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Supersingular elliptic curves over Z,-extensions

By Mirela Ciperiani at Austin

Abstract. Let E/Q be an elliptic curve and p a prime of supersingular reduction for E.
Consider a quadratic extension L/Q, and the corresponding anticyclotomic Z,-extension
Lo/ L. We analyze the structure of the points E(L ) and describe two global implications
of our results.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N and p a rational prime such
that p > 5 and E has supersingular reduction at p. Consider a finite extension L/Q, and
a Zp-extension L, of L. Denote by L, the unique subextension of L, of degree p” over L.
Following Kobayashi [13], we define

ET(L,) ={P €E(L,) | UL, /Lyt P € E(Lm) forall m € 27 such that 0 <m < n},
E"(Ln) ={P €E(Ly) | trr,/L,,,, P € E(Lsn) forallm € 27 + 1 such that 0 <m < n}.

Note that in particular E¥(Lo) = E(L). We now view

. + 1
]—LnI)nE (Ln) ® Qp/Zp € H (Loo, Epeo)
as a module over A = Z,[[Gal(Loo/L)]].
In the case when L = Q, and Lo /Q), is totally ramified, we know that

(1.1) E(L,) =BT (L,) +E~(L,), EY(Lp,)NE (L,)=E(L) foralln > 1.

This was proven by Kobayashi [13] for the cyclotomic Z,-extension L, /Q, and then general-
ized by lovita and Pollack [12] to cover all totally ramified extensions L~ /Qp,. By Burungale,
Kobayashi, and Ota [4, Theorem 2.7], we now know that (1.1) holds also in the case when
L/Qp is a quadratic unramified extension and L/ L is the anticyclotomic Z ,-extension.

Since p is a supersingular prime by work of Rubin [16, Lemma 2.2] and Konovalov [14],
we have

E(Loo) ® Qp/Zp ~ H' (Loo, Epoo)
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which together with (1.1) implies that

(1.2) corankA(L;mE (Ln) ® Qp/Zp N L;mE (Ln) ® Qp/Zp) = 0,
where

BNES
LimE*(Ln) ® Qp/Zp
are viewed as submodules of H' (Lo, Epoc). We would like to know that the above statement
holds in greater generality. Observe that (1.2) is weaker than

(1.3) I£)HE+(L,1) ® Qp/Zp N Lﬂ)lE_(Ln) ® Qp/Zp =E(L) ® Qp/Zp,

n n

which follows from (1.1) and if L # Q, is only known by work of Burungale, Kobayashi, and
Ota [4, Theorem 2.7] in the case when L/Q), is an unramified quadratic extension and Lo/ L
is the anticyclotomic Zp-extension. It is our hope that the following theorem can eventually be
proven and refined for much more general L/Q), even if (1.3) does not hold.

Let L/Qp be a quadratic extension and Lo, /L the anticyclotomic Z,-extension of L,
i.e. the non-trivial element of Gal(L/Q,) acts on Gal(L~/L) by inverting every element. We
prove the following theorem.

Theorem 1.1. Let L/Q, be a quadratic extension and Lo /L the anticyclotomic Zp-
extension of L. Then

. . . . + . — o . _
(1) the ln;:rsectlon of ]_gnn ET(L,) ® Qp/Zp and Li)nn E™(Ln) ® Qp/Zp has trivial A
corank;

.o . :l:
(ii) the A-corank of Iﬁ)nn E=(Ly) ® Qp/Zp equals 2.

The proof uses Heegner points coming from the anticyclotomic Z,-extensions of two
distinct carefully chosen imaginary quadratic extensions of Q which both localize to L at the
prime p. The existence of these two quadratic extensions follows by work of Friedberg and
Hoffstein [9]. However, in the case when L/Q is unramified, due to the properties of Heegner
points (see (2.1) in the inert case), using our method, we cannot distinguish the contributions
of even Heegner points coming from the two quadratic extensions. This is where we use work
of Rubin [17] on local units to get an upper bound on the A -corank of Iﬂln ET(Ly) ® Qp/Zp
which then allows us to complete the argument.

The structure of points of supersingular elliptic curves in local Zp,-extensions of non-
trivial extensions of Q, is presently opaque. Theorem 1.1 is the our first step towards ellu-
cidating it. The proof is fine enough that it allows us to use our understanding of Heegner
points to test conjectures about the further structure of E(Lo). In particular, it can be used
to refute the possibility that we could split the local points of E(L;) in a modulo 2d way
with d = [L : Qp] analogous to the modulo 2 version which gives rise to the E*(L,), in
order to break E(Lo) ® Qp/Z), into 2d A-corank 1 submodules. More precisely, if, for
r € {0,2d — 1}, we consider

EM(Ly) == (P € E(Ln) | tp, /1, P € E(Lof:0,lk+r)
for some k € Z and for all m < n},
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then
E" (Loo) ® Qp/Zp := LIME" (Ly) ® Qp/Z,p
n
are not necessarily of A-corank 1. In fact, if d = 2 and L/Q), is ramified, using Theorem 1.1,
one can see that localizations of Heegner points will give rise to a A-corank 2 submodule in
E" (L) ® Qp/Z, foreach r € {0,1,2,3}.

We will now describe two global implications of Theorem 1.1. In [5], we consider an
elliptic curve E/Q of supersingular reduction at p, an imaginary quadratic extension K/Q
such that every rational prime dividing the conductor of E/Q splits, and the anticyclotomic Z -
extension of Ko,/ K. Under the assumption that p splits in K/Q, we prove that the A-corank
of E(Koo) ® Qp/Z), equals 2 and II(E/Koo)poe is a cotorsion A-module; see [5, Theo-
rem 3.1 and Corollary 3.2]. If p does not split, we can now use Theorem 1.1 to give a proof of
[5, Proposition 2.1]. More precisely, by assuming that K /Q satisfies the Heegner hypothesis,
we consider Heegner points o, € E(Ks) (see § 2.1 for definitions and relevant properties)
which give rise to the following corank 1 A-modules:

Lin 2 Gal Koo/ K)latzn. Lim Zp{Gal (Ko/ K)letzns1 € EKoo) & Qp/Zp.

By localizing each layer Z,[Gal(K«o/ K )]ay, at the relevant prime above p, we have

resp(]-i)n Zp[Gal(Koo/K)]OQn) &® Qp/Zp c Ll)nE-i-(Ln) &® Qp/Zp,
n n

resp (Li)nzp[Gal(Koo/K)]OlZn—H) ® Qp/Zp < Li)nE_(Ln) Q® Qp/Zp.

n

Then, by Theorem 1.1, it follows that Heegner points give rise to a corank 2 A-module within
E(Kso) ® Qp/Zp as stated in [5, Proposition 2.1]. Since this is the only step of the proof where
the splitting of p in K/Q is used, we now have the following theorem.

Theorem 1.2. Let E/Q be an elliptic curve with supersingular reduction at the prime
p such that p > 5, K/Q an imaginary quadratic extension satisfying the Heegner hypothesis,
and Koo the anticyclotomic 7 p-extension of K. Then the A-corank of E(Keo) ® Qp/Zp
equals 2 and INI(E/ Koo ) poo is a cotorsion A-module.

The second global situation is a basic case of the more general set-up that we are aiming
to tackle. We consider a real quadratic extension F/Q such that p does not split and a totally
imaginary quadratic extension K/F such that the prime of o C F above p splits (see §3).
Then we can consider the Z,-extension Koo /K contained in the union of the anticyclotomic
extensions of K of conductor g” for all n € N such that the completion of K at g equals Lo,
and the CM points z, € E(K}), where K,, denotes the unique subextension of K, of degree p”
over K. Unlike Heegner points, these CM points do not naturally localize to points in E¥(Ly);
see (3.3). Despite this issue, we use Theorem 1.1 to prove that if") 3, € E(K,) \ E(K,—1) for
almost all n, then these CM points give rise to a corank 2 submodule in E(Ks) ® Qp/Z), and
hence

corankp E(Keo) ® Qp/Zp > 2.

D Cornut and Vatsal [8] have shown that, for almost all anticyclotomic Zp-extensions of K, we have
3n € E(Ky) \ E(K,—1) for almost all n.
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2. Local results

Let E be an elliptic curve defined over Q of conductor N, L/Q,, a quadratic extension,
Loo/L the anticyclotomic Zp-extension of L, and L, the unique subextension of L of degree
p" over L. Denote by g the prime of L above p.

2.1. Heegner points. We fix a parametrization 7: Xo(N) — E which maps the cusp
at oo to the origin of E. Let K be an imaginary quadratic extension of @@ such that all primes
dividing N split in K/Q, and denote by Ok the ring of integers of K. We can then choose
an ideal N such that Og /N ~ Z/NZ. For any positive integer ¢ prime to N, we can con-
sider x, = (C/0O.,C/N;) € Xo(N), where O, denotes the order of K of conductor ¢ and
MNe = N N O.. We define the Heegner point y. = m(x.). The Heegner point y. is defined
over the ring class field of K of conductor ¢, K|c].

Let

K[p™®] = K[p"].
n>1
Then Gal(K[p*]/K) is isomorphic to Z, x A, where A is a finite abelian group. The unique
Zp-extension of K contained in K[p®°] is the anticyclotomic Z ,-extension K,/ K. Denote by
K] pk (")] the minimal ring class field of p-power conductor containing K;,, the subextension of
Koo of degree p” over K. Then we define a, € E(Ky) to be the trace of y, k) from K[pkm
to K;,. Perrin-Riou [15, Section 3.3, Lemme 2] has shown that

g [pr+2]/ K[pr+1]Ypn+2 = dpYpn+1 — ypn  forn >0,

. apy1 if p isinertin K/Q,
T =
Kip)/ K11 (ap —o)yr if p ramifies in K/Q,
for some 0 € Gal(K[1]/K).
Setko = max{n € N | K, € K[1]}. Since p > 5 and E has supersingular reduction at p,
it follows? that a p» = 0 and hence

(2.1) K, >/ K,On+2 = —0y forn > ko,

t 0 if p isinertin K/Q,
Iy K. (04 = . . .
ko+2/Kig+1%ko+2 —ay, if p ramifies in K/Q,

trKk0+1 /Kkoako-i-l =

—(p + Dag, if pisinertin K/Q,
—oay, if p ramifies in K/Q,

for some o € Gal(Ky,/K).

Furthermore, complex conjugation t € Gal(Ks/Q) acts on the Heegner points «;,, and
by [11, Proposition 5.3], we know that af € —eg" (an) + E(Q)ors, Where g denotes a topo-
logical generator of Gal(Kso/K), i, € Z, and € is the sign of the functional equation of E/Q.
In particular,

(2.2) af € —€ao + E(Q)rors.

2) This is our reason for assuming p > 5.
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2.2. Local points. Following Kobayashi, we have defined

E+(Ln) ={P € E(Lp) | tr,
E7(Lp) = {P € E(Ly) | try,

P € E(L,) forall m € 27 such that 0 < m < n},
P € E(L,,) forallm € 2Z + 1 such that 0 < m < n}.

/Lm+1

/Lin+1

The Galois group Gal(L, /L) acts on E*(L,). Hence,

: +
Iﬂ)nE Ln) ® Qp/Zp

n

can be viewed as modules over A = Z,[[Gal(Lo/L)]]. We will now analyze their A-coranks.

Proposition 2.1. If L/Q), is unramified, then the A-corank of Ii][)ln ET(L,) ® Qy/Zp
is less than or equal to 2.

Proof. Let E/Z, be the formal group associated to E. We know that, over Oy, the ring
of integers of L, the formal group E is isomorphic to the Lubin—Tate formal group of height
two with uniformizing parameter — p; see [13, Proposition 8.6]. Then following Rubin [17],
we consider Uy the units of L(E,.+1) which are congruent to 1 modulo the maximal ideal.
Observe that L, € L(E,»+1) and hence Loo € L(Epe). Since

Gal(L(Epe)/L) ~ OF ~ (OL/pOL)* x OL ~ Gal(L(E,)/L) x O,

we consider the map
k: Gal(L(Epeo)/L) — Of

and denote by w the restriction of x to Gal(L(E,)/L). For any Oy [Gal(L(E,)/L)]-module M,
M? denotes the submodule of M on which Gal(L(E,)/L) acts via @. We can then define

Ugo = (I(ﬁnUn ®z, OL)° and Voo = Uso/(0 — k(0))Uos,
n

where the transition maps of the inverse limit are simply the norm maps and o is a topological
generator of Gal(L(Ep~)/Loo(Ep)) =~ Zp. Then Vo is a A-module, and by [17, Proposi-
tion 1], we know that rankp Voo = 4.

Set =1 and £~ to be the sets of characters y: Gal(Loo/L) — Q; of conductor an even
and odd, respectively, power of p. For any character y € X% that factors through Gal(L, /L),
we consider the O -linear homomorphism dy: Uso — L(En+1) defined as follows:

Sy(u) = p~"~! > AP)Sn ()7

y €Gal (L(Epn-l—l )/L)

where 8;: Uoo — L(E,n+1) are the Coates—Wiles logarithmic derivatives (they depend on a
choice of a generator of the Tate module 7, (E) which we fix); see [17, Section 2]. Since, by
[17, Lemma 2.1 (ii)], we have 6, ((0 — k(0))Us) = O for every x € Y%, we can now define

VT ={veVy| dy(v) =O0forevery y € X7 }.

Using elliptic units Rubin proves that rank, V* > 2 (see [17, Corollary 3.4]). It then follows
that rankp Voo /VT < 2.
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Let A denote the logarithm map of E. For any character y € ¥7 and y € E(Lo), we
define

AM=p" Y A,

y€Gal(L,, /L)

where n € N is large enough so that y € E(L,) and y factors through Gal(L, /L). Consider
the set
AT ={y € E(Lso) | A4(y) =0 forall y € X7}

We will now show that
(g—1DET(L,) C AT foralln e N,

where g denotes a topological generator of Gal(Ls,/L) (the argument is identical to the proof
of [17, Corollary 6.2]). Let y € (g — 1)ET(L,) and y € =% such that if y is non-trivial, it
factors through Gal(L,, /L) and is non-trivial on Gal(L,, /Ly,—1). Observe that, since y € =T,
it follows that m is odd. Moreover, as ET(L,) € E*(L, [n/2))» We may assume that n is even.
We have three cases to consider:

* n < m: since x is non-trivial on Gal(L,, /L), we have A,(y) = 0;
s 0<m<n:Ay(y) = p" "Ay(try, /1, y) = Osince tr, /1,y € E(Li—1);
* x is the trivial character: Ay (y) = Ay(tr,/1.y) = Osince y € (g — DHE*T(Ly,).

Since #E(F2) = p? + 1 —a? — B2, where a, f are the complex roots of x% — apx +p =20
and in our case ap = 0, we observe that #E(FF,2) = (p + 1)2. Then, as Loo/L is totally rami-
fied, it follows that

(p+ 1)2E+(Ln) c E+(Ln),

which implies that
(2.3) (g—D(p+1D?ET(L,) € AT foralln e N.
By [17, Corollary 5.7], we know that
AT ®Q,/Z, ~Homg, (Voo/ VT, Epeo).

Since rankp Voo/ VT < 2, it follows that coranky AT ® Qp/Zp < 2 which together with
(2.3) allows us to deduce that

pt
corank p Lﬂ)lE Ln) ®Qp/Zp < 2. m)

n

Set Ry, := Zp[Gal(L,/L)] and R, := Z/ pZ[Gal(L, /L)]. We may now view E*(L,) as
Rp-modules and E*(L,)/p" as R,-modules. This will be used in the proof of the following
theorem.

Theorem 2.2. The intersection of

IinngE (L) ® Qp/Zp and L%)nE Ln) ® Qp/Zp

has trivial A-corank.
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Proof. Let L = Qp[«/g], where d € Z, such that p? } d. By [9, Theorem B (2)] of
Friedberg and Hoffstein, we know that we can find dy, d» € Z such that

(i) the quadratic twist E41 /Q has trivial analytic rank and d; is a non-trivial quadratic
residue modulo p;

(ii) the analytic rank of E?2 /Q equals 1 and d> is a non-trivial quadratic residue modulo p.

Then the same result of Friedberg and Hoffstein also allows us to choose two negative integers
d3, d4 such that

(1) d3 = d4 = d modulo p;

(ii) the primes dividing the conductor of E?1/Q, E%2 /Q split in Qplvds]l/Q, Qplvda]/Q,
respectively;
(i) the analytic rank of E43/Q equals 1, while that of E44/Q is trivial.

We will now consider two imaginary quadratic fields K = Q(+/d3) and K’ = Q(+/d4).
Observe that the completions of K and K’ at the prime above p equal L. Moreover,

« if L/Q, is inert, then g is principal, and hence it splits completely in K[1]/K and
K'[1]/K’, respectively,

* if L/Q, is ramified, then ¢? is principal which implies that g splits completely in the
p-part of K[1]/K and K'[1]/K’, respectively.

This implies that the prime of K and K’, respectively, above p splits completely in K, and
Kk/ respectively, where k, = max{n € N | K;, € K'[1]}.

We will now consider the elliptic curves Edl /Q and E%2/Q. Since d1, d, are non-trivial
quadratic residues modulo p, we have

E/Qp = Edl/Qp = Edz/@p-

Then, by the uniqueness of the anticyclotomic Z, extension of L which follows from class field
theory, we have the following two restriction maps:

resg, B (K, k) — E(Ly) and resy,: E¥ (K}, i) = E(La),

where g, denotes the prime of L,, above p, and for simplicity, it also denotes the corresponding
prlme of K4k, and K, k> respectively, above p. The Heegner points oy, € E?! (K,) and
o), € E% (K7 give rise to the local points

Bn = tresy, (aytk,) and B, =t'resy, a’,’l+k6 € E(L,),

where 1 = #E91 (Q)ors and t' = #E42 (Q)ors- Consequently, the Heegner point relations (2.1)
imply that

(24) tan+2/Lnﬂn+2 = —,Bn forn > 0,
0 if pisinertin L/Q,
try, /L, B2 = K . e
—Bo = —p*Otresy () if p ramifies in L/Q,
By = —(p+ Do = —(p + 1) pFot resy(ap) if p is inert in L/Q,
Li/LP1 —Bo = _pkoz resg, (o) if p ramifies in L/Q,

and similarly for B8], € E(Ly).
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Observe that, since the analytic ranks of E?1 /K and E42/K are equal to 1, the points
oo € E91(K) and o € E?(K) are non-torsion points, and hence By, By € E(L) \ E(L)ors. In
addition, since the analytic rank of E4 /Q equals 0, while the analytic rank of E% /Q is equal
to 1, in view of the action of complex conjugation on Heegner points (2.2), it follows that
T(tag) = —tag, while tog € E?2(Q), and hence

(2.5) B0 = —Po and B € E(Qp).

By (2.4) above, we see that Bop. B, € EY(Lam) and Bom1. Bomyq € BE-(Lams1).
We will now use these points in our analysis of ET(L,,). Observe that

E+(L2m+1) - E+(L2m) and E_(LZm) - E_(L2m—1)~

Moreover, since E(L,,)/(ET(L,) + E™(L,)) is annihilated simultaneously by

l_[ ULy /Loy and l_[ UL g1 /Lom

0<2m=<n 0<2m+1<n

it follows that
(2.6) p"E(Ln) S E*(Ly) + E"(Ly).

Finally, since the Z,-rank of E(L,) equals that of @, the ring of integers of L,, we deduce
that

rankyz , ET(L,) = rankz,, O + Z (rankz, O2m — rankz, O2m—1),

0<2m=<n

rankz , E~(L,) = rankz, O + Z (rankz , O2m+1 —rankz,, Oap).
0<2m+1<n

Consider the following submodule of E™ (L, +1):

Rom+1B2m+1 + Rom+1Bome1 S E Lams1),

and the surjective maps R%m+1 — Rom+1B2m+1 + R2m+1,3/2m+1. It follows that

Lgl(RZm—HIBZm—H + Romt1Bomr1) = A
m

where M := Hom(M, Qp/Z,) for any A-module M. Observe that, by (2.4) and (2.5), we see
that

(Lgn(R2m+1ﬂ2m+1 + R2m+1,3,2m+1))Gal(L°°/L) = (Qp/Zp)Bo + (Qp/Zp) By
" ~ (Qp/Zp)?.

which implies that

. 2
Lim(R2m+1B2m+1 + R2m+1:3/2m+1) ~ A
m

Since
A //\
LimR ~ LimR ! ~ A,
2m+1B2m+1 2m+1B2m+1
m m



Ciperiani, Supersingular elliptic curves over Zp-extensions 53

it follows that there exists f € A such that f(Rom+1B2m+1 N Ram+1B5,,4q) = 0 for all
m € N. Since we also know that

(g—1 1_[ Uy, /Lo, € A
o<r<m
is a minimal annihilator of the A-modules R2,,+1B2m+1 and ﬁ2m+1ﬁ/2m 4 1- it follows that
the difference between the Zj-rank of E™ (L2, 4-1) and the Zp-rank of its submodule
Rom+1B2m+1 + Rom+1Bom+1

is bounded independently of m. It then follows that

corank A Lim(Rzm+1B2m-+1 + Rom+1Bomy1) = corankp LimE™(Ln) ® Qp/Zp = 2.
m n

If p ramifies in L/Q, then by (2.4) and (2.5), we also have that

@7 (LimRomBam + RomBh) ™ = (@p/Z,)B0 + (Qp/2)B)
g ~ (Qp/Zp)%,

and as above, we deduce that

. . +
corank o Ign(Rzm,Bzm + RomPBh,,) = corankp [£>nE L) ®@Qp/Zp = 2.
m n
Observe that if p is inert in L/Q, then relations (2.4) do not imply (2.7). However, in this case,
by Proposition 2.1, we know that

Rt
corank p Ii)nE Ln) ®Qp/Zpy < 2.

n

We now view Lgnn Ef(L,) ®Q »/Zp as submodules of H! (Lo, Epoc). Notice that (2.6)
implies that
(E¥(Ln) + E7(Ln)) ® Qp/Zp = E(Ln) ® Qp/Zp.

Since Lo /L is ramified, we have

: _ 1l

Then, since E;(Lso) is bounded by the Corank Lemma [10, Chapter 2], we know that
corankz,, H'(L,. Epo) —2[Ly, 1 Qp]

is bounded independently of 7, and hence corank A H! (Lo, E poe) = 4. Consequently, we have

(2.8) corankA(LigEﬂLn) ® Qp/Zp + LImE™ (Ly) ® Qp/Zp) = 4.
n n

Finally, since we have shown that
: +
corank A L_;r)nE Ln) ®Qp/Zp <2,
it follows that

CorankA(Ii)nE+(Ln) ® Qp/ZpN LﬂlE_(Ln) ® Qp/Zp) =0. ]

n n
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Corollary 2.3. The A-corank of Iinn ET(L,) ®Q /Ly equals 2.

Proof. Observe that, by the proof of the above theorem, we know that

corank p [Lnr)nE Ln) ®Qp/Zp =2.

This together with (2.8) and the above theorem imply that

LRt —
corank p I%nE Ln) ®Qp/Zp = 2. m)

3. Complex multiplication points

Let F be a real quadratic extension of Q, g the unique® prime of F above p, K/F a totally
imaginary quadratic extension such that

(i) the prime g of F above p splits in K,
(i) the discriminant of K/F is coprime to Ng /g, the conductor of E over F, and

(iii) the number of prime divisors of the squarefree part of the ideal Ng/r that are inert in K/F
is odd.

Since E is defined over Q and hence modular by [2,21], condition (iii) together with the
fact that F/Q is cyclic imply that there exists a Shimura curve X that parametrizes the elliptic
curve E over F; see [1]. By work of Shimura, we know that X is equipped with complex mul-
tiplication (CM) points which are defined over number fields. We then use the parametrization
to view the CM points of X as points on E. For each ideal  prime to the conductor Ng /g, we
consider the CM point y5 € E(K[f]), where K[f]/K is the ring class field of conductor f (see
[19, Section 7.2]).

We now focus on the case when f = ", where g is the prime of F above p andn € N,
For every abelian group G, we set G=G® [1,Zp. Let K[p>] = U, K["]. The Galois
group Gal(K[p"]/K) ~ K* \ K*/ FX(QXn, where (91: and O denote the ring of integers of F
and K, respectively, and Opn = Of + KJ” Ok. Hence, the Galois group of K[p>°]/K contains
a subgroup of finite index isomorphic to Z[F“’ Q]

By [19, Proposition 7.5], we have

Un+1

(31) trK[&)n+1]/K[pn]y6@n+l = a@y«p” — ypn—l,

n
where 1, denotes the cardinality of (O on N K*F*)/ (5? Since Opn C Ogn+1, it follows that
Up < Upt1. By [19, Lemma 7.3], we know that u, divides 2[0g : OF], which immediately
implies that ”*' =1 for almost all n € N. Moreover, if E has supersingular reduction at p
and p > 5, we ﬁnd that

3.2)

0 if p ramifies in F/Q,
a =
v 2p if pisinertin F/Q.

3 The case where p splits in F/Q is treated in earlier work; see [5].
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Let Koo € K[$p™>°] be a Z,-extension of K and let K, be the subextension of K, of degree p”
over K. Denote by p*) the minimal power of g such that K,, € K[p*)]. Observe that, for
n sufficiently large, we have

bn 4 1) = | R 2 if pramifies in F/Q,
k(n) + 1 if pisinertin F/Q.
We now define
In = trK[@k(H)]/Knyéok(n) € E(Kn)

By (3.1) and (3.2), we find that there exists ¢ € N such that, for n > ¢, we have

—D%n if p ramifies in F/Q,
2p3n — p3n—1 if pisinertin F/Q.

Let #x__ denote the Z[Gal(K/K)]-submodule of E(K«) generated by the CM points
{3n € E(K,) | n € N, n > c}. By [8, Theorem 1.10] of Cornut and Vatsal, we know that there
exists a Zp-extension of Koo € K[0°] such that the CM points 3, € E(K,) \ E(K;—1), and

in particular are non-trivial, for sufficiently large .
Observe that relations (3.3) imply that if the prime p ramifies in F/Q, then

(3.3) UK,y 41 /K Frt+1 = {

g, 41 /K, Fn+1 +3n) =0 foralln >c,
and when the prime p is inert in F/Q, we have
K, 1 /Ky Fn+1 —23n + Fn—1) =0 foralln > c.
Theorem 3.1. Let Koo € K[p™] be a Zp-extension of K such that the completion of
Ko at a prime above p is the anticyclotomic Zy-extension of K. If 3, € E(Ky) \ E(K;—1)

for almost all n, then

corankp Hx,, @ Qp/Zp > 2.

Proof. Consider the following Z[Gal(K, /K)]-submodules of E(K):

+ _ J{Z[Gal(Ky /K)|Gn +Fn—1) | n € 2N, n > ¢) if p ramifies in F/Q,

Koo ™ (Z|Gal(K,, /K)Gn —2§n—1+3n—2) | n € 2N, n > ¢) if pisinertin F/Q;

_ J{Z[Gal(Kyn /K)](Gn +Fn—1) |n €2N+1,n > ¢) if p ramifies in F/Q,
Koo ™ (Z|Gal(K, /K)Gn —23n—1+3n—2) |n € 2N +1,n > ¢) if pisinertin F/Q.

Observe that resy, ](]g:oo C Lﬁ)nn E*(L,), and hence Theorem 2.2 implies that
(3.4) corankp (resy, J(’goo ® Qp/Zp Nresp Hy @ Qp/Zp) = 0.
Our assumption that 3, € E(K,) \ E(K,—1) for almost all n € N implies that
3n + 3n—1-%n — 23n—1 + 3n—2 € E(K,) \ E(K,,—1) for almostalln € N.

It then follows that
corank A 36%00 ®Qp/Zp > 1.

Then, by (3.4), we deduce that the A-corank of #Hkx,, ® Q,/Z) is at least 2. O

Remark 3.2. Note that, by Corollary 2.3, we know that corank p JfKioo ®Qp/Zy <2,
and by ongoing joint work extending [6], we expect/hope that equality holds.
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