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We propose and analyze deterministic protocols to generate qudit photonic graph states from
quantum emitters. We show that our approach can be applied to generate any qudit graph state,
and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster
states, absolutely maximally entangled states, and logical states of quantum error correcting codes.
Some of these protocols make use of time-delayed feedback, while others do not. The only addi-
tional resource requirement compared to the qubit case is the ability to control multi-level emitters.
These results significantly broaden the range of multi-photon entangled states that can be produced
deterministically from quantum emitters.

I. INTRODUCTION

Entanglement is a uniquely quantum property that
plays an important role in almost all aspects of quan-
tum information science, including quantum computing
[1], quantum error correction [2, 3], quantum sensing [4],
and quantum networks [5–7]. Many of these applications
require generating large multi-photon entangled resource
states upfront, especially in the context of measurement-
or fusion-based quantum computing [8–10] and quantum
communication [11–14].

However, creating entangled states of many photons
is challenging because photons do not interact directly.
Standard ways of circumventing this issue make use
of either nonlinear media [15] or quantum interference
and measurement [16, 17]; the former approach is made
challenging by low coupling efficiencies, while the lat-
ter is intrinsically probabilistic. Approaches that rely
on interfering photons are usually based on linear optics
and post-selection [16, 17], and consequently the success
probability decreases exponentially with the number of
photons [16, 18]. Despite a number of conceptual and
technological advances, the probabilistic nature of this
approach continues to severely limit the size of multi-
photon entangled states constructed in this way [19, 20].

An alternative approach is to use coupled, controllable
quantum emitters with suitable level structures to deter-
ministically generate multi-photon entanglement [21–23].
There now exist several explicit protocols for creating en-
tangled states of many photonic qubits, either by using
entangling gates between emitters and transferring en-
tanglement to the photons in the photon emission stage
[23–29], or by sending the photons to interact again with
emitters to potentially create entanglement beyond what
is generated from the emission process [30–33]. Proof-of-
principle experimental demonstrations of such determin-
istic protocols have been performed in both the optical
and microwave domains [34–37].

To date, the vast majority of theoretical and exper-
imental efforts towards the deterministic generation of
multi-photon entangled states have focused on photonic
qubits. These are based on using either polarization,
spatial path, or time bin as the logical encoding. How-
ever, photons can naturally encode not only qubits but
also multi-dimensional qudit states, for example by using
more than two spatial paths or time bins. This can allow
for novel approaches to quantum computing, communi-
cation, sensing, and error correction in which quantum
information is stored in a more compact way [38–40].
Such states can in particular provide benefits in quan-
tum networks and repeaters [41, 42]. Although there
have been recent experimental demonstrations of entan-
gled qudit state creation, these have been limited thus
far to two photons [38, 43]. An outstanding question is
whether multi-photon entangled qudit states can be gen-
erated deterministically from a small number of quantum
emitters.

In this paper, we propose and evaluate determinis-
tic methods to generate multi-photon qudit graph states
from multi-level quantum emitters. We present sev-
eral different explicit protocols that can produce various
states either using a single emitter together with time-
delayed feedback, or using multiple coupled quantum
emitters. We first show that any qudit graph state can be
produced from multi-level quantum emitters with an ap-
propriate level structure using a small set of gates on the
emitters. We then focus on constructing one- and two-
dimensional cluster states, as well as highly entangled
multipartite states called absolutely maximally entangled
(AME) states. These states are defined by the property
that they maximize the entanglement entropy for any
bipartition [44, 45], and they have applications in quan-
tum error correcting codes (QECCs) and secret sharing
[2, 44–50]. In addition, we present protocols for con-
structing logical states of QECCs whose code spaces are
spanned by AME states of qutrits Our approach to qudit
photonic graph state generation incurs only a small re-
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source overhead compared to the qubit case, primarily in
the requirement of multi-level control of quantum emit-
ters, which has been achieved experimentally in atomic
and defect-based systems [51–54].

The paper is organized as follows. We begin with a
brief review of qudit graph states and basic qudit oper-
ations (Sec. II). In Sec. III, we describe how to produce
photonic qudits from quantum emitters. In Sec. IV, we
illustrate our basic approach to multi-qudit-state gener-
ation and show that any qudit photonic graph state can
be generated from quantum emitters using a small set of
operations. We also present examples of generating one
and two-dimensional qudit graph states. In Sec. V, we
present protocols for generating various AME states. In
Sec. VI, we show how to generate an explicit example of
a QECC whose codewords are all AME states of qutrits.
Sec. VII discusses possible physical implementations. We
conclude in Sec. VIII.

II. BACKGROUND: QUDITS AND GRAPH
STATES

In this work, we focus on the generation of an impor-
tant class of entangled states called graph states [55].
Graph states are pure quantum states that are defined
based on a graph G = (V,Γ), which is composed of a
set V of n vertices (each qudit is represented by a ver-
tex), and a set of edges specified by the adjacency matrix
Γ. Γ is an n × n symmetric matrix such that Γi,j = 0
if vertices i and j are not connected and Γi,j > 0 oth-
erwise [55–58]. These states have many applications in
measurement-based quantum computing [9, 59], quan-
tum networks [12–14], and QECCs [60, 61].

There are differences between qubit and qudit graph
states. For the qubit case, the graph state is defined by
initializing all qubits in the +1 eigenstate of the X Pauli
matrix, i.e., the state |+⟩ = |0⟩+ |1⟩ (here and in the fol-
lowing we will not always explicitly normalize states for
the sake of a more compact notation), and then applying
controlled-Z (CZ) gates on all pairs of qubits connected
by an edge. In the case of qubits, the adjacency matrix
Γ contains two different elements: Γi,j = 0 whenever two
vertices i and j are not connected, and Γi,j = 1 other-
wise. Most of the existing protocols for creating multi-
photon entangled states have focused on the generation
of multi-qubit graph states [22–29, 31–33].

To define qudit graph states, we first introduce gener-
alized Pauli operators acting on qudits with q levels [58].
The Pauli operators X and Z act on the eigenstates of
Z as follows:

X|i⟩ = |i+ 1 mod q⟩, (1)

Z|i⟩ = ωi |i⟩ . (2)

These operators are unitary and traceless, and they sat-
isfy the condition ZX = ωXZ, where ω = ei 2π/q is a q-th
root of unity. Each of the Pauli matrices has q eigenval-
ues and eigenvectors. The powers of X and Z applied to

basis states give

Xα|i⟩ = |i+ α mod q⟩, (3)

Zβ |i⟩ = ωiβ |i⟩ , (4)

and Xq = Zq = 1. Similar to the case of qubits, we can
define controlled-Zβ (CZβ) gates as

CZβ |i, j⟩ = ωβ ij |i, j⟩, ∀β ∈ {1, . . . , q − 1} . (5)

The special case of q = 2 in the above corresponds to
qubits.
One other operator that is essential to studying qu-

dit graph states is the Hadamard gate. The Hadamard
gate H is a matrix that maps the Z-eigenbasis into the
X-eigenbasis. For qubits, we have H|0⟩ = |+⟩, and
H|1⟩ = |−⟩, where |−⟩ is the −1 eigenvector of the X
Pauli operator. There is also a useful identity involv-
ing the Hadamard and the Pauli matrices X and Z:
HXH = Z.
Similarly to the qubit case, we can define the qudit

Hadamard operator H such that H|i⟩ = |Xi⟩, where |Xi⟩
is an eigenstate of X. In general, we can write

H|i⟩ =
q−1∑
j=0

ωij |j⟩ = |Xi⟩ ∀i ∈ {0, 1, ..., q − 1} . (6)

The relationship between the Hadamard and the Pauli
operators Xα and Zα in the case of qudits takes the
form

HXαH† = Zα, (7)

where H† is the inverse of H:

H†|i⟩ =
q−1∑
j=0

ω(q−1)ij |j⟩ = |Xq−i mod q⟩, ∀i = {0, ..., q−1}

(8)
Also note that H† acts on the X-eigenbasis as H†|Xi⟩ =
|i⟩.
To understand how we can use these ingredients to de-

fine qudit graph states, we present an explicit example
involving qutrits. A qutrit is realized by a 3-level quan-
tum system (q = 3), where we denote the Z-eigenstates
by |0⟩, |1⟩, and |2⟩. The X-eigenstates then are

|X0⟩ = |0⟩+ |1⟩+ |2⟩, (9)

|X1⟩ = |0⟩+ ω|1⟩+ ω2|2⟩, (10)

|X2⟩ = |0⟩+ ω2|1⟩+ ω|2⟩ , (11)

where ω = ei 2π/3. The X operator couples levels as
follows: X|i⟩ = |i+1 mod 3⟩ and X2|i⟩ = |i+2 mod 3⟩.
The Z and Z2 operators add different phase factors to
each basis state, i.e., Z|i⟩ = ωi|i⟩ and Z2|i⟩ = ω2i|i⟩,
while X3 = 1 and Z3 = 1.
In order to obtain qutrit graph states, we first initialize

all qutrits in state |X0⟩. For each edge, we can consider
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two possible gates on the corresponding qutrits: CZ and
CZ2, which are defined such that

CZ|i, j⟩ = ωij |i, j⟩, (12)

CZ2|i, j⟩ = ω2 ij |i, j⟩, (13)

where i, j ∈ {0, 1, 2}. Therefore, the adjacency matrix Γ
contains three different elements, Γi,j = 0 when the two
vertices i and j are not connected, Γi,j = 1 when they are
connected via CZ, and Γi,j = 2 when they are connected
via CZ2.
A general graph state of n qudits can be expressed as∏

i<j

CZ
Γi,j

i,j

 |X0⟩⊗n

=

∏
i<j

CZ
Γi,j

i,j

 q−1∑
k1,k2,...,kn=0

|k1k2...kn⟩

=

q−1∑
k1,k2,...,kn=0

∏
i<j

ωkikjΓi,j

 |k1k2...kn⟩. (14)

III. EMITTING PHOTONIC QUDITS

In addition to qudit operations, another key ingredi-
ent we need to generate qudit photonic graph states is a
“pumping” operation that produces photonic qudits from
quantum emitters. In this section, we explain how such
operations can be realized in systems containing multi-
level emitters with the appropriate level structure and se-
lection rules. Later on in Sec. VII, we give explicit exam-
ples of such systems, which include color centers in solids,
trapped ions, and neutral atoms. In the present section,
we also illustrate how photon pumping, together with qu-
dit operations on emitters and photons, can be used to
deterministically create entanglement between photonic
qudits.

As a warm-up example illustrating how this works, in
Sec. IV below we present protocols for generating one-
dimensional (1D) qudit graph states using a single quan-
tum emitter with an appropriate level structure. This
example is closely related to Ref. [62], which showed how
to produce a qubit 1D graph state from an emitter com-
prised of a single electron spin in an optically active quan-
tum dot. That work introduced a protocol in which each
photon emission is preceded by a Hadamard gate. Re-
peating the basic sequence of Hadamard gate followed
by optical pumping/photon emission n times results in
a n-qubit linear graph state. Because each photon emis-
sion can be viewed as a CNOT gate acting on the emit-
ter and emitted photon, this operation together with the
Hadamard gates effectively generates the requisite CZ
gate between neighboring photonic qubits.

Although the original proposal of Ref. [62] focused on
using photon polarization as the qubit degree of freedom,

…
| ⟩0 e

| ⟩1 e
| ⟩2 e | ⟩𝑞 − 1 e

π

| ⟩𝐸 e

𝑋*+,

FIG. 1. Photon-pumping operation Ppump. Time-bin pho-
tonic qudits with q levels are generated from a quantum emit-
ter with q ground states (|0⟩e, . . . , |q − 1⟩e), one of which
(|0⟩e) couples to an optically excited state (|E⟩e). A time-
bin photonic qudit is created by applying optical π pulses
and Xq−1 gates in alternating fashion. Each Xq−1 gate ro-
tates the q ground states cyclically as shown. By applying the
π-pulse/Xq−1 gate sequence q times, one obtains a photonic
time-bin qudit with q bins that is entangled with the emitter.

it is important to note that one can also generate a linear
graph state based on time-bin qubits by using circularly
(rather than linearly) polarized light to pump the emitter
and by including a few additional operations during each
cycle of the protocol [63]. In this protocol, only one of the
emitter ground states, say |0⟩e, can be optically excited
by the pump, so that an initial superposition state |0⟩e+
|1⟩e becomes |0⟩e|0⟩p + |1⟩e|vac⟩ after the first photon
emission, where |0⟩p corresponds to a photon in the first
time bin, while |vac⟩ represents the vacuum. If we then
apply an X gate on the emitter and perform a second
optical pumping operation, we obtain |1⟩e|0⟩p + |0⟩e|1⟩p,
where |1⟩p corresponds to a photon in the second time
bin.

The above protocol for time-bin qubits naturally ex-
tends to time-bin qudits with local dimension q, provided
we have at our disposal a quantum emitter with q en-
ergy levels comprising the ground state manifold, one
of which is optically coupled to an excited state. As in
the qubit case, upon emission these photonic time-bin
qudits will be entangled with the emitter. In general,
the cyclic transitions commonly used for optical read-
out of various qudit systems can be used to optically
pump photonic time-bin qudits with q levels through
a straightforward generalization of the pumping proce-
dure described above for qubits. For example, consider
a three-level quantum emitter with states |0⟩e, |1⟩e, |2⟩e.
We can initialize the emitter in the equal superposition
state |0⟩e+|1⟩e+|2⟩e and then alternate between pumping
the system and performing an X2 gate (Eq. (3)). Re-
peating this two-step cycle three times yields the state
|0⟩e|0⟩p + |1⟩e|1⟩p + |2⟩e|2⟩p, where |0⟩p, |1⟩p, |2⟩p are
three different photonic time-bin states in chronological
order. Denoting this net photon-pumping operation by
Ppump, we have

Pe,p
pump(|0⟩e + |1⟩e + |2⟩e) = Pe,p

pump

2∑
i=0

|i⟩e

= |0⟩e|0⟩p + |1⟩e|1⟩p + |2⟩e|2⟩p ,

(15)
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where Pe,p
pump produces photon p from emitter e. This can

be generalized to qudits with arbitrarily many levels q:

Pe,p
pump

q−1∑
i=0

|i⟩e =
q−1∑
i=0

|i⟩e|i⟩p

= |0⟩e|0⟩p + |1⟩e|1⟩p + · · ·+ |q − 1⟩e|q − 1⟩p .

(16)

This state is obtained by applying Xq−1 to the emitter
after each of the q pumping operations. The full photon-
pumping operation is depicted in Fig. 1. If we use the
convention that photons that have not yet been emit-
ted are initialized in state |0⟩p, then we can express this
operator as

Pe,p
pump =

q−1∑
i=0

|i⟩e⟨i|e ⊗Xi
p . (17)

Note that we can modify the pumping operation to ob-
tain different emitter-photon entangled states by chang-
ing the gates on the emitters. For example in the qutrit
case described above, if we replace X2 by X, then we ob-
tain the state |0⟩e|0⟩p + |1⟩e|2⟩p + |2⟩e|1⟩p. In the follow-
ing section, we show that having access to these multiple
versions of Ppump is important for generating the various
types of edges that qudit graph states can have. We will
also see that Ppump is the key ingredient needed for the
deterministic generation of qudit graph states.

IV. GRAPH STATE GENERATION

Any graph state of n photonic qudits with q levels
each can be generated from a collection of coupled q-
level quantum emitters using the operations described
above. The simplest way to see this is to note that any
photonic graph state can be generated in a conceptu-
ally straightforward manner by first preparing the tar-
get graph state on the emitters and then performing one
photon-pumping operation on each emitter. If we then
apply Hadamards on the emitters, measure the emit-
ters, and finally apply measurement-adapted single-qudit
gates on the photons, we can arrive at the target photonic
graph state.

To see how this works in more detail, we can first pre-
pare the graph state on the emitters by preparing each
emitter in the |X0⟩ state and then applying the gate

CZ
Γi,j
ei,ej on each pair of emitters ei and ej , where Γ is

the adjacency matrix of the graph:∏
i<j

CZΓi,j
ei,ej

 |X0⟩⊗n
e

=

q−1∑
k1,k2,...,kn=0

∏
i<j

ωkikjΓi,j

 |k1k2...kn⟩e . (18)

Because Pei,pi
pump and CZ

Γi,j
ei,ej both leave the Z-basis states

on emitter ei invariant, it follows that these two opera-
tions commute. Therefore, the state after we apply the
photon-pumping operation on each emitter can be rewrit-
ten as follows:(

n∏
ℓ=1

Peℓ,pℓ
pump

)∏
i<j

CZΓi,j
ei,ej

 q−1∑
k1,k2,...,kn=0

|k1k2...kn⟩e

=

∏
i<j

CZΓi,j
ei,ej

( n∏
ℓ=1

Peℓ,pℓ
pump

)
q−1∑

k1,k2,...,kn=0

|k1k2...kn⟩e

=

∏
i<j

CZΓi,j
ei,ej

 q−1∑
k1,k2,...,kn=0

|k1k2...kn⟩e ⊗ |k1k2...kn⟩p

=

q−1∑
k1,k2,...,kn=0

∏
i<j

ωkikjΓi,j

 |k1k2...kn⟩e ⊗ |k1k2...kn⟩p

=

∏
i<j

CZΓi,j
pi,pj

 q−1∑
k1,k2,...,kn=0

|k1k2...kn⟩e ⊗ |k1k2...kn⟩p

=

∏
i<j

CZΓi,j
pi,pj

 n⊗
i=1

q−1∑
ki=0

|ki⟩ei ⊗ |ki⟩pi (19)

If we now apply the Hadamard operation on each emitter
and then measure it in the Z basis, the state becomes∏

i<j

CZΓi,j
pi,pj

 n⊗
i=1

|oi⟩ei ⊗ |Xoi⟩pi
, (20)

where oi is the outcome from measuring emitter ei. If
we then perform the operation Zq−oi on each photon pi,
and use that

Zq−oi |Xoi⟩ = |Xoi+q−oi mod q⟩ = |X0⟩, (21)

the state becomes∏
i<j

CZΓi,j
pi,pj

 |X0⟩⊗n
p ⊗

n⊗
i=1

|oi⟩ei . (22)

We see that the final state of the photons is precisely the
target graph state.
The above analysis shows that arbitrary graph states

of n photonic qudits can be generated using at most n
multi-level quantum emitters. However, for most (if not
all) resource states of practical interest, far fewer than
n emitters are actually needed. This is because, in the
above analysis, all the entanglement in the final resource
state is created from emitter-emitter entangling gates.
However, the emission process provides a second source
of entanglement, since an emitted photon shares a max-
imally entangled link with the emitter it emerges from,
as is evident from Eq. (16). If this entanglement can also
be channeled into the target photonic graph state, then
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(a)

(b)

FIG. 2. One-dimensional linear graph states of three qudits.
(a) A linear graph state in which both edges correspond to CZ
gates. (b) A linear graph state in which both edges correspond
to CZ2 gates.

• 

• 

• 

Ladder graph state of size 2 X n

• • •

Two-dimensional graph state of size m X n

• 

• 

• 

• 

• 

• 

• 

• 

• 

• • • 

• • •

• 

•

• 

FIG. 3. Two-dimensional linear graph states. (Top) Ladder
state containing 2×n photons, and (bottom) 2D cluster state
containing m× n photons.

fewer emitters and emitter-emitter entangling gates will
be needed. In this section, we show an extreme exam-
ple of this, namely the 1D linear graph states. Figure 2
shows two small examples. Such states can be produced
using only one emitter, regardless of how many photons
they contain. In Appendix A, we show how to construct
a ladder state and more general 2D graph states referred
to as cluster states (see Fig. 3). In particular, we show
that a ladder state containing 2× n photons can be gen-
erated using two quantum emitters, while a more gen-
eral 2D cluster state of size m × n with m ≤ n can be
produced from m emitters. Unlike in the qubit case, in
the case of qudits there are multiple types of 1D or 2D
cluster states, depending on whether we use CZ or CZ2

or CZ3, etc., for each edge. For example, two different
linear graph states of three qudits are shown in Fig. 2,
where we use single edges to denote CZ and double edges
to denote CZ2. We can of course also have graph states
that contain both types of edges, triple edges, etc.

We now show how to generate 1D linear photonic q-
level qudit graph states comprised of only CZ edges (as
in Fig. 2(a)) from a single q-level quantum emitter. Here,

the only nonzero components in the upper triangle of the
adjacency matrix are along the superdiagonal, Γi,i+1 = 1,
and so the target graph state with n photons is (using
Eq. (14))

q−1∑
k1,k2,...,kn=0

(
n−1∏
i=1

ωkiki+1

)
|k1k2...kn⟩p . (23)

The main operations we need to produce this state are
the qudit H gate (Eq. (6)) and the photon-pumping op-
eration Ppump (Eq. (16)). We first prepare the emit-
ter in the state |0⟩e and then apply the H gate to con-

vert this to
∑q−1

k0=0 |k0⟩e. Applying Ppump to produce a

photon yields the state
∑q−1

k0=0 |k0⟩e ⊗ |k0⟩p1
, and per-

forming a second H gate on the emitter converts this to∑q−1
k0,k1=0 ω

k0k1 |k0⟩e⊗|k1⟩p1
. We can then repeat the two-

operation sequence HPpump an additional n− 1 times to
produce the following state of n photons entangled with
the emitter:

q−1∑
k0,k1,...,kn=0

ωk0k1ωk1k2 ...ωkn−1kn |k0⟩e⊗
n⊗

ℓ=1

|kℓ⟩pℓ
. (24)

We can then measure the emitter in the Z basis to disen-
tangle it from the photons. The post-measurement state
is

|oe⟩e ⊗
q−1∑

k1,...,kn=0

ωoek1ωk1k2 ...ωkn−1kn

n⊗
ℓ=1

|kℓ⟩pℓ
, (25)

where oe is the measurement outcome. We can apply
the operation Zq−oe to photon p1 to finally bring the n-
photon state into the form of the target state, Eq. (23):

|oe⟩e ⊗
q−1∑

k1,...,kn=0

ωk1k2 ...ωkn−1kn

n⊗
ℓ=1

|kℓ⟩pℓ
. (26)

The full graph state generation circuit for the case of
n = 3 photons is depicted in Fig. 4.

The state shown in Fig. 2(b) can be generated in a sim-
ilar fashion, but now with a modified photon-pumping
operation in which the Xq−1 gates on the emitters are
replaced by Xq−2 gates. Starting from an equal super-
position of emitter states,

∑q−1
i=0 |i⟩e, this modified ver-

sion of Ppump produces the state
∑q−1

i=0 |2i mod q⟩e⊗|i⟩p.
Applying an H gate on the emitter then yields

q−1∑
i,j=0

ω2ij |j⟩e ⊗ |i⟩p . (27)

Comparing this to Eq. (5), we see that the use of this
modified Ppump effectively generates a CZ2 gate between
emitter and photon instead of CZ. When the next pho-
ton is emitted, this becomes a CZ2-type edge in the pho-
tonic graph state. More generally, we can create a CZβ-
type edge by using a modified Ppump that uses Xq−β
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FIG. 4. Graph state generation circuit for 1D graph states
of three photonic qudits like those shown in Fig. 2.

gates on the emitters. In this way, we can not only create
states like in Fig. 2, but also states that contain multiple
different edge types. We also note that there exists an
alternative way to create CZq−1 edges where, instead of
modifying Ppump, we can replace the H gate by H† after
each photon-pumping operation, as follows directly from
Eq. (8). This alternative method will be used to generate
various graph states in the following section.

In the above examples, we create all the necessary
entanglement via CZβ gates between emitters and via
the emitter-photon entanglement that is created during
the emission process Ppump. We do not make use of
emitter-photon interaction in these examples. Such addi-
tional interaction after photon generation can be used to
perform emitter-photon entangling gates like CZ, CZ2,
... CZq−1. Allowing this third mechanism for entan-
glement generation can lead to even further reductions
in the numbers of emitters needed to produce a target
graph state. We give explicit examples of this in the
next section, where we present protocols for generating
AME states of photons. For example, in Sec. VB and
Appendix B, we present and compare two methods of
constructing an AME state of 5 qudits for any q ≥ 2.
In the first method, the use of additional interaction to
perform emitter-photon CZ gates makes it possible to
generate the entire state using only a single emitter. The
second method does not assume interaction post photon
generation is an option, in which case two emitters are
needed to create the state.

V. AME STATE GENERATION

Absolutely maximally entangled (AME) states, also re-
ferred to in some works as multipartite maximally entan-
gled states [64–66], are pure n-qudit quantum states with
local dimension q such that every reduced density matrix
on at most half the system size is maximally mixed. For
example, the Bell state |ϕ+⟩ = |00⟩ + |11⟩ and the GHZ
state |GHZ⟩ = |0000⟩ + |1111⟩ are both AME states be-
cause the reduced density matrices on each half of the sys-
tem are completely mixed. More formally, an AME(n, q)
state is a n-qudit pure state in H(n, q) := C⊗n

q iff

ρS = TrSc |ψ⟩⟨ψ| ∝ 1 ∀S ⊂ {1, . . . , n}, |S| ≤ ⌊n/2⌋ ,

where Sc denotes the complementary set of S. In this
section, we describe how one can generate some of these
states from quantum emitters. In the following, we use
the notation |AME(n, q)⟩ to refer to known AME states
in their standard representation, whereas we use the
notation |AME(n, q)graph⟩ to describe their graph state
forms, which are local-unitary equivalent.

A. Generating AME states of 4 qutrits

While it is known that AME states of 4 qubits do not
exist [2, 67], such states can exist for q > 2 [46, 68]. For
example, in the case of 4 qutrits (q = 3), the correspond-
ing AME state can be written explicitly as [68]:

|AME(4, 3)⟩ =
2∑

α,β=0

|α, β, α+ β mod 3, α+ 2β mod 3⟩

= |0000⟩+ |0112⟩+ |0221⟩
+ |1011⟩+ |1120⟩+ |1202⟩
+ |2022⟩+ |2101⟩+ |2210⟩ ,

(28)

where the local dimension is q = 3. This state is locally
equivalent to the graph states shown in Fig. 5 [68]. In
particular, one can perform H gates on the 3rd and 4th
qutrits of Eq. (28) to arrive at the graph form of the
state:

|AME(4, 3)graph⟩ =
2∑

i,j,k,l=0

ωikωjkωil ω2jl |i, j, k, l⟩ .

(29)
For the photon ordering shown in Fig. 5(a), this is

|AME(4, 3)graph⟩ =
2∑

i,j,k,l=0

ωikωjkωil ω2jl |i⟩p1
|j⟩p4

|k⟩p3
|l⟩p2

. (30)

while for the photon ordering shown in Fig. 5(b) we have

|AME(4, 3)graph⟩ =
2∑

i,j,k,l=0

ωikωjkωil ω2jl |i⟩p1
|j⟩p4

|k⟩p2
|l⟩p3

. (31)

In what follows, we present protocols for generating
the states in Eqs. (30) and (31) from two quantum emit-
ters, each of which has three ground levels, one of which
(|0⟩e) is optically coupled to an excited state via a cyclic
transition. Although the two states in Eqs. (30) and (31)
are the same up to a swapping of two photonic qutrits,
there are important physical distinctions here. First, the
order in which the photons are produced is different in
the two cases, as we describe below; this can be an im-
portant factor in how the resource state is used, since
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(a) (b)
p1 p3

p4p2

p3 p1

p2p4

FIG. 5. AME state of 4 qutrits. (a) The graph that repre-
sents the |AME(4, 3)graph⟩ state. (b) A graph representing a
state that is the same as the one in (a) up to a rearrangement
of the qutrits.

FIG. 6. Quantum circuits that produce the two versions of
the state |AME(4, 3)graph⟩ shown in Fig. 5.

it is generally preferable to produce photons in the or-
der in which they are later measured to reduce photon
storage requirements [29]. In addition, the two protocols
require different types of emitter gates. In both proto-
cols, we make use of entangling operations between the
emitters, in the spirit of Refs. [24, 27, 29, 69–72]. How-
ever, method 1 requires the ability to perform H, H†, and
CZ on the emitters, while method 2 requires H, CZ, and
CZ2. Thus, one can trade one type of entangling gate
for an additional type of single-emitter gate in this case.
The quantum circuits for both protocols are presented in
Fig. 6.

Our first method of generating an AME state of 4
qutrits (Fig. 6(a)) involves the following steps:

Step 1. Prepare the two emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2

Step 2. H gate, Eq. (6), on each emitter

↪→ |ϕstep2⟩ =
∑2

i,l=0 |i⟩e1 |l⟩e2

Step 3. CZ gate, Eq. (12), on the two emitters

↪→ |ϕstep3⟩ =
∑2

i,l=0 ω
il |i⟩e1 |l⟩e2

Step 4. Ppump, Eq. (15), on each emitter

↪→ |ϕstep4⟩ =
∑2

i,l=0 ω
il |i⟩e1 |i⟩p1

|l⟩e2 |l⟩p2

Step 5. H gate on the 1st and H† gate, Eq. (8), on the
2nd emitter
↪→ |ϕstep5⟩ =∑2

i,j,k,l=0 ω
ilωikω2jl |k⟩e1 |i⟩p1

|j⟩e2 |l⟩p2

Step 6. CZ gate on the two emitters
↪→ |ϕstep6⟩ =∑2

i,j,k,l=0 ω
ikωjkωilω2jl |k⟩e1 |i⟩p1

|j⟩e2 |l⟩p2

Step 7. Ppump on each emitter
↪→ |ϕstep7⟩ =∑2

i,j,
k,l=0

ωikωjkωilω2jl |k⟩e1 |k⟩p3
|i⟩p1

|j⟩e2 |j⟩p4
|l⟩p2

Step 8. H gate on each emitter and measure each emitter
in the Z basis
↪→ |ϕstep8⟩ = |AME(4, 3)graph⟩
=
∑2

i,j,k,l=0 ω
ikωjkωilω2jl |i⟩p1

|j⟩p4
|k⟩p3

|l⟩p2

To yield the state in the last step, we also performed
the local gates Z2o1

p3
, Z2o2

p4
on photons 3 and 4, where

o1 and o2 are the measurement outcomes for emitters 1
and 2, respectively. The final state in step 8 is the state
|AME(4, 3)graph⟩, shown in Eq. (30). All the steps are
summarized by the quantum circuit shown in Fig. 6(a).

To produce the state shown in Fig. 5(b), we propose
the following slightly modified protocol. The first 4 steps
remain the same as above, but steps 5-8 are different:

Step 5’. H gate, Eq. (6), on each emitter
↪→ |ϕstep5⟩ =∑2

i,j,k,l=0 ω
ilωikωjl |k⟩e1 |i⟩p1

|j⟩e2 |l⟩p2

Step 6’. CZ2 gate, Eq. (13), on the two emitters
↪→ |ϕstep6⟩
=
∑2

i,j,k,l=0 ω
ilωikωjlω2jk |k⟩e1 |i⟩p1

|j⟩e2 |l⟩p2

Step 7’. Ppump, Eq. (15), on each emitter
↪→ |ϕstep7⟩ =∑2

i,j,
k,l=0

ωilωikωjlω2jk |k⟩e1 |k⟩p3
|i⟩p1

|j⟩e2 |j⟩p4
|l⟩p2

Step 8’. H gate on each emitter
↪→ |ϕstep8⟩ =∑2

i,j,k,
l,m,n=0

Θ |m⟩e1 |k⟩p3
|i⟩p1

|n⟩e2 |j⟩p4
|l⟩p2

,

where Θ := ωilωikωjlω2jkωkmωjn

Step 9’. Measure each emitter in the Z basis
↪→ |ϕstep9⟩ = |AME(4, 3)graph⟩
=
∑2

i,j,k,l=0 ω
ikωjlωilω2jk |i⟩p1

|j⟩p4
|k⟩p3

|l⟩p2
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(b)

(c)

(a)

FIG. 7. (a) Graph representation of the |AME(5, q)graph⟩ state. (b) Generation circuit for the state in (a) that uses only a
single quantum emitter with q ground states. This circuit assumes the use of emitter-photon interaction. (c) Generation circuit
for the state in (a) that uses two quantum emitters, each with q ground states. This circuit does not require emitter-photon
interaction.

As before, after the emitters are measured, we perform
the local gates Z2o1

p3
Z2o2
p4

on photons 3 and 4, where o1
and o2 are the measurement outcomes for emitters 1 and
2, respectively, to arrive at the final state. This state is
the same as in Eq. (31) with the indices k ↔ l relabeled.
The quantum circuit that produces this state is shown in
Fig. 6(b). Note also that larger ladder-type qudit graph
states with arbitrary combinations of CZ and CZ2 edges
can be produced by repeating steps 5-7 in the above pro-
tocols. This is discussed in further detail in Appendix A.

Comparing the circuits in Figs. 6(a) and (b), we see
that we have the freedom to choose between performing a
CZ2 gate on the emitters or performing an H† (instead of
H) gate on one emitter followed by a CZ gate on the two
emitters. However, these two circuits are not physically
equivalent since the vertices of the graph are generated
in a different order in the two cases. In both protocols,
photons p1 and p2 are emitted first, followed by p3 and
p4. However, p2 and p3 are swapped in the corresponding
graphs (compare the two graphs in Fig. 5), and these
two vertices are not equivalent to each other. Thus, the
order in which the photons will later be measured may
determine which protocol is the better option.

B. Generating AME states of 5 qudits

AME states of 5 qubits were shown to exist in Ref. [73].
By exploiting a connection to quantum orthogonal ar-
rays, explicit examples of AME(5, q) states for any local

dimension q ≥ 2 were discovered more recently [47]:

|AME(5, q)⟩ =
q−1∑

α,β=0

|α, β, α+ β mod q⟩|ϕα,β⟩, (32)

where |ϕα,β⟩ = Xα⊗Zβ
∑q−1

γ=0 |γ, γ⟩. One can also show
that this state has a graph representation. In particular,
if one performs Hadamard gates on the third and fourth
qudits, the resulting state is

|AME(5, q)graph⟩

=

q−1∑
i,j,k,l,m=0

ωijωjkωklωlmωmi |i, j, k, l,m⟩ ,
(33)

which is the graph state shown in Fig. 7(a).
Here, we present two general protocols for generating

such states that work for all values of the local dimen-
sion q. The first protocol is summarized in Fig. 7(b).
The state after each layer of the circuit is shown in Ap-
pendix B. This protocol uses only a single quantum emit-
ter, but it assumes the capability of an emitted photon
to interact again with the emitter. More specifically, it
requires the ability to perform one emitter-photon CZ
gate between one of the emitted photons and the emit-
ter. While several works have proposed schemes for do-
ing this in the case of photonic qubits [31, 32, 74, 75],
the analogous qudit operation may be substantially more
challenging. This motivates the development of an alter-
native protocol that does not require such an operation.
The second protocol does not require photon-emitter

interaction, but at the expense of needing two cou-
pled quantum emitters. This protocol is summarized in
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(a) (b)
p1

p2

p6p5

p3
p4

p1

p2
p3

p4
p5

p6

(a) (b)
p1

p2

p6p5

p3
p4

p1

p2
p3

p4
p5

p6

(a) (c)

(b) (d)   

FIG. 8. (a,b) Two types of AME(6, q) states represented as graphs. (c) Circuit that generates the state in (a) using two
quantum emitters and emitter-photon interaction. (d) Circuit that generates the state in (b) using three quantum emitters but
no emitter-photon interaction.

p1

p2

p7

p5

p6

p3

p4

(a) (b)

FIG. 9. (a) Graph representing the |AME(7, 3)graph⟩ state. (b) Circuit that generates the state in (a) using two emitters and
photon-emitter interaction.

Fig. 7(c), where it is evident that two emitter-emitter CZ
gates are used. Aside from these gates and the photon-
pumping operation, the protocol only requires H gates on
the emitters and Zβ gates on some photons. The state
after each layer of the circuit is shown in Appendix B.
In both protocols, we assume the emitters have q ground
states, one of which can be optically excited to a higher-
energy state via a cyclic transition. Both use the photon-
pumping operation defined in Eq. (15).

C. Generating AME states of 6 qudits

Next, we consider |AME(6, q)graph⟩ states. The graph
representations of two such states are shown in Fig. 8
[68, 76]. We present protocols for generating both of
these types of graph states for qudits of arbitrary lo-
cal dimension q. The first protocol utilizes two coupled
emitters with q ground levels each and photon-emitter
interaction to generate graph states of the sort shown in
Fig. 8(a). The generation circuit is shown in Fig. 8(c).
The gates we use in this protocol are H gates (Eq. 6) and
CZ (Eq. 5) gates on the two emitters. This protocol also
requires three emitter-photon CZ gates generated by in-
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teraction after the photons are generated. The state after
each layer of the circuit is given in Appendix C.

Next, we present a protocol for generating the
AME(6, q) state corresponding to the graph shown in
Fig. 8(b). This protocol requires three coupled emit-
ters with q ground levels each but does not need photon-
emitter interaction. The circuit is shown in Fig. 8(d).
The only gates it requires are H and CZ gates on emit-
ters, as well as Zβ gates on the photons. The state after
each layer of the circuit is given in Appendix C.

D. Generating AME states of 7 qutrits

It is known that while AME states of 7 qubits do not
exist [77], AME states of 7 qutrits do exist. Through an
exhaustive numerical search checking the bipartite en-
tanglement of various graph states, it was found that the
graph shown in Fig. 9(a) corresponds to the AME(7, 3)
state [68]. We found that it is possible to generate this
state using two quantum emitters and emitter-photon in-
teraction. The circuit is shown in Fig. 9(b), while the
state after each layer of the circuit can be found in Ap-
pendix D. Our protocol uses two quantum emitters with
three ground levels each, as well as photon-emitter in-
teraction (four CZ operators between photons and emit-
ters). The protocol is similar to the one presented above
for the AME(6,q) states depicted in Fig. 8(a) due to the
similarity in graph structure.

A summary of the multi-qudit graph state generation
protocols presented so far is given in Table. I.

VI. QUANTUM ERROR CORRECTING CODES

It is known that AME states are useful for construct-
ing QECCs [2, 46, 49]. In this section, we show how this
connection can be exploited to develop protocols for gen-
erating multiphoton logical states of QECCs. First, we
briefly review the relation between certain QECCs and
AME states. A subspace C spanned by an orthonormal
set of states {|ψ0⟩, |ψ1⟩, . . . , |ψqk−1⟩}, also called code-
words, is a QECC with parameters [[n, k, d]]q. This code
is a qk dimensional subspace that encodes k logical qu-
dits into n physical qudits, if it obeys the Knill-Laflamme
conditions [60, 78]

∀m,m′ ∈ [qk] : ⟨ψm|E†F |ψm′⟩ = f(E†F ) δm,m′ , (34)

for all errors E,F with weight(E†F ) ≤ d, where the
weight of an operator is defined to be the number of
sites on which it acts non-trivially. The parameter d is
the distance of the quantum code, which is the minimal
number of single-qudit operations that are needed to cre-
ate a non-zero overlap between any two codewords from
the code state space C. A QECC with minimum distance
d can correct errors that affect no more than (d − 1)/2
of the physical qudits. In this section, we show how to
generate a [[3, 1, 2]]3 QECC, for which the codewords are
all AME states of 3 qutrits.

First, let us review how to construct the [[3, 1, 2]]3 quan-
tum code (see also [3, 49, 79]). It is known that the

AME(3, 3) states [49, 80]

|ψ0⟩ =
2∑

j=0

|j, j, j⟩,

|ψ1⟩ =M |ψ0⟩ =
2∑

j=0

|j + 1 mod 3, j, j + 2 mod 3⟩,

|ψ2⟩ =M2|ψ0⟩ =
2∑

j=0

|j + 2 mod 3, j, j + 1 mod 3⟩,

(35)

are the codewords of the [[3, 1, 2]]3 code. In the above,
the operator M is defined as M = X ⊗ 1⊗X2.
In order to construct the corresponding graph states,

it helps to first notice that by performing an H gate,
Eq. (6), on the first and third qudits, we get

|ψ′
0⟩ = H ⊗ 1⊗H |ψ0⟩ =

2∑
i,j,k=0

ωkjωij |k, j, i⟩, (36)

|ψ′
1⟩ = H ⊗ 1⊗H |ψ1⟩ =

2∑
i,j,k=0

ω(j+1)kω(j+2)i |k, j, i⟩,

(37)

|ψ′
2⟩ = H ⊗ 1⊗H |ψ2⟩ =

2∑
i,j,k=0

ω(j+2)kω(j+1)i |k, j, i⟩ .

(38)
Notice that the state |ψ′

0⟩ is equivalent to the 3-qutrit
graph state shown in Fig. 2(a) and discussed in Sec. III.
Thus, we already know how to generate this state, and
so it remains to show how to produce |ψ′

1⟩ and |ψ′
2⟩ from

a 3-level quantum emitter. For this, let us first discuss
how to generate |ψ′

1⟩:
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Graph # photons Local dimension # emitters Photon interaction required?

…q = 2

…q = 3
… …

n ≥ 2 q ≥ 2 1 no

n ≥ 4 q ≥ 2 2 no

n ≥ 6 q 3 no

and n = 4 q = 3 2 no

n = 5 q ≥ 2

First method: 1

Second method: 2

yes

no

n = 6 q ≥ 2 2 yes

n = 6 q ≥ 2 3 no

n = 7 q = 3 2 yes

TABLE I. Summary of the generation protocols of various multi-photon qudit graph states presented in this work. For each
protocol, the corresponding graph representation of the target state is shown, along with the number of photons it contains,
the number q of photonic time-bin states, the number of quantum emitters (with q ground states each) needed to produce the
state, and whether or not photon-emitter interaction is required for the protocol.

Step 1. Prepare the emitter in the state
↪→ |ϕstep1⟩ = |2⟩e

Step 2. H gate, Eq. (6), on the emitter

↪→ |ϕstep2⟩ =
∑2

i=0 ω
2i|i⟩e

Step 3. Ppump, Eq. (15), on the emitter

↪→ |ϕstep3⟩ =
∑2

i=0 ω
2i|i⟩e|i⟩p1

Step 4. H gate on the emitter
↪→ |ϕstep4⟩ =

∑2
i,j=0 ω

2iωij |j⟩e|i⟩p1

Step 5. Ppump and H gate on the emitter

↪→ |ϕstep5⟩ =
∑2

i,j,k=0 ω
2iωijωjk|k⟩e|j⟩p2

|i⟩p1

Step 6. Z gate, Eq. (2), on the emitter
↪→ |ϕstep6⟩ =
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i,j,k=0 ω

2iωijωjkωk |k⟩e|j⟩p2
|i⟩p1

Step 7. Ppump and H gate on the emitter
↪→ |ϕstep7⟩ =∑2

i,j,
k,l=0

ω2iωijωjkωkωkl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1

Step 8. Measure the emitter in the Z basis. Perform the
gate Z2o

p3
on photon p3, where o is the measure-

ment outcome. The resulting state is the desired
|ψ′

1⟩:

↪→ |ϕstep8⟩ = |ψ′
1⟩

=
2∑

i,j,k=0

ω2iωijωjkωk |k⟩p3
|j⟩p2

|i⟩p1
.

(39)

A similar protocol can be used to generate |ψ′
2⟩:

Step 1. Prepare the emitter in the state
↪→ |ϕstep1⟩ = |1⟩e

Step 2. H gate, Eq. (6), on the emitter

↪→ |ϕstep2⟩ =
∑2

i=0 ω
i|i⟩e

Step 3. Ppump, Eq. (15), to obtain the state

↪→ |ϕstep3⟩ =
∑2

i=0 ω
i|i⟩e|i⟩p1

Step 4. H gate on the emitter
↪→ |ϕstep4⟩ =

∑2
i,j=0 ω

iωij |j⟩e|i⟩p1

Step 5. Ppump and H gate on the emitter

↪→ |ϕstep5⟩ =
∑2

i,j,k=0 ω
iωijωjk |k⟩e|j⟩p2

|i⟩p1

Step 6. Z2 gate, Eq. (4), on the emitter

↪→ |ϕstep6⟩ =
∑2

i,j,k=0 ω
iωijωjkω2k |k⟩e|j⟩p2

|i⟩p1

Step 7. Ppump and H gate on the emitter
↪→ |ϕstep7⟩ =∑2

i,j,
k,l=0

ωiωijωjkω2kωkl |l⟩e|k⟩p3
|j⟩p2

|i⟩p1

Step 8. Measure the emitter in the Z basis. Perform the
gate Z2o

p3
on photon p3, where o is the measure-

ment outcome. The resulting state us the desired
|ψ′

2⟩:

↪→ |ϕstep8⟩ = |ψ′
2⟩

=
2∑

i,j,k=0

ωiωijωjkω2k |k⟩p3
|j⟩p2

|i⟩p1
.

(40)

Similar protocols can be devised to generate the code-
words of QECCs associated with any of the AME states
discussed in Sec. V.

VII. PHYSICAL IMPLEMENTATIONS

Photonic qudit states can be generated from a range
of different emitters. On the solid-state side, an example
is the well-known NV center in diamond, where among
its three ground states, |0⟩ and | ± 1⟩, state |0⟩ can be
reliably pumped to an excited state that subsequently
decays back down to |0⟩, emitting a photon [51, 52]. NV
centers can thus be used to generate photonic time-bin
qutrits. Since however the NV has a very low probability
of emitting into the zero-phonon line, it may be preferable
to consider alternative defects. The silicon-carbon diva-
cancy in SiC is another defect that has a triplet ground
state, and that generally resembles the electronic struc-
ture of NV-diamond, but with improved optical proper-
ties and comparably long coherence times [81–83]. For
local dimension q = 4, the silicon vacancy in SiC could
be used instead.

Atomic systems provide even more options for the
value of q, as they can contain well-resolved hyperfine
states. Trapped ions such as 40Ca+ [53] and 171Yb+

[54, 84, 85] can serve as multi-level quantum emitters
with local dimensions ranging from q = 3 up to q =
7 [53, 54, 84–87]. There has been significant experimental
progress in realizing single- and multi-qudit gate opera-
tions in chains of such ions [53, 54]. Few-atom systems
in a cavity are another contender for generation of qu-
dit graph states. A recent milestone experiment demon-
strated the generation of GHZ and linear cluster states
of qubits from a Rb atom [36]. While in that experi-
ment the photonic qubit was encoded in the polarization
degree of freedom, and therefore only two of the states
in the ground state manifold were used explicitly in the
protocol, a similar setup could be employed to demon-
strate qudit graph-state generation with time-bin encod-
ing and with more levels participating in the generation
process (up to q = 8 when both the F = 1 and the
F = 2 manifolds are used). To create more complex qu-
dit graphs, cavity-mediated interactions between two or
more atoms can be leveraged to create qudit CZ-type
gates by modifying the protocol for the already demon-
strated two-qubit gates in such systems [88].

VIII. CONCLUSIONS AND OUTLOOK

In conclusion, we presented explicit protocols for us-
ing coupled, controllable quantum emitters to determin-
istically generate multi-photon entangled states of time-
bin qudits. We proved that any graph state of time-bin
photonic qudits can be generated from coupled quantum
emitters with a suitable level structure using a small set
of single- and two-qubit gates on the emitters. We showed
that any linear graph state can be produced from a sin-
gle quantum emitter, and that 2D cluster states of size
m× n can be generated using m < n emitters. We then
focused on the problem of generating highly entangled
states known as AME states, which are important for
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a number applications in quantum networks and quan-
tum error correction. We showed that such states can
be produced from a small number of emitters, with or
without photon-emitter interaction. In some cases, we
found that fewer emitters can be used if photon-emitter
interaction is available, providing hints at what sort of
resource tradeoffs are possible in general. Potential can-
didates include defect centers in solids as well as atomic
systems. Our results provide a clear path forward to-
ward the efficient generation of complex states of light
for quantum information applications and a guide to ex-
perimental groups.

Future directions this work opens include addressing
the question of what the minimal resources are—in terms
of the number of emitters and the circuit depth—for the
generation of a target qudit graph. One could imagine
developing a formalism to answer these questions along
the lines of what was done in the context of qubits [29].
Another interesting direction would be to design specific
qudit gates for various candidate emitters and to quan-
tify the anticipated performance of the protocols. Our
protocols could also be combined with new approaches
to photonic one-way quantum repeaters based on pho-
tonic qudit states [42] to build error-correction into that
approach.
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Appendix A: How to generate ladder and
two-dimensional graph states

To generate a ladder graph state (see Fig. 10(a)), we
start from two quantum emitters with q ground levels
[69]. In this procedure, we only allow two-qubit gates
that act on emitters (no emitter-photon interaction).
The procedure is as follows:

Step 1. Prepare two emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2

Step 2. H gate, Eq. (6), on each emitter

↪→ |ϕstep2⟩ =
∑2

i,j=0 |i⟩e1 |j⟩e2

Step 3. CZ gate, Eq. (5), between the emitters

↪→ |ϕstep3⟩ =
∑q−1

i,j=0 ω
ij |i⟩e1 |j⟩e2

Ladder graph state of size 2 X 3 

Pt Ps 

(a) 

2D cluster state of size 3 X 3 

Pt 

(b) 

Ps 

p 

FIG. 10. (a) Graph representing the ladder graph state of
size 2×3, and (b) graph for the two-dimensional cluster state
of size 3 × 3.

Step 4. Ppump, Eq. (15), on each emitter

↪→ |ϕstep4⟩ =
∑q−1

i,j=0 ω
ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2

Step 5. H gate on each emitter
↪→ |ϕstep5⟩ =∑q−1

i,j,
k,l=0

ωijωikωjl |k⟩e1 |i⟩p1
|l⟩e2 |j⟩p2

Step 6. Ppump on each emitter
↪→ |ϕstep6⟩ =∑q−1

i,j,
k,l=0

ωijωikωjl |k⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |l⟩p4
|j⟩p2

Step 7. CZ between emitters
↪→ |ϕstep6⟩ =∑q−1

i,j,
k,l=0

ωijωikωjlωkl|k⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |l⟩p4
|j⟩p2

Step 8. H gate on each emitter
↪→ |ϕstep8⟩
=
∑q−1

i,j,k
l,m,n=0

κ |m⟩e1 |k⟩p3
|i⟩p1

|n⟩e2 |l⟩p4
|j⟩p2

where κ := ωijωikωjlωklωkmωln

Step 9. CZ gate between emitters
↪→ |ϕstep9⟩ =∑q−1

i,j,k
l,m,n=0

κ′ |m⟩e1 |k⟩p3
|i⟩p1

|n⟩e2 |l⟩p4
|j⟩p2

where κ′ := ωijωikωjlωklωkmωlnωmn

Step 10. Ppump and then H gate on each emitter

↪→ |ϕstep10⟩ =
q−1∑
i,j,k,l

m,n,o,r=0

κ′′ |o⟩e1 |m⟩p5
|k⟩p3

|i⟩p1
|r⟩e2 |n⟩p6

|l⟩p4
|j⟩p2

where κ′′ := ωijωikωjlωklωkmωlnωmnωmoωnr
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Step 11. Measure each emitter in the Z basis.

Perform the local gates Z
(q−1)o1
p5

Z
(q−1)o2
p6

on pho-
tons 5 and 6, where o1 and o2 are the measure-
ment outcomes for emitters 1 and 2, respectively,
yielding

↪→ |ϕstep11⟩

=

q−1∑
i,j,k

l,m,n=0

κ′′′ |m⟩p5
|k⟩p3

|i⟩p1
|n⟩p6

|l⟩p4
|j⟩p2

,

where κ′′′ := ωijωikωjlωklωkmωlnωmn.

The final state is a qudit photonic ladder graph state
like that shown in Fig. 10(a). Note that to produce sim-
ilar ladder graph states of larger size, i.e, size 2 × n, we
need to repeat Steps 6-8.

To extend a ladder and construct a two-dimensional
graph state of size m×n (also known as a cluster state),
we need m quantum emitters. As an example, we list the
steps one needs to follow to generate a 3× 3 graph state
(see Fig. 10(b)) using three quantum emitters:

Step 1. Prepare three emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2 |0⟩e3

Step 2. H gate, Eq. (6), on each emitter

↪→ |ϕstep2⟩ =
∑2

i,j,k=0 |i⟩e1 |j⟩e2 |k⟩e3

Step 3. Two CZ gates, Eq. (5), between e1e2 and e2e3
↪→ |ϕstep3⟩ =

∑q−1
i,j,k=0 ω

ijωjk |i⟩e1 |j⟩e2 |k⟩e3

Step 4. Ppump, Eq. (15), on each emitter

↪→ |ϕstep4⟩ =
∑q−1

i,j,k=0 ω
ijωjk |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2
|k⟩e3 |k⟩p3

Step 5. H gate on each emitter
↪→ |ϕstep5⟩ =

∑q−1
i,j,k,

l,m,n=0

ωijωjkωilωjmωkn |l⟩e1 |i⟩p1
|m⟩e2 |j⟩p2

|n⟩e3 |k⟩p3

Step 6. Two CZ gates, Eq. (5), between e1e2 and e2e3
↪→ |ϕstep6⟩ =

∑q−1
i,j,k,

l,m,n=0

ωijωjkωilωjmωknωlmωmn |l⟩e1 |i⟩p1
|m⟩e2 |j⟩p2

|n⟩e3 |k⟩p3

Step 7. Ppump on each emitter

↪→ |ϕstep7⟩ =
∑q−1

i,j,k,
l,m,n=0

ωijωjkωilωjmωknωlmωmn |l⟩e1 |l⟩p4
|i⟩p1

|m⟩e2 |m⟩p5
|j⟩p2

|n⟩e3 |n⟩p6
|k⟩p3

Step 8. H gate on each emitter
↪→ |ϕstep8⟩ =

∑q−1
i,j,k
l,m,n,
o,r,s=0

ωijωjkωilωjmωknωlmωmnωloωmrωns |o⟩e1 |l⟩p4
|i⟩p1

|r⟩e2 |m⟩p5
|j⟩p2

|s⟩e3 |n⟩p6
|k⟩p3

Step 9. Two CZ gates, Eq. (5), between e1e2 and e2e3
↪→ |ϕstep9⟩ =

∑q−1
i,j,k
l,m,n,
o,r,s=0

ωijωjkωilωjmωknωlmωmnωloωmrωnsωorωrs |o⟩e1 |l⟩p4
|i⟩p1

|r⟩e2 |m⟩p5
|j⟩p2

|s⟩e3 |n⟩p6
|k⟩p3

Step 10. Ppump on each emitter

↪→ |ϕstep10⟩ =
∑q−1

i,j,k
l,m,n,
o,r,s=0

ξ |o⟩e1 |o⟩p7
|l⟩p4

|i⟩p1
|r⟩e2 |r⟩p8

|m⟩p5
|j⟩p2

|s⟩e3 |s⟩p9
|n⟩p6

|k⟩p3

where ξ := ωijωjkωilωjmωknωlmωmnωloωmrωnsωorωrs

Step 11. H gate on each emitter
↪→ |ϕstep11⟩ =

∑q−1
i,j,k,l,m,n,
o,r,s,t,x,y=0

ξ′ |t⟩e1 |o⟩p7
|l⟩p4

|i⟩p1
|x⟩e2 |r⟩p8

|m⟩p5
|j⟩p2

|y⟩e3 |s⟩p9
|n⟩p6

|k⟩p3

where ξ′ := ωijωjkωilωjmωknωlmωmnωloωmrωnsωorωrsωotωrxωsy

Step 12. Measure each emitter in the Z basis.

Perform the local gates Z
(q−1)o1
p7

Z
(q−1)o2
p8

Z
(q−1)o3
p9

on photons 7, 8 and 9, where o1, o2 and o3 are the mea-
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surement outcomes for emitters 1, 2 and 3, respectively, yielding

↪→ |ϕstep12⟩

=

q−1∑
i,j,k,l,

m,n,o,r,s=0

ξ′′ |o⟩p7
|l⟩p4

|i⟩p1
|r⟩p8

|m⟩p5
|j⟩p2

|s⟩p9
|n⟩p6

|k⟩p3
,

where ξ′′ := ωijωjkωilωjmωknωlmωmnωloωmrωnsωorωrs.

And, to produce similar graph states of larger size, i.e.,
size 3× n, we need to repeat Steps 9-11.

Appendix B: How to generate AME states of 5
qudits

Here, we discuss how to generate |AME(5, q)graph⟩
states. The graph and generation circuits are shown in
Fig. 7. We begin by presenting the protocol that re-
quires only one quantum emitter with q ground levels
(Fig. 7(b)):

Step 1. Prepare the emitter in the state
↪→ |ϕstep1⟩ = |0⟩e

Step 2. Perform a Hadamard gateH, Eq. (6), to produce
the state
↪→ |ϕstep2⟩ = |X0⟩ =

∑
i |i⟩e

Step 3. Perform a photon-pumping operation Ppump,
Eq. (15), to generate a time-bin encoded pho-
ton, yielding the state
↪→ |ϕstep3⟩ =

∑q−1
i=0 |i⟩e|i⟩p1

Step 4. Perform an H gate on the emitter to get
↪→ |ϕstep4⟩ =

∑q−1
i,j=0 ω

ij |j⟩e|i⟩p1

Step 5. Repeat steps 3 and 4 three more times to obtain
↪→ |ϕstep5⟩ =

∑q−1
i,j,k,l,m=0

ωijωjkωklωlm |m⟩e|l⟩p4
|k⟩p3

|j⟩p2
|i⟩p1

Step 6. Interact the first photon p1 with the emitter to
perform a CZ gate between them, yielding
↪→ |ϕstep6⟩ =∑

i,j,k,l,m ωijωjkωklωlmωmi|m⟩e|l⟩p4
|k⟩p3

|j⟩p2
|i⟩p1

Step 7. Perform a photon-pumping operation Ppump fol-
lowed by an H gate on the emitter to obtain
↪→ |ϕstep7⟩ =∑

i,j,k,l,m,r

ωijωjkωklωlmωmiωmr|r⟩e|m⟩p5
|l⟩p4

|k⟩p3
|j⟩p2

|i⟩p1

Step 8. Measure the emitter in the Z basis and perform

Z
(q−1)o
p5

on photon p5, where o is the measure-
ment outcome. The resulting state is the desired
AME state:

↪→ |ϕstep8⟩ = |AME(5, q)⟩ =∑
i,j,k,l,m

ωijωjkωklωlmωmi|m⟩p5
|l⟩p4

|k⟩p3
|j⟩p2

|i⟩p1
.

In the protocol described above and shown in Fig. 7(b),
we need to send one of the emitted photons back to in-
teract with the emitter to generate a CZ gate between
them. An alternative approach that does not require
emitter-photon interaction is possible if we have access
to two coupled emitters with q ground levels each; one
such protocol works as follows (see the quantum circuit
in Fig. 7(c)):

Step 1. Prepare the two emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2

Step 2. Perform a Hadamard gate H, Eq. (6), on each
emitter, yielding
↪→ |ϕstep2⟩ =

∑q−1
i,j=0 |i⟩e1 |j⟩e2

Step 3. Perform a CZ gate, Eq. (5), on the two emitters
to get
↪→ |ϕstep3⟩ =

∑q−1
i,j=0 ω

ij |i⟩e1 |j⟩e2

Step 4. Perform photon-pumping operations Ppump,
Eq. (15), to each emitter to create two time-bin
photonic qudits, yielding
↪→ |ϕstep4⟩ =

∑q−1
i,j=0 ω

ij |i⟩e1 |i⟩p1
|j⟩e2 |j⟩p2

Step 5. Perform an H gate on each emitter to get
↪→ |ϕstep5⟩ =∑q−1

i,j,k,l=0 ω
ijωikωjl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2

Step 6. Perform a photon-pumping operation on the first
emitter (e1) to produce another photon:
↪→ |ϕstep6⟩ =∑q−1

i,j,k,l=0 ω
ijωikωjl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |j⟩p2

Step 7. Perform an H gate on the first emitter (e1) to
get
↪→ |ϕstep7⟩ =∑q−1

i,j,k,l=0 ω
ijωikωjlωkm |m⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |j⟩p2

Step 8. Perform a CZ gate on the two emitters to get
↪→ |ϕstep8⟩ =

q−1∑
i,j,k,
l,m=0

ωijωikωjlωkmωml |m⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |j⟩p2

Step 9. Perform a photon-pumping operation on each
emitter, followed by an H gate on each emit-
ter:
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↪→ |ϕstep9⟩ =

q−1∑
i,j,k,l

m,r,s=0

Ω|r⟩e1 |m⟩p4
|k⟩p3

|i⟩p1
|s⟩e2 |l⟩p5

|j⟩p2
,

where Ω = ωijωikωjlωkmωmlωmrωls

Step 10. Measure both emitters in the Z basis and

perform Z
(q−1)o1
p4

Z
(q−1)o2
p5

on photons p4 and p5,
where o1 and o2 are the measurement outcomes.
This yields the desired 5-photon state:

↪→ |ϕstep10⟩ = |AME(5, q)graph⟩ =
q−1∑
i,j,k,
l,m=0

ωijωikωjlωkmωml |m⟩p5
|k⟩p3

|i⟩p1
|l⟩p4

|j⟩p2
.

Appendix C: How to generate AME states of 6
qudits

Here, we discus the protocol for constructing the graph
representation of the |AME(6, q)graph⟩ state shown in
Fig. 8(a). This protocol requires two coupled emitters
with q ground levels each. It also needs photon-emitter
interaction. This protocol consists of the following steps:

Step 1. Prepare two q-level emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2

Step 2. Perform a Hadamard gate H, Eq. (6), on each
emitter to obtain
↪→ |ϕstep2⟩ =

∑q−1
i,j=0 |i⟩e1 |j⟩e2

Step 3. Perform a CZ gate, Eq. (5), on the two emitters
to get
↪→ |ϕstep3⟩ =

∑q−1
i,j=0 ω

ij |i⟩e1 |j⟩e2

Step 4. Perform photon-pumping operations Ppump,
Eq. (15), on each emitter to produce two pho-
tons:
↪→ |ϕstep4⟩ =

∑q−1
i,j=0 ω

ij |i⟩e1 |i⟩p1
|j⟩e2 |j⟩p2

Step 5. Perform an H gate on each emitter to obtain
↪→ |ϕstep5⟩ =∑q−1

i,j,k,l=0 ω
ijωikωjl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2

Step 6. Apply two CZ gates, one on the first photon (p1)
and the second emitter (e2), and the other on the
two emitters, yielding
↪→ |ϕstep6⟩ =∑q−1

i,j,k,l=0 ω
ijωikωjlωilωkl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2

Step 7. Perform photon-pumping operations on each
emitter to create two more photons:
↪→ |ϕstep7⟩ =

∑
i,j,k,l

ωijωikωjlωilωkl |k⟩e1 |k⟩p3
|i⟩p1

|l⟩e2 |l⟩p4
|j⟩p2

Step 8. Perform an H gate on each emitter to get
↪→ |ϕstep8⟩ =∑

i,j,k,
l,m,r

Ω |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

where Ω := ωijωikωjlωilωklωkmωlr

Step 9. Perform three CZ gates: One CZ on p4 and e1,
the other CZ on p2 and e2, and the third CZ
operator on e1 and e2. With this we obtain
↪→ |ϕstep9⟩ =

q−1∑
i,j,k,

l,m,r=0

Ω′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

,

where Ω′ := ωijωikωjlωilωklωkmωlrωlmωjrωmr

10. Perform a photon-pumping operation on each
emitter, followed by an H gate on each emit-
ter. Measure both emitters and perform the

gates Z
(q−1)o1
p5

Z
(q−1)o2
p6

on the newly generated
photons p5 and p6, where o1 and o2 are the mea-
surement outcomes. The final state is

↪→ |ϕstep10⟩ = |AME(6, q)graph⟩ =
q−1∑
i,j,k,

l,m,r=0

Ω′ |m⟩p5
|k⟩p3

|i⟩p1
|r⟩p6

|l⟩p4
|j⟩p2

,

which is the one shown in Fig. 8(a).

We now present a protocol for generating the
AME(6, q) states corresponding to the graph shown in
Fig. 8(b). This protocol requires three coupled emit-
ters with q ground levels each but does not need photon-
emitter interaction:

Step 1. Prepare three emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2 |0⟩e3 .

Step 2. Perform a Hadamard gate H, Eq. (6), on each
emitter to obtain
↪→ |ϕstep2⟩ =

∑q−1
i,j,k=0 |i⟩e1 |j⟩e2 |k⟩e3 .

Step 3. Perform three CZ gates on each pair of emitters
(i.e., on e1 and e2, on e2 and e3, and on e1 and
e3):

↪→ |ϕstep3⟩ =
∑q−1

i,j,k=0 ω
ijωjkωik |i⟩e1 |j⟩e2 |k⟩e3 .

Step 4. Perform photon-pumping operations Ppump,
Eq. (15), to each emitter to create three pho-
tons:
↪→ |ϕstep4⟩ =

∑q−1
i,j,k=0

ωijωjkωik |i⟩e1 |i⟩p1
|j⟩e2 |j⟩p2

|k⟩e3 |k⟩p3
.

Step 5. Perform an H gate on each emitter:
↪→ |ϕstep5⟩ =∑q−1

i,j,k,l,m,r=0 Θ |l⟩e1 |i⟩p1
|m⟩e2 |j⟩p2

|r⟩e3 |k⟩p3
,

where Θ := ωijωjkωikωilωjmωkr.
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Step 6. Again perform a CZ gate on each pair of emit-
ters:
↪→ |ϕstep6⟩ =

q−1∑
i,j,k,l,m,r=0

Θ′ |l⟩e1 |i⟩p1
|m⟩e2 |j⟩p2

|r⟩e3 |k⟩p3
,

where Θ′ := ωijωjkωikωilωjmωkrωlmωmrωlr.

Step 7. Perform a photon-pumping operation on each
emitter, followed by an H gate on each emitter.
Measure all three emitters and perform the gates

Z
(q−1)o1
p4

Z
(q−1)o2
p5

Z
(q−1)o3
p6

on the newly generated
photons p4, p5, and p6, where o1, o2, o3 are the
measurement outcomes. The final state is

↪→ |ϕstep7⟩ = |AME(6, q)graph⟩ =
q−1∑

i,j,k,l,m,r=0

Θ′ |l⟩p4
|i⟩p1

|m⟩p5
|j⟩p2

|r⟩p6
|k⟩p3

,

which is the one shown in Fig. 8(b).

The quantum circuits summarizing each protocol are
shown in Fig. 8.

Appendix D: How to generate AME states of 7
qutrits

Here, we discuss how to generate an AME state of 7
qutrits. We use two quantum emitters with three ground
levels each, and we allow photon-emitter interaction (four
CZ gates between photons and emitters). The protocol
is similar to the one presented above for the AME(6,q)
states depicted in Fig. 8(a) due to the similarity in graph
structure. The details are follows:

Step 1. Prepare the two quantum emitters in the state
↪→ |ϕstep1⟩ = |0⟩e1 |0⟩e2

Step 2. Perform a Hadamard gate H, Eq. (6), on each
emitter:
↪→ |ϕstep2⟩ = |X0⟩e1 |X0⟩e2 =

∑2
i,j=0 |i⟩e1 |j⟩e2

Step 3. Perform CZ2, Eq. (13), on the two emitters to
get
↪→ |ϕstep3⟩ =

∑2
i,j=0 ω

2ij |i⟩e1 |j⟩e2
Step 4. Perform the photon-pumping operation Ppump,

Eq. (15), on each emitter to create two photons:

↪→ |ϕstep4⟩ =
∑2

i,j=0 ω
2ij |i⟩e1 |i⟩p1

|j⟩e2 |j⟩p2

Step 5. Perform an H gate on each emitter:
↪→ |ϕstep5⟩ =∑2

i,j,k,l=0 ω
2ijωikωjl |k⟩e1 |i⟩p1

|l⟩e2 |j⟩p2

Step 6. Apply two CZ gates, Eq. (12), one on the first
photon (p1) and the second emitter (e2), and the
other on the two emitters (e1 and e2), yielding

↪→ |ϕstep6⟩ =∑2
i,j,k,l=0 ω

2ijωikωjlωilωkl |k⟩e1 |i⟩p1
|l⟩e2 |j⟩p2

Step 7. Perform photon-pumping operations on each
emitter to create two more photons:
↪→ |ϕstep7⟩ =∑

i,j,
k,l
ω2ijωikωjlωilωkl |k⟩e1 |k⟩p3

|i⟩p1
|l⟩e2 |l⟩p4

|j⟩p2

Step 8. Perform an H gate on each emitter:
↪→ |ϕstep8⟩ =∑2

i,j,k,
l,m,r=0

Ξ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

where Ξ := ω2ijωikωjlωilωklωkmωlr

Step 9. Perform two CZ gates, one on p4 and e1, the
other on e1 and e2, yielding
↪→ |ϕstep9⟩ =∑2

i,j,k,
l,m,r=0

Ξ′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |l⟩p4
|j⟩p2

where Ξ′ := ω2ijωikωjlωilωklωkmωlrωlmωmr

Step 10. Perform a photon-pumping operation on only e2
to create one more photon:
↪→ |ϕstep10⟩ =∑2

i,j,k,
l,m,r=0

Ξ′ |m⟩e1 |k⟩p3
|i⟩p1

|r⟩e2 |r⟩p5
|l⟩p4

|j⟩p2

Step 11. Perform an H† gate, Eq. (8), on e2 to yield
↪→ |ϕstep11⟩ =∑2

i,j,k,l
m,r,s=0

Ξ′′ |m⟩e1 |k⟩p3
|i⟩p1

|s⟩e2 |r⟩p5
|l⟩p4

|j⟩p2

where Ξ′′ := ω2ijωikωjlωilωklωkmωlrωlmωmrω2sr

Step 12. Apply two CZ gates, one on the fourth photon
(p4) and the second emitter (e2), and the other
on p2 and e2:
↪→ |ϕstep12⟩ =

2∑
i,j,k,l

m,r,s=0

Ξ̃ |m⟩e1 |k⟩p3
|i⟩p1

|s⟩e2 |r⟩p5
|l⟩p4

|j⟩p2

where

Ξ̃ := ω2ijωikωjlωilωklωkmωlrωlmωmrω2srωslωjs

Step 13. Perform a photon-pumping operation on each
emitter, followed by an H gate on each emitter.
Measure both emitters in the Z basis and
perform the gates Z

(q−1)o1
p6

Z
(q−1)o2
p7

on the newly
generated photons, p6 and p7, where o1 and o2
are the measurement outcomes. The final state is

↪→ |ϕstep13⟩ = |AME(7, 3)graph⟩ =
2∑

i,j,k,l
m,r,s=0

Ξ̃ |m⟩p6
|k⟩p3

|i⟩p1
|s⟩p7

|r⟩p5
|l⟩p4

|j⟩p2
,

which is the state shown in Fig. 9(a).

The quantum circuit for constructing |AME(7, 3)graph⟩
is presented in Fig. 9(b).
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mann, Yu-Chen Chen, Péter Udvarhelyi, Cristian Bon-
ato, Jawad Ul Hassan, Robin Karhu, Ivan G. Ivanov,
Nguyen Tien Son, Jeronimo R. Maze, Takeshi Ohshima,
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