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ABSTRACT
Theenvelopemodel is a recently developedmethodology formultivariate analysis that enhances estimation
accuracy by exploiting the relation between the mean and eigenstructure of the covariance matrix. We
extend the envelopemodel to function-on-function linear regression, where the response and the predictor
are assumed to be random functions in Hilbert spaces.We use a double envelope structure to accommodate
the eigenstructures of the covariance operators for both the predictor and the response. The central
idea is to establish a one-to-one relation between the functional envelope model and the multivariate
envelope model and estimate the latter using an existing method. We also developed the asymptotic
theories, confidence and prediction bands, an order determination method along with its consistency, and
a characterization of the efficiency gain by the proposed model. Simulation comparisons with the standard
function-on-function regression and data applications show significant improvement by our method in
terms of cross-validated prediction error. Supplementary materials for this article are available online.
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1. Introduction

The envelopemodel is a recently developedmultivariate analysis
strategy that enhances estimation accuracy by reducing model
complexity using the reducing subspaces of the covariance
matrices. It was first proposed for multivariate linear regression
by Cook et al. (2010), and has been extended to many settings
such as partial least squares (Cook et al. 2013), generalized
linear models (Cook and Zhang 2015a), tensor regression
(Zhang and Li 2017; Ding and Cook 2018), quantile regression
(Ding et al. 2021) and spatial models (Rekabdarkolaee et al.
2019), among others. See Cook (2018) for a comprehensive
review.

In this article, we extend the envelopemodels frommultivari-
ate linear regression to function-on-function linear regression.
This type of regression is becoming increasingly common in
modern applications. See, for example, Ferraty et al. (2012),
Ivanescu et al. (2015), and Luo and Qi (2017). An envelope
model adapted to this setting could significantly enhance esti-
mation accuracy by exploiting inherent model parsimony.

The development of the envelope paradigm went through
several phases: the response envelope model (Cook et al. 2010),
the predictor envelope model (Cook et al. 2013), and the simul-
taneous envelope model (Cook and Zhang 2015b). Since both
the response and the predictor envelopemodels are special cases
of the simultaneous envelope, we only need to extend the latter
to function-on-function regression. To facilitate this extension,
we now give an overview of the simultaneous envelope in the
multivariate setting.

CONTACT Zhihua Su zhihuasu@stat.ufl.edu Department of Statistics, University of Florida, Gainesville, FL.
Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JCGS.

Let Y ∈ R
r be the response vector and let X ∈ R

p be the
predictor vector, and suppose that they satisfy the multivariate
linear regression model

Y = μ + βX + ε, (1)

where μ ∈ R
r is a constant vector, β ∈ R

r×p is a matrix
that contains the regression coefficients, ε is the error vector
independent of X having mean 0 and covariance matrix�ε , and
the predictor vector X has mean 0 and covariance matrix �X .
Let us say that a matrix A is a basis matrix of a subspace S if
the columns of A form a basis of S . For a finite-dimensional
subspaceS , letPS andQS = I−PS denote the projectionmatri-
ces onto S and its orthogonal complement S⊥, respectively, in
the usual inner product. For the response envelope, we consider
subspaces S of Rr that satisfy

(a) QSY ⊥⊥ X, (b) PSY ⊥⊥ QSY|X. (2)

Conditions (a) and (b) imply that QSY carries no information
about β directly or indirectly through its relation with PSY .
They hold if and only ifQSY ⊥⊥ (PSY ,X) and thus PSY carries
all the regression information in (1). They hold trivially when
S = R

r and, when S = {0}, they imply that Y ⊥⊥ X. The
response envelope is defined as the intersection of all subspaces
S that satisfy (a) and (b).

For the predictor envelope, we consider subspaces T of Rp

that satisfy

(c) Y ⊥⊥ QT X|PT X, (d) PT X ⊥⊥ QT X. (3)
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Conditions (c) and (d) imply thatQT X does not affectY directly
or indirectly through its relation with PT X. They hold if and
only if QT X ⊥⊥ (Y ,PT X) and so PT X carries all the regression
information about Y . They hold trivially when T = R

p and,
when T = {0}, they again imply that Y ⊥⊥ X. The predictor
envelope is defined as the intersection of all subspaces T that
satisfy (c) and (d).

The simultaneous envelope model is the multivariate regres-
sion model (1) that requires conditions (a)–(d), and is param-
eterized in terms of the response and predictor envelopes. We
refer to this model as the Multivariate Envelope Linear Model
(MELM). The response envelope model is the special case of
MELM with T = R

p; the predictor envelope is the special case
of MELM with S = R

r ; finally, the classical multivariate linear
regression is the special case of MELM with both S = R

r and
T = R

p.
The theoretical structure of our extension is sketched as

follows. Let X and Y be random functions in Hilbert spacesHX
andHY . Assume that they satisfy the linear model

Y = α + BX + ε, (4)

where α is a fixed member in HY , ε is a random member
of HY , and B: HX → HY is a linear operator. We illustrate
this function-on-function regressionmodel with an example. To
assess the economic effect of Covid-19, the daily new confirmed
cases and daily mobility of retail and recreation are measured
for all 21 counties in June 2020 in New Jersey. The curve of new
confirmed cases over the entire month serves as the predictor
X. The curve of mobility, which corresponds to visits to places
like restaurants, shopping centers, and movie theaters, is the
response Y . For many counties, the new confirmed cases are
recorded, while themobility data is missing. Using the function-
on-function regression model (4), it is possible to predict the
mobility from the new confirmed cases for those counties. The
goal of envelope model is to achieve a more efficient estima-
tion of the model parameters, which leads to more accurate
prediction.

Now we provide a sketch of the construction of the envelope
model under (4). Let �ε and �X be the covariance operators
of X and ε, respectively. If A : H → H is a bounded linear
operator, then a reducing subspace of A is any subspace S ofH
such thatAS ⊆ S andAS⊥ ⊆ S⊥; ifA is self-adjoint, then these
two conditions are equivalent. Let S be the intersection of all
reducing subspaces of�ε that contains the range of B, and let T
be the intersection of all reducing subspaces of�X that contains
the range of B∗, the adjoint of B. The subspaces S and T are the
functional extensions of the response and predictor envelopes
defined for (1). The rationale based on the covariance operators
may seem different from that used for model (1), but it will be
shown in Theorem 1 that these operator-based definitions lead
to extensions of (2) and (3) to the functional model (4). When S
andT are proper subspaces ofHY andHX , they offer a reduction
of the complexity of the function-on-function linear regression,
which, as we will show, can be very substantial in applications.
Our goal is to estimate S , T , α and B in the dimension reduced
function-on-function linear regression. We refer to model (4)
with the simplifying structure (S , T ) as the Functional Envelope
Linear Model (FELM).

In the theoretical development of our approach, we rely on
the assumption that the regression error is a Gaussian random
element in a Hilbert space. When the Gaussian assumption is
violated, the objective function used to construct our estimator
is still valid if we replace the conditional independence relations
by some weaker conditions such as conditional uncorrelation.

The function-on-function envelope model developed here is
but one way to achieve model parsimony for functional regres-
sion. Other approaches to model parsimony have been con-
sidered previously such as the penalized function-on-function
linear regression (Ivanescu et al. 2015; Scheipl and Greven 2016;
Sun et al. 2018). Our approach uses a different philosophy to
achieve this: rather than penalizing the roughness of the coeffi-
cient functions, we impose sparse structures on the spectra of the
covariance operators of the predictor and response processes,
and let the data tell us which parts of the spectra are important.
To the best of our knowledge, this article is the first attempt to
generalize the envelope model to function-on-function regres-
sion. The closest earlier work is Zhang et al. (2018), which
extended the envelope model to sufficient dimension reduction,
where the response is a scalar and the predictor is a function.
This article aims at estimating the functional dimension reduc-
tion space whereas we provide the explicit regression estimator,
furnished with confidence and prediction bands, as well as an
order determination method.

2. Functional Envelope Linear Model

Let (�,F ,P) be a probability space, letN ⊆ Rdenote an interval
and let HX and HY denote separable Hilbert spaces of real-
valued functions on N. Let X : � → HX be a random element
inHX and Y : � → HY a random element inHY .

Recall that, if H is a generic Hilbert space, and X a random
element inH with E(‖X‖H) < ∞, then the function T : H →
R, g → E(〈g,X〉H) is a bounded linear functional, which has
a Riesz representation g0 s.t. T(g) = 〈g0, g〉H for each g ∈ H.
The function g0 is defined as the expectation of X, and is written
as E(X).

To define the second moment of X, recall that, ifH1,H2 are
Hilbert spaces and f1, f2 are members of H1, H2, respectively,
then the tensor product f1 ⊗ f2 is a rank one linear operator
from H2 to H1 such that, for each g ∈ H2, (f1 ⊗ f2)(g) =
f1〈f2, g〉H2 . Let B(H2,H1) denote the class of all bounded linear
operators from H2 to H1. Then B(H2,H1) is a Banach space
with respect to the operator norm. If A is a random operator in
B(H2,H1), then the function b : H1 × H2 → R, (f , g) →
E(〈f ,Ag〉H1) is a bounded bilinear form, which induces a linear
operator B ∈ B(H2,H1) such that b(f , g) = 〈f ,Bg〉H1 . See, for
example, (Conway 2013, chap. 2). The operator B is then defined
as the expectation of A, written as E(A). Using this definition of
expectation of a randomoperator, we define the secondmoment
operator of X as E(X ⊗ X), and the variance operator of X as
E[(X − E(X)) ⊗ (X − E(X))], which is denoted by var(X).

Our definitions of E(X) and E(A) are different from the
standard definitions of moments in the functional data anal-
ysis, which are done through the pointwise moments such as
E[X(t)] and E[X(s)X(t)]. See, for example, Ramsay and Silver-
man (2007). The two definitions of E(X), as the Riesz represen-
tation of the bounded linear functional f �→ E〈X, f 〉H and as
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the pointwise expectation function t �→ EX(t), are equivalent
under mild conditions, for example, they are equivalent when
H separable. However, the former definition does not rely on the
nature ofH; that is, it does not requireH to be a set of functions
of t, whereas the latter definition does.

For a subspace U of H, and a self-adjoint operator A :
H → H, the A-envelope of U , denoted by E(U ;A), is defined
as E(U ;A) = ∩{S : S ∈ LatU (A)}, where LatS(A) represents
the collection of all reducing subspaces of A that contain S . The
symbol Lat comes from the word “lattice.” For another-bounded
linear operator B : H → H, let ran(B) represent the range (or
image) of B, and ran(B) the closure of ran(B). We abbreviate
E(ran(B);A) by E(B;A). In this article, we will only deal with
E(B;A) where ran(B) = ran(B).

Let B : HX → HY be a bounded linear operator. Let ε be
a random element in HY such that ε ⊥⊥ X and E(ε) = 0. For
simplicity, we tentatively assume that E(X) = 0.We consider the
function-on-function linear regression

Y = α + BX + ε, (5)

where ε and X are Gaussian random elements in HY and HX ,
respectively, satisfying

E(ε) = 0, E(X) = 0, E‖ε‖2HY < ∞, E‖X‖2HX < ∞,
(6)

and α is a nonrandommember ofHY . Let�ε = E(ε⊗ε),�X =
E(X ⊗ X), and �Y = E(Y ⊗ Y). It is easy to see these are self-
adjoint operators. For an operatorA, letA∗ represent the adjoint
operator of A.

Next, we give a rigorous definition of FELM. Let {(λi,φi), i ∈
N}, {(ρi,χi), i ∈ N} and {(τi,ψi), i ∈ N} be the sequences of
eigenvalues and eigenfunctions for the linear operator �Y , �ε

and �X . We say that a subspace S of HY is covered by a subset
C of {χi, i ∈ N} if S is contained in the subspace spanned by C.
The same applies to a subspace ofHX .

Definition 1. A functional linear model is called a functional
envelope linear model (FELM) with respect to the response
envelope E(B;�ε) and predictor envelope E(B∗;�X). Further-
more:

(i) If at least one of the envelopes is a proper subset of its
ambient space, then we call the FELM a proper envelope
model.

(ii) If ran(B) is covered by a finite subset of {χ1,χ2, . . .} and
ran(B∗) by a finite subset of {ψ1,ψ2, . . .}, then we call the
FELM an eigen-sparse envelope model.

According to part (i) of this definition, any functional lin-
ear model is a FELM, but only when one or both envelopes
are proper subspaces, does the FELM lead to efficiency gains.
When the predictor envelope is the ambient space, the FELM
reduces to the functional response envelope model; when the
response envelope is the ambient space, the FELM reduces to the
functional predictor envelope model. Since, in the multivariate
setting, the predictor envelope model is the underlying model
of the partial least squares, the FELM generalizes the partial
least squares (Wold 1966; De Jong 1993; Cook et al. 2013) to the
functional setting. See also Delaigle and Hall (2012).

It is also reasonable to call E(B;�ε) the residual envelope,
but, as we will show in Theorem 2, this envelope is the same as
E(B;�Y). Hence, it is justified to call it the response envelope.

In this article, we focus on the eigen-sparse envelope model
in part (ii) of Definition 1, where the numbers of eigenfunctions
χ ’s and ψ ’s that cover the response and predictor envelopes are
fixed. In principle, we can allow the numbers of the covering
eigenfunctions to grow with sample size n. The situation is
similar to sparse estimation, except that, here, the sparsity is
imposed on the eigenstructures. However, due to limited space,
the development for FELM where the numbers of the covering
eigenfunctions increase with the sample size is left to future
research.

We next express the eigen-sparse FELM explicitly in terms of
the eigenfunctions of the covariance operators. Let I and J be the
finite subsets of {1, 2, . . .} such that {χi : i ∈ I} covers ran(B) and
{ψj : j ∈ J} covers ran(B∗). Then we have

B =
∑
i∈I

∑
j∈J

bij(χi ⊗ ψj), (7)

where bij are real numbers. Corresponding to I and J, �X and
�ε can be decomposed as

�ε =
∑
i∈I

ρi(χi ⊗ χi) +
∑
i/∈I

ρi(χi ⊗ χi),

�X =
∑
j∈J

τj(ψj ⊗ ψj) +
∑
j/∈J

τj(ψj ⊗ ψj). (8)

It is easy to see E(B;�ε) = span{χi : i ∈ I}, and E(B∗;�X) =
span{ψj : j ∈ J}.

Let s and t denote the cardinalities of I the cardinality of
J, respectively. Note that E(B;�ε) is isomorphic to R

s via the
isomorphism f ∈ E(B;�ε) ↔ {〈f ,χi〉HY : i ∈ I} ∈ R

s.
Similarly, E(B∗;�X) is isomorphic to R

t via the isomorphism
f ∈ E(B∗;�X) ↔ {〈f ,ψj〉HX : j ∈ J} ∈ R

t . The dimensions of
E(B;�ε) and E(B∗;�X) are s and t.

Our Definition 1 of FELM was made solely in geometric
terms, but, as the next theorem will show, under the Gaus-
sian assumption, they induce independence and conditional
independence relations parallel to (a), (b), (c), and (d) in (2)
and (3) for MELM. These relations are the true motivation
behind our definition of FELM. LetPE(B;�ε),QE(B;�ε),PE(B∗;�X),
and QE(B∗;�X) be the projections onto E(B;�ε), E(B;�ε)

⊥,
E(B∗;�X) and E(B∗;�X)⊥, then

PE(B;�ε) =
∑
i∈I

χi ⊗ χi, QE(B;�ε) =
∑
i/∈I

χi ⊗ χi,

PE(B∗;�X) =
∑
j∈J

ψj ⊗ ψj, QE(B∗;�X) =
∑
j/∈J

ψj ⊗ ψj.
(9)

The Karhunen-Loève expansions of ε and X are

ε =
∞∑
i=1

〈ε,χi〉HY χi =
∞∑
i=1

ρ
1/2
i νi χi,

X =
∞∑
i=1

〈X,ψi〉HX ψi =
∞∑
i=1

τ
1/2
i ξi ψi, (10)

where by theGaussian assumption, ν1, ν2, . . . are iidN(0, 1), and
ξ1, ξ2, . . . , are iid N(0, 1).
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Theorem 1. Under the assumptions in Definition 1, we have
(a) QE(B;�ε) Y ⊥⊥ X,
(b) PE(B;�ε) Y ⊥⊥ QE(B;�ε) Y|X,
(c) Y ⊥⊥ QE(B∗;�X) X|PE(B∗;�X) X,
(d) PE(B∗;�X) X ⊥⊥ QE(B∗;�X) X.

(11)

Relationships (11a) and (11b) are the functional counterparts
of (2a) and (2b), and (11c) and (11d) are the functional
counterparts of (3c) and (3d). Following the finite-dimensional
analog, (11a) and (11b) hold if and only if QE(B;�ε) Y ⊥

⊥ (X,PE(B;�ε) Y), and (11c) and (11d) hold if and only if
(Y ,PE(B∗;�X) X) ⊥⊥ QE(B∗;�X) X. In consequence, if we knew
the envelopes E(B;�ε) and E(B∗;�X), then, to estimateB, all we
would need to do is to regress PE(B;�ε) Y on PE(B∗;�X) X, while
leaving QE(B;�ε) Y and QE(B∗;�X) X solely for the estimation
of the corresponding parts of the covariance operator �ε and
�X . This is the underlying mechanism that drives the efficiency
gains of the envelope model. Of course, at the sample level,
the envelopes themselves have to be estimated as well, and
QE(B;�ε) Y and QE(B∗;�X) X do participate in the estimation of
them, thus, being indirectly involved in the estimation of B.

The next theorem shows that E(B;�ε) and E(B;�Y) are in
fact the same, which generalizes a result to the functional setting
(see, Cook et al. 2010, Proposition 3.1).

Theorem 2. Under the functional linear model (5), E(B;�ε) =
E(B;�Y).

Next we derive the Karhunen-Loève expansion of Y . In
preparation, let i1, . . . , is be the members of I. For k ∈ I,
let Uk = ∑

j∈J bkjτ
1/2
j ξj + ρ

1/2
k νk, and U = (Ui1 , . . . ,Uis)

T.
Let �U = var(U), and QDQT the spectral decomposition of
�U , where Q ∈ R

s×s is an orthogonal matrix and D ∈ R
s×s

is a diagonal matrix. For a sequence a1, a2, . . ., and a subset
A ⊆ {1, 2, . . .}, we denote {ai : i ∈ A} by a(A). Using this
notation, we have
E(B;�ε) = span{χ(I)} and E(B∗;�X) = span{ψ(J)}.

In the following, if A is a matrix and a is a vector, we use
diagmv(A) to represent the diagonal vector ofA, and diagvm(a)
the diagonal matrix with a as its diagonal.

Theorem 3. Under the assumptions in Definition 1, the
Karhunen-Loève expansion of Y has the form Y = α +∑∞

i=1 λ
1/2
i ζiφi, where {φi : i = 1, 2, . . .}, {ζi : i = 1, 2, . . .},

and {χi : i = 1, 2, . . .} are sequences such that
φ(I) = QTχ(I), ζ(I) = D−1/2QTU, λ(I) = diagmv(D),
φ(Ic) = χ(Ic), ζ(Ic) = ν(Ic), λ(Ic) = ρ(Ic).

This implies that there is an isomorphism between the
eigenfunctions {φ1,φ2, . . . , } of �Y and the eigenfunctions
{χ1,χ2, . . . , } of �ε . In particular, for the indices in I,

(φi1 , . . . ,φis)
T = QT(χi1 , . . . ,χis)

T. (12)
Using this relation we can reexpress B in terms of {φi} and {ψi}
as follows:

B =
∑
i∈I

∑
j∈J

bij(χi ⊗ ψj) =
∑
j∈J

[(∑
i∈I

bijχi

)
⊗ ψj

]
.

By (12),
∑

i∈I bijχi = (bi1j, . . . , bisj)QQT(χi1 , . . . ,χis)
T =∑

i∈I b̃ijφi, where (b̃i1j, . . . , b̃isj) = (bi1j, . . . , bisj)Q. Hence

B =
∑
i∈I

∑
j∈J

b̃ij(φi ⊗ ψj). (13)

The exposition so far in this section is coordinate-free: the
entire system is built on invariant objects such as subspaces,
lattices, and linear operators. To make the presentation less
abstract, we now give an alternative, and somewhat intuitive,
construction of the FELM based on orthonormal bases. Let
{ei(X) : i ∈ N} and {ei(Y) : i ∈ N} be orthonormal bases of
HX andHY , respectively. Then X, Y , and ε can be expanded as

X = ∑
i∈N〈X, ei(X)〉HX ei(X), Y = ∑

i∈N〈Y , ei(Y)〉HY ei(Y),

ε = ∑
i∈N〈ε, ei(Y)〉HY ei(Y).

Let X◦ and Y◦ and ε◦ represent the sequences

{〈X, ei(X)〉HX : i ∈ N}, {〈Y , ei(Y)〉HY : i ∈ N},
{〈ε, ei(Y)〉HY : i ∈ N}.

These establish one-to-one correspondences between HX and
�2, and between HY and �2, where �2 is the collection of all
square summable sequences. In this framework the linear oper-
ators �X and �ε correspond to the ∞ × ∞ matrices

�X◦ = {cov(X◦
i ,X

◦
j ) : i, j ∈ N}, �ε◦ = {cov(ε◦

i , ε
◦
j ) : i, j ∈ N}.

The eigenvectors of these ∞ × ∞ matrices are sequences in �2.
Let {ψ◦

i : i ∈ N} and {χ◦
i : i ∈ N} be the eigenvectors of �X◦

and �ε◦ , respectively, and let

X∗ = {〈X◦,ψ◦
i 〉�2 : i ∈ N}, Y∗ = {〈Y◦,χ◦

i 〉�2 : i ∈ N}.
Note thatX∗ andX are different representations of the same ran-
dom elements; the same can be said of Y and Y∗. The envelope
model can be transparently explained in terms of X∗ and Y∗: it
simply assumes that only finite number of components ofX∗ and
Y∗ participate in the regression between X and Y ; that is, there
exist finite subsets I and J of N such that {Y∗

i : i ∈ I} and {X∗
j :

j ∈ J} follow a multivariate regression model. Furthermore,
the theoretical properties of the envelope structure guarantee
that there is no additional regression relation left in the rest
of the components. Of course, the regression in terms of Y∗
versus X∗ needs to be translated back to the original spaces for
Y and X through the isomorphismsHX and �2 andHY and �2.
The numerical procedures in Sections 5 and 6 are simply the
implementation of the above construction at the sample level.

3. From FELM toMELM

Our basic idea for estimating FELM consists of three steps:
first, find its one-to-one relation with MELM, second, use the
available methods to estimate the MELM, and third, transform
the results back to FELM via the one-to-one relation. In this and
the next sections we develop such a one-to-one relation.

Before proceeding further, we need to review the coordinate
form of the MELM. Recall from the Introduction that the mul-
tivariate linear regression model (1) is said to follow MELM
if Assumptions (a), (b), (c), and (d) hold with S = E(β ;�ε)
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and T = E(βT;�X). Also recall that � is an r × u matrix
representing an orthonormal basis matrix of E(β ;�ε) and �

is a p × d matrix representing an orthonormal basis matrix of
E(βT;�X). Similarly, �0 ∈ R

r×(r−u) and �0 ∈ R
p×(p−d) are

matrices representing orthonormal basis matrices of E(β ;�ε)
⊥

and E(βT;�X)⊥, respectively. The coordinate form of MELM is

Y = μ + �η�TX + ε, �ε = ���T + �0�0�
T
0 ,

�X = ���T + �0�0�
T
0, (14)

where β = �η�T, � ∈ R
u×u and �0 ∈ R

(r−u)×(r−u) carry the
coordinates of �ε with respect to � and �0, and � ∈ R

d×d and
�0 ∈ R

(p−d)×(p−d) carry the coordinates of �X with respect to
� and �0. The matrix η ∈ R

u×d is the regression coefficient
matrix for the reduced multivariate linear model where Y is
replaced by �TY and X by �TX.

Let {b1, b2, . . .} and {c1, c2, . . .} be orthonormal bases forHX
andHY , respectively. We need the following assumption.

Assumption 1. There are integers k > 0 and l > 0 such that

E(B∗;�X) ⊆ span{b1, . . . , bk}, E(B;�ε) ⊆ span{c1, . . . , cl}.
By construction, t ≤ k and s ≤ l. In the following, let b and c be
the vectors of functions (b1, . . . , bk)T and (c1, . . . , cl)T.

We need to introduce some additional notations. For a
Hilbert space H, u = (u1, . . . , um) ∈ Hm, and v =
(v1, . . . , vn) ∈ Hn, define the m × n inner product matrix
between u and v as 〈u, vT〉H = (〈ui, vj〉H)i=1,...,m,j=1,...,n. Let
� ∈ R

l×s and � ∈ R
k×t be matrices � = 〈c,φ(I)T〉HY and

� = 〈b,ψ(J)T〉HX . As implied by the notation, these will be
the envelope basis matrices, analogous to those in (14), that
arise from mapping FELM to MELM. Because {c1, . . . , cl} and
{b1, . . . , bk} are orthonormal sets, we have φ(I) = �Tc, and
ψ(J) = �Tb, which imply

〈φ(I), ε〉HY = �T〈c, ε〉HY and 〈ψ(J),X〉HX = �T〈b,X〉HX .
(15)

If B1 = {a1, . . . , am} and B2 = {b1, . . . , bn} are finite sets of
vectors, and A : span(B1) → span(B2) is a linear mapping,
then B2[A]B1 represents the coordinate of A; that is, for any
x = c1a1 + · · · + cmam ∈ span(B1), y = c′1b1 + · · · + c′nbn ∈
span(B2), we have c′ = (B2[A]B1)c, where c = (c1, . . . , cm)T,
c′ = (c′1, . . . , c′n)T. In this notation, φ(I)[B]ψ(J) is an s × t matrix

φ(I)[B]ψ(J) =
⎛
⎜⎝

b̃i1j1 · · · b̃i1jt
...

. . .
...

b̃isj1 · · · b̃isjt

⎞
⎟⎠ .

The next theorem describes how one goes from FELM to
MELM, which is the theoretical foundation for the two estima-
tion methods to be developed in Sections 5 and 6. Let

X̃ = 〈b,X〉HX , Ỹ = 〈c,Y〉HY , ε̃ = 〈c, ε〉HY , (16)

where b and c are as defined immediately followingAssumption 1.

Theorem 4. If (X,Y) follows the FELM in Definition 1 with
response envelope E(B;�ε) and predictor envelope E(B∗;�X),
then (X̃, Ỹ) follows the MELM

Ỹ = μ + �(φ(I)[B]ψ(J))�
TX̃ + ε̃,

with response envelope E(φ(I)[B]ψ(J);�ε̃) = span(�), predictor
envelope E(φ(I)[B]Tψ(J);�X̃) = span(�), and μ = 〈c,α〉HY .

From Theorem 4, we obtain a corollary where {b1, . . . , bk}
and {c1, . . . , cl} are eigenfunctions of X and Y ; that is, bi = ψi,
cj = φj, for i = 1, . . . , k, j = 1, . . . , l. We denote (φ1, . . . ,φl)
by φ(1 : l) and (ψ1, . . . ,ψk) by ψ(1 : k). Define X◦ = 〈ψ(1 :
k),X〉HX , Y◦ = 〈φ(1 : l),Y〉HY , and ε◦ = 〈φ(1 : l), ε〉HY . The
next corollary shows that, if Y and X follow FELM, then Y◦ and
X◦ followMELM in Theorem 4 with �,� taking a special form.
This fact is the theoretical foundation for estimation method
developed in Section 6.

Corollary 1. If (X,Y) follows FELM with response envelope
E(B;�ε̃) and predictor envelope E(B∗;�X̃), then (X◦,Y◦) fol-
lows MELM in Theorem 4 with

� = 〈φ(1 : l),φ(I)T〉HY , � = 〈ψ(1 :k),ψ(J)T〉HX . (17)

If l = s and k = t then � = Is, � = It and the MELM
in Theorem 4 reduces to a version of the multivariate linear
regression model (1). We refer to this as the full model.

An alternative way to write the MELM in Theorem 4 is
through the following parameterization. Let �0 ∈ R

k×(k−t)

be a matrix whose columns form an orthonormal basis
of E(�(φ(I)[B]ψ(J))

T�T;�X̃)⊥, and let �0 ∈ R
l×(l−s) be

a matrix whose columns form an orthonormal basis of
E(�(φ(I)[B]ψ(J))�

T;�ε̃)
⊥. Furthermore, let � = �T�ε̃� ∈

R
s×s,�0 = �0

T�ε̃�0 ∈ R
(l−s)×(l−s),� = �T�X̃� ∈ R

t×t , and
�0 = �0

T�X̃�0 ∈ R
(k−t)×(k−t). In this parameterization, the

covariance matrices of ε̃ and X̃ can be rewritten as

�X̃ = ���T + �0�0�
T
0, �ε̃ = ���T + �0�0�

T
0 ,

and the MELM in Theorem 4 can be restated as Ỹ|X̃ ∼
N(μỸ|X̃ ,�Ỹ|X̃), where

μỸ|X̃ = μ + �(φ(I)[B]ψ(J))�
TX̃,

�Ỹ|X̃ = �(φ(I)[B]ψ(J))�
T�X̃�(φ(I)[B]ψ(J))

T�T + �ε̃ .

The parameterized form also applies to the MELM in Corol-
lary 1 with � and � taking the special form (17). Theorem 4
tells us that, under the conditions assumed therein, a FELM
can always be converted into a MELM. This means we can use
available methodologies and softwares to estimate the converted
MELM.

4. FromMELM to FELM

Suppose (X,Y) obeys the FELM in Definition 1. Let (X̃, Ỹ) be as
defined in the last section.

Theorem 5. Under the conditions in the last paragraph, if (X̃, Ỹ)

follows the MELM

Ỹ = μ + (�η�T)X̃ + ε̃, (18)

withE(�η�T;�ε̃) = span(�),E(�ηT�T;�X̃) = span(�), then
(X,Y) follows the FELM with φ(I)[B]ψ(J) = η, where φ(I) =
�Tc, ψ(J) = �Tb.
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In the next two sections we will implement the theoretical
results of Sections 3 and 4 to develop sample estimates of FELM.
In the multivariate setting, since X and Y are random vectors,
it is natural to build the envelope model directly on X and Y
themselves. In particular, there seems no reason to build the
envelope model, say, on the principal components of X and
Y . The situation is entirely different in the functional setting.
Since we do not have random vectors to begin with, we face two
apparent options:

1. building the envelope model directly on the coordinates of X
andY with respect to the bases inHX andHY that we happen
to choose. This seems to be the most direct generalization of
the original idea of the envelope model;

2. building the envelopemodel on the coefficients of Karhunen-
Loève expansions of X and Y .

We next develop estimation procedures via both routes. In appli-
cation we do not observe the entire functions Y and X, but only
at a finite number of points. So we need amethod to connect the
points. As a pragmatic approach, we assume HY and HX have
finite bases.

5. Direct Estimation

We focus on the first approach in this section. To construct
orthonormal bases for HX and HY , we start with any finite
bases b = (b1, . . . , bk)T for HX , and c = (c1, . . . , cl)T for HY .
In practice, k and l are picked according to the shape of the
functions. For example, if cubic splines are used, k and l are
decided by the number of knots. More knots are needed for
a function with more fluctuation. As an illustration, let N =
[0, 1], and {t0, . . . , tm1} and {s0, . . . , sm2} be two sets of nodes
in [0, 1] for HX and HY , respectively, with t0 = s0 = 0,
tm1 = sm2 = 1. Let {b1, . . . , bk} and {c1, . . . , cl} be the cubic
spline bases determined by the nodes t0, . . . , tm1 and s0, . . . , sm2 ,
respectively. In this case, k = m1+3 and l = m2+3. The specific
forms of these bases can be found, for example, in Wang (2011).
We use the L2([0, 1]) inner product forHX andHY . For exam-
ple, 〈bi, bj〉HX = ∫ 1

0 bi(t)bj(t)dt, which can be written down
explicitly for cubic splines. To turn b = (b1, . . . , bk)T and c =
(c1, . . . , cl)T into orthonormal bases, let Gb and Gc denote the
GrammatricesGb = {〈bi, bj〉HX }m1

i,j=1 andGc = {〈ci, cj〉HY }m2
i,j=1.

The orthonormal bases b∗ and c∗ are then calculated by b∗ =
G−1/2
b b, and c∗ = G−1/2

c c. For notational simplicity, we reset
(b∗, c∗) to (b, c).

For a function h ∈ HX , we use [h]b to denote the
coordinate of h with respect to the basis b. That is, [h]b =
(〈b1, h〉HX , . . . , 〈bm, h〉HX )T, and h = [h]Tbb. Let (X1,Y1), . . .,
(Xn,Yn) be an iid sample from (X,Y), and let X̃i = [Xi]b,
Ỹi = [Yi]c, X̃ = [X]b, and Ỹ = [Y]c. The coordinates [Xi]b
and [Yi]c can be estimated by least squares. Let {t∗0 , . . . , t∗m∗

1
} and

{s∗0, . . . , s∗m∗
2
} be the points at whichXi(t) and Yi(t) are observed.

For brevity of notations, we assume that these observed points
do not change with i. The method can be applied directly if
(Xi,Yi) are observed at different points, see the simulation in
Section 9.3 of the supplementary materials. Since Xi = [Xi]Tbb,
we obtain [Xi]b by estimating the least squares coefficients

from the regression of Xi(t∗0), . . .Xi(t∗m∗
1
) on b(t∗0), . . . b(t∗m∗

1
).

Specifically, let T∗
X = {t∗0 , . . . , t∗m∗

1
}, and let

Xi(T∗
X) =

⎛
⎜⎝

Xi(t∗0 )

...
Xi(t∗m∗

1
)

⎞
⎟⎠ , B(T∗

X) =
⎛
⎜⎝

b1(t∗0 ) · · · bk(t∗0 )

...
. . .

...
b1(t∗m∗

1
) · · · bk(t∗m∗

1
)

⎞
⎟⎠.

Then coordinate [Xi]b is computed from [Xi]b = [B(T∗
X)T

B(T∗
X)]−1B(T∗

X)TXi(T∗
X). Note that the above is exactly the spline

estimate of the curve {Xi(t) : t ∈ [0, 1]} as expressed in
orthonormal basis. The coordinate ofYi with respect to c is com-
puted similarly. Note that this process does not assume t to be
equally spaced, thus, it is applicable if t is irregularly distributed.
When the observed points are sparse, for example, m∗

1 < k, we
can use regularized regression such as ridge regression or lasso
to obtain [Xi]b. But further investigation will be needed for its
theoretical justification. We can also reduce the number of basis
functions which is itself a kind of regularization, for instance, if
spline functions are used as basis, we can reduce the number of
knots. Wang et al. (2016) has more detailed discussion on the
various situations where functional data is observed in practice,
sparsely or densely observed functional data.

Based on Theorem 4, we fit a MELM with X̃ as the predictor
and Ỹ as the response

Ỹ = μ + �η�TX̃ + ε̃, �ε̃ = ���T + �0�0�
T
0 ,

�X̃ = ���T + �0�0�
T
0. (19)

Let β = �η�T denote the regression coefficients. Estimation
of the parameters in (19) is performed by maximizing the log-
likelihood function for (X̃, Ỹ). We first estimate the envelopes
E(β ;�ε̃) and E(βT;�X̃). Since both E(β ;�ε̃) and E(βT;�X̃)

are subspaces, the estimation involves optimization over Grass-
mann manifold. Let a, b be two positive integers, and a > b.
An a × b Grassmann manifold is the set of all b-dimensional
subspace of an a-dimensional space. An R package Renvlp for
estimation for envelope models can be found on CRAN, see
Lee and Su (2022). Details can be found in Section 6 of the
supplementary materials.

Once we have the estimated envelopes Ê(β ;�ε̃) and
Ê(βT;�X̃), �̂ and �̂ can be taken as any orthonormal basis of
Ê(β ;�ε̃) and Ê(βT;�X̃), and η̂ = �̂T�̂ỸX̃�̂(�̂T�̂X̃�̂)−1, where
�̂ỸX̃ denotes the sample covariance matrix between Ỹ and X̃.
The regression coefficient is then estimated by β̂ = �̂η̂�̂T.
The MLE of the rest of the parameters are �̂ = �̂T�̂Ỹ|�̂TX̃�̂,
�̂0 = �̂0T�̂Ỹ �̂0, �̂ = �̂T�̂X̃�̂, �̂0 = �̂0T�̂X̃�̂0, and
μ̂ = 1

n
∑n

i=1 Ỹi − β̂ 1
n

∑n
i=1 X̃i.

In Section 8, we will develop the confidence and prediction
bands of the FELM regression estimate, which requires the
asymptotic distribution of the above estimate. The asymptotic
distribution and efficiency gain of the MELM estimator are
known (Cook and Zhang 2015b), which we now outline
for later use. Let vec(·) denote the vector operator that
stacks the columns of a matrix into a vector, and vech(·)
denote the vector-half operator that stacks the lower half
(including the diagonal) of a symmetric matrix into a vector.
The vector of all parameters of interest under model (19) is



1630 Z. SU ET AL.

v1 = (vec(β)T, vech(�ε̃)
T, vech(�X̃)T,μT)T. The vector of all

constituent parameters is

v2 = (vec(�)T, vec(η)T, vec(�)T, vech(�)T, vech(�0)
T,

vech(�)T, vech(�0)
T,μT)T.

Let G = ∂v1/∂vT2 and J the Fisher information for v1 under the
full model. The explicit forms of G and J are in Section 7 of the
supplementary materials. Let v̂1,full be the maximum likelihood
estimator of v1 under the full model. Then

√
n(v̂1,full − v1)

d→
N(0, J−1), where d→ denotes convergence in distribution. The
next theorem is due to Cook and Zhang (2015b).

Theorem 6. Assume that (X̃, Ỹ) follows the MELM (19). Let
v̂1,melm be the maximum likelihood estimator of v1 under
MELM (19), then

√
n(v̂1,melm − v1)

d→ N(0,Vmelm), Vmelm = G(GTJG)†GT,

where † denotes Moore-Penrose generalized inverse. Further-
more, we have G(GTJG)†GT ≤ J−1, which means that v̂1,melm is
asymptotically more efficient than or as efficient as v̂1,full.

6. Karhunen-Loève Expansion Based Estimation

We now turn to the second approach outlined at the end of
Section 4. Let b and c be any finite bases and Gb and Gc their
Gram matrices. Let [Xi]b and [Yi]c be the least squares approxi-
mations of the coordinates ofXi andYi, as explained in Section 5.
Let (τ̂r , ψ̂r) be the rth eigenvalue-eigenfunction pair of �̂X . As
shown in Solea and Li (2020), [ψ̂r]b = (G1/2

b )†vr , where vr is the
rth eigenvector of the matrix G1/2

b En{([X]b − En[X]b)([X]b −
En[X]b)T}G1/2

b , and τ̂r is the rth eigenvalue. The rth eigenfunc-
tion of �̂X is then ψ̂r = [ψ̂r]Tbb. The empirical Karhunen-Loève
expansion of Xi is then

Xi − EnXi =
k∑

r=1
〈Xi − EnXi, ψ̂r〉HX ψ̂r =

k∑
r=1

τ̂
1/2
r ξ̂irψ̂r ,

where 〈Xi − EnXi, ψ̂r〉HX = τ̂
1/2
r ξ̂ir = [Xi − EnXi]TbGb[ψ̂r]b =

[Xi − EnXi]TbG1/2
b vr . Similarly, the empirical Karhunen-Loève

expansion of Yi is

Yi − EnYi =
l∑

r=1
〈Yi − EnYi, φ̂r〉HY φ̂r =

l∑
r=1

λ̂
1/2
r ζ̂irφ̂r ,

where 〈Yi − EnYi, φ̂r〉HY = [Yi − EnYi]TcGc[φ̂r]c = [Yi −
EnYi]TcG1/2

c ŵr , and (λ̂r , ŵr) is the rth eigenvalue-eigenvector pair
of the matrixG1/2

c En{([Y]c −En[Y]c)([Y]c −En[Y]c)T}G1/2
c . Let

X̃ = (〈X, ψ̂1〉HX , . . . , 〈X, ψ̂k〉HX )T, and

Ỹ = (〈Y , φ̂1〉HY , . . . , 〈Y , φ̂l〉HY )T.

Note that X̃ and Ỹ follow MELM (19) from Corollary 1. Esti-
mation of the parameters in MELM is the same as discussed in
Section 5.

7. Order Determination

In both the direct estimation in Section 5 and the Karhunen-
Loève expansion based estimation in Section 6, the dimension
s of the response envelope and the dimension t of the predic-
tor envelope need to be selected. Let (s0, t0) denote the true
dimensions of the response and predictor envelopes, and let
(s, t) denote a generic pair of dimensions that is varied in the
set for optimization. To estimate (s0, t0), we compute the BIC
value over a grid of (s, t) from (1, 1) to (l, k), and find the pair
which minimizes BIC. Specifically, for the dimension pair (s, t),
BIC(s, t) = −2�̂(s, t) + log(n)K(s, t), where

�̂(s, t) = �̂(�̂, �̂, �̂, �̂0, �̂, �̂0η̂, μ̂) (20)

is the maximum of the likelihood for a fixed (s, t), and K(s, t) =
1
2 l(l + 1) + 1

2k(k + 1) + st + l is the total number of model
parameters when the dimensions of the response and predictor
envelops are s and t. Note that all the hatted parameters in (20)
depend on (s, t).

We estimate (s0, t0) by minimizing the above BIC-type crite-
rion, assuming that we search over the grid of � = {1, . . . , l} ×
{1, . . . , k}, and denote the estimate by (ŝ, t̂). Note that the con-
sistency of order determination has not yet been proved for the
envelope model even in the multivariate setting. So the next
result is novel to the envelope model in general.

Theorem 7. If (X̃, Ỹ) satisfies MELM (19), then P
(
(ŝ, t̂) =

(s0, t0)
) → 1.

When implementing the dimension selection procedure, we
make the following adjustment to speed up the computation. Let
r denote the rank of β . Since r is no greater than min(s, t), if
r were known, we would only need to compute the BIC value
over a grid of (s, t) from (r, r) to (l, k). Following Cook and
Zhang (2015b), r can be estimated from a Chi-squared test
developed in Bura and Cook (2003). The test statistic is �d =
n

∑min(k,l)
i=d+1 e2i , where e1 ≥ · · · ≥ emin(k,l) are singular values of

thematrix β̂std = [(n−p−1)/n]1/2�̂1/2
X̃ β̂T

OLS�̂
−1/2
Ỹ|X̃ , and β̂OLS =

�̂ỸX̃�̂−1
X̃ . According to Bura and Cook (2003), the asymptotic

distribution of �d is χ2
(k−d)(l−d) under the null hypothesis that

r = d. Let r̂ be the smallest d for which this null hypothesis
is not rejected. Instead of minimizing BIC(s, t) over the grid
{1, . . . , l}×{1, . . . , k}, weminimize it over {r̂, . . . , l}×{r̂, . . . , k},
which works well in our examples.

8. Confidence Band and Prediction Band

In this section, we construct the confidence band for the mean
of a new response and the prediction band for the new response
itself. Specifically, let Xnew be a new observation on X. We are
interested in constructing the confidence interval for E[Ynew(t)]
and prediction interval for Ynew(t), for each t ∈ N.

Let Ŷnew denote the estimate of E(Ynew), which is also the
prediction of Ynew. We estimate E(Ynew) as follows. First, we
compute the coordinates [Xnew]b of Xnew relative to the basis
b. Then, the coordinates of Ŷnew with respect to the basis c in
HY is [Ŷnew]c = μ̂ + β̂[Xnew]b. Finally, the prediction itself is
calculated as Ŷnew = [Ŷnew]Tc c.
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Table 1. Comparison on mean squared prediction errors.

n 25 50 100 200 400 25 50 100 200 400

Method Fixed dimension Selected dimension

Direct FELM 6.38 5.81 5.68 5.61 5.56 6.56 5.83 5.68 5.61 5.56
FFFR 7.92 6.39 5.92 5.72 5.61 7.92 6.39 5.92 5.72 5.61
PCR 12.99 12.02 11.69 11.63 11.54 9.78 7.19 5.98 5.74 5.61
PLS 13.01 11.44 10.50 9.57 8.62 12.58 11.82 11.45 11.33 11.23

K-L expansion FELM 6.38 5.81 5.68 5.61 5.56 6.59 5.83 5.68 5.61 5.56
FFFR 7.92 6.39 5.92 5.72 5.61 7.92 6.39 5.92 5.72 5.61
PCR 12.99 12.02 11.69 11.63 11.54 9.78 7.19 5.98 5.74 5.61
PLS 13.01 11.44 10.50 9.57 8.62 12.58 11.82 11.45 11.33 11.23

Wenext approximate the variance of Ŷnew(t0) at some t0 ∈ T.
Since Ŷnew = cT[Ŷnew]c, we have Ŷnew(t0) = c(t0)T[Ŷnew]c.
Consequently, var[Ŷnew(t0)] = c(t0)Tvar([Ŷnew]c)c(t0). Since
[Ŷnew]c = μ̂ + β̂[Xnew]b = μ̂ + ([Xnew]Tb ⊗ Il)vec(β̂), we
have

var[Ŷnew(t0)] = c(t0)T{var(μ̂) + ([Xnew]Tb ⊗ Il)

var[vec(β̂)]([Xnew]b ⊗ Il)}c(t0).
We approximate var[vec(β̂)] by n−1 times the asymptotic vari-
ance of

√
n[vec(β̂)−vec(β)], which is the upper left kl×kl block

ofVmelm in Theorem 6.We approximate var(μ̂) by n−1 times the
asymptotic variance of

√
n(μ̂−μ), which is the lower right l× l

block of Vmelm. In symbols, we use
σ 2
est[Ŷnew(t0)] =n−1c(t0)T{[Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂)]44

+ ([Xnew]Tb ⊗ Il)[Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂)]11
([Xnew]b ⊗ Il)}c(t0)

to approximate var[Ŷnew(t0)], where [Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂)]11
is the upper left kl × kl block of Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂) and
[Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂)]44 is the lower right l × l block of
Vmelm(β̂ , �̂ε̃ , �̂X̃ , μ̂). The asymptotic (1 − α)-confidence
interval for E[Ynew(t0)] is then(

Ŷnew(t0) − z1−α/2 σest[Ŷnew(t0)],

Ŷnew(t0) + z1−α/2 σest[Ŷnew(t0)]
)
,

where z1−α/2 is the 1 − α/2 percentile of standard normal
distribution.

To compute the prediction interval for Ynew(t0), let σ 2
pred

[Ŷnew(t0)] = σ 2
est[Ŷnew(t0)] + c(t0)T �̂ε̃ c(t0). The asymptotic

(1 − α)-prediction interval for Ynew(t0) is then(
Ŷnew(t0) − z1−α/2 σ 2

pred[Ŷnew(t0)],

Ŷnew(t0) + z1−α/2 σpred[Ŷnew(t0)]
)
.

9. Simulations

We generate n independent Gaussian random functions
using Fourier basis X(t) = ∑11

i=1 τ
1/2
i ξiψi(t), and ε(t) =∑11

i=1 0.2ρ
1/2
i νiχi(t), where both χi’s andψi’s are basis functions

on [0, 1]:

Figure 1. Confidence and prediction bands: solid lines indicate confidence bands
of FELM; dashed lines indicate confidence bands of FFFR; the dash-dotted lines
represent prediction bands of FELM; the dotted lines represent prediction bands
of FFFR. The thick long dashed line in the middle represents true mean response
E[Y(t)]. The black dots represent the observed response at 0.05, . . . , 0.95. For better
visibility, the confidence band by FELM is shaded gray.

{1, √
2 sin(2π t),

√
2 cos(2π t),

√
2 sin(4π t),

√
2 cos(4π t),

. . . ,
√
2 sin(10π t),

√
2 cos(10π t)},

ξi’s and νi’s are independent standard normal random variables,
and τi’s and ρi’s are constants. In general X and ε need not be in
the same Hilbert space; the above construction is for simplicity.
The parameters τi’s and ρi’s are chosen as

{τ1, . . . , τ11} = {6.42, 1, 5.62, 22, 42, 3.22, 2.42, 1.62, 0.82, 0.52, 0.32},
{ρ1, . . . , ρ11} = {12, 0.52, 32, 12, 42, 22, 2.52, 32, 3.52, 42, 52}.

The bij’s in the linear operator B are all zero except entries
b22 = −1.25, b24 = −1, and b42 = b44 = 0.4. Under this
setting,HX andHY are finite dimensional. The linear operators
�X and�ε have the structure�X = ∑11

i=1 τi(ψi⊗ψi) and�ε =∑11
i=1 ρi(χi ⊗ χi). We set I = {2, 4}, J = {2, 4}. The predictor

envelope E(B∗;�X) = span{√2 sin(2π t),
√
2 sin(4π t)}, the

response envelopeE(B;�ε) = span{√2 sin(2π t),
√
2 sin(4π t)}

and the dimensions of the envelopes are s = 2 and t = 2. The
observed t are 10 evenly spaced points in N = [0, 1], that is,
{t1, . . . , t10} = {0.1, . . . , 1}, and they are the same for all the
observations. The sample size varies from 50 to 400, and 100
repetitions were generated for each sample size.

In the implementation of FELM, we use the cubic spline
basis with five knots 0, 0.25, 0.5, 0.75, and 1 for both HX
and HY . We compare FELM with three existing methods: the
full function-on-function regression model (FFFR), the princi-
pal component regression (PCR), and the partial least squares



1632 Z. SU ET AL.

Figure 2. Plot of trade and GDP growth for eight countries.

Table 2. Mean squared prediction errors reduced by FELM as percentages of those
of FFFR.

Africa America Asia Europe

Envelope dimensions (s, t) (1, 2) (2, 2) (3, 3) (5, 2)
Prediction error reduction 9.79% 32.15% 24.22% 24.96%

regression (PLS). Similar to FELM, FFFR, PCR and PLS can
be performed either directly on the coordinates of X and Y
as in Section 5, or on the empirical Karhunen-Loève expan-
sions of X and Y as in Section 6. Take the direct estimation

as an illustration, we first compute the coordinates [Xi]b and
[Yi]c for the sample (X1,Y1), . . . , (Xn,Yn). FFFR estimates the
coefficients β by performing a standard multivariate regression
on ([X1]b, [Y1]c), . . . , ([Xn]b, [Yn]c). PCR performs a standard
multivariate regression of [Yi]c on the first few principal com-
ponents of [Xi]b, and then post-multiply the coefficients by the
transpose of the loading matrix of the principal components.
PLS is implemented with the R-function plsr, as applied to
([X1]b, [Y1]c), . . . , ([Xn]b, [Yn]c). In the simulation we used two
sets of tuning parameters: (i) we took s and t to be the true
envelope dimension 2, and chose the numbers of components
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Figure 3. Plot of new confirmed case and mobility to retail and recreation in June.

of PCR and PLS also as 2; (ii) we used the BIC-type criterion
developed in Section 7 to estimate s and t, and used 5-fold cross-
validation to select the numbers of components in PCR and PLS.

We compare the fourmethods using prediction errors, which
are computed by performing 5-fold cross-validation on each
of the 100 simulated samples. Table 1 shows the above mean
squared error averaged over the 100 simulated samples. Com-
paring the four methods, we see that FELM significantly out-
performs the three other methods. The second best performer
is FFFR, while PCR and PLS trail behind. Note that FFFR
contains the true envelopemodel as a submodel, and is therefore
asymptotically unbiased. Its difference from FELM is caused
completely by the smaller asymptotic variance of FELM. That
explains why the difference decreases with the sample size. In
comparison, since PCR and PLS each takes only two leading

components, they do not contain the true envelope model as a
submodel, and are therefore asymptotically biased. This explains
their large prediction errors, and the fact that these errors do not
significantly decrease with the sample size. We also note that
the results obtained by the direct methods do not significantly
differ from those obtained by the Karhunen-Loève expansion
methods.

Due to space limitation, additional results on larger envelope
dimensions and summary of computation time are included in
Sections 9.1 and 9.2 of the supplementarymaterials, respectively.
FELM also performswell with irregular grid. An additional sim-
ulation with each sample (Xi,Yi) observed in different random
points is included in Section 9.3 of the supplementary materials.
During implementation, representation error may occur due
to violation of Assumption 1. Thus extra variation is involved
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Figure 4. Confidence and prediction bands: solid lines indicate confidence bands of FELM; dashed lines indicate confidence bands of FFFR; the dash-dotted lines represent
prediction bands of FELM; the dotted lines represent prediction bands of FFFR. The dots represent the observed response in each day of June. For better visibility, the
confidence band by FELM is shaded gray.

in estimation of X̃ and Ỹ . To investigate its effect on FELM,
we include a simulation in Section 9.4 of the supplementary
materials.

We now turn to confidence and prediction bands using n =
100 as an illustration. The confidence and prediction intervals
were constructed at t = 0.05, 0.15, 0.25, . . . , 0.95, which are dif-
ferent from the points at which the functional data are observed.
Because Table 1 shows no significant difference between the
direct and the Karhunen-Loève expansion based methods, here
we only compare the intervals based on the direct method.
Figure 1 shows the confidence and prediction bands computed
by FELM and FFFR. Comparing the confidence intervals, we
see that FELM’s intervals are much narrower than the FFFR’s
intervals, and at the same time has better coverage (note that
the blue band does not cover the black curve in the right por-
tion of the plot, whereas the red band does). The prediction
intervals of FELM and FFFR have about the same length, which
is because the efficiency gain is eclipsed by the noise level.
The envelope dimensions in FELM were set at the true values.
If the envelope dimensions were estimated by BIC, the con-
fidence and prediction bands were almost identical to those
in Figure 1.

10. Data Analysis

10.1. Economic Data

The World Bank website (https://data.worldbank.org/) contains
complete data on trade and gross domestic product (GDP)
growth for 141 countries from 2001 and 2018. The Trade vari-
able of a country is defined as the sum of exports and imports
of goods and services measured as a percentage of GDP of that
country. GDP growth is the annual percentage growth rate of
GDP at market prices based on constant local currency. Both
Trade and GDP growth are functional data, as observed over
the 18 years. We treat Trade as the predictor and GDP growth
as the response in a function-on-function regression problem,
and applied FELM to the data for each continent separately.

Since South America has data for only nine countries, we com-
bined it with North America. The continent of Australia has
measurements for only seven countries, we omitted it from
our analysis. The sample sizes for Africa, America, Asia, and
Europe are 32, 30, 32, and 40, respectively. Spaghetti plots of
Trade and GDP growth for eight countries (two for each region)
are presented in Figure 2. The dimensions of the envelopes
are selected by BIC. The prediction errors are measured by 5-
fold cross-validation with 100 random splits. The percentages
of the reduction of prediction error by FELM as compared with
FFFR for the four regions are shown in Table 2. Overall, FELM
achieves very significant improvement over FFFR. Moreover, it
is interesting to note that the improvements are especially strong
for America.

A possible explanation for this discrepancy in the levels of
improvement is that the GDP growths for countries in Africa are
more associated with main-stream products such as minerals,
crude oil, and agricultural products (coffee, cocoa, cotton, and
so on), which are related to the leading eigenvectors of the
responses. In this situation, the envelope components and the
principal components are somewhat aligned, leading to milder
(nonetheless significant) efficiency gains. In comparison, the
GDP growths for countries in America are more associated
with less main-stream products such as microchips, medicines,
vaccines, or airplanes, which aremore related to the non-leading
eigenvectors of the responses. In this situation, the envelope
components are largely orthogonal to the leading principal com-
ponents, yielding substantial gains in efficiency and prediction.
For more discussions on when an envelope would achieve most
of its gains, see Cook (2018).

10.2. Covid-19 Data

Covid-19 is a global pandemic of the coronavirus disease, which
has up-to-date 212 million reported cases in 220 countries
and territories. The Open Covid-19 Dataset (https://github.
com/open-covid-19/data#open-covid-19-dataset) collects daily
data for more than 50 countries around the world. We focus

https://data.worldbank.org/
https://github.com/open-covid-19/data#open-covid-19-dataset
https://github.com/open-covid-19/data#open-covid-19-dataset
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on the daily new confirmed cases and mobility data in June,
2020 in 21 counties in the state of New Jersey. We took the
new confirmed cases as the predictor and mobility of retail
and recreation as the response. The data for mobility of retail
and recreation records percentage change in visits to places like
restaurants, shopping centers, museums, and movie theaters
compared to a baseline value. The baseline is the median value
for the corresponding day of the week during the five week
period from January 3 to February 6 in 2020. Figure 3 shows
the spagetti plots for the predictor (upper panel) and response
(lower panel) in six counties in New Jersey. We fit FELM to the
data. The dimensions of the response envelope and predictor
envelope were estimated as 3 and 2 by BIC, respectively. We
computed the mean squared prediction errors for FFFR and
FELM with 5-fold cross-validation with 100 random splits. The
predicted results for Camden County and Atlantic County are
in Figures 2 and 3 of the supplementary materials. Compared
with FFFR, FELM reduces the prediction error by 62.3%. The
95% confidence and prediction bands for the daily mobility
in Hudson County are displayed in Figure 4. Notice that the
confidence bands of both FELM and FFFR have good coverage,
and FELM has significantly narrower bands than FFFR.We also
performed analysis taking the daily new confirmed cases inMay
as the predictor, and the daily new confirmed cases in June as
the response. The dimensions for the response and predictor
envelopes are inferred to be 5 and 4 by BIC. FELM reduces the
prediction error by 11.66% compared to FFFR.

Supplementary Materials

The supplementary materials contain proof of theorems, lemmas, and
propositions, details on estimation and asymptotics as well as additional
simulations.
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