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Predicting the consensus structure of a set of
aligned RNA homologs is a convenient method
to find conserved structures in an RNA genome,
which has many applications including viral
diagnostics and therapeutics. However, the most
commonly used tool for this task, RNAalifold,
is prohibitively slow for long sequences, due
to a cubic scaling with the sequence length,
taking over a day on 400 SARS-CoV-2 and
SARS-related genomes (∼30,000nt). We present
LinearAlifold, a much faster alternative that
scales linearly with both the sequence length
and the number of sequences, based on our work
LinearFold that folds a single RNA in linear
time. Our work is orders of magnitude faster
than RNAalifold (0.7 hours on the above 400
genomes, or ∼36× speedup) and achieves higher
accuracies when compared to a database of known
structures. More interestingly, LinearAlifold’s
prediction on SARS-CoV-2 correlates well
with experimentally determined structures,
substantially outperforming RNAalifold. Finally,
LinearAlifold supports two energy models
(Vienna and BL*) and four modes: minimum
free energy (MFE), maximum expected accuracy
(MEA), ThreshKnot, and stochastic sampling,
each of which takes under an hour for hundreds
of SARS-CoV variants. Our resource is at:
https://github.com/LinearFold/LinearAlifold (code)
and http://linearfold.org/linear-alifold (server).

INTRODUCTION
Ribonucleic acids (RNA) are involved in many cellular
processes (1, 2, 3), and most of RNA secondary structures
are highly conserved across evolution to maintain their
functionalities in spite of changes to the sequence (4,
5, 6). Thus, predicting the consensus structure for a
set of aligned RNA homologs is more accurate than
predicting the structure for a single sequence and it
is useful for identifying conserved regions, which can
be used for diagnostics and therapeutics. For this task,
RNAalifold (7, 8) is a widely used tool to predict
consensus structures for aligned RNA homologs that
considers both thermodynamic stability and sequence
covariation. However, its cubic runtime (against sequence

length n) makes it di�cult to be applied to long sequences
such as SARS-CoV-2 genomes (n�30,000nt), requiring
over a day for 400 such genomes. As an alternative,
LinearTurboFold (9) is an iterative fold-and-align tool
(thus does not need alignment as input) that scales
linearly with sequence length, but quadratically with the
number of sequences (k). This limits its use case to only
about 30 SARS-CoV-2 variants while it is often helpful to
include hundreds of such genomes to account for as much
sequence variation as possible, as new variants emerge
rapidly. So there is a critical need to develop a fast
consensus folding tool that scales linearly with both n and
k. On the other hand, beyond predicting minimum free
energy (MFE) consensus structures, it is also useful to
calculate the consensus partition function and consensus
base-pairing probabilities (BPPs), which are widely used
in many downstream tasks such as maximum expected
accuracy (MEA) folding (10, 11, 12), ThreshKnot (13),
and stochastic sampling from the ensemble (14, 15).
However, RNAalifold’s partition function mode is even
slower than its MFE mode (often by 10× or more), and
both its partition function and stochastic sampling modes
fail to run on SARS-CoV-2 (for any k>1) due to overflow.

To alleviate this slow runtime, one can use local folding
to predict structures in linear time, but inevitably giving
up non-local interactions. Those base pairs, especially
the end-to-end ones, are known to be prevalent in most
RNAs (16, 17). In particular, the base pairs between the
5’ and 3’ untranslated regions (UTRs) of SARS-CoV-
2, across ∼30,000 nucleotides, are found by both purely
experimental methods (18) and purely computational
ones (9). How can we achieve linear runtime without
without sacrificing long-distance pairs?

Here we report LinearAlifold, an e�cient tool for
consensus structure prediction that scales linearly with
both the sequence length (n) and the number of aligned
sequences (k) without any constraints on pair distance,
building upon on our previous work LinearFold (19) and
LinearPartition (20) for single sequence folding (Fig. 1A).
Being orders of magnitude faster than RNAalifold,
our work can fold hundreds of full-length coronavirus
genomes under an hour and can recover end-to-end pairs.
For example, it takes only 0.7 hours to fold the above-
mentioned k=400 SARS-CoV sequences, compared to
25.7 hours by RNAalifold (∼36× speedup). Meanwhile,
LinearAlifold significantly outperforms RNAalifold in
structure prediction accuracy compared to a database
of known structures of homologous sequences (21)
(Fig. 2). More importantly, LinearAlifold’s predictions

https://github.com/LinearFold/LinearAlifold
http://linearfold.org/linear-alifold
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Figure 1. A: Overview of LinearAlifold, which takes aligned homologous sequences as input to predict consensus MFE structure,
consensus partition function, and consensus base-pairing probabilities, which are used in downstream tasks such as Maximum
Expected Accuracy (MEA) folding, ThreshKnot folding, and stochastic sampling from the ensemble. B: Runtime of various tools
against sequence length (n) for k=30. C: Runtime of various tools against the number of sequences (k) for n�30,000nt.

on hundreds of SARS-CoV genomes (under an
hour) correlate better with the experimentally guided
structures (18, 22) than RNAalifold’s (over a day)
(Fig. 3). In addition to MFE folding, LinearAlifold also
supports partition function, base-pairing probabilities,
ensemble-based structure prediction methods MEA and
Threshknot, and stochastic sampling, all of which take
under an hour on hundreds of SARS-CoV variants (which
RNAalifold fails due to overflow).

LinAliFold (23) is another linear-scaling tool for
consensus folding, developed roughly in parallel with
our initial version but published earlier.1 Like our
work, LinAliFold is also built upon our previous work
LinearFold and LinearPartition, and thus also achieves
linear runtime with both n and k. Unlike our work, their
partition-function mode uses CentroidFold (24) and is
much slower than our tool, especially with large k (for
example, for k=400 SARS-related genomes, ours takes 0.8
hours compared to their 16.4 hours, or ∼20× speedup). In
fact, our partition function mode is even faster than their
MFE mode (Fig. 1C) thanks to the use of LazyOutside
(25) (see Methods). In addition, our tool supports MEA,
ThreshKnot (thus our output can contain pseudoknots),
and stochastic sampling, none of which is available in

1Our initial arXiv preprint (2022) was discussed in their work.

their tool. Moreover, we support two di�erent Turner-
style energy models, the Vienna model in RNAalifold and
the BL* model (26), while LinAliFold only supports the
latter. More importantly, we also built an easy-to-use web
server at http://linearfold.org/linear-alifold.

RESULTS
Like RNAalifold, our LinearAlifold also takes a multiple-
sequence alignment (MSA) as input (Fig. 1A) and
outputs an MFE consensus structure or a consensus
partition function. The scoring function in these systems
is a combination of thermodynamic free energies and
sequence covariation scores (7, 8) (see Methods). We
employed the beam pruning heuristic to reduce the
complexity from cubic runtime (against n) to linear
time, inspired by LinearFold (19). The basic idea of the
heuristic algorithm is, at each step j, we only keep the
b top-scoring states and prune the other ones, which
are less likely to be part of the optimal final structure.
This approximate search algorithm helps reduce the time
complexity from O(kn

3) to O(knb
2). In the MFE mode,

we further reduced the time complexity to O(knblogb)
following the k-best parsing idea (27). The default beam
size is 100, following LinearFold and LinearPartition.
Thus, we reduced the time complexity from O(kn

3)
(RNAalifold) to O(kn) (LinearAlifold).

In the partition function mode, LinearAlifold computes
in O(knb

2) time the consensus partition function in an

https://arxiv.org/abs/2206.14794
http://linearfold.org/linear-alifold
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“inside phase”, which is followed by an “outside phase”
to compute the consensus base-pairing probabilities
(BPPs) (Fig. 1A). Normally, the outside phase takes
the same amount of time as inside, but we employ our
(unpublished) technique LazyOutside (25) which takes
only ∼1.5% of the inside time, making inside-outside
calculation almost as fast as inside only (and similar
to the MFE mode); see Methods for details. Our tool
supports two BPP-based structure prediction methods,
MEA and ThreshKnot, both of which are more accurate
than MFE. From the consensus partition function, our
tool also supports alifold-aware stochastic sampling,
based on our LazySampling algorithm. These sampled
structures are useful to “visualize” the Boltzmann
ensemble, and can be used to compute the accessibility
of arbitrary regions (9).

LinearAlifold supports two energy models, Vienna (as
in RNAalifold) and BL* (as in LinAliFold). The latter
is our default model which generally has higher accuracy
on our COVID benchmark (note that COVID data is
disjoint from BL*’s training set).

Scalability
To demonstrate the scalability of our work, we prepared a
set of RNA sequences that contains 8 families (n�1,600nt
or less) from RNAStralign (21), 23s rRNA (n�3,300nt)
from the Comparative RNA Web (CRW) site (28), and
long sequences (from ∼9,800nt to ∼30,000nt) from three
viruses2 from NCBI and GISAID3. We used MAFFT (29)
(with --auto) to align the input sequences.

Figs. 1B–C compare the runtime of three align-then-
fold tools (RNAalifold, LinAliFold, and LinearAlifold)
and one iterative align-and-fold tool (LinearTurboFold).
As shown in Fig. 1B, for a given k (here k=30),
LinearAlifold scales linearly with sequence length n and
is substantially faster than RNAalifold (which scales
roughly cubically with n) under either MFE or partition
function modes. In the MFE mode, on the SARS-CoV
family, LinearAlifold is ∼40.8× faster than RNAalifold
(3.8 min. vs. 2.6 hours) In the partition function mode,
RNAalifold cannot scale to n>14,000nt for k=30 due to
overflow. On the HIV family (�9,800nt), LinearAlifold’s
ThreshKnot mode is ∼120× faster than RNAalifold’s
MEA mode (1.2 min. vs. 2.5 hours)

We also tested runtime against the number of homologs
(k) using SARS-CoV (n�30,000nt) (Fig. 1C). Here all
three align-then-fold tools (RNAalifold, LinAliFold, and
LinearAlifold) scale linearly with k, but the iterative
align-and-fold tool LinearTurboFold scales quadratically
with k, making it only feasible on ∼30 SARS-related
genomes. For k=400, RNAalifold requires more than a
day (25.7 hours) while our tool only needs 0.7 hours
(∼36.3× speedup). In addition, RNAalifold partition
function mode fails to run on SARS-CoV due to overflow.

2HIV (n�9,800nt), RSV (Respiratory syncytial virus, n�
15,000nt), and SARS-CoV (n�30,000nt) genomes

3www.ncbi.nlm.nih.gov and www.gisaid.org
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Figure 2. Accuracy comparisons between RNAalifold and
LinearAlifold; each family has 10 samples and each sample
is has k=30 homologs. Statistical significance (two-sided) is
marked as ‘↑’ if LinearAlifold is significantly better, or ‘↓‘ if
RNAalifold is significantly better (p<0.05). See also Fig. S1.

Although LinAliFold also scales linearly with both n

and k, our tool is still substantially faster, especially
in the partition function mode. This is due to two
reasons: (a) we employ LazyOutside (25) which reduces
the outside phase to just 1–2% of the inside phase,
bringing a ∼2× speedup; and (b) their partition
function mode uses CentroidFold, which mixes consensus
BPPs with individual single-sequence BPPs (i.e., calling
LinearPartition k times). As a result, on k=400 SARS-
related genomes, our LinearAlifold ThreshKnot takes 0.8
hours compared to their 16.4 hours (∼20× speedup).
Actually, our partition function mode is even faster than
their MFE mode (0.8 vs. 1 hour(s)).

Accuracy
We compared the accuracies of secondary structure
prediction using the RNAStralign database (21), which
have well-determined secondary structures of RNA
homologs for eight families (Fig. 2). For each family, we
take 10 samples, each of which contains k=30 sequences.
These sequences in each sample were first aligned using
MAFFT (--auto) before being fed into RNAalifold and
LinearAlifold (both using the Vienna energy model).
Following LinearTurboFold, we used the first four families
(tRNA, 5S rRNA, tmRNA, and Group I Intron) to

www.ncbi.nlm.nih.gov
www.gisaid.org
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Figure 3. Structural distance and ensemble defect against run time for di�erent energy models and di�erent methods. The
curves show the mean values over 10 samples for each k A–B: MFE prediction. C–D: partition-based structure prediction. E–F:
ensemble quality. See Fig. S3 for another version which shows more statistics of each 10 samples and uses k as the x-axis.

tune the hyperparameters (see Methods), so the “Test
Avg” columns include the remaining four families (SRP,
RNaseP, telomerase, and 16S rRNA).

In terms of F1 score, LinearAlifold’s MFE and MEA
modes significantly outperform the corresponding modes
of RNAalifold on all test families, and LinearAlifold’s
ThreshKnot mode significantly outperforms RNAalifold’s
MEA mode on almost all test families except for RNaseP
(two-sided significance test (30)). This high accuracy of
LinearAlifold over RNAalifold is expected, and is due
to the beam search in the former, which is inherited
from LinearFold (19). As we showed in our LinearFold

paper, although beam search introduces minor search
errors and returns suboptimal structures in terms of
the scoring function, it nevertheless makes the search
more robust locally (since the scoring function is never
perfect), which translates to slightly better accuracy
compared to ground-truth structures. We observe this
phenomenon over and over in our previous work
LinearFold, LinearPartition (20), LinearSampling (31),
LinearCoFold (32), and LinearTurboFold (9), as well as
our earlier work in natural language parsing (33) which
gave rise to LinearFold, so this is a universal phenomenon.
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Since the BL* energy model is trained on structures
which overlap with our benchmark, it overfits on it.
Thus we do not include our results with BL* (nor
a comparison with LinAliFold using the same energy
model). Figs. S1 and S2 compare more systems including
LinearTurboFold, LinAlifold, and single-sequence folding.

Note that align-then-fold systems (RNAalifold,
LinearAlifold, and LinAliFold) tend to be inaccurate for
low sequence indentity families (e.g., SRP and group 1)
and tend to be more accurate for high sequence identity
families (e.g., 16S rRNA).

Consensus Structure Prediction in SARS-CoV-2 and
SARS-related Betacoronaviruses
It is known that conserved structures across mutations
are critical for viruses to maintain their functions to
survive. Thus, these conserved regions could be potential
targets for diagnostics and therapeutics (4, 5, 6). To
model consensus structures for SARS-CoV-2 and SARS-
related betacoronaviruses, for each k ranging from 10 to
400, we sampled 10 sets of diverse sequences (see Methods
for details), and used MAFFT --auto to generate 10
MSAs for each k. Following LinearTurboFold4, the ratio
of the number of SARS-CoV-2 to the number of SARS-
related genomes remains 6 to 4 in all samples.

To evaluate the reliability of LinearAlifold’s prediction
on SARS-CoV-2, we compared the predicted structure
with experimental studies (18, 22) for the well-known
5’ and 3’ UTR regions. Huston et al. (22) modeled
secondary structures guided by the chemical probing
data, but used a local folding method for prediction
because the sequence length of SARS-CoV-2 is out
of reach of most algorithms. As a result, long-range
interactions were fully abandoned in their prediction,
which are critical for regulating the viral transcription
and replication pathways (17, 18). To overcome this issue,
we further involved a purely experimental study of Ziv et
al. (18), which can detect long-range interactions between
5’ and 3’ UTRs. Therefore, to take into consideration
both local and global structures between 5’ and 3’ UTRs,
we built a hybrid structure model (Fig. 4H) by combining
Huston et al. and Ziv et al.’s work (see Methods).

Fig. 3 compares the quality of predictions from four
tools (RNAalifold, LinAliFold, LinearTurboFold,
and LinearAlifold), two energy models Vienna
(A/C/E) and BL* (B/D/F), and three modalities
(MFE (A–B), partition-based structure prediction
(ThreshKnot/Centroid, C–D), and base-pairing
probabilities (E–F)). The metrics are structural distance
(the number of incorrectly predicted nucleotides) and
ensemble defect (the expected structural distance over
the Boltzmann ensemble), both the lower the better
(closer to the above hybrid structure model). The x-axes
in these plots are run time, showing the speed advantage
of our tool over others.

4The LinearTurboFold paper (9) built a dataset of 25 SARS-
CoV genomes: 16 SARS-CoV-2 plus 9 SARS-related sequences.

In Fig. 3A, our MFE is substantially faster and
more accurate than RNAalifold MFE (both with Vienna
energy model), and in panel B, our MFE is noticeably
faster and more accurate than LinAliFold MFE (both
with BL* energy model). Next, Figs. 3C–D compare
our tool with LinearTurboFold and LinearAlifold in
terms of partition-function-based structure prediction
(note that as mentioned before, RNAalifold’s partition
function mode does not run on SARS-CoV genomes). In
Fig. 3C, the iterative align-and-fold tool LinearTurboFold
achieves substantially better structural distance than our
align-then-fold tool, presumably due to folding-aware
alignment, but at the cost of much slower run time and
inability to scale beyond k=30. In Fig. 3D, LinAliFold
Centroid mode achieves similar structural distance as
our ThreshKnot mode, but takes ∼20× more time due
to mixing with single-sequence BPPs. Finally, Figs. 3E–
F are similar to C–D, but instead of evaluating one
predicted structure, they evaluate the quality of the whole
ensemble, measured by the ensemble defect computed
using the base-pairing matrix. The only di�erence is that
in F, LinAliFold’s ensemble quality (still with the same
mixing in D) is substantially worse than ours, suggesting
that CentroidFold was able to extract a high quality
structure from a lower quality ensemble.

Across the board, the BL* column (B/D/F) is
consistently better than the Vienna column (A/C/E), so
we choose BL* as the default energy model, but the user
can change it with a command-line switch.

Fig. S3 is similar to Fig. 3 but uses k as the x-axis, and
draws the 25-75 quantile boxes (and medians) in addition
to the mean curves, since we have 10 samples for each k.
Fig. S4 is similar to Fig. S3 but uses Huston et al.’s model
structure instead of the hybrid structure as the reference.

To further visualize our predicted structures, we choose
one particular sample (#5/10) for k=30 SARS-CoV-2
and SARS-related genomes; this k is chosen because
it is the largest for LinearTurboFold to run, and this
particular sample is chosen because our LinearAlifold
BL* prediction (our default setting) achieves the
best structural distance (against the hybrid structure).
Fig. 4A–C compare the base-pairing probabilities
(BPPs) for three systems: LinearAlifold Vienna model,
LinearAlifold BL* model, and LinearTurboFold (Vienna
model). Here we use Ziv et al.’s ranges as references,
and blue arcs indicate pairings supported by at least
one Ziv et al. arc, and red ones are not supported
by any Ziv et al. arc. We can see that LinearAlifold
systems predict many more non-local (long-distance)
pairing possibilities, although most of them are incorrect,
and LinearTurboFold mostly predicts local pairings.
Fig. S5 shows the corresponding ThreshKnot predictions
(grouped by pairing distance) and their precision against
Ziv et al. ranges. We can see that LinearAlifold’s both
models predicted about 2,000 non-local pairs (≥100 nt),
among which 36.4% of the prediction by BL* model
and 32.3% of the prediction by Vienna model are
supported by at least one Ziv et al. ranges, respectively.
LinearAlifold BL* model also predicted 14 end-to-end
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pairs which are all supported by Ziv et al., whereas the
other two systems did not predict any end-to-end pairs.

More interestingly, we would like to further investigate
the competition between alternative structures in the
Boltzmann ensemble, in particular, the end-to-end arch
3 (from Ziv et al.) vs. the local SL3 in 5’ UTR
(from Huston et al.). Fig. 4D–F conduct stochastic
sampling for LinearAlifold Vienna, LinearAlifold BL*,
and LinearTurboFold. Interestingly, LinearAlifold BL*
prefers end-to-end arch 3 (but with about 30% of
sampled structures showing SL3), while LinearAlifold
Vienna prefers SL3 (about 60% of sampled structures).
LinearTurboFold, however, is 100% SL3.

Finally, Fig. 4G shows the 5’ and 3’ UTR structure
of the LinearAlifold BL* ThreshKnot prediction, which
is very similar to the hybrid reference structure in
Fig. 4H. It is also worth noting that, unlike Huston
et al.’s experimentally guided model, LinearAlifold BL*
ThreshKnot predicts the SL4b region to be single-
stranded (Fig. 4G), which is consistent with the
experimentally guided structure by Sun et al. (34,
Fig. 2C). These results, plus the fact that the prediction
from the LinearTurboFold paper (9, Fig. 3) has rather
weak and di�erent pairs for SL4b, all suggest alternative
structures in the ensemble for that region.

DISCUSSION
Considering the fast mutation rate of RNA viruses
such as SARS-CoV-2, accurately identifying conserved
regions from homologs is critical to develop mutation-
insensitive diagnostics and therapeutics. Consensus
folding algorithms, which can take hundreds of aligned
homologs to predict consensus structure, are widely-used
for this task. However, RNAalifold, the most widely
used consensus folding tool, scales cubically with the
sequence length in runtime, and is prohibitively slow
to analyze long RNAs, especially SARS-CoV-2 (∼30,000
nt). To alleviate this issue, we present LinearAlifold, an
e�cient tool which scales linearly with both the sequence
length (n) and the number of aligned sequences (k). We
confirmed that LinearAlifold is orders of magnitude faster
than RNAalifold, taking less than an hour to fold 400 full-
length SARS-CoV genomes (which takes more than a day
for RNAalifold MFE mode). We also demonstrated that
LinearAlifold achieves significantly higher accuracies on a
benchmark dataset with known structures. LinearAlifold
is also faster than a similar linear-time consensus folding
tool LinAliFold, especially in the partition function mode
and for a larger k.

LinearAlifold has four output modalities: (1) predicting
consensus minimum free energy structure (MFE mode);
(2) predicting the MEA structure based on the consensus
BPP; (3) predicting the ThreshKnot structure based
on the consensus BPP; and (4) stochastically sampling
structures from the consensus partition function. All
these modes can be applied to hundreds of aligned SARS-
CoV-2 homologs, while RNAalifold can only handle
the MFE mode for such MSAs due to overflow, and
LinAliFold only supports (1) and a variant of (3)

(CentroidFold). LinearAlifold’s prediction on SARS-
CoV-2 correlates better with experimentally-guided
structures than RNAalifold’s or LinAliFold’s, yet takes
substantially less time.

LinearAlifold is a general algorithm and can also be
applied to analyze other long RNA viruses, such as HIV,
WNV (West Nile Virus), and Ebola. Finally, we built a
web server which will be useful for biologists.

METHODS
Scoring function of RNAalifold and LinearAlifold
Following RNAalifold, for a set of k aligned sequences
S, our scoring function takes into consideration both a
thermodynamic energy model and a sequence covariation
score “(i,j,S) to evaluate the corresponding alignment
column pair (i,j)’s compensatory mutations:

score(S,y)= 1
k
��

s∈S�G(s,y)+— �(i,j)∈y“(i,j,S)�

where y is a consensus secondary structure, �G(s,y)
is the free energy of sequence s folded into structure y

(when mapping consensus structure y on to an individual
sequence s, we remove the pairs in y that are not pairable
on s), and “(i,j,S) is the (base pair) conservation score
that evaluates the corresponding alignment columns with
respect to evidence for base pairing

“(i,j,S)= 1
k

“
′(i,j,S)+”�

s∈S

�����������
0 if (si,sj)∈P
0.25 if (si,sj)=(−,−)
1 otherwise

where P ={gc,cg,au,ua,gu,ug} is the set of possible
base-pairs, − is a gap, “

′(i,j,S) evaluates covariance
bonuses and penalties. We follow the 2008 version
of RNAalifold (8) to use the (symmetric) RIBOSUM
matrix R to calculate the covariance, which replaces the
Hamming distances h(si,s

′
i) and h(sj ,s

′
j) from the 2002

version of RNAalifold (7):

“
′(i,j,S)= 1

2 �
s,s′∈S,s≠s′,(si,sj)∈P,(s′i,s′j)∈P

R(sisj ;s′is′j)

The RIBOSUM matrix R is selected from a pool of
matrices based on the minimum and maximum pairwise
sequence identities in the MSA. In the special case
where there is no sequence variation, all values in R are
set to 0 so that LinearAlifold falls back to LinearFold
and LinearPartition. The basic idea of “

′(i,j,S) is to
reward compensatory mutations on column-pair (i,j)
across all sequences. For example, on (i,j) columns, if
some sequences are AU pairs while others are CG pairs,
it is a stronger signal for (i,j) pairing than if all sequences
are the same type of pairs. It is important note that the
default version of both RNAalifold and LinAliFold still
use the 2002 version of “

′(i,j,S) but the 2008 version
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is substantially more accurate (which can be invoked by
a command-line switch -r in RNAalifold and -r 1 in
LinAliFold), so we only implemented the 2008 version.
All the RNAalifold and LinAliFold results in this paper
also used the 2008 version. The tunable parameters — and
” are both set to be 1 in RNAalifold and LinAliFold, but
here we tune them using the BL* energy model on the
four training families of RNAstralign (tRNA, 5S rRNA,
tmRNA, Group I Intron) and the best setting is —=1.2
and ”=0.1. For example, if we have this simple MSA as
input:

>seq1
CCCAAAGGG
>seq2
GGGAAACCC

LinearAlifold’s default output will be:

Minimum Free Energy: -3.54 kcal/mol

MFE Structure:
(((...))) (-3.54 = -0.50 + -3.04)

Here -0.50 is the thermodynamic energy 1
k∑s∈S �G(s,y)

and -3.04 is the conservation score 1
k —∑(i,j)∈y “(i,j,S).

Correct Calculation of Covariance Bonus “
′(i,j,S)

The naive calculation of “
′(i,j,S) for each (i,j) column-

pair would take O(k2) time because we need to
enumerate all sequence pairs, but RNAalifold employs
a clever method that reduces to O(k) by counting the
number of sequences for each type of pair. For example,
among k=8 sequences, for this (i,j) column-pair, assume
we have 5 sequences with CG pairs and 3 with AU
pairs, then we can calculate “

′(i,j,S) by aggregating over
groups of sequences with the same pair type instead of
enumerating all 8 ⋅7�2 sequence-pairs:

“
′(i,j,S)=5 ⋅3 ⋅R(CG;AU)

+ 5 ⋅4
2

R(CG;CG)+ 3 ⋅2
2

R(AU;AU)
Or more generally, let fi,j[t] denote the number of
sequences with pair type t at (i,j) columns (t∈P), then

“
′(i,j,S)= �

t,t′∈P,t≠t′fi,j[t] ⋅fi,j[t′] ⋅R(t;t′)
+�

t∈P�
fi,j[t]

2
� ⋅R(t;t)

The first term calculates the contribution from
compensatory mutations (di�erent pair types t and t

′)
and the second term calculates the contribution from the
same pair type t.

However, it is worth noting that both RNAalifold and
LinAliFold calculated this term incorrectly.

1. RNAalifold (and LinAliFold by inheritance) uses an
oversimplified formula:

“
′(i,j,S)= �

t,t′∈Pfi,j[t] ⋅fi,j[t′] ⋅R(t;t′)
which incorrectly handles the score contributions
for sequences that have the same base pair
type t at positions (i,j). The correct method
(as shown above) should multiply the RIBOSUM
score R(t;t) by �fi,j[t]

2 � which reflects the correct
number of pairwise comparisons without repetition
among sequences while RNAalifold and LinAliFold
erroneously calculates this as (fi,j[t])2 ⋅R(t;t). Note
that this miscalculation also includes comparisons of
each sequence with itself, i.e., pairs (sisj ;s′is′j) where
s=s

′, which should not contribute to the score since
they do not provide information about covariation.
This overcounting inflates the conservation score,
leading to potentially incorrect results in RNA
structural predictions.

2. Another computational error in RNAalifold is the
normalization of the “

′(i,j,S) term. The correct
approach should normalize this term by k

2, reflecting
the total number of pairwise sequence comparisons.
However, RNAalifold incorrectly normalizes this
term by just k. This insu�cient normalization
leads to amplified contributions from sequence pairs,
therefore distorting the score. LinAliFold corrected
this issue and computes the normalization correctly.

Partition Function Mode
The consensus partition function Q(S) over a set S of
aligned sequences is:

Q(S)=�
y

exp(−score(S,y)�RT )
where R is the molar gas constant and T is the absolute
temperature. The Boltzmann probability of a consensus
structure y is then:

p(y �S)= exp(−score(S,y)�RT )
Q(S)

and the consensus (marginal) base-pairing probability
that column i is paired with column j is:

pij(S)= �
y∶(i,j)∈y

p(y �S)

When projecting this consensus base-pairing matrix down
to each individual sequence, we delete columns and rows
that are dashes (−) in that sequence, as well as pij entries
that correspond to non-pairable bases in that sequence.
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LazyOutside Algorithm
By default, the inside-outside algorithm (35) is used
to calculate the marginal base-pairing probabilities,
where the McCaskill algorithm (36) is a special case.
Conventionally, the outside phase is considered a mirror
image of the inside phase, with similar or slower runtimes,
which means inside-outside is (at least) twice as slow as
their inside-only or MFE. We employ our unpublished
technique of LazyOutside (25) which is a lazy (on-
demand) algorithm that only visits high-probability
states and ignores the low-probability ones. Basically,
let us denote –(v) to be the inside partition function
for node v (e.g., P5,10) and —(v) to be the outside
partition function, then we prune nodes v if its marginal
probability falls under a threshold ◊:

–(v) ⋅—(v)�Q(S)<◊

and we use the default ◊=5×10−5. This pruning was
also used in natural language parsing (“relative useless
pruning”) and machine learning (“max-marginals”) (37).
As a result, it only visits a tiny fraction (often as small
as 1%) of the states visited in the inside phase, which
implies up to 100◊ speedup of the outside phase, making
inside-outside almost as fast as the inside phase alone.

Structural Distance and Ensemble Defect
We employ structural distance and ensemble defect (38)
as two key metrics to evaluate the prediction accuracy
of our tool. Structural distance is basically a structured
version of Hamming distance between two structures,
while ensemble defect is the expectation of structural
distance in the Boltzmann ensemble.

More formally, let x be an RNA sequence and y and y∗
be two secondary structures of x. The structural distance
between y and y∗ quantifies the structural discrepancies
between them, specifically in terms of mismatched base
pairs and unpaired nucleotides, calculated using the
following formula:

d(y,y∗) = �x�−2�pairs(y)∩pairs(y∗)�
− �unpaired(y)∩unpaired(y∗)�

The ensemble defect is used to quantify the deviation
of an RNA ensemble from a target structure y∗, which
is the expectation of structural distance to y∗ over the
Boltzmann ensemble:

�(x,y∗)=Ey∼p( ⋅ � x) [d(y,y∗)]
On the surface, this definition seems to range over all
possible structures in the expectation, but we can use
dynamic programming to factor this computation to the
expected number of incorrectly predicted nucleotides over

Table S1. RNAstralign benchmark dataset. These values are
specifically calculated for the dataset of 10 samples (with k=
30 homologs per sample), with sequence identity determined
from the alignments performed by MAFFT –auto. This data
is used for the evaluations shown in Fig. 2 and Fig. S1.

family subfamily avg. seq. len. avg. seq. identity
Group 1 IC1 428.5 0.36
tmRNA - 367.4 0.42
tRNA - 77.1 0.48

5S rRNA Bacteria 116.2 0.62
SRP Protozoan 285.8 0.36

RNaseP A bacterial 360.0 0.45
telomerase - 444.9 0.50
16S rRNA Alphaproteobacteria 1419.2 0.85

the whole ensemble at equilibrium:

�(x,y∗)= �x�−2 �(i,j)∈pairs(y∗)
pi,j(x)− �

j∈unpaired(y∗)
qj(x)

where pi,j(x) is the probability of nucleotide i pairing
with nucleotide j, and qj(x) is the probability of
nucleotide j being unpaired, defined as qj =1−∑pi,j .

RNAstralign Datasets
We use a procedure similar to LinearTurboFold (9) to
sample homologs from the RNAstralign dataset. Four
families (Group I Intron, tmRNA, tRNA, and 5S rRNA)
are used for tuning and another four families (SRP,
RNaseP, telomerase, and 16S rRNA) are used for testing.
For Group I Intron, 5S rRNA, SRP, RNaseP, and 16S
rRNA, there are multiple subfamilies within each family,
so we chose one specific subfamily for these five families
(see Tab. S1). For 16S rRNA, we also made sure that
only full-length sequences (rather than subdomains) are
included. For each (sub)family, we drew 10 samples, each
with k=30 homologs and align them by MAFFT --auto.
Tab. S1 presents the average sequence length and average
sequence identity of the sampled MSAs in each family,
with sequence identity determined from the alignments
performed by MAFFT --auto. This sampled data is used
for the evaluations shown in Fig. 2 and Fig. S1. We
included all these samples in our GitHub.

SARS-CoV-2 and SARS-related Datasets
We prepared a dataset to draw representative samples
of diverse SARS-CoV-2 and SARS-related genomes.
Based on the genomes from GISAID (39) (downloaded
on 4 April 2022) and NCBI (www.ncbi.nlm.nih.
gov; genomes submitted from 1998 to 2019), we
first filtered out low-quality genomes (i.e., those with
unknown characters or are shorter than 28,000nt).
After preprocessing, we obtained two datasets with∼40,000 SARS-CoV-2 (including Alpha, Beta, Delta,
and Omicron variants) and 600 SARS-related genomes,
respectively. Following LinearTurboFold, we used a
sampling algorithm to choose 60% diverse SARS-CoV-
2 genomes and 40% diverse SARS-related genomes
(see Tab. S2). Unlike LinearTurboFold(9), we did not
use a greedy algorithm to choose the most diverse

www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov
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Table S2. SARS-CoV-2 and SARS-related datasets. Ref is the
SARS-CoV-2 reference sequence, Alpha–Delta are the SARS-
CoV-2 variants, and SARSr are SARS-related genomes.

k Ref Alpha Beta Delta Omicron SARSr
10 1 2 2 1 1 3
30 1 4 5 4 4 12
50 1 7 8 7 7 20

100 1 14 15 15 15 40
200 1 33 33 33 20 80
300 1 59 60 40 20 120
400 1 79 80 60 20 160

genomes one by one, but only randomly sample for each
category (Alpha, Beta, Delta, Omicron, SARS-related).
We included all the COVID samples in our GitHub.

Hybrid Reference Structure Construction in the 5’ and
3’ UTR regions of SARS-CoV-2
To get the hybrid reference structure in the UTR
regions (Fig. 4H), we combined the experimentally
guided structures from Huston et al. (22) and the
experimentally determined end-to-end pairs (Arch3,
ranges from (60,29868) to (80,29847)) from Ziv et al. (18,
Fig. 3) by the following steps:

1. Get (local) structures in 5’ and 3’ UTR regions from
Huston et al. (the 5’ UTR ranges from 1 to 400 and
the 3’ UTR from 29543 to 29876 on the reference
sequence).

2. Remove (local) pairs (i,j) from the structures if i or
j is in the global Arch3 pairs (e.g., SL3 from Huston
et al. (22, Fig. 2) is removed). These local pairs were
predicted by the local folding software which can
only predict pairs within a local window.

3. Combine the modified structures and the end-to-end
Arch3 pairs from Ziv et al.

See Fig. 4H for details; we also released its dot-bracket
format on our Github. This hybrid structure is used for
evaluating prediction qualities in Figs. 3 & S3.

Software and Computing Environment
We use the following software:

• RNAalifold (Vienna RNAfold 2.4.16) (-r mode)
https://www.tbi.univie.ac.at/RNA/

• MAFFT 7.490 (always with --auto mode)
https://mafft.cbrc.jp/alignment/software/

• LinAliFold (-r 1) https://github.com/
fukunagatsu/LinAliFold-CentroidLinAliFold

• LinearTurboFold
https://github.com/LinearFold/LinearTurboFold

We benchmarked these tools on a Linux machine with
2 Intel Xeon E5-2660 v3 CPUs (2.60 GHz) and 377 GB
memory, and used gcc (Ubuntu 9.3.0-17) to compile.

CODE AND DATA AVAILABILITY
Our code and data are released on GitHub:
http://github.com/LinearFold/LinearAlifold.
Server at: http://linearfold.org/linear-alifold.
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Supplementary Figures
A

B

C

Figure S1. Accuracy comparisons on the RNAstralign dataset, similar to Fig. 2 but including more systems. Each family has 10
samples, and each sample is an MSA with k=30 homologs. Align-then-fold systems (RNAalifold, LinearAlifold, and LinAliFold)
tend to be inaccurate for low sequence indentity families (e.g., SRP and group 1) and tend to be more accurate for high sequence
identity families (e.g., 16S rRNA). Refer to Fig. S2 for a similar figure with 20 samples per family.
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Figure S2. Accuracy comparisons on the RNAstralign dataset. Each family has 20 samples, and each sample is an MSA with
k=30 homologs. Align-then-fold systems (RNAalifold, LinearAlifold, and LinAliFold) tend to be inaccurate for low sequence
indentity families (e.g., SRP and group 1) and tend to be more accurate for high sequence identity families (e.g., 16S rRNA).
Refer to Fig. S1 for a similar figure with 10 samples per family.
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Vienna Energy Model (A, C, E) BL* Energy Model (B, D, F)
A B

C D

E F

Figure S3. Box plot of structural distance and ensemble defect (of 5’ and 3’ UTRs) against the number of sequences (k) for
di�erent energy models and methods, with the structural distance evaluated using the hybrid COVID structure (Fig. 4H; Huston
et al. + Ziv et al.) as the reference (see Fig. S4 for a similar figure with the Huston et al. structure as reference). For each k, we
have 10 samples, so the boxes show the 25-75 percentiles, and the whiskers represent the full range of data (1-100 percentile).
The curves show the mean values over 10 samples for each k, and the stars denote the medians. See Fig. 3 for another version
where the x-axes are time instead of k. A–B: MFE prediction. C–D: partition-based structure prediction. E–F: ensemble quality.
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Vienna Energy Model (A, C, E) BL* Energy Model (B, D, F)
A B

C D

E F

Figure S4. Box plot of structural distance and ensemble defect (of 5’ and 3’ UTRs) against the number of sequences (k) for
di�erent energy models and methods, with the structural distance evaluated using the Huston et al. reference structure as the
reference (see Fig. S3 for a similar figure with the hybrid structure as reference). For each k, we have 10 samples, so the boxes
show the 25-75 percentiles, and the whiskers represent the full range of data (1-100 percentile). The curves show the mean values
over 10 samples for each k, and the stars denote the medians. A–B: MFE prediction. C–D: partition-based structure prediction.
E–F: ensemble quality.
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A: LinearAlifold Vienna Threshknot B: LinearAlifold BL* Threshknot C: LinearTurboFold Vienna Threshknot

Pairing Distance Predicted Matched Precision
[0, +1) 9728 7409 76.2%
[0, 100) 7833 6801 86.8%

[100, +1) 1903 615 32.3%
[29700, +1) 0 0 0.0%

Pairing Distance Predicted Matched Precision
[0, +1) 8856 6531 73.7%
[0, 100) 6634 5727 86.3%

[100, +1) 2229 811 36.4%
[29700, +1) 14 14 100.0%

Pairing Distance Predicted Matched Precision
[0, +1) 8141 7022 86.3%
[0, 100) 7955 6888 86.6%

[100, +1) 197 145 73.6%
[29700, +1) 0 0 0.0%

Figure S5. COVID circular plots with Ziv et al. range precisions for various methods. Evaluated on the COVID k=30 sample
#5/10. Red arcs do not match any Ziv et al. range, while blue arcs match at least one Ziv et al. range. See also Fig. 4A–C.


	 LinearAlifold: Linear-Time Consensus Structure Prediction for RNA Alignments
	REFERENCES


