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Supersingular elliptic curves over Zp-extensions
By Mirela Çiperiani at Austin

Abstract. Let E=Q be an elliptic curve and p a prime of supersingular reduction for E.
Consider a quadratic extension L=Qp and the corresponding anticyclotomic Zp-extension
L1=L. We analyze the structure of the points E.L1/ and describe two global implications
of our results.

1. Introduction

Let E be an elliptic curve defined over Q of conductor N and p a rational prime such
that p � 5 and E has supersingular reduction at p. Consider a finite extension L=Qp and
a Zp-extension L1 of L. Denote by Ln the unique subextension of L1 of degree pn over L.
Following Kobayashi [13], we define

EC.Ln/ D ¹P 2 E.Ln/ j trLn=LmC1
P 2 E.Lm/ for all m 2 2Z such that 0 � m < nº;

E�.Ln/ D ¹P 2 E.Ln/ j trLn=LmC1
P 2 E.Lm/ for all m 2 2ZC 1 such that 0 � m < nº:

Note that in particular E˙.L0/ D E.L/. We now view

Lim
��!

n

E˙.Ln/˝Qp=Zp � H1.L1; Ep1/

as a module over ƒ D ZpŒŒGal.L1=L/��.
In the case when L D Qp and L1=Qp is totally ramified, we know that

(1.1) E.Ln/ D EC.Ln/C E�.Ln/; EC.Ln/ \ E�.Ln/ D E.L/ for all n � 1:

This was proven by Kobayashi [13] for the cyclotomic Zp-extension L1=Qp and then general-
ized by Iovita and Pollack [12] to cover all totally ramified extensions L1=Qp. By Burungale,
Kobayashi, and Ota [4, Theorem 2.7], we now know that (1.1) holds also in the case when
L=Qp is a quadratic unramified extension and L1=L is the anticyclotomic Zp-extension.

Since p is a supersingular prime by work of Rubin [16, Lemma 2.2] and Konovalov [14],
we have

E.L1/˝Qp=Zp ' H1.L1; Ep1/
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which together with (1.1) implies that

(1.2) corankƒ

�
Lim
��!

n

EC.Ln/˝Qp=Zp \ Lim
��!

n

E�.Ln/˝Qp=Zp

�
D 0;

where
Lim
��!

n

E˙.Ln/˝Qp=Zp

are viewed as submodules of H1.L1; Ep1/. We would like to know that the above statement
holds in greater generality. Observe that (1.2) is weaker than

(1.3) Lim
��!

n

EC.Ln/˝Qp=Zp \ Lim
��!

n

E�.Ln/˝Qp=Zp D E.L/˝Qp=Zp;

which follows from (1.1) and if L ¤ Qp is only known by work of Burungale, Kobayashi, and
Ota [4, Theorem 2.7] in the case when L=Qp is an unramified quadratic extension and L1=L

is the anticyclotomic Zp-extension. It is our hope that the following theorem can eventually be
proven and refined for much more general L=Qp even if (1.3) does not hold.

Let L=Qp be a quadratic extension and L1=L the anticyclotomic Zp-extension of L,
i.e. the non-trivial element of Gal.L=Qp/ acts on Gal.L1=L/ by inverting every element. We
prove the following theorem.

Theorem 1.1. Let L=Qp be a quadratic extension and L1=L the anticyclotomic Zp-
extension of L. Then

(i) the intersection of Lim
��!n

EC.Ln/˝Qp=Zp and Lim
��!n

E�.Ln/˝Qp=Zp has trivial ƒ-
corank;

(ii) the ƒ-corank of Lim
��!n

E˙.Ln/˝Qp=Zp equals 2.

The proof uses Heegner points coming from the anticyclotomic Zp-extensions of two
distinct carefully chosen imaginary quadratic extensions of Q which both localize to L at the
prime p. The existence of these two quadratic extensions follows by work of Friedberg and
Hoffstein [9]. However, in the case when L=Q is unramified, due to the properties of Heegner
points (see (2.1) in the inert case), using our method, we cannot distinguish the contributions
of even Heegner points coming from the two quadratic extensions. This is where we use work
of Rubin [17] on local units to get an upper bound on the ƒ-corank of Lim

��!n
EC.Ln/˝Qp=Zp

which then allows us to complete the argument.
The structure of points of supersingular elliptic curves in local Zp-extensions of non-

trivial extensions of Qp is presently opaque. Theorem 1.1 is the our first step towards ellu-
cidating it. The proof is fine enough that it allows us to use our understanding of Heegner
points to test conjectures about the further structure of E.L1/. In particular, it can be used
to refute the possibility that we could split the local points of E.Ln/ in a modulo 2d way
with d D ŒL W Qp� analogous to the modulo 2 version which gives rise to the E˙.Ln/, in
order to break E.L1/˝Qp=Zp into 2d ƒ-corank 1 submodules. More precisely, if, for
r 2 ¹0; 2d � 1º, we consider

E.r/.Ln/´ ¹P 2 E.Ln/ j trLn=Lm
P 2 E.L2ŒLWQp�kCr/

for some k 2 Z and for all m � nº;
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then
E.r/.L1/˝Qp=Zp ´ Lim

��!
n

E.r/.Ln/˝Qp=Zp

are not necessarily of ƒ-corank 1. In fact, if d D 2 and L=Qp is ramified, using Theorem 1.1,
one can see that localizations of Heegner points will give rise to a ƒ-corank 2 submodule in
E.r/.L1/˝Qp=Zp for each r 2 ¹0; 1; 2; 3º.

We will now describe two global implications of Theorem 1.1. In [5], we consider an
elliptic curve E=Q of supersingular reduction at p, an imaginary quadratic extension K=Q
such that every rational prime dividing the conductor of E=Q splits, and the anticyclotomic Zp-
extension of K1=K. Under the assumption that p splits in K=Q, we prove that the ƒ-corank
of E.K1/˝Qp=Zp equals 2 and X.E=K1/p1 is a cotorsion ƒ-module; see [5, Theo-
rem 3.1 and Corollary 3.2]. If p does not split, we can now use Theorem 1.1 to give a proof of
[5, Proposition 2.1]. More precisely, by assuming that K=Q satisfies the Heegner hypothesis,
we consider Heegner points ˛n 2 E.K1/ (see § 2.1 for definitions and relevant properties)
which give rise to the following corank 1 ƒ-modules:

Lim
��!

n

ZpŒGal.K1=K/�˛2n; Lim
��!

n

ZpŒGal.K1=K/�˛2nC1 � E.K1/˝Qp=Zp:

By localizing each layer ZpŒGal.K1=K/�˛n at the relevant prime above p, we have

resp
�
Lim
��!

n

ZpŒGal.K1=K/�˛2n

�
˝Qp=Zp � Lim

��!
n

EC.Ln/˝Qp=Zp;

resp
�
Lim
��!

n

ZpŒGal.K1=K/�˛2nC1

�
˝Qp=Zp � Lim

��!
n

E�.Ln/˝Qp=Zp:

Then, by Theorem 1.1, it follows that Heegner points give rise to a corank 2 ƒ-module within
E.K1/˝Qp=Zp as stated in [5, Proposition 2.1]. Since this is the only step of the proof where
the splitting of p in K=Q is used, we now have the following theorem.

Theorem 1.2. Let E=Q be an elliptic curve with supersingular reduction at the prime
p such that p � 5, K=Q an imaginary quadratic extension satisfying the Heegner hypothesis,
and K1 the anticyclotomic Zp-extension of K. Then the ƒ-corank of E.K1/˝Qp=Zp

equals 2 and X.E=K1/p1 is a cotorsion ƒ-module.

The second global situation is a basic case of the more general set-up that we are aiming
to tackle. We consider a real quadratic extension F=Q such that p does not split and a totally
imaginary quadratic extension K=F such that the prime of } � F above p splits (see § 3).
Then we can consider the Zp-extension K1=K contained in the union of the anticyclotomic
extensions of K of conductor }n for all n 2 N such that the completion of K1 at } equals L1,
and the CM points zn 2 E.Kn/, where Kn denotes the unique subextension of K1 of degree pn

over K. Unlike Heegner points, these CM points do not naturally localize to points in E˙.Ln/;
see (3.3). Despite this issue, we use Theorem 1.1 to prove that if1) zn 2 E.Kn/ n E.Kn�1/ for
almost all n, then these CM points give rise to a corank 2 submodule in E.K1/˝Qp=Zp and
hence

corankƒ E.K1/˝Qp=Zp � 2:

1) Cornut and Vatsal [8] have shown that, for almost all anticyclotomic Zp-extensions of K, we have
zn 2 E.Kn/ n E.Kn�1/ for almost all n.
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2. Local results

Let E be an elliptic curve defined over Q of conductor N, L=Qp a quadratic extension,
L1=L the anticyclotomic Zp-extension of L, and Ln the unique subextension of L1 of degree
pn over L. Denote by } the prime of L above p.

2.1. Heegner points. We fix a parametrization � WX0.N/! E which maps the cusp
at1 to the origin of E. Let K be an imaginary quadratic extension of Q such that all primes
dividing N split in K=Q, and denote by OK the ring of integers of K. We can then choose
an ideal N such that OK=N ' Z=NZ. For any positive integer c prime to N, we can con-
sider xc D .C=Oc; C=Nc/ 2 X0.N/, where Oc denotes the order of K of conductor c and
Nc D N \Oc. We define the Heegner point yc D �.xc/. The Heegner point yc is defined
over the ring class field of K of conductor c, KŒc�.

Let
KŒp1� D

[
n�1

KŒpn�:

Then Gal.KŒp1�=K/ is isomorphic to Zp ��, where � is a finite abelian group. The unique
Zp-extension of K contained in KŒp1� is the anticyclotomic Zp-extension K1=K. Denote by
KŒpk.n/� the minimal ring class field of p-power conductor containing Kn, the subextension of
K1 of degree pn over K. Then we define ˛n 2 E.Kn/ to be the trace of ypk.n/ from KŒpk.n/�

to Kn. Perrin-Riou [15, Section 3.3, Lemme 2] has shown that

trKŒpnC2�=KŒpnC1�ypnC2 D apypnC1 � ypn for n � 0;

trKŒp�=KŒ1�yp D

´
apy1 if p is inert in K=Q;

.ap � �/y1 if p ramifies in K=Q;

for some � 2 Gal.KŒ1�=K/.
Set k0 D max¹n 2 N j Kn � KŒ1�º. Since p � 5 and E has supersingular reduction at p,

it follows2) that ap D 0 and hence

trKnC2=Kn
˛nC2 D �˛n for n > k0;(2.1)

trKk0C2=Kk0C1
˛k0C2 D

´
0 if p is inert in K=Q;

�˛k0
if p ramifies in K=Q;

trKk0C1=Kk0
˛k0C1 D

´
�.p C 1/˛k0

if p is inert in K=Q;

��˛k0
if p ramifies in K=Q;

for some � 2 Gal.Kk0
=K/.

Furthermore, complex conjugation � 2 Gal.K1=Q/ acts on the Heegner points ˛n, and
by [11, Proposition 5.3], we know that ˛�

n 2 ��gin.˛n/C E.Q/tors, where g denotes a topo-
logical generator of Gal.K1=K/, in 2 Z, and � is the sign of the functional equation of E=Q.
In particular,

(2.2) ˛�
0 2 ��˛0 C E.Q/tors:

2) This is our reason for assuming p � 5.
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2.2. Local points. Following Kobayashi, we have defined

EC.Ln/ D ¹P 2 E.Ln/ j trLn=LmC1
P 2 E.Lm/ for all m 2 2Z such that 0 � m < nº;

E�.Ln/ D ¹P 2 E.Ln/ j trLn=LmC1
P 2 E.Lm/ for all m 2 2ZC 1 such that 0 � m < nº:

The Galois group Gal.Ln=L/ acts on E˙.Ln/. Hence,

Lim
��!

n

E˙.Ln/˝Qp=Zp

can be viewed as modules over ƒ D ZpŒŒGal.L1=L/��. We will now analyze their ƒ-coranks.

Proposition 2.1. If L=Qp is unramified, then the ƒ-corank of Lim
��!n

EC.Ln/˝Qp=Zp

is less than or equal to 2.

Proof. Let E=Zp be the formal group associated to E. We know that, over OL, the ring
of integers of L, the formal group E is isomorphic to the Lubin–Tate formal group of height
two with uniformizing parameter �p; see [13, Proposition 8.6]. Then following Rubin [17],
we consider Un the units of L.EpnC1/ which are congruent to 1 modulo the maximal ideal.
Observe that Ln � L.EpnC1/ and hence L1 � L.Ep1/. Since

Gal.L.Ep1/=L/ ' O�
L ' .OL=pOL/� �OL ' Gal.L.Ep/=L/ �OL;

we consider the map
�WGal.L.Ep1/=L/! O�

L

and denote by ! the restriction of � to Gal.L.Ep/=L/. For any OLŒGal.L.Ep/=L/�-module M ,
M ! denotes the submodule of M on which Gal.L.Ep/=L/ acts via !. We can then define

U1 D
�
Lim
 ��

n

Un ˝Zp
OL

�! and V1 D U1=.� � �.�//U1;

where the transition maps of the inverse limit are simply the norm maps and � is a topological
generator of Gal.L.Ep1/=L1.Ep// ' Zp. Then V1 is a ƒ-module, and by [17, Proposi-
tion 1], we know that rankƒ V1 D 4.

Set †C and †� to be the sets of characters �WGal.L1=L/! Q�
p of conductor an even

and odd, respectively, power of p. For any character � 2 †˙ that factors through Gal.Ln=L/,
we consider the OL-linear homomorphism ı�WU1 ! L.EpnC1/ defined as follows:

ı�.u/ D p�n�1
X


2Gal.L.E
pnC1 /=L/

�.
/ın.u/
 ;

where ınWU1 ! L.EpnC1/ are the Coates–Wiles logarithmic derivatives (they depend on a
choice of a generator of the Tate module Tp.E/ which we fix); see [17, Section 2]. Since, by
[17, Lemma 2.1 (ii)], we have ı�..� � �.�//U1/ D 0 for every � 2 †˙, we can now define

VC
D ¹v 2 V1 j ı�.v/ D 0 for every � 2 †�

º:

Using elliptic units Rubin proves that rankƒ VC � 2 (see [17, Corollary 3.4]). It then follows
that rankƒ V1=VC � 2.
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Let � denote the logarithm map of E. For any character � 2 †C and y 2 E.L1/, we
define

��.y/ D p�n
X


2Gal.Ln=L/

��1.
/�.y/
 ;

where n 2 N is large enough so that y 2 E.Ln/ and � factors through Gal.Ln=L/. Consider
the set

AC
D ¹y 2 E.L1/ j ��.y/ D 0 for all � 2 †C

º:

We will now show that

.g � 1/EC.Ln/ � AC for all n 2 N;

where g denotes a topological generator of Gal.L1=L/ (the argument is identical to the proof
of [17, Corollary 6.2]). Let y 2 .g � 1/EC.Ln/ and � 2 †C such that if � is non-trivial, it
factors through Gal.Lm=L/ and is non-trivial on Gal.Lm=Lm�1/. Observe that, since � 2 †C,
it follows that m is odd. Moreover, as EC.Ln/ � EC.L2bn=2c/, we may assume that n is even.
We have three cases to consider:

� n < m: since � is non-trivial on Gal.Lm=Ln/, we have ��.y/ D 0;

� 0 < m < n: ��.y/ D pn�m��.trLn=Lm
y/ D 0 since trLn=Lm

y 2 E.Lm�1/;

� � is the trivial character: ��.y/ D ��.trLn=Ly/ D 0 since y 2 .g � 1/EC.Ln/.

Since #E.Fp2/ D p2 C 1 � ˛2 � ˇ2, where ˛, ˇ are the complex roots of x2 � apx C p D 0

and in our case ap D 0, we observe that #E.Fp2/ D .p C 1/2. Then, as L1=L is totally rami-
fied, it follows that

.p C 1/2EC.Ln/ � EC.Ln/;

which implies that

(2.3) .g � 1/.p C 1/2EC.Ln/ � AC for all n 2 N:

By [17, Corollary 5.7], we know that

AC
˝Qp=Zp ' HomOL.V1=V C; Ep1/:

Since rankƒ V1=V C � 2, it follows that corankƒ AC ˝Qp=Zp � 2 which together with
(2.3) allows us to deduce that

corankƒ Lim
��!

n

EC.Ln/˝Qp=Zp � 2:

Set Rn ´ ZpŒGal.Ln=L/� and Rn ´ Z=pZŒGal.Ln=L/�. We may now view E˙.Ln/ as
Rn-modules and E˙.Ln/=pn as Rn-modules. This will be used in the proof of the following
theorem.

Theorem 2.2. The intersection of

Lim
��!

n

EC.Ln/˝Qp=Zp and Lim
��!

n

E�.Ln/˝Qp=Zp

has trivial ƒ-corank.
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Proof. Let L D QpŒ
p

d�, where d 2 Zp such that p2 − d . By [9, Theorem B (2)] of
Friedberg and Hoffstein, we know that we can find d1; d2 2 Z such that

(i) the quadratic twist Ed1=Q has trivial analytic rank and d1 is a non-trivial quadratic
residue modulo p;

(ii) the analytic rank of Ed2=Q equals 1 and d2 is a non-trivial quadratic residue modulo p.

Then the same result of Friedberg and Hoffstein also allows us to choose two negative integers
d3; d4 such that

(i) d3 � d4 � d modulo p;

(ii) the primes dividing the conductor of Ed1=Q, Ed2=Q split in QpŒ
p

d3�=Q, QpŒ
p

d4�=Q,
respectively;

(iii) the analytic rank of Ed3=Q equals 1, while that of Ed4=Q is trivial.

We will now consider two imaginary quadratic fields K D Q.
p

d3/ and K 0 D Q.
p

d4/.
Observe that the completions of K and K 0 at the prime above p equal L. Moreover,

� if L=Qp is inert, then } is principal, and hence it splits completely in KŒ1�=K and
K 0Œ1�=K 0, respectively,

� if L=Qp is ramified, then }2 is principal which implies that } splits completely in the
p-part of KŒ1�=K and K 0Œ1�=K 0, respectively.

This implies that the prime of K and K 0, respectively, above p splits completely in Kk0
and

K 0
k0

0
, respectively, where k0

0 D max¹n 2 N j K 0
n � K 0Œ1�º.

We will now consider the elliptic curves Ed1=Q and Ed2=Q. Since d1, d2 are non-trivial
quadratic residues modulo p, we have

E=Qp D Ed1=Qp D Ed2=Qp:

Then, by the uniqueness of the anticyclotomic Zp extension of L which follows from class field
theory, we have the following two restriction maps:

res}n
WEd1.KnCk0

/! E.Ln/ and res}n
WEd2.K 0

nCk0
0
/! E.Ln/;

where }n denotes the prime of Ln above p, and for simplicity, it also denotes the corresponding
prime of KnCk0

and K 0
nCk0

0
, respectively, above p. The Heegner points ˛n 2 Ed1.Kn/ and

˛0
n 2 Ed2.K 0

n/ give rise to the local points

ˇn D t res}n
.˛nCk0

/ and ˇ0
n D t 0 res}n

˛0
nCk0

0
2 E.Ln/;

where t D #Ed1.Q/tors and t 0 D #Ed2.Q/tors. Consequently, the Heegner point relations (2.1)
imply that

trLnC2=Ln
ˇnC2 D �ˇn for n > 0;(2.4)

trL2=L1
ˇ2 D

´
0 if p is inert in L=Q;

�ˇ0 D �pk0 t res}.˛0/ if p ramifies in L=Q;

trL1=Lˇ1 D

´
�.p C 1/ˇ0 D �.p C 1/pk0 t res}.˛0/ if p is inert in L=Q;

�ˇ0 D �pk0 t res}.˛0/ if p ramifies in L=Q;

and similarly for ˇ0
n 2 E.Ln/.
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Observe that, since the analytic ranks of Ed1=K and Ed2=K are equal to 1, the points
˛0 2 Ed1.K/ and ˛0

0 2 Ed2.K/ are non-torsion points, and hence ˇ0; ˇ0
0 2 E.L/ n E.L/tors. In

addition, since the analytic rank of Ed1=Q equals 0, while the analytic rank of Ed2=Q is equal
to 1, in view of the action of complex conjugation on Heegner points (2.2), it follows that
�.t˛0/ D �t˛0, while t˛0

0 2 Ed2.Q/, and hence

(2.5) �ˇ0 D �ˇ0 and ˇ0
0 2 E.Qp/:

By (2.4) above, we see that ˇ2m; ˇ0
2m 2 EC.L2m/ and ˇ2mC1; ˇ0

2mC1 2 E�.L2mC1/.
We will now use these points in our analysis of E˙.Ln/. Observe that

EC.L2mC1/ � EC.L2m/ and E�.L2m/ � E�.L2m�1/:

Moreover, since E.Ln/=.EC.Ln/C E�.Ln// is annihilated simultaneously byY
0<2m�n

trL2m=L2m�1
and

Y
0<2mC1�n

trL2mC1=L2m
;

it follows that

(2.6) pnE.Ln/ � EC.Ln/C E�.Ln/:

Finally, since the Zp-rank of E.Ln/ equals that of On, the ring of integers of Ln, we deduce
that

rankZp
EC.Ln/ D rankZp

OL C
X

0<2m�n

.rankZp
O2m � rankZp

O2m�1/;

rankZp
E�.Ln/ D rankZp

OL C
X

0<2mC1�n

.rankZp
O2mC1 � rankZp

O2m/:

Consider the following submodule of E�.L2mC1/:

R2mC1ˇ2mC1 CR2mC1ˇ0
2mC1 � E�.L2mC1/;

and the surjective maps R2
2mC1 ! R2mC1ˇ2mC1 C R2mC1ˇ0

2mC1. It follows that

bLim
��!

m

.R2mC1ˇ2mC1 C R2mC1ˇ0
2mC1/ ,! ƒ2;

where yM ´ Hom.M; Qp=Zp/ for any ƒ-module M . Observe that, by (2.4) and (2.5), we see
that �

Lim
��!

m

.R2mC1ˇ2mC1 C R2mC1ˇ0
2mC1/

�Gal.L1=L/
D .Qp=Zp/ˇ0 C .Qp=Zp/ˇ0

0

' .Qp=Zp/2;

which implies that
bLim
��!

m

.R2mC1ˇ2mC1 C R2mC1ˇ0
2mC1/ ' ƒ2:

Since
bLim
��!

m

R2mC1ˇ2mC1 '
bLim
��!

m

R2mC1ˇ0
2mC1 ' ƒ;
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it follows that there exists f 2 ƒ such that f .R2mC1ˇ2mC1 \R2mC1ˇ0
2mC1/ D 0 for all

m 2 N. Since we also know that

.g � 1/
Y

0<r�m

trL2rC1=L2r
2 ƒ

is a minimal annihilator of the ƒ-modules R2mC1ˇ2mC1 and R2mC1ˇ0
2mC1, it follows that

the difference between the Zp-rank of E�.L2mC1/ and the Zp-rank of its submodule

R2mC1ˇ2mC1 CR2mC1ˇ0
2mC1

is bounded independently of m. It then follows that

corankƒ Lim
��!

m

.R2mC1ˇ2mC1 C R2mC1ˇ0
2mC1/ D corankƒ Lim

��!
n

E�.Ln/˝Qp=Zp D 2:

If p ramifies in L=Q, then by (2.4) and (2.5), we also have that�
Lim
��!

m

.R2mˇ2m C R2mˇ0
2m/

�Gal.L1=L/
D .Qp=Zp/ˇ0 C .Qp=Zp/ˇ0

0

' .Qp=Zp/2;

(2.7)

and as above, we deduce that

corankƒ Lim
��!

m

.R2mˇ2m C R2mˇ0
2m/ D corankƒ Lim

��!
n

EC.Ln/˝Qp=Zp D 2:

Observe that if p is inert in L=Q, then relations (2.4) do not imply (2.7). However, in this case,
by Proposition 2.1, we know that

corankƒ Lim
��!

n

EC.Ln/˝Qp=Zp � 2:

We now view Lim
��!n

E˙.Ln/˝Qp=Zp as submodules of H1.L1; Ep1/. Notice that (2.6)
implies that �

EC.Ln/C E�.Ln/
�
˝Qp=Zp D E.Ln/˝Qp=Zp:

Since L1=L is ramified, we have

Lim
��!

n

E.Ln/˝Qp=Zp D H1.L1; Ep1/:

Then, since Ep.L1/ is bounded by the Corank Lemma [10, Chapter 2], we know that

corankZp
H1.Ln; Ep1/ � 2ŒLn W Qp�

is bounded independently of n, and hence corankƒ H1.L1; Ep1/ D 4. Consequently, we have

(2.8) corankƒ

�
Lim
��!

n

EC.Ln/˝Qp=Zp C Lim
��!

n

E�.Ln/˝Qp=Zp

�
D 4:

Finally, since we have shown that

corankƒ Lim
��!

n

E˙.Ln/˝Qp=Zp � 2;

it follows that

corankƒ

�
Lim
��!

n

EC.Ln/˝Qp=Zp \ Lim
��!

n

E�.Ln/˝Qp=Zp

�
D 0:
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Corollary 2.3. The ƒ-corank of Lim
��!n

E˙.Ln/˝Qp=Zp equals 2.

Proof. Observe that, by the proof of the above theorem, we know that

corankƒ Lim
��!

n

E�.Ln/˝Qp=Zp D 2:

This together with (2.8) and the above theorem imply that

corankƒ Lim
��!

n

EC.Ln/˝Qp=Zp D 2:

3. Complex multiplication points

Let F be a real quadratic extension of Q, } the unique3) prime of F above p, K=F a totally
imaginary quadratic extension such that

(i) the prime } of F above p splits in K,

(ii) the discriminant of K=F is coprime to NE=F, the conductor of E over F, and

(iii) the number of prime divisors of the squarefree part of the ideal NE=F that are inert in K=F
is odd.

Since E is defined over Q and hence modular by [2, 21], condition (iii) together with the
fact that F=Q is cyclic imply that there exists a Shimura curve X that parametrizes the elliptic
curve E over F; see [1]. By work of Shimura, we know that X is equipped with complex mul-
tiplication (CM) points which are defined over number fields. We then use the parametrization
to view the CM points of X as points on E. For each ideal f prime to the conductor NE=F, we
consider the CM point yf 2 E.KŒf�/, where KŒf�=K is the ring class field of conductor f (see
[19, Section 7.2]).

We now focus on the case when f D }n, where } is the prime of F above p and n 2 N.
For every abelian group G, we set yG D G ˝

Q
p Zp. Let KŒ}1� D

S
n KŒ}n�. The Galois

group Gal.KŒ}n�=K/ ' K� n yK�=F� yO�
}n , where OF and OK denote the ring of integers of F

and K, respectively, and O}n D OF C }nOK. Hence, the Galois group of KŒ}1�=K contains
a subgroup of finite index isomorphic to ZŒF} WQp�

p .
By [19, Proposition 7.5], we have

(3.1) trKŒ}nC1�=KŒ}n�y}nC1 D
unC1

un
a}y}n � y}n�1 ;

where un denotes the cardinality of .yO�
}n \ K�bF�/=yO�

F . Since O}n � O}nC1 , it follows that
un � unC1. By [19, Lemma 7.3], we know that un divides 2ŒO�

K W O
�
F �, which immediately

implies that unC1

un
D 1 for almost all n 2 N. Moreover, if E has supersingular reduction at p

and p � 5, we find that

(3.2) a} D

´
0 if p ramifies in F=Q;

2p if p is inert in F=Q:

3) The case where p splits in F=Q is treated in earlier work; see [5].
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Let K1 � KŒ}1� be a Zp-extension of K and let Kn be the subextension of K1 of degree pn

over K. Denote by }k.n/ the minimal power of } such that Kn � KŒ}k.n/�. Observe that, for
n sufficiently large, we have

k.nC 1/ D

´
k.n/C 2 if p ramifies in F=Q;

k.n/C 1 if p is inert in F=Q:

We now define
zn D trKŒ}k.n/�=Kn

y}k.n/ 2 E.Kn/:

By (3.1) and (3.2), we find that there exists c 2 N such that, for n � c, we have

(3.3) trKnC1=Kn
znC1 D

´
�pzn if p ramifies in F=Q;

2pzn � pzn�1 if p is inert in F=Q:

Let HK1
denote the ZŒGal.K1=K/�-submodule of E.K1/ generated by the CM points

¹zn 2 E.Kn/ j n 2 N; n � cº. By [8, Theorem 1.10] of Cornut and Vatsal, we know that there
exists a Zp-extension of K1 � KŒ}1� such that the CM points zn 2 E.Kn/ n E.Kn�1/, and
in particular are non-trivial, for sufficiently large n.

Observe that relations (3.3) imply that if the prime p ramifies in F=Q, then

trKnC1=Kn
.znC1 C zn/ D 0 for all n � c;

and when the prime p is inert in F=Q, we have

trKnC1=Kn
.znC1 � 2zn C zn�1/ D 0 for all n � c:

Theorem 3.1. Let K1 � KŒ}1� be a Zp-extension of K such that the completion of
K1 at a prime above p is the anticyclotomic Zp-extension of K} . If zn 2 E.Kn/ n E.Kn�1/

for almost all n, then
corankƒ HK1

˝Qp=Zp � 2:

Proof. Consider the following ZŒGal.K1=K/�-submodules of E.K1/:

HC
K1
D

´
hZŒGal.Kn=K/�.znCzn�1/ j n 2 2N; n � ci if p ramifies in F=Q;

hZŒGal.Kn=K/�.zn�2zn�1Czn�2/ j n 2 2N; n � ci if p is inert in F=QI

H�
K1
D

´
hZŒGal.Kn=K/�.znCzn�1/ j n 2 2NC1; n � ci if p ramifies in F=Q;

hZŒGal.Kn=K/�.zn�2zn�1Czn�2/ j n 2 2NC1; n � ci if p is inert in F=Q:

Observe that res} H˙
K1
� Lim
��!n

E˙.Ln/, and hence Theorem 2.2 implies that

(3.4) corankƒ.res} HC
K1
˝Qp=Zp \ res} H�

K1
˝Qp=Zp/ D 0:

Our assumption that zn 2 E.Kn/ n E.Kn�1/ for almost all n 2 N implies that

zn C zn�1; zn � 2zn�1 C zn�2 2 E.Kn/ n E.Kn�1/ for almost all n 2 N:

It then follows that
corankƒ H˙

K1
˝Qp=Zp � 1:

Then, by (3.4), we deduce that the ƒ-corank of HK1
˝Qp=Zp is at least 2.

Remark 3.2. Note that, by Corollary 2.3, we know that corankƒ H˙
K1
˝Qp=Zp � 2,

and by ongoing joint work extending [6], we expect/hope that equality holds.
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