-tangling power of the chan-
nel is upper-bounded by the unitary M-tangling
power of the target space, i.e. €p,,(£) < €, m(U).
The equality is satisfied when the unwanted sub-
space evolves trivially (i.e., irrespective of the
electron’s state), in which case it holds that

ng ) =1 and WU) = 0, Vj. Therefore, whenever
ep.m(E) < pm(U), we know that the unwanted
spin bath possesses nonzero correlations with the
target subspace. This is an alternative way to see
that the entanglement of the mixed state is lower
compared to the pure case, a feature we already
observed in Sec. 5.

W, (U) e m(E) [Cepu(E) Approx.

—_
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w
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Figure 8: (a) Comparison of the unitary, €, a;(U), with
the non-unitary, €, r(£), M-tangling power for the 29
cases of Fig. 5 that prepare GHZ,-like states in the target
subspace, via the sequential protocol. (b) Comparison of
€p, 01 (U) with €, 77 () for the 7 cases of Fig. 6 for prepar-
ing GHZ4-like states via the multi-spin protocol. In both
panels, the dark blue bars show the unitary M-tangling
power, the pink bars the non-unitary M-tangling power,
whereas the green bars show an approximation of the
latter.

The remarkable simplicity of Eq. (11) allows
us to obtain full information of the entanglement
distribution within the electron-nuclear register,
irrespective of the total number of qubits in the
system, or number of nuclear spins we are trac-
ing out. Using €, p(€), we can find how well
the gate we design saturates the M-way cor-
relations of the target subspace, given the fact
that there might be residual unwanted correla-
tions linking the target subspace with unwanted
spins; those unwanted correlations are encoded
in the Kraus operators. An extra advantage of
this approach is that we never need to assume
an initial state of the electron-nuclear register, as
we did for example in Sec. 5. To compare the
non-unitary M-tangling power against €, s (U),
we consider as an example the optimal cases we
identified for preparing GHZ4-like states from
Sec. 4 for either the sequential or the multi-spin
schemes. The results for the sequential scheme
are shown in Fig. 8(a). The dark blue bars show
the unitary M-tangling power across 29 realiza-
tions, and the pink bars show the non-unitary M-
tangling power. As expected, €, 1/(€) is lower in
all cases due to unresolved crosstalk, and this de-
viation is enhanced when the gate error is larger
[see Fig. 5(b)]. A similar feature is observed
in Fig. 8(b) for the 7 cases of preparing GHZ,-
like states using the multi-spin scheme. Specifi-
cally, for case “5”, for which we found the lowest
gate error emerging from residual entanglement
across the 7 cases [see Fig. 6(b)|, the non-unitary
M -tangling power is closer to the unitary one.
Hence, this verifies our previous observation that
the mixed electron-nuclear states we create in the
target subspace remain GHZ j;-like, but their en-
tanglement is reduced whenever correlations be-
tween the target subspace and the unwanted spin
bath are present.

In Fig. 8, we also display with green bars an
approximate expression for €, 17(€), where we set
W) = 0,Yj. We note that the approximate ex-
pression agrees very well with the exact expres-
sion of €, a(€).

Finally, let us discuss the computational com-
plexity related to the various entanglement met-
rics we introduced. The calculation of the Gy
Makhlin invariants and hence of target /unwanted
one-tangles scales linearly with the number of nu-
clear spins, since each G1 quantity describes the
evolution of a single nuclear spin. Thus, the M-
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tangling power, €, p/(U), can be calculated with-
out computational difficulty. Similarly, €, r/(€)
scales linearly with the size of the total size of the
register (including target and unwanted nuclei),
and can also be calculated without difficulty. The
infidelity of the target gate due to the presence of
unwanted spins requires a summation over 26K
Kraus operators. Therefore, the starting point to
identify optimal cases for preparing GHZ;-like
states is to calculate the target/unwanted one-
tangles in order to maximize (minimize) target
(unwanted) correlations. To further inspect the
optimal cases in terms of gate error, one can then
proceed with this metric to obtain full informa-
tion about the dynamics of the system.

7 Additional error analysis

In this section, we study the effect of pulse con-
trol errors and dephasing errors that can occur on
the electronic qubit. To find the impact of those
errors, we consider only their contribution to the
M-tangling power of the target subspace.

7.1 Target subspace M-way entanglement un-
der electronic dephasing

We begin by considering dephasing errors for the
electronic qubit. The dephasing error can be rep-
resented via the Kraus operators [66]:

eiGt 0
Ko=vVdo| ( e (13)

e—i@t 0
Kl -V )\1 O eiﬁt . (14)

In Appendix B, we prove that the “dephased”
M-tangling power of the target subspace (con-
sisting of the electron and target nuclei) has a
simple closed-form expression. In particular, for
a CPMG decoupling sequence of unit time, ¢, and
of N iterations, it takes the form:

M M
Eaen) = (3) 5 TI-67), (15)

3 =2

where R is given by:
2N
R = (A3 + 2%+ 200X cos(01)) %

16
()\2 + A2 4 2X00 N 1o
5+ A7 0A1 cos(20t)

In the case where we compose CPMG sequences
of different unit times ¢; and iterations N; (as we
do, for example, in the sequential scheme), the
function R takes the form:

R =TT (A + A +2x00M Cos(th))QNJ x
J (17)
N,
(A3 + A3 + 2x0\ cos(26t;) )
We verify that in the limit of Ag = 1 and Ay =0,
we recover the ideal €, p/(U) for the target sub-
space. We further find that the M-tangling power
in the presence of electronic dephasing errors is
bounded from below by 50%.

We begin by studying the impact of the elec-
tronic dephasing for the 39 cases of preparing
GHZs-like states via the sequential scheme. The
results are shown in Fig. 9(a), where we consider
Ao = 0.98, Ay = 1 — )9, and dephasing angles
ranging from 6~ = 400 ps to 0~ = 50 us. We
see that for 6= = 400 us, we preserve high M-
tangling power over 90% for most realizations.
For a dephasing angle §~! = 100 us, we find
several cases with M-tangling power around 80-
85%. For a dephasing angle #~' = 50 us, the
M-way correlations can drop to less than 60%
across many cases.

In Fig. 9(b), we repeat the calculations for the
27 cases of preparing GHZ3-like states using the
multi-spin protocol. The M-tangling power of the
multi-spin protocol remains higher in the pres-
ence of electronic dephasing compared to the se-
quential scheme. We even observe that for the
smallest dephasing angle of #~1 = 50 us, we have
several cases which exceed 80% M-way correla-
tions. This behavior is expected since the multi-
spin scheme is, in principle, faster than the se-
quential protocol, and hence it is less sensitive to
electronic dephasing errors.

Figure 9(c) shows the M-tangling power of case
“1” of the sequential scheme, as a function of Ay
and #~!, whereas Fig. 9(d) shows the M-tangling
power of case “1” of the multi-spin scheme. In the
sequential scheme, we control the nuclei C1 and
C18 (with a gate time ~ 1843.2 us), whereas, in
the multi-spin protocol, we control the nuclei C1
and C2 (with a gate time ~ 1366.5 us). Although
the results of Fig. 9(c) and Fig. 9(d) should not be
compared directly due to the different total tim-
ings, we note that the multi-spin scheme is more
robust to dephasing errors. In Appendix C, we
provide another example where we compare the
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Figure 9: M-tangling power of the target subspace when the electronic qubit experiences dephasing. (a) M —tangling
power for the 39 cases of preparing GHZ3-like states with the sequential protocol. (b) M-tangling power of the 27
cases of preparing GHZ3-like states with the multi-spin scheme. The darker blue bars in (a) and (b) correspond to
the no-dephasing scenario, whereas the remaining colors include electronic dephasing with dephasing angles =1 =
(400,100, 50) us. For the cases where we consider dephasing, we set Ao = 0.98. (c) M-tangling power for case # 1
of the sequential scheme for different dephasing angles and Ao parameters. (d) Same as in (c) but for case # 1 of
the multi-spin scheme.
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performance of the multi-spin scheme with the se-
quential, but now for case “16”. Although case “7”
of the multi-spin scheme has a total sequence time
longer than the sequence time of the sequential
scheme, we find again that the multi-spin scheme
is more robust to dephasing. We attribute this
feature to the more complicated dephasing chan-
nel of the sequential scheme. The expression of
ep,M (Edepn) for the sequential scheme is described
by different unit times ¢; and iterations N; since
we are composing CPMG sequences to control
We believe that this feature can
potentially lead to M-way correlations that are
more sensitive to electronic dephasing errors.

each nucleus.

7.2 Target subspace M-way entanglement un-
der pulse errors

We now consider the effect of pulse errors dur-
ing the control of the electronic spin. We as-
sume that the pulse error results in an over- or
under-rotation along the X-axis of the electron.
We model such errors by modifying the perfect
R, (m) acting on the electron into R, (7w + €) =
e~im/2(1+€)9x  Quch rotation angle errors yield
an evolution operator which is no longer block-
diagonal. Consequently, we cannot use the M-
tangling power we found in Eq. (6). Addition-
ally, we cannot study the M-tangling power for
an odd-sized system since, as we mentioned in
Sec. 3, the expression of Eq. (5) is only applicable
to CR-type evolution operators. This difficulty
in describing the M-way correlations on the evo-
lution operator level for odd M arises from the
fact that averaging over all initial states is not
straightforward due to the expression of the odd
M-tangle we start with. Nevertheless, by model-
ing the rotation angle error in this way, we still
preserve unitary dynamics, and we can find the
impact of such errors on the M-tangling power of
even-sized systems numerically by making use of
Eq. (5).

First, we consider systematic errors and study
their impact on the cases of preparing GHZy4-
like states via the sequential or multi-spin pro-
tocols. In Fig. 10(a) and Fig. 10(b), we show
the M-tangling power for the 29 cases of prepar-
ing GHZ4-states, assuming a systematic over-
rotation of € = 2% and € = 8% respectively. The
dark blue bars depict the error-free case. The
light blue bars correspond to the XY2 sequence,
whereas the orange bars to the CPMG sequence,

including the over-rotation errors. In the case of
2% error, we see that CPMG can provide high
values of M-way correlations only for a few cases
(e.g., case “5", case “11”, case “177, case “24”).
However, if we consider the XY2 sequence whose
one unit is t/4 — (m)x —t/2 — (7)y —t/4, we find
that the impact of the error on the quality of the
GHZ states is negligible. For an over-rotation er-
ror of 8%, the M-way correlations accumulated
via the CPMG sequence are lower than 50%,
whereas the XY2 sequence still provides high en-
tanglement across almost all cases (all cases be-
sides case “9” and case “20”).

We observe a similar behavior of systematic
over-rotation errors for the multi-spin scheme.
We depict the results for the multi-spin proto-
col in Fig. 10(c) and Fig. 10(d), where we assume
a systematic over-rotation error of 2% and 8%,
respectively. For 2% error, we find that e, 37(U)
obtained via the XY2 scheme is extremely robust,
although the pulse iterations per case are in gen-
eral high: N = 128 for case “1”, N = 76 for case
“27 N = 124 for case “3”, N = 136 for case “4”,
N = 78 for case “6”, N = 223 for case “6”, and
N = 243 for case “7”. For an 8% error shown
in Fig. 10(d), case “6” and case “7” display the
most prominent reduction in M-way correlations
across all cases, which is consistent with the large
number of decoupling unit iterations.

The robustness of XY-sequences to pulse errors
has already been reported extensively in the lit-
erature [42, 67, 68, 69]. In Ref. [69], a quantum
process tomography protocol called boostrap was
used to determine control pulse errors for the
and /2 pulses. It was mentioned therein that the
7 /2 pulses show twice as much variation than -
pulse errors indicating that the pulse edges have a
larger impact on shorter pulses. The pulse errors
were taken as constant during each run and the
same for different runs. The reported error val-
ues for m-pulses were €, = ¢, = —0.02 (rotation
errors for mx and 7y pulses), ¢, = 0.005 (%X-axis
component of 7wy rotation), ¢, = 0 (y-axis com-
ponent of mx rotation) and ¢, = £0.05 (z-axis
component of mx and 7y rotations). More im-
portantly Ramsey, spin-echo, XY4, CPMG, and
UDD simulations with those parameters were in
strong agreement with experimental data. The
estimated pulse error was 1%. In Ref. [68] XY-
sequences were used to cancel out the systematic
pulse errors, suppress decoherence of the electron,
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Figure 10: Generation of GHZ,-like states in the presence of systematic over-rotation pulse errors. (a), (b) M-
tangling power using the 29 cases we found for preparing GHZ4-like states via the sequential scheme, assuming a
systematic error of 2% in (a), and of 8% in (b). (c), (d) M-tangling power for the 7 cases of preparing GHZ4-like
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Figure 11: Generation of GHZ,-like states in the presence of random over-/under-rotation pulse errors. (a) Mean
M-tangling power using the 29 cases we found for preparing GHZ4-like states via the sequential scheme, assuming
rotation angle errors sampled from a normal distribution with standard deviation ¢ = 0.01. (b) Mean M-tangling
power for the 7 cases of preparing GHZ4-like states via the multi-spin scheme assuming the same standard deviation.
In both (a) and (b), the bars with the highest value of €, »;(U) correspond to the error-free case. The orange bars
correspond to the CPMG case including pulse errors, whereas the light blue bars show the XY2 case including pulse
errors. All bars are scaled by the maximal value of (2/3)%. Each error bar for CPMG and XY2 in (a) captures the
range of €, p/(U) where we run 500 trials per case, with different random samplings per sequence iteration. In (b),
we perform 1000 random trials per case to display the error bars.
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as well as suppress artificially injected magnetic
noise, which was introduced in the same stripline
that was used for the control pulses. The fidelity
of a single m-pulse on the electron was again es-
timated to be 99% using calibration techniques
from Ref. [41, 67]. Therefore, since the m-pulse
microwave control can typically exceed 99% for
defect platforms, we expect that the M-tangling
power we evaluate for the 2% systematic rotation
error will be close to the experimentally observed
one. In Appendix E, we perform another simu-
lation with the aforementioned error parameters
and verify that the M-tangling power we obtain
for the ideal CPMG sequence is close to the one
obtained via the XY2 sequence in the presence of
pulse imperfections. This reveals that combining
our protocols with the XY2 decoupling sequence
is sufficient to prepare high-fidelity GHZ ), states
in the presence of realistic experimental errors.

We continue the pulse error analysis, assuming
random over-/under-rotation pulse errors, which
we sample from a normal distribution with stan-
dard deviation ¢ = 0.01. In Fig. 11(a), we show
the mean M-tangling power for the XY2 (light
blue bars) and for the CPMG (orange bars), using
the 29 cases of preparing GHZ4-like states with
the sequential scheme. In each case, we run 500
independent trials where we sample anew from
the normal distribution (per iteration of the de-
coupling unit), and we evaluate the mean €, 57 (U)
across the 500 trials. For comparison, we also
display the ideal e, p/(U) per case. CPMG and
XY?2 perform on par when random pulse errors
are present. The error bars mark the range of
ep.m(U) for the 500 trials per case. We observe
that for the sequential scheme, the M-tangling
power in the presence of random pulse errors is
higher than 0.7 across all cases.

In Fig. 11(b), we show the mean M-tangling
power for the 7 cases of preparing GHZj4-like
states using the multi-spin scheme. We sample er-
rors from the normal distribution with standard
deviation ¢ = 0.01 and repeat the calculation
500 times per case to collect statistics and eval-
uate the mean M-tangling power. Once again,
we observe that the XY2 and CPMG sequences
perform on par in the presence of random over-
/under-rotation errors. The error bars per case
correspond to the range of €, p/(U) for a total of
500 random trials.

Overall, we find that the generation of high-

quality GHZ,; states is possible with the current
state-of-the-art experimental control and con-
straints. Our formalism provides a detailed anal-
ysis of the entanglement generation in the pres-
ence of errors and allows us to address the prob-
lem of designing optimal entangling gates that
saturate all-way correlations.

8 Conclusions

Genuine multipartite entangled states are an
essential component of quantum networks and
quantum computing. Exploiting the full poten-
tial of nuclear spins in defect platforms for large-
scale applications requires precise and fast entan-
glement generation. We showed under what con-
ditions decoupling sequences produce gates capa-
ble of maximizing all-way correlations and quan-
tified the entanglement capability of the gates
through the M-tangling power. Using this for-
malism, we guided the selection of sequence pa-
rameters and nuclear spin candidates to prepare
high-quality GHZjs-like states by appropriate
driving of the electron spin. We improved the se-
quential entanglement generation scheme, push-
ing the gate time to as low as 4 ms for preparing
GHZ-like states of up to 10 spins. We also studied
the possibility of direct entanglement generation,
which performs on par with the sequential scheme
in decoupling capabilities, with the extra advan-
tage that the latter approach drastically reduces
the gate count and speeds up the entanglement
generation. Further, we studied the entanglement
of mixed states, revealing that the M-way corre-
lations of a target subspace are sensitive to resid-
ual entanglement with the unwanted nuclei. We
introduced a non-unitary M-way entanglement
metric, which additionally captures correlations
between the target subspace and the unwanted
nuclei and showed that it is upper-bounded by
the unitary M-tangling power. We derived a non-
unitary M-tangling power for the target subspace
in the presence of electronic dephasing errors, re-
vealing that the multi-spin protocol can have in
principle superior performance compared to con-
ventional schemes due to its shorter implemen-
Finally, we studied the impact of
pulse errors on the target subspace M-tangling
power and showed that our protocols combined
with XY decoupling sequences can provide high-
fidelity preparation of GHZ states in the presence

tation time.
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of realistic experimental errors. Our results pave
the way for the systematic and efficient creation
of multi-partite entanglement in spin defect sys-
tems for quantum information applications.
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A Mathematical treatment of M-way
entanglement

A.1 Formulas of M-tangles expressed in terms
of the state vector

For any even M > 4 the M-tangle is given by [55,
56]:

mu(|9)) « = [(WloPM ) 2
= (@log ™) (o ™M)
= Tr[Joh) (PloS™M [1p*) (¥ |osM]

= Tilpo "5

(18)
I (=)

= 2MTr[p®2 H Pi,i+M]a
=1

where in the last line, we have linearized the
equation of the M-tangle by introducing a sec-
ond copy and projecting onto the antisymmet-
ric space of subsystems ¢ and ¢ + M, defined
as Pz(,z_+)M = 1/2(1g2m 92 — SWAPI'7Z'+M), with
SWAP ivm = o pefony )il B)ivnr (Blilalipar
For M = 3, the three-tangle can be expressed in
the following form [55]:

73([Y)) : = 7oA — TalB — Tajc,  (19)

where 7popa = 2(1 — Tr[(Trpelp])?]) is the
one-tangle of the electron (A 1is the sys-
tem of the electron partitioned from the
space of the two nuclei represented by sys-
tems B and C), and 745 = Tr[pappas] —
V2/(Te[panpas])? — Tr[(pappan)? (sim-
ilar  definition  holds for 74¢),  with
paB = 02 pipos?. Taip (or T4 ) is also known
as the entanglement of formation and is alterna-
tively given by 745 = max[0, \1 — Aa — A3 — A4,
where A; are the square roots of eigenval-
ues (in decreasing order) of pappap, with
pap = Tro(p).

An alternative way to write the three-tangle (as in Ref. [71]) is:

m3(l6)) : = | = (W1 0y ® 0y ) + (Wlow ® 0y @ 0y [0")? + (Bloz @ 0y @ 0 [7)%. (20)

This is a complicated expression and averaging this quantity to find the M-tangling power of an
arbitrary evolution operator for M = 3 is a difficult task. However, for CR-type evolution operators
we find that it holds (|1 ® o, ® oy|¢*) =0 = (Y|o, ® oy ® 0y|p*). Considering (Y|1 ® oy ® oy|Y*)
we can show that this vanishes for CR-type evolutions:
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(Y1 ® oy @ ay|*) =
= (Yoloj; @1 [RY] o (R

where we have used the fact that R;f,j oy(Rn;)" =
oy as well as the property (¢|A|p) = (p|o,Clo) =
(¢|oy|¢*) = 0, where A is an anti-linear operator
whose expectation value vanishes for all states
|¢) € H and C denotes complex conjugation.
Analogously, one can prove that (¢]o, ® oy ®
oy|¥*) = 0. Thus, these results simplify the ex-
pression of the three-tangle for states generated
by CR-type evolutions, meaning that we can ex-
press it as:

73(1%)) : = [(Y]ow ® oy ® oy ") 2
= Tr[p(o2 ® 0y @ 0y)p™ (02 @ 0y @ 0y)].
(22)

We can linearize the above formula by noticing
that we can write the three-tangle by extending
the Hilbert space into a 6 qubit system:

() = 22Tr[p*2 P H Dl
1=2

(23)

The above expression can be understood as a
“vectorized” form of Eq. (22), since we note that
loy) = vec(o,) = —i(|01) — |10)), which means
P() = 1/2(1—SWAP) between the sectors i and
i+M can be represented as P(~) = $loy)(oy|. We
also found that Eq. (23) can be generalized to odd
M > 3, for arbitrary initial (pure) product states
evolved under a CR-type evolution:

(‘w» = 2MTr[ ®2P1 JA4+M H 'Lz+M (24)

=2

The most general expression for the odd M-
tangle for states that undergo arbitrary unitary
evolution can be found in Ref. [57]. We also veri-
fied by numerical inspection that Eq. (24) agrees
with the definition of the odd tangle of Ref. [57]
when the evolution is CR-type.

A.2 Entangling power of multipartite gates us-
ing M-way entanglement metrics

We define the M-tangling power as the average
of the M-tangle €, ;y = (Ta(UpoUT)), where the
average is taken over all initial product states |t¢)g)

(0| (CR)'1 ® 0y @ 0y (CR)*[55)
= (Yoloj; @ [RY)T (1 @ ay ® oy)owr @1 (RY) |05

(21)
D)) o

o< (Yo,8loy|vg B) (Yo.cloylve o) =0,

of M qubits, with po = [tho) (¢po|. To combine
both the even M and odd M cases, we define P
as:

5 _ { M PZ(__QM even M (25)

P DT, Py odd M.

z JA+M

In order to perform the average we consider the
uniform distribution of product states |i¢g) of M
qubits. For example, for a single-qubit state
cos(0/2)[0) + €' sin(A/2)[1), the uniform distri-
bution is P(6,¢) = 1/(4m) = ([ sin 0dfdp)~!

Averaging over the uniform distribution in
Has2, we find that the M-tangling power reads:

epr (U) = 2Y(Te[US2 2 (UT) 92 P) 02
= 2MT1“[U®2</)8©2>|¢0>®2(UT)®2P]

= 2% [ dp(hvo) o)) 22

= 2M T [U®2Q,0(UT)*2P),
(26)

(d+ 1)~ MM, P, with d = 2

and jjz(j_—zM = 1/2(]12M><2M + SWAP@,H—M)- To
prove the expression for €),9, it suffices to note
that the uniform distribution of product states
factorizes, and hence we can consider the total
average as averages of the sectors ¢ and ¢ + M,
Vi. Thus, we have Q,0 = wa Wi i+M- Since Qpo
is symmetric under the exchange of 7 and ¢ + M,

where €0 =

(+) :
we then have w; ;1 y = cP; Z+M’ where ¢ is a con-

stant equal to ¢ = (d + 1)~! (see also Ref. [72]).
Alternatively, the combined integral of the sec-
tors ¢ and ¢ + M can be expressed in terms of an
integral over the unitary group where the initial
state is fixed and we vary the unitary acting on ¢
and ¢ + M systems:

fano

YWU' o UNpS2 (U @ U')

m('ﬁ[ﬁo] — Tr[poSWAP; ;4 m1]) P, i(,;zM
1
+ M(TF[PO] + Tr[poSWAP; ;1 m]) P, z(:ZM
_ 2 oI S )
d(d+1) 11+M d+1 zz+M’
(27)

Accepted in (Yuantum 2024-02-28, click title to verify. Published under CC-BY 4.0. 21



where we have used the fact that Tr[pg] = 1 and
Tr[pOSWAP@HM] =1.

Note that for even M, the M-tangling power
holds for arbitrary gates U, whereas for odd M
it holds only for controlled evolutions of the form

—1 p(
U= je01% Qa1 RY).
A.3 Proof of M-tangling power for CR-
evolution

Before going into the proof, it will be use-
ful to find the action of products of sym-
metric/antisymmetric projectors (which
project onto the sectors i and i + M) on
a trial product state.  Suppose we have a
collection of states {|¢1), |drsnr)}L,.  Sup-
pose further that we have the ordered ket
(1)1 -+ |dar) mld1ar) 140 - - - [d2nr)om 1=
T, [60)ilérenr)isas. If we act with the projec-
tors P& = Hf\il PZ-SEZM, on the above state we
find:

M
2MPE TT du)ilbren)isns =
=1

Note that for the above equality to hold it is im-
portant that both the kets and the symbols inside
the kets are labeled by an index; otherwise if the
kets are not labeled the above expression holds
only up to re-ordering of the unlabeled kets.

To derive a closed-form expression for the M-
tangling power of CR-type gates in defect sys-
tems, we start by considering odd M. For odd
M, we start from the general expression:

epr(U) = 2M T [U®2Q,0(UT)®2 P, (29)

and we define the vector |m;m-+M) =
]ml)l...]mM>M\m1+M)1+M...]m2M>2M. The

action of the projectors PﬁlM I, PI(Z;)M on

M (28) the above vector yields:
=1
- 1 M
Plm;m + M) = gyz (fmarfmasan) s + [masanilma)iear) LT il ar )i ar = e )ilmadien]
1=2
(30)
Next, we define:
(UN®? = 05 @y (RL) @ o @1y (RYYD)T = (@@ (@) (31)
and
U%? = o5 @My RSV @ 0y @M RE Y = [2,Q V][00, (32)

where we have suppressed the symbol of summation. In the above expressions we have defined Qg)
to be le) = o4 for 1 =1, or le) = Rg;l), for | # 1. Using Eq. (31) and Eq. (30), we evaluate

2M(Ut)®2 Plm;m + M):

2O Plmym + M) = (@) Imo)u (@) Imusar vear + (QF) Imaean) (@) Im)ar ) x

M
TT@M) m) @) g ar)iear — (@) s an)e (@) Imi)is e

=2

(33)
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We then find the action of [2(d + 1)]MU®20Q,0 on the bra (m;m + M]|:

M
11 l(mz!QEl) s (M| QY (d + 1)M Q0 = (1<m1!Q§'1) e (maear| QY + 1 (magar | QLY 1+M<m1|Q§‘1)) X
1

M
1T l<ml|Q§l) e (s |QF + 1 (muyar | QY z+M<ml|Q§-l)
=2
(34)

Thus, we find that [2(d + 1)]M2M Tr[U®2Q,0(UT)®2P] is equal to:
SO>S Gk, Gy arak, )+ (05 are, ) (07 8%, )
i7k7p7.j {ml}y{ml+M}
(07810, V(O OESE, ) 4 (S M B0, (BT8R, )|
M
1) ! l l !
T {trul @7 (@ ) (e adl Q@) mucae) = (mul Q5 (@) I i ar QU (@) ) +
=2
l l l l l l
(e a | QP QL) ) (| QP (@Y muar) = (ruaa | QU (@) ) (| QP (@) ) =
Z [(67111 5] 5@ )(6m1+M 6P5k ) (5m1+M 5p51 )(5m1 5] 5k )

7 Mmi mi+M 1 om1 mi+m
i,k,p,j {m1},{miym}

(5m1 6351 )(5?1“\452551 ) (5m1+M§p52 )(6;?“5%57]%1 )} X

1M1+ M 1 oMi+ M

M
[1{meP @) meP @) - me @) QP @) + T @)l (@)

=2
~ TR (@) TR (@)1
(35)

where we have used the property > ¢, im0 I = TLi 2Zgmiy fmigary- We now work with the first
expression of the Kronecker delta’s which gives:

Z Z 5m16] (5m1+M§fnl+M)X

p,J M1,Mi4M
M

[T {mQ} @Ml @) - TR @) el (@)1 + el (@)l @)
1=2
- Q@) ()] =
M
Z Z 5m1 5] 5m1+M5g“+M) H {4 — Tr[QI(,l)(Q§-Z))T]TT[Q§'Z)(Q;@)T]} =
p,j M1,M14+M 1=2 (36)
M
S IL{4 - meP @)l @)1} =
=2
pj\/[ |
2] {1 - ('@} =
M M
2[[(4 - 4GV V) =2 x4M 1 T[(1
1=2
where we have used the fact that 2_1Tr[Q(()l)(Q§l))T] = cos (()l;) cos qjgl;) + (ng -
nl)(l D sin d)‘() Y sin ¢§12_1) = Gglil), as well as 4 — (TT[Q(()I)(Q(()I))T])Z = 4 — (Tx| gl)( gl))T])Q = 0.
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The second term with the Kronecker deltas reads:

z Z 5m1+1\1517 (6m155n1+M)

p,J M1,Mi4M
M

[T{me)" @MNTeP @) - Tl @)l (@) + Tl @) Q) (@)]
=2
- TR Q)@ (@)1} = (37)
ST @)@, ) x ﬁ{Tr[Qy)(QQ)T]TY[QZ(})(Q;!))T]_4}_
p,J M1,M14M =2
S 6760 x ﬁ {mRP @M @) -4} = 0.
»,J =2

For similar reasons the third term of Kronecker deltas also vanishes. Working with the last term of
Kronecker deltas we find:

M

> [@reen, 00 6] < TT{mRP @) 1mrel @) - Tl ()1 TQ) (@)}

p.J {mu}, {mH—M} =2

Z 551_[{( )T])2—4}—2><4M L—1)M- 1H 51 ) =2 x 4M- 1H (l 1))’
1=2

where we made use of (—1)™~1 = 1 since M — 1 is even. Therefore, our final expression for odd M is:

1 1 d \M _
M ®2 N2 P _ oM M—1 _ (l 1) _ =1
2M T (U0 (UT) P] =2 s )M2M2M4 x 4 ll |21 ) = <d+1> l|:|2(1 G; ),

which concludes our proof.

For even M, note that P = Hl 1 By +) v Again, we follow a similar procedure and start by calcu-
lating the action of 2M (U1)®2P from the left on the ket |m;m + M), which gives:

Mo #2 Plmsm -+ M) =[(Q) ma) () Imsan i — (@) muean 1 (@) ma) 1] <

M
T1@) 1y (@) s arisar — @) s ar)e (@) fma)rar.
=2
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Now, we combine Eq. (34) with Eq. (40), to obtain [2(d + 1)]M2M Tr[U®2Q,(UT)®2P(-)]:

Y X [l el QY+ (musar Q4 mal Q)] x

i,k,p,J ( {m;} )
(@) ) @) s ar) = (@) ) QL) ma) ]
M
T {1 tmear] Q49 + a9 Gl [ (@1 k@I ) = (@) ) @ ) =

ST (sl (G ogat, ) — (858, ) (G opt, )

mi+m 1M1+ M
i,k,p,j M1, M1+ M

+ (M LSt V(ST S0k, ) — (6 6P )(5;@15g5§11)]><

mi+m 1M1+ M

(41)

First, we focus on the first term of Kronecker deltas, which gives:

SN (Ml ook, )%

i,k,p,J M1+ M miqnm

M

[T {mi@) @)1 @) - Q@)1 Q@) + TP @)@ (@)
=2

- [P (@) (@)1} =
Z Z 5m1 5] 6m1+M 5fnl+M)

p,J M1,Mi+M

M
[T{me @@ - el @) el @) + ey (@) e (@)
=2

-~ Q@)Y QM) =

M
> Y @, )T {4 - TP TP @W)T) =2 x 4 H - )
=2

p,J M1,Mi4+M

(42)

It is further easy to show that the second and third terms of Kronecker deltas in Eq. (41) evaluate to
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0, for similar reasons as in the odd case. The fourth term of Kronecker deltas produces:

kz S [ @, )67 ek, )| x
1,K,p,7 ™M1,M1+M
M

[T{me)" @)l @) - Tl @)l (@) + T @)l (@)

_ Tr[Qg) (le))T}Tr[le)(ngl))T]} _
SO [, @) x

- QY @) TR (@)} =

D QM + TV QW) QM ()]

SO @, )6 ﬁ (TP (@RI (QP)] - 4} = 2 x aM~! ﬁg _ Gy,

p,J M1,Mi4M =2

Therefore, the expression 2M Tr[U®20Q,0(UT)®2P] for even M reads:

e (U) = 2M Tr[U®2Q,0(UT)¥2 P) =

A.4 M-tangling power of non-unitary quan-
tum evolution

In this section we consider a setup where we have
L nuclear spins with K of them being the target
ones, and L — K being the unwanted spins. Thus,
the target subspace has M = K + 1 qubits, con-
sisting of the electron and K target nuclear spins.
In Ref. [38] we showed that the Kraus operators
associated with the partial trace operation of the
L — K unwanted spins have the closed form ex-
pression:

Ei= Y floef RE,  (45)
7€{0,1}

with f]@ given by:

£ = TToRG 0y TTAIRS 0y, (46)

m; m/

where for the i-th Kraus operator, the first prod-
uct is taken over the unwanted spins comprising
the environment that are in |0), and the sec-
ond product is taken over the unwanted spins
that are in |1). If all spins are in |0), then
the second product is 1, whereas if all spins are

11
(d+1)M 2M 2

=2
(43)
MM
LoV geqhi- 11‘[ 1-G{~ ”):(di) [[a-a
=2 +1 =2
(44)

in |1) the first product is 1. Further, we have
(0| Ru[0) = cos & — inj.sin % and (1|Ry,|0) =
—isin ¢23 (ng,j +iny ;).

The evolution of the target subspace is thus de-
scribed by the Kraus operators via the quantum
channel E(p) = > EkpoE,];. To include the im-
pact of the unwanted subspace into the M-way
entanglement that is generated by the quantum
evolution, we define the M-tangling power of the
non-unitary quantum channel:

epat(E) = 2M(Tr[pE2P)) )02

2l-K_1

=2¥ Z Tr[(Er @ ES)</’(?2

r,s=0

) jwoye2(Er ® E)TP]

2L-K_1
= 2M Z TI'[(ET ® Es)on(ET‘ ® ES)TP]
r,s=0

(47)

Clearly, in the limit of a unitary channel i.e., E, =
E; = U (the summation is over the unique Kraus
operator) we recover the M-tangling power of a
unitary.
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To derive a closed-form expression, we follow a similar procedure as in the unitary case. We begin
by defining
Bl e Bl = (f7) (1) 0a 02y (R @ o 02y (REHMD) = (£7) (1) (@ @) (@)

ny
(48)
and

E ®E,= " f{oj; @M, R @ 0y @0 _p RV = = 17 1912V [2,0Y). (49)
Starting with the odd M case, we find that [2(d + 1)]M2M >ors Tr[(Br @ Eg)Qpo(Er ® E,)T P] reads:

S X BT R0, G o)+ (0678 ) (6 0L )

mi4+M 1 7my mi4+M
7,8 ik,pj M1,M14+M

1M1+ M

+ (5718] 80,0 ) (G GR0R,, ) + (O OF S, (876165, b

M
[T {m@P@" el @) - e @) @)+ TP @")e) (@)
=2

- [V (@) ]Tr[@ﬁ»”(@ﬁ?)* 1}

=32 (PSP + 57 50 *)xH4 QY (Q)1?)

S p.j

=4M_IZ(!f1T)I2|fés)l2+IféT)IQIfl k +fo”ff><f1 VU + 1O B T -6 )

s =2

:2><4M_1< +Z§R YR8 ]) [1a -G,

1=2
(50)

where we have made use of the fact that only the first and last terms of products of Kronecker deltas
survive. Therefore we find that €, 3/(€) for the odd case is:

1 1 2l s r s —
ep,M<s>=22—MW2Mx2x4M Mo+ X R @A ) [T -6
r,s=0 =2 (51)
d e ) 4(0) (-1)
=(d+1) (4 ZO R A A7 £601) TTa -6 7Y).
r,s =2
whereas for the even case following similar steps we obtain:
1 M 1 9L-K _ . 9 . . . . . . M B
om€)=(77) 22V X (Ifo LA+ LD PSR + 207 () 17 17) TIA - 687)

r,5=0 1=2

d M # T S T s T ] T S M —
=(507) DX (PP ORI + 2RGSO G0 0550 TT - 6

r,s=0

1=2
d \M1 2r « o(r) o(s M _
()3 ) - )
(52)
In the above expressions we have made use of the completeness relation i.e.:
2l-K_1
S BB =18 = 33 () £ 0w @0 (RO [oy; @1 RY) = 147
r,s=0 ™S 1,5
= ZZ Z- O'u @10 = 10] = (53)
O 10 = 71 10 = (sl 57 0 50
Z%Z Je1® =dlel | e po | =\ o o)
7,8 0 Er,s(fl ) f S
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which means that >, \for)|2 =1=3, |fl(r)]2, and hence we can write:

EIU“ XE]ﬂ, 2SR SR = 2= SR P A £ =20 (59)

We note that the expressions for even/odd num- Further, the non-unitary M-tangling power is up-
ber of qubits in the target subspace are identical. per bounded by the unitary M-tangling power.

Let us now simplify the expression that appears due to the summation over Kraus operators. We
first define the set S = {1,2,...,L — K} of unwanted spin indices. Let P(S) be the power set of .S,
ie.

P(S):={{, {1}, {2} {L - K},
{1,2},{1,3},....{1,L - K},... (55)
{1,2,...,L—K}}.
This power set is useful in order to write down which unwanted spins are in |0) or |1) in the Kraus

operators. Let p € P(S) be an element of the power set and [ € p be an unwanted spin index within
the subset p. We now start from:

2L7K_1 2L7K_1 2
RES SO 0= S 0| =
r,s=0 r=0
2
> {(TTor@D o) TT @) 10)) (TTorS0) TT @RS 0) | =
peP(S) lep I'eS\p lep I'eS\p
2 (56)
> {TToI®RD) 0y o1RD 0y TT (LI(RE) 0y (1|RE0)}
peP(S) lep I'eS\p
S ] I 8e
peP(S)lep  I'eS\p

In the last line we have defined o = (O|(R ) |O><O]Rn1]0> and 5 = <1|(R ) |O>(1|Rn)|0> To
evaluate the above expression, let us look into some examples. If we have one unwanted nuclear spin,
then P(S) = {{},{1}}, and so it holds:

S JTa J] Br=e1-141-p1 =01+ p1. (57)
peP(S)lep U'eS\p
If we have 2 unwanted nuclear spins, then we find:
S Ilew TI Br = arce + onBa + asBi + B182 = (o + B1) (o2 + Ba2). (58)
peP(S)lep  I'eS\p
Similarly, if we have 3 unwanted nuclear spins, the summation over the power set evaluates to:
o T TI Br = crosas + 018283 + aafifs + asBi B2 + araefs + arasBs + asasfi + 515253
peP(S)lep  U'eS\p
= ai(agas + f283) + Bi(a2fs + azf) + ai(axfs + azfa) + fi(aeas + B203)
a1 + B1)(oeas + B263) + (aq + B1)(azf3 + azfa)
ai + B1)(azaz + f233 + azf3 + a3fBa)
a1 + fi)(az(as + Bs) + Ba(as + Bs))
)

= («a
= (
= (
= (a1 + B1) (a2 + B2) (a3 + B3).
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Therefore, we can now generalize this result to an arbitrary number of L — K unwanted nuclear spins
as:

_ 2 I-K L-K
Z HO‘Z H 'Bl' H aj + B5)| = ]___[ |O‘j+5j|2 H |(aj + Bj)r + iy + Bj)1 | =
peP(S)lEp  UeS\p j=1 j=1 j=1

L-K — 2 ©) €) (9) (4) N N ) () 9
i { (\/ ng)> + (n% cos QS; sin —d); - ng cos é; sin LS; - (ng%”é]()) - nx][))ng(/j%) sin ¢g sin %)
L-K (4) (4) . (4) (9) N N (4) (4) 9

u {ng) + ( g% cos ¢2 sin —(bg — ng& cos —d)g sin —(b; — (nmj)ln;{% — ng%n?(jb sin —¢; sin —¢; ) }

We see that again GG1 quantities related to unwanted nuclear spins appear in the expression. Finally,
the full expression of the non-unitary entangling power reads:

€ U j
ep(£) = 2L )<1+ 11 {G%
je
unwanted nuc.

—~

T A i o oV oo v o o ¢>§”)2}>
s s 2 :

( M3, €08 ——sin = — — cos ——sin —— — (n,

B M-tangling power of target sub-  electron-nuclear spin register evolves under the

space under dephasing channel new Kraus operators:
In this section, we extend our formalism to in- fr K ()
’ Dy = [Kn(t) @2y 1V |Us(t
clude dephasing errors that can occur on the elec- dephm (t) = | m(( )) =1 1] fi) -
tron during the entanglement generation. The = Z“q;n (t)oqq0jj ®iz1 Ry
dephasing on the electron can be expressed via ‘
the following Kraus operators [66]: = Z /iqq t)04;50; 10K, Rﬁf]? (63)
~ R = Z Ko (t)oj; @ R(l)
K[)(t) =V )\0 0 —ift
€ Note that we also use the notation Rn ; to indicate

- e~ that this nuclear rotation is the one that happens

Ki(t) = VAL < 0 6z‘¢9£> (62) in a single free evolution unit and should not be

confused with Ry, which is the total rotation in-

where Ao + Ay = 1. Assuming that dephas- duced by a single unit of a decoupling sequence
ing occurs during the free evolution periods, the (e.g., a CPMG or UDD,, sequence).

Without loss of generality, we assume the CPMG unit, during which we have the total Kraus
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operators (neglecting global phases):

Daophuam = Datephms (t/4)[Ba (1) @1 1LOIDGES 1, (8/2) R () @1 LOIDGSS, 1, (8/4)

deph,ma deph,m;

= S (/4R (1/2) K5 (£/4)05 Ry (1) 01y R (1) 0 g @154 RORD RY
3rsq

_ Z K(ml) (t/4)k mz (t/2)k (m3)(t/4)0']7. (T )qu[(%(s% =+ 5{579] ®lli1 RQJ)RST)RI(Q
Jima

= 3R AR (12D (¢ 4)5415%0% + 5552154 + 6162 il R R R
Jirsq

= > T (8 /4) k) (8/2) K9 (8/4) 044 0581630 + 6700836} + 61018162 + 8760678%) f, RV RY RY
Jirsq

= 3 R ARG (28 (4 4)er 05705530} + Spaele) ofy R RYRL.
Jirsa

(64)

We label the Kraus operators of one unit with the bitstring m = (m1, ma, m3), where each m; can
take the value of 0 or 1. The only non-zero terms occur for (¢,7,7) = (0,0,1) and (¢,7,7) = (1,1,0),
respectively. Thus, the Kraus operator reads:

D = 20" G e 0/2)0 &0 B R, )

Kiolje1 njq1
_ Z /)‘m1 i0t/A(—1)70m \/Tmeiet/4(*1)j®m3 /)\m2ei9t/2(*1)j@m2®lgjj ® RﬂJ?REIJ)@R(”
J
= Z )\ml )‘mg)\mgeietﬂl[(il)j@ml +(*1)j@m3}ei@t/Q(fl)j@mz@la_‘jj ? jo)ESf}@leJ) (65)

n;p1

= Z )\ml )\mQ)\mgeiGt/M(fl)J@ml +(—=1)79m3 42(— 1)]®m2@1] ®l R( )R(l) R(l)
J
- Z gj(ml’ m2,ms, 97 t)UjJ ®l jo?,
J
where we have defined:
9j (m1, ma, m3, 0, t) = )\ml )\mz )\mgei@t/4[(—1)m1@j+(_1)m3€9j+2(_1)7n2®j®1}‘ (66)

Also, we define & as addition modulo 2. It is easy to verify that the Kraus operators for one decoupling
unit satisfy DYPMGTIDIPME — 1 a5 follows:

mi,mo,ms [ deph,m

deph,m
CPMG CPMG __ l l
Z [Ddeph,m]TDdeph,m - Z >\m1 )‘m2 )‘mso-ﬂo-kk @ (R( )> Rl(llz
mi,ma,ms3 m1,m2,m3,j,k

= Y )\ml/\m/\mBZaﬂ ®; 1

mi,m2,m3

= 3 A (o +>\1) (67)

mi,m2

= Z )‘ml ()\() + )\1)211

mi

=N+ M) =1,

where we have used the fact that A\g + Ay = 1. For multiple decoupling units, the Kraus opera-
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: : CPMG _ N CPMG
tor is simply Dyeppm = Ip=1 D deph.m(9) where

N is the number of iterations of a single unit.
In this notation, each m*) consists of indices
(mgk),mgk),mék)), and each one of them takes
the value 0 or 1. Each Kraus operator is distin-
guished by a different ordering of Os and 1s in the
total vector m. For N iterations, we have 23V
such Kraus operators. For brevity of notation,
we will label the composite Kraus operators that
result after N CPMG iterations as Dy 4, where
g=1,...,23N labels which Kraus operator we are
referring to out of all Kraus operators.

23N 1

€p,M (gdeph) = 2M

r,s=0

M
-(74) 5 (1 + R @

Let us now look into the M-tangling power,
where we focus on the subspace of the electron
and the K target nuclear spins, and we ignore
contributions from unwanted nuclei. This tar-
get subsystem now evolves under the non-unitary
channel Eqepn(p) = 3, DN’Tp[DNJ,]T. We first
start by defining Dy, = 3_; g}](-r)ajj b} jo). Note,
that here Rf,lj) is the rotation after IV iterations,
acting on the [-th nuclear spin.

express the non-unitary M-tangling power of the
channel as:

Thus, we can

> Tr[Dny ® Dns(p§?)(Dn,y @ Dy,s) P

M M
= (451) smIIo-6i),

=2

where we have made use of the results we found
in the previous section. We have also defined

= 2 RIE) @) 37 @5, Note that
in this case, the entangling power expresses only
the evolution in the target subspace. In other
words, we do not include the correlations that
arise from the unwanted spins. In the limit of no
dephasing, i.e., A\g = 1, Ay = 0 and 6 = 0, the
|

N

,.(r

'S (i

= \J kl_Il )\mgk)Am;k) )\mgk)exp [

10t
\/A ®A <k>>\ <k>exp{4 ((=1)7%™

only Kraus operator that survives corresponds to
the bitstring of m = [0,...,0]7, and we recover
the unitary channel. We can verify this from the
above equation, since we will have r = s = 0 and

g =" =V =1.

The expression for g(.’")

; is defined as follows:

" +(— 1)J@m§ 'y 2(_1)j@m§’°>®1)}

(69)

]@ml + ( 1)]@mg ) + 2(_1)j@m;k)@1)

Using the above definitions and considering only 1 CPMG iteration, we find the following expression

for the sum:

R = (A3 + A2 + 2X0)1 cos(08))2(A3 + A2 + 200\ cos(26t)).
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For N CPMG iterations we can show that R is given by:

R=R[> FO )]
S AL ?

~ | ﬂ i) plomd) plomi)
k=1

Iy y——
k=1

_((\2 12 212 | 2 N
= (NG + AT + 2 01 cos(0t)) (NG + AT + 201 cos(26t))

In the first line we defined f() = (g(()r))*g g

1 /- Using the above result, we find that the expression of the

M-tangling power of the target subspace in the presence of dephasing errors is:

6p,M(‘S‘deph) = (d 1

It is easy to verify that in the limit of \g = 1, (Ag = 0) A;

power as expected.

d )M 1+ (A2 + A2 + 2X0)1 cos(01))2N (A2 4+ A2 + 2X0); cos(2601)) ﬁ
2 -

(72)
=0 (A1 = 1) we get the unitary M-tangling

If we are composing p CPMG sequences of different unit times ¢; and iterations N; then we will

have:

p 2N N
R =TT (A + X3 + 220 cos(05)) (A + AT + 2A0M cos(261;) ) (73)

j=1

Based on the above expression we verify that in
the limit where all p sequences have the same time
t =t;,Vj € [1, p], we recover the previous expres-
sion for R. In particular, the above expression is
the one we use for the sequential protocol when
the electron undergoes dephasing.

C Comparison of sequential with
multi-spin schemes in the presence of
electronic dephasing

In this section, we compare the performance
of the multi-spin with the sequential scheme in
the presence of electronic dephasing errors. In
Fig. 12(a) we show €y ar(Egepn) of case “16” of
preparing GHZs-like states for the sequential
scheme. In Fig. 12(b) we show again €, yr(Edepn)
of case “7” of preparing GHZs-like states for the
multi-spin scheme. The nuclei we control with
the sequential scheme are C5 and C13, and with
the multi-spin scheme, C4 and C5. The to-
tal sequence time for the sequential scheme is

1357.9 us, and for the multi-spin is 1916.6 us.
Although the multi-spin scheme requires slightly
longer time than the sequential one, it is again
more robust to dephasing errors. This feature
could be attributed to the different unit times ¢;
and sequence iterations INV; that enter the expres-
sion of €, rr(Edepn) for the sequential scheme since
we are composing CPMG sequences of different
timings and iterations in the sequential protocol.

D Comparison of XY2 and CPMG per-
formance to pulse errors

In this section, we study over-/under-rotation er-
rors for the electronic control pulses. We consider
the optimal cases we found in the main text for
preparing GHZ4-like states via the sequential or
multi-spin scheme. The systematic pulse errors
are simulated as R/, (7 +¢) = e~ /2140y
for the CPMG and XY2 sequences. We calcu-
late the deviation between the M-tangling power
of the target subspace in the absence of errors,
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Figure 12: M-tangling power of the target subspace when the electron undergoes dephasing. (a) €p ar(Edeph) for
case # 16 for preparing GHZs-like states via the sequential scheme as a function of the dephasing angle 6 and \q.
(b) Same as in (a) for case # 7 of the multi-spin scheme.
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Figure 13: (a) Aep s (U) := |epar (U)=0 — €1 (U)7°| as a function of systematic over-rotation pulse error for the
7 cases of preparing GHZ4-like states via the multi-spin scheme with the XY2 sequence. (b) Same as (a), but using
CPMG. (c) Same as (a), but for the 29 cases of preparing GHZ 4-like states via the sequential scheme, using XY2.
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ep.11(U)=0, with the one in the presence of er-
rors, €, (U)7?. We define this deviation as
Aepmr(U) = lepar(U)=" — epar (U) 7).

In Fig. 13(a), we show Ae, pr(U) for the 7 cases
of preparing GHZy-like cases via the multi-spin
scheme, assuming the XY2 sequence. The differ-
ent colored lines correspond to each one of the
7 cases, and the labels correspond to the num-
ber of total sequence iterations. We see that
for small pulse errors (< 3 — 4%), the devia-
tion in estimating this quantity is on the order
1073 — 1072, Additionally, we expect that as the
number of pulses increases, the deviation is, in
principle, enhanced [e.g., see dark red line versus
green line|. This feature, however, does not al-
ways hold since the dynamics are case-dependent
and tend to corrupt the GHZ preparation differ-
ently. In Fig. 13(b), we repeat the same calcu-
lation assuming the CPMG sequence for a range
of systematic pulse errors from 0.1 — 0.8%. As
expected, the ability of the CPMG sequence to
prepare high-quality GHZ4-like states is severely
impacted by the pulse errors.

In Fig. 13(c), we display in four panels the de-
viation in M-tangling power for the 29 cases of
preparing GHZ4-like states using the sequential
protocol. The labels correspond to the total num-
ber of iterations, 2?21 Nj;. In this scenario, we
are assuming the XY2 sequence. We notice a sim-
ilar performance as for the multi-spin scheme, and
the results again reveal the robustness of XY2 un-
der moderate pulse errors (< 3 —4%).

E Rotation angle and rotation axis er-
rors

In this section we consider the effect of rotation
angle and rotation axis errors on the M-tangling
power. We consider as an example the 7 cases
of preparing GHZ4-like states via the multi-spin
scheme. To showcase the robustness of the XY2
decoupling sequence, we consider both rotation
axis and rotation angle errors, assuming the esti-
mated parameters from Ref. [69], which we also
mentioned in Sec. 7.2. In particular, we model
the erroneous mx and my pulses as:

Ry (7 + €3) = e i)/ 2V 1-aoutaz0z) — (74)

Ry(ﬂ' + Ey) — e—i(”‘f'ey)/?(’lwaa:‘f'\/ 1—‘1720—‘1201;4‘%%)‘
(75)

In Fig. 14 we show the ideal M-tangling power
(dark blue bar) assuming a perfect CPMG decou-
pling sequence. The light blue bars correspond to
the XY2 decoupling sequence which includes the
errors €, = ¢, = —0.02, ¢, = 0.05, ¢, = 0.005.
We observe that the deviation in the expected
M-way correlations in the presence of both rota-
tion axis and rotation angle errors is sufficiently
small, and hence the XY2 decoupling sequence
can be reliably used in experiments to prepare
high-fidelity GHZ states.

Bl CPMG ideal [ ]XY2 with errors

Case #

Figure 14: Robustness of XY2 decoupling sequence in
the presence of pulse and rotation axis errors. The dark
blue bars show the ¢, a/(U) we find via the ideal CPMG
sequence for the 7 cases of preparing GHZ,-like states
via the multi-spin scheme. The light blue bars show
the €27 (U) obtained via the XY2 decoupling sequence
assuming both rotation axis and rotation angle errors.

F  Uncertainty in HF parameters

In this section, we consider the effect of errors due
to uncertainty in the experimentally measured
HF parameters of the nuclear spins. We use the
same optimal sequence parameters we found for
the HF parameters we considered in the main text
and additionally shift the HF parameters A and
B of the target nuclear spins by 0.01 or 0.05 kHz.
In Fig. 15, we consider a 0.01 kHz shift and plot
the deviation Ae, pr(U) = ep7M(U)—6;’rj\‘frtain(U)
for the cases of preparing GHZ states up to 6
qubits for the sequential scheme in Fig. 15(a) and
for the multi-spin scheme in Fig. 15(b). We ob-
serve that the presence of a 0.01 kHz uncertainty
in the HF parameters only produces a negligi-
ble uncertainty on the order of 10~3 relative to
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our ideal calculations for €, (U). In Fig. 16,
we repeat the same calculations for the sequen-
tial scheme in Fig. 16(a) and for the multi-spin
scheme in Fig. 16(b), assuming a shift of the HF
parameters by 0.05 kHz. We note that the error
in the estimation of e, a/(U) is on the order of
1072 — 1073, Thus, based on the experimentally
achievable accuracy in the measured HF param-
eters [37], we can estimate the M-tangling power
to a relatively narrow confidence interval. Opti-
mization within a small range of the optimal pa-
rameters t* and N* that we find for definite values
of HF parameters can guide the experimental cal-
ibration of the timing of the pulses and optimal
sequence iterations.

G Optimization process for GHZ y;-like
generation

Here we highlight the optimization procedure for
generating GHZ)s-like states using the sequen-
tial or multi-spin protocols. In Fig. 2 of the main
text, we show a diagram of the optimization pro-
cedure for the sequential protocol. First, we need
to provide as inputs:

o the size of the GHZ-like state we want to
prepare (|GHZ|),

e the maximum resonance number (kpax) to
search for each nuclear spin,

e the maximum time for the total sequence
and of individual gates (T2 ),

e the tolerances of unwanted/target nuclear
one-tangles,

e the gate error tolerance.

Then, for each nuclear spin, we search over all
resonances by varying the unit time around each
resonance by 0t = £0.2 us, and with a time step
of 5x 1073 us and select as optimal the unit time
t where ng - nj is as close as possible to the value
—1. Having fixed the unit time, we then use the
analytical expressions for the minima of Gy which
give us the number of iterations that maximize
the nuclear one-tangle [see Ref. [38] for the ex-
pressions of the minimal. Since G; is periodic,
there are multiple numbers of iterations that can
minimize GG1, and so we usually truncate to about

15 maxima of the one-tangles, which we also post-
select such that N - ¢ < T.x. Note that here
Thax could be the gate time restriction we impose
for the gate time of a single decoupling sequence,
rather than the total gate time restriction for the
composition of all sequential gates. We then in-
spect all elements in the sets of {t, N} and keep
those that give a sequence with gate time smaller
than T),... After this step, we calculate the re-
maining nuclear one-tangles and check if they are
smaller than the unwanted one-tangle tolerance.
If this is not satisfied, we reject that particular
(t, N) case, whereas if this is satisfied, we store
the unit time and number of iterations. We re-
peat this process for each nuclear spin, such that
we have all the possible unit times and iterations
that can give maximal entanglement of the tar-
get spins with the electron while keeping the un-
wanted one-tangles minimal. At this stage, we
have multiple unit times and iterations that sat-
isfy these requirements.

We then combine the unit times and iterations
corresponding to sets associated with the selec-
tion of any |GHZ| — 1 nuclei out of the entire nu-
clear register, such that the total decoupling se-
quence does not exceed the maximum time, T4z
For each such nuclear spin combination, we evolve
all nuclei individually under the composite evolu-
tion and obtain their nuclear one-tangles. At this
step, each nuclear spin combination is associated
with multiple unit times and iterations that we
could consider, so we need to choose which ¢ and
N we keep for each distinct nuclear spin combina-
tion. We choose those t and N which give rise to
a maximal M-tangle at the end of the composite
|GHZ|-1 entangling gates. Different choices could
be made here, e.g., selecting the ¢ and N that
give the shortest gate time or penalizing both gate
time and the deviation from the maximal possi-
ble M-tangle using an appropriate cost function.
At this stage, we have narrowed down nuclear
spin candidates and associated each nuclear spin
combination with a particular sequence composed
of times t; and iterations N; that gives rise to
maximal M-way entanglement. For each of these
cases, we inspect whether the unwanted nuclear
one-tangles of the composite evolution are below
the unwanted one-tangle tolerance we imposed. If
this is satisfied, we accept this case and proceed
with the calculation of the gate error. Finally,
we accept this case if the gate error is lower than
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Figure 16: (a) Aepm(U) = e, m(U) — €55 (U) for the sequential scheme. €l (U) is the error value if

we introduce a 0.05 kHz shift in the HF parameters of the target spins. (b) Aep 2/ (U) for the multi-spin scheme.
e;f‘f\j}”ai“(U) is the error value if we introduce a 0.05 kHz shift in the HF parameters of the target spins. The various

panels show the deviation in the M-tangling power for GHZ3-like, GHZ 4-like, GHZ5-like, and GHZ4-like states.

GHZ | Total gate time | Individual gate time | Gate error Target Unwanted kmax | Ot | time step
size tol. (us) tol. (us) tol. one-tangle tol. | one-tangle tol. (us) (us)
3 2000 2000 0.1 0.99 0.1 18 0.2 | 5x1073
4 2000 2000 0.1 0.99 0.1 18 0.2 | 5x1073
5 2300 2300 0.1 0.9 0.1 18 02 | 5x1073
6 2500 2500 0.11 0.9 0.12 18 02 | 5x1073
7 3300 3300 0.12 0.9 0.12 18 0.2 | 5x10°3
8 3700 2000 0.13 0.9 0.12 18 02 | 5x1073
9 4000 1400 0.13 0.85 0.15 18 0.2 | 5x10°3
10 4000 1400 0.19 0.87 0.22 18 02 | 5x1073

Table 2: Tolerances (tol.) and relevant parameters for the optimization of the generation of GHZ j;-like states using
the sequential protocol.
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GHZ | Gate time | Gate error Target Unwanted kmax | Ot | time values
size | tol. (us) tol. one-tangle tol. | one-tangle tol. (us)

3 2000 0.11 0.9 0.1 10 | 0.25 500

4 2000 0.101 0.9 0.1 10 | 0.25 500

5 2300 0.1 0.84 0.125 10 | 0.25 400

6 2500 0.13 0.88 0.12 10 | 0.25 200

7 2800 0.13 0.85 0.15 10 | 0.25 200

8 3000 0.15 0.85 0.15 10 | 0.25 200

9 3000 0.15 0.82 0.15 10 | 0.25 200

Table 3: Tolerances (tol.) and relevant parameters for the optimization of the generation of GHZ ,-like states using

the multi-spin protocol.

the gate error tolerance. In Table 2, we provide
the tolerances and relevant parameters we set for
each GHZ size.

Regarding the multi-spin protocol, we are not
composing gates since we are interested in a
single-shot operation that generates direct en-
tanglement of the electron with multiple nuclei.
We explain here the procedure we follow accord-
ing to the flowchart of Fig. 2. We start with
one nuclear spin selected from the entire register
and find its resonance time for some particular
resonance number k. We vary the unit time t
within 4+0.25 us and define an upper bound for
the maximum number of iterations that respects
the gate time restriction for the particular unit
time. Then, for all unit times and N € [1, Nyq4]
we obtain all the nuclear one-tangles using the
knowledge of rotation angles and the dot product
of the nuclear axes for each nucleus given one iter-
ation. Then, for all possible times and iterations,
we check how many one-tangles are above the tar-
get one-tangle tolerance and how many are below
the unwanted one-tangle tolerance. If we have
|GHZ| —1 one-tangles above the target one-tangle
tolerance, and all other nuclear one-tangles are
below the unwanted one-tangle tolerance, then
we accept this case. We repeat this process by
choosing a different resonance number k, up to
some kmax. Then, we select a different nuclear
spin from the register as our starting point and
repeat all the aforementioned steps.

After completing the above stage, we have mul-
tiple times and iterations for which we maximize
|GHZ| — 1 target one-tangles simultaneously. We
then rearrange all these cases corresponding to
different unit times and iterations in terms of
unique spin combinations. For each spin com-

bination, we select the time and iterations of
the single-shot operation, which give the maxi-
mal M-tangle. Similar to the sequential scheme,
the choice of narrowing down particular ¢ and
N could be based on minimal gate time or a
cost function that both minimizes gate time and
maximizes the M-tangle for the particular spin
combination. Finally, for each spin combination
we evolve all unwanted nuclear spins individually,
such that we pass this information to the calcu-
lation of the gate error. If the gate error is below
the tolerance we imposed, we then accept this
case.

H One-tangles of Sequential Scheme
for generation of GHZ,,-like states

Here we present the nuclear one-tangles corre-
sponding to the sequential entanglement scheme
of Fig. 5. The nuclear one-tangles for all different
realizations of entangling M — 1 nuclei with the
electron to prepare GHZj;-like states are shown
in Fig. 17. The labels above each bar of each
case refer to some '3C nuclear spin of the register
labeled as Cj, with j € [1,27].

| Eigendecomposition of mixed state

To keep the discussion general, we consider L nu-
clear spins, with K of them being the target ones
and hence, L — K being the unwanted nuclei. To
derive the optimal ensemble for the calculation
of entanglement of the mixed state, we make the
assumption that the initial state of the system is
any arbitrary product pure state:

o) = |vbar) ®F [4,), (76)
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Figure 17: One-tangles of nuclear spins after composing M — 1 sequential entangling gates to create the cases of
Fig. 5. Each case corresponds to a distinct DD sequence that selects different nuclei from the nuclear spin register.
Each bar shows the one-tangle of a particular nuclear spin, and the text above the bars corresponds to the nuclear
spin labels. From top to bottom, we show the nuclear one-tangles for the generation of GHZ,-like up to GHZy-like

electron-nuclear entangled states.

where [1e) = «@|0) + (1), with o, 8 € C and
la? + |B)?> = 1. Under a CR-type evolution the
electron-nuclear system evolves into:

|w> = U|¢0> = Z O—leweo ®l—1 R W}nuc)
7€{0,1}
(77)
Thus, the full density matrix reads:
p=Y_ 0jjpelOkk @l Rg}ﬂgﬂc(RLk)(l)- (78)

J:k€{0,1}
Next, suppose that we wish to trace out the last
L — K spins from the density operator (assuming
that we have ordered the basis such that these
appear last in the Kronecker product):

Pred = Z[U]]pelo'kk ®l_1 R(l) 1(’111)1C(RT )( )]
j k
% H TI‘ Z+K) glutK)(RT )(lJrK)]
= Z f]ko']jpelo'kk ®l_ R(l) gl)lc(RIlk)(l)ﬂ
7.k
(79)
where  we  have  defined fik =
155 T [RET) ) (RY, ) HO), with

Next, we are

foo = Ju and fio = f3;-
interested in finding the eigenvectors and eigen-
values of the reduced density matrix. To do so,
we apply the inverse CR gates on the target
subspace of the electron and K target nuclei to

find:

Pllced = Z fijjj/)elUkk ®zfi1 P](algc
Jk
) . (80)
| e aB* for 21 p0)
a*BfIO ’ﬁ‘Q nuc

Thus, we can easily find the eigenvalues of the
electron’s reduced density matrix which read:

1
= = 2 _|B|2)2 2132 2
A = 5 (12 /(P = 812 + 4laPBPLAn ).
(81)
whereas the eigenvectors are given by:
1 _ 18P
VUt = c , (82)
1+ (\5|2 )\:I:) 1

with ¢ = a*Sf10 (provided ¢ # 0). Now, to find
the eigenvectors of the total reduced density ma-
trix, we need to reapply the controlled gates of
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the target subspace on the matrix whose columns
are the two eigenvectors:

[0), WO = Ullog) @1 [9{e), [v-) @[]

(83)
Thus, we now have the diagonalized density op-
erator:

paiag = A0} ) (V| + Al ) (o], (84)

which means that we can use the trial state:

raiat) = /s lo) — eX /1= Apfol),  (85)

to find the entanglement of the mixed reduced
density matrix of the electron and the target nu-
clei. Note that given arbitrary initial states, the
highest rank that the reduced density matrix can
have (irrespective of the initial pure state of the
system, the number of total nuclei, or the number
of nuclei we trace out) is 2, due to the form of the
controlled evolution operator.

In the case when the electron starts from a non-
superposition state e.g., when 8 = 0, we find that
the two eigenvalues are Ay =1 and A_ = 0. The
corresponding eigenvectors are |vy) = |0) and
|lv_) = |1), which after reapplying the controlled
gates read:

[/, [0)]" = U110) @1 [1h{Re), 1) @ [ )]
(86)
In this scenario, since A_ = 0, the reduced density
matrix corresponds to a pure product state.

J Concurrence and three-tangle

Here we compare the entanglement of rank-2
mixed states involving two qubits with the en-
tanglement of rank-2 mixed states involving three
qubits. For two-qubit pure states the concur-

2(1 - Tel2)) =
2(1 — Tr[p%]), where pA(B) is the reduced den-

rence is defined as C(p) =

sity matrix of system A (B). The entanglement
of a mixed two-qubit state can be computed with
similar methods as in the main text by minimiz-
ing the concurrence of a trial state. We assume
that we have a trial state of the form:

[Yeiar2) = VPIOF) + 1 —peX|@7),  (87)

where |®F) = 1/v/2(]00) 4 |11)) are the two Bell
states. We further consider a rank-2 mixed three-
qubit state which is the mixture of two |GHZ*) =

1/v/2(]0)®34]1)®3) states. Thus, similarly to the
main text, we define the trial state:

[rial3) = /D|GHZT) + /T — peX|GHZ ™).
(88)
For each value of p € [0, 1] we vary the rela-
tive phase of the two terms, x, for both |¢)tia12)
and [¢gial3), and obtain the minimal concur-
rence, or three-tangle, respectively. We plot the
results as a function of p in Fig. 18. We ob-
serve that the minimum concurrence, as well as
the minimum three-tangle are both convex func-
tions. In fact, the minimum concurrence is given
by C' = 2|p —1/2| and the minimum three-tangle
by (1 —2p)2. We note that for all values of p (ex-
cept for p = 1/2 where we have maximal mixed
states) the minimum three-tangle is lower than
the minimum concurrence, and hence the three-
way entanglement is more sensitive to the rela-
tive ratio of the superposition terms in the mixed
state than the concurrence of two-qubit mixed
states.
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Figure 18: Minimum concurrence of a mixture of Bell
states (blue), and minimum three-tangle of a mixture
of |GHZ™) states (red). The black dashed line is the
analytical expression of the minimum three-tangle.

J.1 Parameters for 27 nuclear spins

The HF parameters for the 27 nuclear spin regis-
ter we consider in the main text are presented in
Table 4 and can also be found in Refs. [37, 61].
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