Empirical Software Engineering (2023) 28:116
https://doi.org/10.1007/510664-023-10329-4

®

Check for
updates

Tag that issue: applying APl-domain labels in issue tracking
systems

Fabio Santos'(® - Joseph Vargovich' - Bianca Trinkenreich' - Italo Santos' -
Jacob Penney' - Ricardo Britto* - Jodo Felipe Pimentel’ - Igor Wiese? -
Igor Steinmacher’ - Anita Sarma3 - Marco A. Gerosa'

Accepted: 3 April 2023 / Published online: 31 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Labeling issues with the skills required to complete them can help contributors to choose tasks
in Open Source Software projects. However, manually labeling issues is time-consuming and
error-prone, and current automated approaches are mostly limited to classifying issues as
bugs/non-bugs. We investigate the feasibility and relevance of automatically labeling issues
with what we call “API-domains,” which are high-level categories of APIs. Therefore, we
posit that the APIs used in the source code affected by an issue can be a proxy for the type of
skills (e.g., DB, security, UI) needed to work on the issue. We ran a user study (n=74) to assess
API-domain labels’ relevancy to potential contributors, leveraged the issues’ descriptions and
the project history to build prediction models, and validated the predictions with contributors
(n=20) of the projects. Our results show that (i) newcomers to the project consider API-
domain labels useful in choosing tasks, (ii) labels can be predicted with a precision of 84%
and a recall of 78.6% on average, (iii) the results of the predictions reached up to 71.3% in
precision and 52.5% in recall when training with a project and testing in another (transfer
learning), and (iv) project contributors consider most of the predictions helpful in identifying
needed skills. These findings suggest our approach can be applied in practice to automatically
label issues, assisting developers in finding tasks that better match their skills.

Keywords API identification - Labelling - Tagging - Skills - Multi-label classification -
Mining software repositories

1 Introduction

Choosing a task to contribute to in Open Source Software (OSS) projects can be challenging

(Wang and Sarma, 2011; Steinmacher et al., 2015; Steinmacher and Silva, 2015; Steinmacher
and Conte, 2015; Stanik et al., 2018). Open tasks are publically reported in issue trackers,

Communicated by: Gabriele Bavota

B Fabio Santos
fabio_santos @nau.edu

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-023-10329-4&domain=pdf
http://orcid.org/0000-0001-8069-3158

116 Page 2 of 52 Empirical Software Engineering (2023) 28:116

but since issues vary in complexity and required skills, contributors may find it difficult
to select an appropriate task to undertake, especially when the contributors are new in the
projects (Zimmermann et al., 2010; Bettenburg et al., 2007; Vaz et al., 2019; Santos et al.,
2022). Adding labels to the issues (a.k.a. “tasks,” “tickets,” and “bug reports”) is an effec-
tive way to help new contributors choose where to focus their efforts (Steinmacher et al.,
2018). The labeling strategy supports a variety of contributors, including newcomers (new
contributors), frequent contributors, and maintainers, as they have similar perceptions of the
importance of this strategy (Santos et al., 2022). Developers are newcomers each time they
start a new project, no matter their previous experience. Nevertheless, community managers
and project maintainers find manually labeling issues challenging and time-consuming (Bar-
comb et al., 2020).

We posit that the underlying APIs (the libraries required and imported into the source
code) can be parsed to indicate skills required to work on an issue. APIs are defined as “a set
of functions and procedures that enable the creation of applications that access the resources
or data of an operating system, application or other services” (API definition, 2022). If the
contributors know what types of APIs are used in the code to solve the issue, they could
choose tasks that better match their skills or involve skills they want to learn. We leverage
the idea that APIs encapsulate modules with specific purposes (e.g., cryptography, database
access, logging) and abstract the details from the implementation. In this study, we focus on
API-domain labels: high-level labels designating categories of APIs such as “Ul,” “Security,”
and “Test,” which may relate to skills needed to work on the issues.

This paper extends our prior work (Santos et al., 2021), in which we conducted a case
study with a single project to investigate the feasibility of automatically labeling issues with
API-domain labels. After running the first predictions with the case study, we observed that
the number of dataset rows dropped significantly because of the lack of information about
linked issues and PRs. With this in mind and to improve generalization, we looked for feasible
ways to increase the datasets when a project is seriously affected by the dataset size after
discarding issues not linked with a PR. In addition, it is sometimes impossible to access
the source due to confidentiality in industry projects. Pursuing this reasoning, we sought
ways to keep predicting the API-domain labels even when no training data is available by
transferring the learning. Therefore, we believe the API-domain labels should be even more
helpful if they can be applied in many open-source projects or industry projects despite their
source code’s dataset size or availability. We extend the work by (1) expanding our study
to five projects with diverse programming languages, vocabularies (natural languages), and
issue track systems (ITS), (2) adding the BERT technique to our approach, (3) extending
the qualitative analysis, (4) exploring the ability to transfer learning across projects, and (5)
evaluating the API-domain labels with developers who solved the issues.

We answer the following research questions:

RQ.1: How relevant are the API-domain labels to new contributors?

RQ.2: To what extent can we automatically attribute API-domain labels to issues?
RQ.2.1: To what extent can we automatically attribute API-domain labels to issues using
data from the project?

RQ.2.2: To what extent can we automatically attribute API-domain labels to issues using
data from other projects?

RQ.2.3: To what extent can we automatically attribute API-domain labels to issues using
transfer learning?

RQ.3: How well do the API-domain labels match the skills needed to solve an issue?

@ Springer

Empirical Software Engineering (2023) 28:116 Page3of52 116

This paper studies the relevance of this labeling strategy to new contributors (RQ.1). We
created models and evaluated their performance. Usually, machine learning approaches train
and test data with the same project (RQ.2.1). However, when the existing data is not enough
to create a prediction model with the expected performance, one may consider enlarging the
dataset to include other projects (RQ.2.2). In addition, with the total absence of historical data
for training in a target project, one can use a pre-trained dataset in the same domain (source
project) to run predictions in the target project (Nam et al., 2013) (RQ.2.3). Therefore, we also
conducted transfer learning studies. Finally, the developers’ opinions about the predictions
were studied to determine whether the API-domain labels adequately indicate skills and help
newcomers choose their tasks (RQ.3).

Our contribution includes (1) how newcomers see the relevance of the API-domain labels;
(2) anew semi-automated API classification process; (3) a mechanism to predict skills needed
for projects coded in diverse programming languages (C, C#, and Java), with issues in Por-
tuguese and English; and (4) the validation of the API-domain labels with developers.

2 Related Work

Organizing issues involve some labeling efforts. Labeling is important for describing features
and making it easier and faster to understand and search through software artifacts (Santos
et al., 2022). However, manually labeling software artifacts can be difficult and time-
consuming. Thus, some approaches have been proposed for automatically labeling software
projects (Izadi et al., 2021) and dependencies (Vargas-Baldrich et al., 2015). While these
approaches demonstrate the possibility of labeling software artifacts, they work at a higher
level of classifying the whole project. In contrast, our approach classifies minor software
artifacts (i.e., issues and APIs).

Approaches have also been proposed for labeling other software artifacts, such as questions
from Stack Overflow (Xia et al., 2013; Lin et al., 2019; Uddin and Khomh, 2019). Xia et al.
(2013) recommend tags for questions based on the similarity with previous questions. Those
approaches are restricted to using only the existing tags and do not work with issue-tracking
systems or APIs. Uddin and Khomh (2019) and Lin et al. (2019) label opinions from users
about APIs. Despite their focus on APISs, their goal is to support the developers’ decisions to
adopt a new API. In this work, we have the opposite goal. Given that a project already has
APIs in different domains, our goal is to enable developers to find tasks that include APIs
with which they are more familiar.

While many approaches are designed to label issues, most of them only try to distinguish
bug reports from non-bug reports (Antoniol et al., 2008; Pingclasai et al., 2013; Zhou et al.,
2016; Zhu et al., 2019; El Zanaty et al., 2020; Perez et al., 2021). Few approaches can classify
according to other labels (Kallis et al., 2019; Izadi et al., 2022; Wang et al., 2021). Among
them, Izadi et al. (2022) and Wang et al. (2021) use the text classification algorithm BERT
(Devlin et al., 2019) for multiple labels, which we also use. Despite their ability to classify
into distinct labels, such approaches only use pre-existing labels for classification. Instead of
using predefined labels extracted from the existing issues or provided by default on GitHub,
our approach define labels based on API domains. This kind of labeling helps to guide new
contributors toward what to contribute (Park and Jensen, 2009; Steinmacher et al., 2018),
which can be a daunting task without guidance (Steinmacher et al., 2015).

@ Springer

116 Page 4 of 52 Empirical Software Engineering (2023) 28:116

With a similar goal to support new contributors, social coding platforms like GitHub!
encourage projects to label issues? that are easy for new contributors, which is done by several
communities (e.g., LibreOffice,> KDE,*, and Mozillas). However, community managers
argue that labeling issues manually is difficult and time-consuming (Barcomb et al., 2020).
For that reason, Huang et al. (2021) proposes an approach for labeling good first issues. While
this approach indicates easy issues for new contributors, it is as limited in the outcome as the
approaches that only classify issues as bugs. In contrast, by labeling issues with domains of
the APIs, our approach can support new contributors of different skill levels.

3 Method Overview

This section presents an overview of how we answered the research questions.

RQ.1: How relevant are the API-domain labels to new contributors? In this RQ (Section 4),
we evaluate the manually curated labels with potential new contributors. We divided the
participants into two groups. After mimicking the project’s issues pages for 22 issues, we
added API-domain labels to the issues for the treatment group and kept the page as-is for the
control group. We asked the participants to select issues to which to contribute and fill out a
survey about their selection process (Fig. 1 - RQ1).

RQ.2: To what extent can we automatically attribute API-domain labels to issues? In this
RQ (Section 5), we investigate the feasibility of predicting API-domain labels. We mined
software repositories to collect issues, their associated pull requests, and the APIs used in
the source code. Subsequently, we manually classified the APIs into API domains to build
machine learning classifiers (Fig. 1 - RQ2). To answer the sub-questions, we predicted the
API-domain labels using each project dataset separately (RQ.2.1), a dataset with all projects
merged (RQ.2.2), and different source and target datasets (RQ.2.3).

RQ.3: How well do the API-domain labels match the skills needed to solve the issue?
Finally, In this RQ (Section 6), we asked contributors to provide feedback on the usefulness
of the labels that we predicted in identifying skills needed to complete the issue (Fig. 1 -
RQ3).

To foster reproducibility, we provide publicly available supplementary material® contain-
ing the raw data, the Jupyter notebook scripts, and the anonymized survey data.

4 Relevance of the Labels to New Contributors (RQ1)
4.1 Method

To explore the relevancy of the API-domain labels from an outsider’s perspective, we con-
ducted an experiment with 74 participants. We selected the JabRef project, hosted in GitHub,
as the subject of the experiment. Two authors of this paper have already contributed to
and have in-depth knowledge of the project. Having this knowledge helped us interpret the

1 http://bit.ly/NewToOSS

2 In this study, the words “tasks” and “issues” are used interchangeably.
3 https://wiki.documentfoundation.org/Development/EasyHacks

4 https://community.kde.org/KDE/Junior_Jobs

5 https://wiki.mozilla.org/Good_first_bug

6 https://doi.org/10.5281/zenodo.6869246

@ Springer

http://bit.ly/NewToOSS
https://wiki.documentfoundation.org/Development/EasyHacks
https://community.kde.org/KDE/Junior_Jobs
https://wiki.mozilla.org/Good_first_bug
https://doi.org/10.5281/zenodo.6869246

Empirical Software Engineering (2023) 28:116 Page50f52 116

RQ1

Experiment Choose anissue Run Analyze

with New in cloned Pos Study Data
Contributors JabRef Survey
Phase 1 >» Phase2 ——
Source code
ﬁ .¢ _,_>® 3‘1 Link Issues ° ® \
—> to Pull Requests L)
I| o Lt
Filter f -
Mine Parse APls) o Filter out Classify
Repositories PU” Requests Pull Requests APl-domains
AN without source code
¥ Phase 3 <
v Y h
7 @) 7]
..:rr _ .,] | ?a Q”D
N _c? 1] AN
Construct Split Data Select Evaluate ~ Fredict Predic Predict Analysis
Corpus Train/Test Classifiers Classifiers Sindle Al Transfer
Project Projects Learning J
RQ3
=3 v
= R
Tag merged Get Analyze
issues and mail Feedback from Data
solvers solvers

Fig. 1 Research method overview

feedback and results. We created two versions of the JabRef issues page (with and without
API-domain labels) and divided our participants into two groups (between-subjects design).
We asked participants to choose and rank three issues to which they would like to contribute
and answer a follow-up questionnaire about what information supported their decision. The
artifacts used in this phase are part of the replication package.

4.1.1 Participants

We used convenience sampling by recruiting participants from both industry and academia.
We reached out to instructors and IT managers of our personal and professional networks
and asked them to help in inviting participants. From industry, we recruited participants from
one medium-sized IT startup hosted in Brazil and the IT department of a large and global
company. We recruited students from multiple universities, including undergraduate and
graduate computer science students from one university in the US and two others in Brazil
as well as graduate data science students from a university in Brazil, since they are also
potential contributors to the JabRef project. Table 1 presents the participants’ demographics.
We offered an Amazon Gift card (US$ 25.00) to incentivize participation.

@ Springer

116 Page 6 of 52 Empirical Software Engineering (2023) 28:116

Table 1 Demographics subgroups for the experiment’s participants

Population Quantity Percentage Tenure Quantity Percentage
Industry 41 55.5 % Expert 19 25.7 %
Student 33 44.5 % Novice 55 74.3 %

We categorized the participants’ development tenure into novice and experienced coders,
splitting our sample in half—below and above the average “years as professional developer”.
We also segmented the participants between industry practitioners and students. Participants
are identified by a sequential number (column “Participant’).

The participants were randomly split into two groups: Control and Treatment. Out of the
120 participants that started the questionnaire, 74 (61.7%) finished all the steps; we only
consider these participants in our analysis. We ended up with 33 and 41 participants in the
Control and Treatment groups, respectively.

4.1.2 Experiment Planning

We selected 22 existing JabRef issues and built mock GitHub pages for Control and Treat-
ment groups. The issues were selected from the most recent ones, trying to maintain similar
distributions of the number of API-domain labels predicted per issue and the counts of pre-
dicted API-domain labels. The control group mockup page had only the original labels from
the JabRef issues, and the treatment group mockup page presented the original labels in
addition to API-domain labels. These pages are available in the replication package. We used
a preliminary version of our prediction model to generate the API-domain labels (Santos
et al., 2021).

4.1.3 Questionnaire Data Collection

The questionnaire included the following questions/instructions:

Select the three issues that you would like to work on.

Select the information (region) from the issue page that helped you decide which issues
to select (Fig. 2).

— Why is the information you selected relevant? (open-ended question)

— Select the labels you considered relevant for choosing the three issues.

— What kind of label would you like to see in the issues? (open-ended question)

The questionnaire also asked about participants’ experience level, experience as an OSS
contributor, and expertise level in the technologies used in JabRef.

Figure 2 shows an example of an issue details page and an issue entry on an issue list
page. After selecting the issues to contribute, the participant was presented with this page to
select what information region was relevant to their issue selection.

4.1.4 Questionnaire Data Analysis

We split the analysis into two sets of questions.

@ Springer

Empirical Software Engineering (2023) 28:116 Page70of52 116

The context menu for entries is gone #5254 Title Bieilasue
® Open opened this issue on Aug 28, 2019 - 6 comments | Status
commented on Aug 28, 2019 Assignees
No one assigned
JabRef version 5.0-dev Body
I have tested the latest version from ilds jabref. and the problem persists e TS or Labels

There is no context menu for Bibtex entries anymore (e.g. to change a field to Unicode)

Steps to reproduce the behavior:

1. Right click on any field (the only remaining option is "select all") Projects
= Bugs
-
Closed
added the label on Aug 28, 2019 | Tags or Labels
Milestone

mentioned this issue on Aug 30, 2019

latex-unicod ion & capitalization in JR 5 i ?#5256' Linked Issue
Successfully merging a pull request may close this

label on Aug 30,2019 | Tags or Labels issue

None yet

No milestone

Linked pull requests

added this to|Needs triage in Bugs via automation - on Aug 30, 2019 | Tags or Labels

3 participants

Participants

commented on Aug 30, 2019 Member

Reason is that the following code was commented-out:

i in/j i TextField.java .
Lines 510 61 in 185c081 Code Snippet
@override
public void addToContextMenu(final Supplier<List<MenuItem>> items) {
/7 TextFieldSkin customContextSkin = new TextFieldSkin(this) {
17 @0override
1/ public void populateContextMenu(ContextMenu contextMenu) {
1/ super.populateContextMenu(contextMenu);
1/ contextMenu.getItems().addAl1(0, items.get());
/7 }
/" H
/7 setSkin(customContextSkin);
¥
commented on Aug 30, 2019 Contributor
Ah, yes | remember it was accessing jdk internals or other forbidden things Comments
commented on Aug 30, 2019 - edited ~ Member
This will not be easy to make work again | guess.
Comments

The relevant code moved now to TextinputControlBehavior
https://github.comyjavafxportsfopenjdk-

1e
havior/TextinputControlBehavior java#L661.

Fig.2 Questionnaire question about the relevance of the page regions for task selection

Regions and Labels Choices Analysis. We first compared treatment and control groups’
results to understand participants’ perceptions about what information regions they consid-
ered important and the relevancy of the API-domain labels. We used violin plots to visually
compare the distributions and measured the effect size using the Cliff’s Delta test.

Then, we analyzed the data, aggregating participants according to their demographic
information and resulting in the subgroups presented in Table 1. We calculated the odds ratio
to check how likely it would be to receive similar responses from both groups. We used a
2x2 contingency table for each comparison—for instance, industry practitioners vs. students
and experienced vs. novice coders. We used the following formula to calculate the odds
ratio (Szumilas, 2010):

@ Springer

116 Page 8 of 52 Empirical Software Engineering (2023) 28:116

(a/c)

(b/d)
An odds ratio > 1 means that the first subgroup is more likely to report a type of label, while
an odds ratio less than 1 means that the second group has greater chances (OR) (Sheskin,
2020).

Open Questions Analysis. To understand the rationale behind the label choices, we
qualitatively analyzed the answers to the open questions (“Why was the information you
selected relevant?” and “What kind of label would you like to see in the issues?”’). We selected
representative quotes to illustrate the participants’ perceptions of the labels’ relevancy.

We qualitatively analyzed the answers by inductively applying open coding in groups,
where we identified the participant’s reason for considering the provided information as
relevant and what information the participant would like to be provided. We built post-formed
codes as the analysis progressed and associated them with respective parts of the transcribed
text to code the information relevance according to the participants’ perspectives.

Researchers met weekly to discuss the coding. We discussed the codes and categorization
until reaching a consensus about the meaning of and relationships among the codes. The
outcome was a set of high-level categories as cataloged in our codebook” .

OddsRatio(OR) =

4.2 Results

Information Used When Selecting a Task. Understanding the type of information that
participants used in their decision to select an issue can help projects better organize such
information on their issue pages. Figure 3 shows the different regions that participants found
useful. In the control group, the top two regions of interest included the title of the issue
(78.8%) and the body (75.8%), followed by the labels (54.5%). This suggests that the labels
used by the project were only marginally useful, and participants had to review the issue
details. In contrast, in the treatment group, the top three regions of interest by priority were:
title, label, and body 97.6%, 82.9%, 70.7%,

Our qualitative analysis reveals that the labels help in selecting issues. For instance, P2
mentioned: “labels were useful to know the problem area and after reading the title of the
issues, it was the first thing taken into consideration, even before opening to check the details” .
Participants found the labels to be useful in identifying the specific topic of the issue, as P4
stated: “[labels are] hints about what areas have a connection with the problem occurring”.

Role of the labels. We also investigated which type of labels helped the participants in
their decision-making. We divided the labels available to our participants into three groups
based on the type of information.

— Issue type (already existing in the project): This included information about the type
of the task: bug, enhancement, feature, good first issue, and GSoC (Google Summer of
Code).

— Code component (already existing in the project): This included information about the
specific code components of JabRef: entry, groups, external.files, main table, fetcher,
entry.editor, preferences, import, keywords

— API-domain (new labels): the labels generated by our classifier (IO, Ul, network, security,
etc.). These labels were available only to the treatment group.

7 https://doi.org/10.5281/zenodo.6869246

@ Springer

https://doi.org/10.5281/zenodo.6869246

Empirical Software Engineering (2023) 28:116 Page9of52 116

Regions counts normalized

1.0
Groups
D Treatment
Control
0.8 [O
0.6
8
0.4
0.2
0.0 0.976(0.788 829/0.545| 0.707(0.758 0.561(0.545 0.415(0.242 10.195(0.242 0.1220.03 10.049(0.061
F © [+] o = = =
= Labels < = o

o

Fig.3 The region counts (normalized) of the issue’s information page selected as most relevant by participants
from treatment and control groups

Table 2 compares the labels that participants considered relevant (Section 4.1.3) across the
treatment and control groups distributed across these label types. In the control group, the most
selected labels (56.4%) relate to the type of issue (e.g., Bug or Enhancement). In the treatment
group, however, this number drops to 36.8%, with API-domain labels as the majority (42.7%),
followed by code component labels (20.6%). This difference in distributions alludes to the
usefulness of the API-domain labels.

To better understand the usefulness of the API-domain labels as compared to the other types
of labels, we further investigated the label choices among the treatment group participants.
Figure 4 presents two violin plots comparing (a) API-domain labels against code component
labels and (b) API-domain labels against the type of issue. Wider sections of the violin
plot represent a higher probability of observations taking a given value, the thinner sections
correspond to a lower probability. The plots show that API-domain labels are more frequently
chosen (median is 5 labels) as compared to code component labels (median is 2 labels), with
a large effect size (|d| = 0.52). However, the distribution of the issue type and API-domain

Table 2 Label distributions

Type of label Control Percentage ~ Treatment Percentage
among the control and treatment

groups Issue type 145 56.4 % 168 36.8 %
Components 112 43.6 % 94 20.6 %
API domain - - 195 42.7 %

@ Springer

116 Page 10 of 52 Empirical Software Engineering (2023) 28:116

10

O Comp

T
API x Comp

10

O Type

T
API x Type

Fig.4 The Y-Axis contains the density probability and the median of API-domain labels (API) x Component
labels (Comp) x Type labels

labels are similar as confirmed by negligible effect size (|d| = 0.1). These results indicate
that while the type of issue (bug fix, enhancement, suitable for a newcomer) is important,
understanding the technical (API) requirements of solving the task is equally important for
developers deciding which task to select.

Finally, we analyzed whether the demographic subgroups held different perceptions about
the API-domain labels (Table 3). When comparing industry vs. students, we found partic-
ipants from industry selected 1.9x (p-value=0.001) more API-domain labels than students
when we controlled by component labels. We found the same odds when we controlled by
issue type (p-value=0.0007). When we compared experienced vs. novice coders, we did not
find statistical significance (p=0.11) when controlling by component labels. However, we
found that experienced coders selected 1.7x more API-domain labels than novice coders
(p-value=0.01) when we controlled by the type of the issue.

@ Springer

Empirical Software Engineering (2023) 28:116 Page 11 0f52 116

Table 3 Answers from different

demographic subgroups Subgroup Comparison API % Comp or type %
regarding the API labels Industry API/Comp 56.0 44.0
(API/Component/Issue Type)

Students API/Comp 40.0 60.0

Exp. Coders API/Comp 50.9 49.1

Novice Coders API/Comp 41.5 58.5

Industry APl/issue Type 45.5 55.5

Students APl/issue Type 30.6 69.4

Exp. Coders APl/issue Type 43.5 56.5

Novice Coders APl/issue Type 30.9 69.1

The odds ratio analysis suggests that API-domain labels are more likely to be perceived
as relevant by practitioners and experienced developers than by students and novice coders.

The way contributors analyzed the issues. We used the questionnaire’s open-ended
question to evaluate how subjects used the information to decide whether the task was appro-
priate to them (Section 4.1.4).

Our qualitative analysis revealed a set of 22 categories of information reported as relevant
by contributors when they decide on a task to which to contribute. We organized the 22
categories of information based on an existing model from literature, the SW2H framework,
as we explain below and illustrate in Fig. 5. The SW2H framework (5-Wh and 2-How ques-
tions) is often used for clarifying a problem, issue, error, or nonconformity, or to facilitate
implementing effective actions. The framework was initially applied to the automotive and
other manufacturing industries (Ohno, 1982) and later to quality management (Pacaiova,
2015) and software engineering (Klock et al., 2016).

Who will solve the issue? This category contains information about the forces influencing
people to choose to work on an issue. Contributors mentioned what can influence one’s
decision to select the issue. A A newcomer can BECOME ATTRACTED to select the issue
when “filtering labels to search issues that [they] would like to contribute the most” (P34)
When opening the issue, participants also reported the body and the comments were relevant
to “gain interest on the issue” (P4) The contributors’ confidence to decide about an issue
can increase when they match their EXPERIENCE LEVEL with the indication of difficulty to
solve the issue (P8, P4) Besides their experience, contributors can use the REQUIRED SKILLS
to work on the issue to judge “if they have the [necessary] skill to help” (P31) The required
technical skills mentioned by participants included the programming language of the code
(P21, P27, P33),

Why is that an issue? is a category that justifies the issue as an issue. Participants men-
tioned the reasoning for an issue to exist could raise interest in new contributors, such as
knowing the GOAL TO SOLVE and “what is the purpose of the issue” (P44)

When was the issue solved, or when will it be solved? introduces time-related infor-
mation and constraints regarding the issue. Participants reported they would like to know
the DEADLINE TO SOLVE the issue or the “urgency” (P13). Participants suggested that the
priority appear in a label (P17) and be defined according to the impact that the issue has on
businesses or users (P15). Another issue related to time is the “status to check the issue’s
state” (P33), which can be OPEN, CLOSED, OR ONGOING, allowing contributors to use a
filter in the issues’ page. Since they “don’t look at closed issues much, [...] the open flag
grabs [their] attention” (P43). When a contributor is currently working on a solution, they

@ Springer

Empirical Software Engineering (2023) 28:116

116 Page 12 of 52

suonsanb udAdS $S0I0E FULEW-UOISIOAP JOJ UOTIRULIOJUT SOZIUBSIO YIIYM ‘(9T T8 10 YOO[3) JIomaurery
HZMS 2 01 (sexenbs papunor) suonmuyep syuedonied mo jo sooSojes ay) paddew opp st} & SuIsooyo 03 JULAI[AI SB sI0)nqIIuod Aq paytodar uoneuwuoyur ayy, § ‘b4

sebusjeyn| | sidweny 8apoo anss| ay)
0 adA
Hoy3 Buinjos snolnald ul [eo07 J 1
pasinbey ouEUSO Bngeq aonpouday seale uiod ue uonduosaq
: S 0} sdaig 0} sdayg pajoauuo) julod pers s,2Nnss|
¢onssi ay} £,9Nss| ay} ¢anssi ay} ¢,9Nss| ay}
s1 B1q moH QAJOS 0} MOH sl alaym S11BYM
uonnjos Bujobuo dnoineysq SIS BN
ay} Jo uonduosag pajoadxy palinbay | [eousuadxy
Bulobuo 1o oUIIDES Buinjos jo 9A|0S Ylom ajes payemy
pasojo ‘uadQ lieesd sjjauag 0} |e0D) 0) Aseg Buieay Bumen
¢ POAJOS 8q ||IM JO Janssi ue Janssi ay)
SBM 8nss| ay} Usypn ey 1 Aym BA|0S ||IM OYAA
- \ 4

o®

¢)

pringer

A

Empirical Software Engineering (2023) 28:116 Page 130f52 116

should have their names assigned to the issue and include a comment with the DESCRIPTION
OF AN ONGOING SOLUTION that should “demonstrate the issue’s status” (P35).

What is the issue? relates to the description of the issue itself. Participants raised the
importance of clear ISSUES’ DESCRIPTION, including both a summarized “idea of what the
issue is about” (P28) and a comprehensive explanation “to help understand what is the prob-
lem” (P45) about. When an issue provides both levels of details, it “fells about the problem,
first in a general term and later giving [them] details about it” (P12). The issue’s TYPE in
labels “demonstrate [...] how [the issue] is classified” (P35). The participants suggested the
issue should have “labels that inform precisely which type of issue is” (P40): bug (P41),
a new feature (P42), performance (P42), enhancement (P42), and security. One participant
(P43) emphasized that “‘all issues should have a type so [they] can see if [their] skill set is
useful” (P43).

Where is the issue? references the localization of the issue in the code or project, guiding
contributors to a START POINT or “where to start looking at in the code/library to investigate
the problem” (P4). The LOCAL IN CODE or the code block, method, or class which is causing
the issue, and CONNECTED AREAS. This information would “give some hints about what
areas have a connection with the problem occurring” (P4) and “code snippet to provide
context for wherein the program this issue was happening” (P18).

How to solve the issue? brings practical directions to guide solving the issue. Awareness
of “PREVIOUS ATTEMPTS to solve [an issue]” (P30) helps contributors with “valuable infor-
mation about what has already been done and properly documented” (P42). Contributors
who are deciding about an issue can read “[SOLVING] CHALLENGES” (P35) to avoid wast-
ing time on previous attempts and focus their effort on new paths to achieve the solution.
When working on the issue, having STEPS TO REPRODUCE the error (P45) on a controlled
environment also help to solve the issue. Participants also mentioned they would like to see
“linked issues and comments to help understand the SCENARIO” (P33), and STEPS TO DEBUG
to “decipher what the problems really is” (P41).

How big is the issue? is information that can provide visibility of the REQUIRED EFFORT
for “[a contributor] to work on alone until [they] solve it” (P7). If the issue does not have
this information, the developer tries to “grasp what’s the idea of the issue, to better measure
how long it would take to solve it” (P19).

Finally, the question “What region has this information?” identifies the regions where the
participants found the information in this study. Title appeared 7 times, body 8, comments
13, labels 5, status 2, code snippet 3, and linked issue 2.

5W2H outcomes: the analysis confirmed the relevance of the title, body, comments, and
labels and helped to create a taxonomy of what contributors analyze when deciding whether
they want to contribute to an issue. The qualitative code we built for this open-ended question
may be explored in future work to create ways to show the contributor such information using
templates, labels, bots, or other UI objects.

Preferred types of labels. Towards the evaluation of the labels contributors want to see in
issues pages, 42 participants (out of 74) answered the open question Q2 (‘“What kind of label
do you want to see in the issues?”’). The TYPE, PRIORITY to solve, and PROGRAMMING LAN-
GUAGE “in which the code was written in” (P21) were the three most mentioned, followed by
DIFFICULTY LEVEL, TECHNOLOGY, and API. Some participants suggested different semantics
for the label TYPE: bug (P3, P41), improvement (P3), performance (P35, P42).new feature
(P42), or security (P36). Other participants also suggested different semantics for DIFFI-
CULTY LEVEL: “good first issue” (P6), “good challenging issue” (P7), or “easy, medium,
hard” (P4). The semantics for each label can be explored in future work. We present the 11

@ Springer

116 Page 14 of 52 Empirical Software Engineering (2023) 28:116

Table 4 Labels desired by participants to select the issue

Group Desired labels Participants who mentioned

Management Type P41, P35, P42, P3, P36, P37, P38, P39, P43, P40
Management Priority P12, P13, P19, P20, P14, P15, P16, P29, P17, P18
Technical Programming language P34, P33, P21, P22, P27, P23, P24, P22, P26
Management Difficulty level P4, P5, P6, P7, P9, P8

Technical Technology P30, P34, P33, P32, P20, P31

Technical API P41, P42, P3, P1, P20

Technical Architecture layer P2, P3, P27, P18

Management Status P28, P9, P29

Management GitHub info P10, P19

Technical Database P33

Technical Framework P20

categories of suggested labels that we qualitatively coded from the participants’ answers in
Table 4.

RQ.1 Summary. Our findings suggest that labels are relevant for selecting an issue to
work on. API-domain labels increased the perception of the labels’ relevancy. API-
domain labels are especially relevant for industry and experienced coders. API is one of
the issue labels users want to see. SW2H analysis has confirmed the relevance of labels
and can guide contributors on how to write an issue.

5 Label Predictions (RQ2)

Even with the relevance of the API-domain labels, we investigated how to predict them
automatically.

5.1 Method

To predict the API-domain labels, we employed a multi-label classification approach. This
approach is divided into three phases: phase 1 - mining the repositories; phase 2 - parsing
the source code and semi-automatically categorizing the APIs with experts; and phase 3
- building the corpus and running the classifiers (Fig. 1). Additionally, we explored the
influence of issue elements (i.e., title, body, and comments) and machine learning setup (i.e.,
n-grams and different algorithms) on the predictions.

In our preliminary work (Santos et al., 2021), we conducted an exploratory experiment
on a single project (JabRef). In the current study, we include four new projects. We selected
projects to increase the diversity of domains, programming languages, and human languages
(vocabularies). We sought a mix of popular open-source (OSS) and closed-source currently
active projects with a large number of issues and pull requests. As we aimed to run surveys
within the project communities, we contacted maintainers/managers of candidate projects in

@ Springer

Empirical Software Engineering (2023) 28:116 Page 150f52 116

advance to explain our goals and seek support in reaching contributors for the user studies.
Table 5 presents the selected projects and their characteristics.

The study can be divided into two branches of prediction: TF-IDF and BERT. The TF-
IDF predictions followed the previous study (Santos et al., 2021), employing five algorithms
(Random Forest Decision Tree Logistic Regression, MLP Classifier, and MLKNN) but were
extended to more projects, ITSs, programming languages, and vocabularies (natural lan-
guages). The BERT predictions operate the same extensions but are restricted to English
vocabulary. Unlike the TF-IDF, BERT determines the meanings of words in a corpus based
on their context within a sentence. We compared BERT to the previous TF-IDF classification
pipeline within the context of the issue labeling problem.

5.1.1 Phase 1 - Mining Software Repositories

We started by gathering data from the repositories to train a machine learning model to predict
the API labels. To achieve this goal, we mined closed issues and merged pull requests.Table 6
summarizes the projects’ characteristics and demographics. We collected a total of 22,231
issues and 4,674 pull requests (PR) from all projects, considering all project data until Novem-
ber 2021. For the OSS projects, we used the GitHub REST API v3 to collect data such as
title, body, comments, and closure date. We also collected the name of the files changed in
the PR and the commit message associated with each commit. The industry projects used
Gerrit (RTTS - Real-Time Telecom Software) and Jira + MTT - Minds At Work Time Tracker
(Cronos). From RTTS, we extracted two CSVs files: one containing the “issues” (troubles
in RTTS) and the second containing the commits. The Cronos project uses a combination
of Jira to track the open issues and the software MTT, an in-house solution, to manage the
revisions and allocation time. We extracted a CSV file from Jira and a TXT from MTT.

Next, to train the model, we kept only the data from issues linked with merged and closed
pull requests, since we needed to map issue data to source code APIs. To find the links between
pull requests and issues in open source projects, we searched for the symbol #issue_number
in the pull request title and body and checked the URL associated with each link. We also
filtered out issues linked to pull requests without at least one source code file (e.g., those
associated only with documentation files) since they do not provide the model with content
related to any API. Similarly, we linked projects hosted by Gerrit and Jira/MTT, using the
trouble ID and key fields (Gerrit), and for the project managed with Jira/MTT, we linked
using the change ID and revision fields. The TXT file from MTT needed to be parsed to look
for the revision field. We discarded entries without source code or linked data. In total, 734
entries were discarded.

5.1.2 Phase 2 - API classification

Phase 2 encompasses API extraction and expert classification.

API extraction. To identify the APIs used in the source code affected by each pull request,
we built a parser to process all source files from the projects. In total, 12,772 library declaration
statements from 13,107 source files were mapped to 185,159 possible relationships between
files and APIs. The parser looked for specific commands, i.e., import (Java), using (C#), and
include (C++). The parser identified all classes, including the complete namespace from each
import/using/include statement. We considered only the most frequent language per project.

Then, we filtered out APIs not found in the latest version of the source code (JabRef 5.3,
Audacity 3.1.0, and PowerToys 0.49.1; RTTS and Cronos are industry projects, and we used

@ Springer

Empirical Software Engineering (2023) 28:116

116 Page 16 of 52

N Ioxora Ly, V'N V'N 'V'N V'N - €Cl SOuOID
N 1onpoId uonEIUNWIWOA[IY, VN V'N 'V'N V'N (04 1cl SLIY
X SMOPUIA 103 SaNIMN() 16°6 Mee MLE 6769 w9t 0S skog1omoq
A 10}1pe orpny 390 AT MTLT 3169 12! ST Kyoepny
A ToSeurur sA[ONIY ALYy LT 8T MLST LEE w Jouqer
SSO urewo(| sonss| sfind pasor) SYI0 s1e)g o) d 00lo1g

SI0INQLIUOY) JO JOqUINN - D) "SAsea[ay] JO Joquuny - 3 "S[re1e(100lo1d § 3jqel

pringer

A

Page 17 of 52 116

Empirical Software Engineering (2023) 28:116

TLLTT LOT €T we'e L9y 1€T°CT [PI0L

82% 0ce 90¢ SLOT €16 LXI/ASD Hodxg 49 LLA/eIf BAR[souorn

S¥9°8 6LL'6 OLY 0LY 9€8°C ASD Modxg NH 1D BAR[SLLI

¥9¢ Y6L 110°1 €68 1LS°T1 €A IdV qnHID NH qnHI1D #D skog1omoq

8LY'I 9 Ive 01€ 0Pl EA IV qnHID NA qnH1D ++D Kioepny

vre'l 069°T P16 996°T LYY EA IV qnHID Nd qnHID BAR[Fodqef

SIdV 1ounsig S9[Y 9p0OJ 22IN0S Ad 2 sonssI payur] Ad/senssy POYIRIA UONIeNXT AIe[NQEO0A /IYORI], 9NSS] SueT So1g 100lo1g

SwYSAS 19orI) ONSSI pue paurw s3oofo1g 9 3|qe)

pringer

Qs

116 Page 18 of 52 Empirical Software Engineering (2023) 28:116

the last provided version) to avoid recommending APIs in source code that were no longer
used in the project. The filtering process is automatic. When processing a closed pull request,
the files attached have their filenames compared with those stored in a database by the parser.
When the file name is not found in the database, the pull request is discarded from the training
set.

Our final dataset comprises 22,231 issues, 4,674 pull requests, 13,107 files, and 12,772
distinct APIs (Table 6).

Expert Classification. Three software engineering experts (senior developers), including
one of the authors of this article, proposed the labels based on their experience in software
development, considering possible categories generic enough to suit a wide range of APIs
present in software projects. For example, the proposed domains contain UI, 10, Cloud, Error
handling, etc. After four rounds of discussions, the experts reached a consensus, and 31 API
domains were defined (Table 7).

After defining the 31 API domains, we started to classify the APIs semi-automatically
(Fig. 6). The intuition behind the API classification method is that libraries’ names-
paces often reveal architectural information and, consequently, their categories or API
domains (Ducasse and Pollet, 2009; Savidis and Savaki, 2021). To identify the possible
API domains for each API, we split all the API namespaces into tokens. For instance the API
“com.oracle.xml.util. XMLUtil” was split in “com”, “oracle”, “xml”, “util”, and “XMLU-
til”. Next, we eliminated the business domain name extensions (e.g., “org”, “com”), country
code top-level domain (“au”, “uk”, etc.), and the project and company names (“‘microsoft”,
“google”, “facebook”, etc.). In the example, we kept the first token “xml”, second token
“util”, and full namespace “com.oracle.xml.util. XMLUtil.”

For each token, we identified how similar it is to the 31 proposed API domains using
an NLP similarity function. The intention is to suggest to the experts potential fits for the
APIs. We used the NLP Python package spacy (spacy industrial-strength natural language
processing, 2021). Spacy is a multi-use NLP package and can retrieve the semantic similarity
of words using word2vec. We set up the spacy package with the largest trained model available
(large full vector package, en_core_web_lg, which includes 685k unique vectors).

To assist the expert evaluation and reduce the search scope, we aggregated the tokens found
in namespaces. For instance, to evaluate the APIs for the Cronos project, the experts received
a list with 32 “first tokens” and a list with 73 “second tokens” automatically aggregated
using SQL commands for each token. Finally, the experts analyzed the complete list (tokens
+ similarity suggestions) to pick one suggestion or decide using their experience. The whole
process is illustrated in Fig. 6 and exemplified below. Table 8 shows the number of APIs
evaluated by the experts in two rounds after the aggregations. Therefore, instead of classifying
the 441 APIs found in Cronos source code, they checked the NLP suggestions in the list of
first and second tokens.

The process employed three experts (one author and two senior developers) and a card-
sorting approach to manually accept or reject the suggestions for each token in the list. Each
expert picked up one of the suggestions or chose a better API domain based on their experi-
ence. The experts could also check the list of full namespaces if they did not agree with the
NLP suggestions. For example, considering the namespace “com.oracle.xml.util. XMLUtil:”
for the first token, “xml”, the similarity function suggested possible API-domain labels
and a similarity value: Input and Output: 0.7, Error Handling: 0.69, Parser: 0.57. For the
token “util”, it suggested: Utility: 0.9, Data Structure: 0.49. Therefore, the namespace
“com.oracle.xml.util. XMLUtil” was classified as “Utility.” The majority of the APIs were
classified using the first or second token. In a few cases (< 10%), the experts had to classify

@ Springer

Page 190f 52 116

Empirical Software Engineering (2023) 28:116

OJPIA ‘OIPNE “1X3} Y)IM UONBWLIOJUI JO uonejuasaadoy

IOUJO YOBI 1M 2JBIIUNUIUIOD

ued A9 ey os suonesrjdde JURIQJJIP 0M) UIIMIq

QOBJIIU] "SAOIAIRS Jo[[ews 9[qeAo[dop Apjuopuadopuy

BJep 3urures) uo paseq [opouwr e prng a1 poddns TN

dde oy 103 Ansi3ar Sog

SUOISIOAUOD PUE SaIjeo) oSenSue| [euIaju]

SOSSB[O PAIUSLIO-INIONIYOIE

J0 S[onuo)) ‘spuewtio)) I SuId)jed ‘SYIOMIWERL]

SUOISUQWIP [2QO[3 PUE ‘[BINI[NOIUI ‘[BUOTIBUISIUI 9SNJUI PUE JeIZoIu]
sormeay 131droqut Jo soridwo)

BIEp ALIM ‘pEY

uonewIOuI paduarxjal A[fesrydeisoon

SIOUQ)SI] OYI[SJUAD O} SIOMSUY

SUOT)IPUOD JOLIS WOIJ $ANPI201d A19A0031 pue asuodsay]

AJOAT[OP SNONUIIUOD PUE UONEBISAUI SNONUNUOD ‘[0TUOI UOISIOA JOJ SILIRIQI]
BIRPEIOW IO SIseqele(]

(991 “SISI] ‘SUONO[[09 “*3-9) suraned sarmonns eleq

Ju2uod [ensiA Junendiue|y

JOUISIUT AU} UO UNI Jey) SOOTAIIS PUB dIem}Jos I0J S[JV

SJBULIO] JO AJQLIBA IIM ‘BIBD JO Junowe A31e] JuLI0)s YIm [83p Jey) S|V
NIBWYOUdq JO 9ouBWLIO)Iad SIONUOI

wISAS ayy 03 paydene asn dy1oads 1oj surdnid 1o sdde Ared-pary,

eIpawn A

SOOIAIOS/SIIIAIISOIIN
("TIN) Sururea] aurydRN
Sur3so

(Sue) o8en3ue

o1307

(uUg 1) UOBZI[BUONIBUIU]

19101d1oyuy

(oD mdnQ-nduy

(S1D) wasAg uoneurioju] o1yderdoan
Surpuey juoayg

Surjpuey Joug

(sdoas() suonerad L[pue juswdo[arap a1em)joS
(4qQ) soseqereq

amonng eleqg

(D)D) sorydern 1ndwo)

pnoy

vyep S1g

(JAdV) 1eSeuey soueuio)1ag uonedrddy
(ddy) uoneorddy

uonmyaq

pajerauas [oqe

UONIUYap S[PquT £ 3jqeL

pringer

Qs

Empirical Software Engineering (2023) 28:116

116 Page 20 of 52

uonewoIne 153,
asn [e1ouas 10 sarre1qr Ayred-paryg,

STOIIUOD [ENSIA ‘SUIIOS ‘SULIOJ SAULI(
suoneinsyuod dde feurojug

s[020301d 21nd9s pue 03dL1D)

Sumyoreas gom I10J [JV

‘SISA[eue

Ioy}INng 103 s9091d pazIuS0oa1 OJuI Blep UMOP SYeaIg
$901n0sa1 s 19)ndwod € oFeuew pue $SA00E 0} S|JV
SIAV TINY ‘S1900s ‘s[000301d qapy

‘eyep 25enSue| [BINJRU 9ZA[RUR PUB SSAD01]

UONNIIX JUALIMNIUOD I0J HHOQQBM

1591,
(mn) Lo

(IN) d9eyIu] Iasn)
dnjog

Ajunoog

[oIeas

Io8IRq
(SO) wAsAg Sunerado

SIomION

(d7IN) Surssadoig a3enSueT [einjeN
(peaIyL) peary-nny

uonmyaq

pajerauas [oqe

panunuod 7 ajqel

pringer

Ns

Empirical Software Engineering (2023) 28:116 Page 21 0f52 116

API1

Car=TT] '
API2 ; ay . - . >
a @
. calculate approved List o
API Spllt NLP EXpertS Namespaces
namespaces Tokens Lo Evaluate X

similarity AP
‘ Domains

< O

Not

API- —> Experts
Approved

Domains PP T:;Ck one

omain

Fig.6 Process for evaluating APIs by experts

the full namespace. After classifying all the tokens, the experts conducted a second round to
achieve consensus (~16 hours for all projects).

The project in Portuguese followed the same expert classification process employed in
English projects. Indeed, the libraries declared in the Cronos project source code are written
using English words and therefore did not harm the NLP categorization.

We used these 31 categories (API-domains labels) for the 22,231 issues previously col-
lected based on the presence of the corresponding APIs in the changed files. We used this
annotated set to build our training and test sets for the multi-label classification models.

5.1.3 Phase 3 - Building the Multi-label Classifiers

Since solving an issue may require multiple types of APIs, we applied a multi-label classifica-
tion approach, which has been used in software engineering for purposes such as classifying
questions in Stack Overflow (e.g., (Xiaetal.,2013)) and detecting types of failures (e.g., (Feng
et al., 2018)) and code smells (e.g., (Guggulothu and Moiz, 2020)). To build the classifiers,
we first needed to build the corpus and then run and evaluate the classifiers.

Corpus construction. The corpus construction comprised pre-processing, cleaning, diag-
nostics, and splitting into training and test datasets.

Pre-processing We built two distinct models—one that uses TF-IDF (Ramos et al., 2003)
and another that uses BERT (Ravichandiran, 2021). These corpora include the issue title,
body, and comment texts of the selected issues.

Next, similar to other studies (Ramos et al., 2003; Behl et al., 2014; Vadlamani and
Baysal, 2020), we applied TF-IDF, which is a technique for quantifying word importance in
documents by assigning a weight to each word. After applying TF-IDF, we obtained a vector
of TF-IDF scores for each issue’s word. The vector length is the number of terms used to
calculate the TF-IDF, and each term received the TF-IDF score. These TF-IDF scores are
then passed to one of the selected classifiers (e.g., RandomForest) to label each issue. Each
label receives a binary value (0 or 1), indicating whether the corresponding API domain is
present in the issue.

For BERT, we created two separate CSV files: an input binary with expert API-domain
labels paired with the issue corpus, as well as a list of the possible labels for the specific

@ Springer

Empirical Software Engineering (2023) 28:116

116 Page 22 of 52

%19'6 %69 6€¢ 698 0csTt Sae / [el0],

%801 %0'8 97 LEL T69°1 REXCLIE

%8'ET BTL €L [43 8274 souorn

%e'T BL'T S6 ol S¥9°8 Boury

%9°1C %OvI 0c LE 79¢ skog1omoq

P1'SY %0°8¢ 901 798 8LY'1 foepny

punoi pug + 18] 9% SIdV punoI sy 9 S[dv uayo} pug syradxe 03 paywqns S|y uay0} IS syadxoe 03 paywuqns S|y SIdV [eI0L 1o0lo1g

100l01d 1od payisse[d S|y Jo IqunN g djqejl

pringer

A

Empirical Software Engineering (2023) 28:116 Page 23 0f52 116

project. BERT directly labels the issue with the corpus text and labels list without the need
for an additional classifier.

We also evaluated the classifier’s performance by combining in one dataset all the projects
that use English vocabulary. Therefore, we also had to build a new composed ID (ID +
project name) for all projects to guarantee uniqueness. For this experiment, after we created
the new IDs, we merged the binaries of the project, including the classes missing for each
project (RTTS does not have a Computer Graphics label, for example). We compared various
algorithms to identify the best setup.

Cleaning To build our classification models using TF-IDF, we converted each word in the
corpus to lowercase and removed URLs, source code, numbers, and punctuation. We also
removed stop-words and stemmed the words using the Python nltk package. We filtered out
the issue and pull request templates® since their repetitive structure introduced noise and
were not consistently used among the issues.

We follow the work of Izadi et al. (2021) to process data for BERT. We tested BERT with a
cleaned and uncleaned corpus. This was checked by comparing the F-measure, precision, and
recall results from training with cleaned and uncleaned corpora. We ran three training trials
with a 10-fold ShuffleSplit CV and determined that the unclean corpus consistently delivered
higher metrics than any cleaning method (stemming, removing stopwords, etc.) The result is
in line with Izadi et al. (2021) who showed that an unclean input corpus best maintained the
context of words needed for BERT to determine their meaning and significance.

Diagnostics Multi-label datasets are usually described by label cardinality and label den-
sity (Herrera et al., 2016). Label cardinality is the average number of labels per sample.
Label density is the number of labels per sample divided by the total number of labels,
averaged over the samples. For our dataset, the label cardinality is 8.19 and the density is
0.26. These values consider the 22,231 distinct issues and API-domain labels obtained after
the previous section’s pre-processing steps. Since our density can be considered high, the
multi-label learning process or inference ability is not compromised (Blanco et al., 2019).

Training/Test Sets We split the data into training and test sets using the ShuffleSplit
method (Herrera et al., 2016), which is a model selection technique that emulates cross-
validation for multi-label classifiers. For example, in the JabRef project, we had 1,914 linked
issues, and since one PR could be linked with more than one issue, we kept 1,648 entries
that we randomly split into a training set with 80% (1,318), 70% (1,154), and 60% (989) of
the issues and a test set with the remaining 20% (330 issues), 30% (494), and 40% (659).
We ran each experiment ten times, using ten different training and test sets to match 10-fold
cross-validation. To improve the balance of the data set, we ran the SMOTE algorithm for
the multi-label approach (Charte et al., 2015).

Classifiers. To create the classification models, we chose six classifiers that work with the
multi-label approach and implemented different strategies to create learning models: Deci-
sion Tree, Random Forest (ensemble classifier), MLPC Classifier (neural network multilayer
perceptron), MLKNN (multi-label lazy learning approach based on the traditional K-nearest
neighbor algorithm) (Zhang and Zhou, 2007; Herrera et al., 2016), Logistic Regression, and
BERT. We ran the first five classifiers using the Python sklearn package and tested several
parameters. For the RandomForestClassifier, the best classifier, we kept the following param-
eters: criterion = ‘entropy’, max_depth = 50, min_samples_leaf = 1, min_samples_split =3,
n_estimators = 50.

8 http://bit.ly/NewToOSS

@ Springer

http://bit.ly/NewToOSS

116 Page 24 of 52 Empirical Software Engineering (2023) 28:116

The BERT model was built using the open-source python package, Fast-Bert (Fast bert
repository, 2021), which builds on the Transformers (Transformers documentation, 2021)
library for Pytorch. Before training the model, the optimal learning rate was computed using
a lamb optimizer (You et al., 2020). Finally, the model fit over 11 epochs and validated every
epoch. This training and validation occurred for every fold in the ShuffleSplit 10-fold cross-
validation. The BERT model was trained on an NVIDIA Tesla V100 GPU that is contained
within a computing cluster. The choice of hardware is not critical so long as the target GPU
has sufficient VRAM to train the BERT model.

Classifiers Evaluation To evaluate the classifiers, we employed the following metrics (also
calculated using the scikit-learn package):

— Hamming loss measures the fraction of wrong labels to the total number of labels.

— Precision measures the proportion between the number of correctly predicted labels and
the total number of predicted labels.

— Recall corresponds to the percentage of correctly predicted labels among all relevant
labels.

— F-measure calculates the harmonic mean of precision and recall. F-measure is a weighted
measure of how many relevant labels are predicted and how many of the predicted labels
are relevant.

. TP .

Precision = —— 1)
TP+ FP

TP ..

Recall = ———— (i)

TP+ FN
2T P
FMeasure = (ii1)

2TP+ FP+ FN

The classic formulas to compute precision (i), recall (ii), and F-measure (iii) based on TP,
TN, FP, and FN (true positives, true negatives, false positives, and false negatives) traditionally
address single-label problems. An instance is considered correct or incorrect in single-label
problems, while an instance may be partially correct in a multi-label evaluation; i.e., only a
subset of the classes is correct for some instances. To address the multi-label classification
problem, the literature (Tsoumakas et al., 2009) suggests adapting the aforementioned metrics
as follows.

The metrics for each label can be calculated using different averaging strategies, as
described in the following formulas. Let T P;, F P;, T N;, and F N; be the number of true
positives, false positives, true negatives, and false negatives returned by a binary evaluation
effort B(T P, TN, F P, FN) such as the binary relevance transformation for a label / (Pereira
et al., 2018) and ¢ is the number of labels. The macro averaging (Tsoumakas et al., 2009)
is the arithmetic mean of all the per-label metrics, while micro averaging (Tsoumakas et al.,
2009) is the global average metric obtained by summing TP, FN, and FP. The averages are
computed and used to calculate the precision, recall, and F-measure (i, ii, iii). Santos et al.
(2021) used micro averaging to calculate the predictions’ metrics. Thus, we kept it to compare
with the previous study. The micro average favors the most populated classes (Sokolova and
Lapalme, 2009).

@ Springer

Empirical Software Engineering (2023) 28:116 Page 250f52 116

1 q
Buacro = > B(TPi, FP, TNy, FNy) (iv)
=1

q q q q
Buicro = B (Z TP;,ZFP;,ZTN;,ZFN;) V)
=1 =1 =1 =1

Transfer Learning. Next, we investigate the behavior of the metrics when we use different
sets to train and test the model. We combined four projects using English vocabulary using
three projects for training and one for testing. For instance, we trained a dataset with JabRef,
PowerToys, and Audacity to test using the RTTS project. Next, we substituted the test dataset
with one in the training set until completing all possible combinations.

Data Analysis. We used the aforementioned evaluation metrics, and the confusion matrix
logged after each model’s execution to evaluate the classifiers. We used the Mann-Whitney
U test to compare the classifier metrics, followed by Cliff’s delta effect size test. The Cliff’s
delta magnitude was assessed using the thresholds provided by Romano et al. (2006), i.e.
|d] <0.147 “negligible”, |d| <0.33 “small”, |d| <0.474 “medium”, otherwise “large”. We
considered p-value < 0.05 as the limit to determine a statistical difference.

For the remainder of our analysis, we filtered out the API labels with no occurrence.
“Cloud” and “Machine Learning” did not appear in any issues/PR mined and, therefore, had
no predictions.

The predictions using the dataset with all projects considerably changed our distribution
of labels. The most frequent Labels were “UI”” with 762 occurrences, followed by “Util” with
726 and “Logic” with 575. The less frequent labels were: “NLP” (45), “CG” (16), and “GIS”
(10). Despite some labels being popular and having been used for tagging many APIs by the
experts, the lack of pull requests submitted that touched source codes with those APIs may
explain their rareness. The lack of linked issues and pull requests that mention those labels
can also cause the absence in the dataset. Finally, training all the datasets together helped
to spread the labels’ frequency, for instance: “Util” and “Logic” labels were dropped when
training the JabRef project because they reached the threshold of 90% of label predictions.
When training using the dataset with all projects combined, those labels prevailed, staying
below the 90% threshold, and were used to tag the issues (Fig. 7).

Finally, we checked the distribution of the number of labels per issue (Fig. 8). We found
110 issues with six labels, 106 issues with three labels, 104 issues with seven labels, and
102 issues with eight labels. Only 4.1% (=40) of issues have one label, which confirms a
multi-label classification problem (Fig. 8).

5.2 Results

RQ.2.1: To what extent can we automatically attribute API-domain labels to issues using
data from the project?

To predict the API-domains labels, we started by testing a simple corpus: only the issue
TITLE as input and the Random Forest (RF) algorithm, since it is insensitive to parameter
settings (Tantithamthavorn et al., 2019) and has shown to yield good prediction results in
software engineering studies (Petkovic et al., 2016; Goel et al., year; Pushphavathi et al., 2014;
Satapathy et al., 2016). Then, we evaluated the corpus configuration alternatives, varying the
input information: only TITLE (T), only BODY (B), TITLE and BODY (T+B), and TITLE, BODY,

@ Springer

116

Page 26 of 52

Empirical Software Engineering (2023) 28:116

800

700

600

500

400

300

200

100

762
726

575
520

430

381 365

321

259 258 949
235
220216

193 483 174

156
29
106 106 106

92

45

16 10

ul
Util

Logic

aQ
Q
<

Setup
D Struct

10

Services

Test

(o]
Parser

APM

DevOps

Lang

Logging

Search

Error H

DB
Multim

Network

Security
Big Data

Event H

Thread

Interp

i18n
NLP

Q
(@]

(%]
o

Fig.7 Number of labels per type from the model with all the datasets merged

and COMMENTS (T+B+C) comparing the average of all projects. To compare the different
corpus configuration, we kept the Random Forest algorithm and used the Mann-Whitney U
test with the Cliff’s-delta effect size.

We also tested alternative configurations using n-grams. For each step, the best configu-
ration was kept. Then, we used different machine learning algorithms and compared them to
a dummy (random) classifier.

110

106
104 102

100
87

80
71

62 61

60

50 49

45

40
40

28

20

3

6 3 7 8 5 10 4 9 12 2 11 1 13 14 16 15 17 18 19 20 21

Fig.8 Number of labels per issue from the model with all the datasets merged

@ Springer

Empirical Software Engineering (2023) 28:116 Page 27 of 52 116

As Fig. 9 and Table 17 (Appendix A) show, when we tested different inputs and compared
them to TITLE only, all alternative settings provided better results with TF-IDF. We observed
improvements in terms of precision, recall, and F-measure from the previous study (Santos
et al., 2021). When using BODY, we reached a precision of 84%, recall of 78.6%, and F-
Measure of 81.1%. In contrast, while BERT had worse results, the model with the TITLE
outperformed the other BERT models with 61.6% precision.

For TF-IDF, we found statistical differences comparing the results using TITLE only and
all the three other corpus configurations: F-measure (p-value < 0.001 when comparing with
TITLE+BODY or TITLE+BODY+COMMENTS, Mann-Whitney U test) and precision (p-value <
0.001 when comparing with BODY or TITLE+BODY, Mann-Whitney U test), both with negli-
gible effect size when comparing the precision from TITLE and BODY. The corpus configured
with BODY performed better than all others in terms of precision, followed closer by the
one set up with TITLE+BODY, which performed better in recall and F-measure. However, the
results suggest that using only the BODY would provide good enough outcomes since there
was a negligible effect size compared to the other two configurations—using TITLE and/or
COMMENTS in addition to the BODY—achieving similar results with less effort. Table 9 shows
the Cliff’s-delta comparison between each pair of corpus configurations, and Fig. 9 shows
the box plots confirming the similar results carried out by the three diverse setups. For BERT,
all the models had the same distribution in precision and F-measure (Table 9).

Next, we investigated the use of bigrams, trigrams, and quadrigrams, comparing the results
to the use of unigrams. We used the corpus with only the issue BODY for this analysis, since
this configuration was chosen in the previous step. Table 18 (Appendix A) and Fig. 10 present

Evaluation Metrics
I Precision
[Recall
I Fmeasure_Score

Performance

0.3 A

! ¢

L ¢

0.2

T TF-IDF B TF-IDF T+B TF-IDF T+B+C TF-IDF T BERT B BERT T+B BERT T+B+C BERT
Classifier Corpus

Fig.9 Comparison between the corpus models inputted to TF-IDF and BERT. T=Title, B=Body, C=Comments

@ Springer

116 Page 28 of 52 Empirical Software Engineering (2023) 28:116

Table9 Cliff’s Delta for F-Measure and Precision: comparison of corpus model alternatives for TF-IDF and
BERT

TF-IDF/BERT Corpus Cliff’s delta

Comparison F-measure Precision
TF-IDF T versus B -0.005 negligible -0.15 small***
TF-IDF T versus T+B -0.10 negligible®** -0.12 negligible®**
TF-IDF T versus T+B+C -0.03 negligible®** -0.01 negligible
TF-IDF B versus T+B 0.10 negligible®** 0.02 negligible
TF-IDF B versus T+B+C -0.02 negligible 0.14 negligible®**
TF-IDF T+B versus T+B+C 0.07 negligible®** 0.11 negligible®**
BERT T versus B 0.07 negligible 0.11 negligible
BERT T versus T+B 0.13 negligible 0.03 negligible
BERT T versus T+B+C 0.03 negligible 0.09 negligible
BERT B versus T+B 0.10 negligible -0.04 negligible
BERT B versus T+B+C -0.006 negligible 0.08 negligible
BERT T+B versus T+B+C -0.09 negligible -0.01 negligible

Title(T), Body(B) and Comments (C)
p < 0.05;%% p < 0.01; *** p < 0.001

how the algorithms perform for each n-gram configuration. While the unigram configura-
tion has a slightly better F-measure, the quadrigram has slightly better precision. However,
their differences in the precision have a negligible effect size, and their differences in F-
measure have a small effect size. Additionally, the unigram uses less computational effort
and memory (Van Gompel and Van Den Bosch, 2016). Hence, we kept the unigram as the
best option.

To investigate the influence of the machine learning (ML) classifier, we compared several
options using the BODY with unigrams as a corpus. The options included: Random Forest
(RF), Neural Network Multilayer Perceptron (MLPC), Decision Tree (DT), LR, MIKNN,
BERT, and a Dummy Classifier with strategy “uniform.” Dummy or random classifiers are
often used as a baseline (Saito and Rehmsmeier, 2015; Flach and Kull, 2015). We used
the implementation from the Python package scikit-learn (spacy industrial-strength natural
language processing, 2021). Figure 10 and Table 19 (Appendix A) show the comparison
among the algorithms, and Table 11 presents the pair-wise statistical results comparing F-
measure and precision using Cliff’s delta.

Table 10 Cliff’s Delta for

o n-Grams Cliff’s delta
F-Measure and precision: L — —
X Comparison F-measure Precision

Comparison between n-grams

models 1 versus 2 0.09 negligible*** -0.02 negligible**
1 versus 3 0.11 negligible®** -0.01 negligible
1 versus 4 0.15 small*** -0.06 negligible
2 versus 3 0.02 negligible 0.01 negligible®**
2 versus 4 0.06 negligible*** -0.04 negligible®*
3 versus 4 0.04 negligible** -0.05 negligible®**

*p < 0.05; % p < 0.01; ¥+ p < 0.001

@ Springer

Empirical Software Engineering (2023) 28:116 Page 29 of 52 116

1.0 | . Evaluation Metrics
Il Precision
[Recall
I Fmeasure_Score
0.9 =
0.8
¢
¢
@ 0.7 1
V)
C
£
= 0.6
[e]
€
(O]
o
0.5
0.4
0.3 A
02 L T T T T T T T
RandomForest DecisionTree LogisticRegressionMLPClassifier MLKNN BERT Dummy

Algorithm

Fig. 10 Performance comparison between the machine learning algorithms

Table 11 Clift’s Delta for F-Measure and precision: Comparison between machine learning algorithms

Algorithms Cliff’s delta

Comparison F-measure Precision

RF versus LR 0.27 small*** 0.06 negligible*
RF versus MLPC 0.02 negligible 0.009 negligible
RF versus DT 0.06 negligible*® 0.09 negligible®**
RF versus MIKNN 0.28 small*** 0.13 negligible®**
RF versus BERT 1.0 large*** 1.0 large™***

LR versus MLPC -0.21 small*#* -0.07 negligible*
LR versus DT -0.15 small*#* -0.15 small*#*

LR versus MIKNN 0.07 negligible* 0.08 negligible*
LR versus BERT 1.0 large™®** 1.0 large™***
MPLC versus DT 0.03 negligible -0.08 negligible®**
MPLC vs. MIKNN 0.24 small*#* 0.13 negligible®**
MLPC versus BERT 1.0 large*** 1.0 large***
MIKNN versus DT -0.19 small*#* -0.20 small*#*
MIKNN versus BERT#%*%* 1.0 large 1.0 large™***

DT versus BERT*** 1.0 large 1.0 large™***

RF versus Dummy 1.0 large™®** 0.50 large™***

*p < 0.05; % p < 0.01; *** p < 0.001

@ Springer

116 Page 30 of 52 Empirical Software Engineering (2023) 28:116

Random Forest (RF) was the best model when compared to Decision Tree (DT), Logistic
Regression (LR), Neural Network Multilayer Perceptron (MLPC), MIKNN algorithms, and
BERT. Random Forest outperformed these five algorithms with negligible/small effect sizes
considering F-measure and precision. Compared to BERT and the Dummy Classifier, the
effect size was large. The observed difference among some algorithms are fairly small and
therefore might vary according to project corpus properties.

The results showed the classifier is suitable for predicting labels in projects written in
different programming languages (C++, C#, and Java), with issues with vocabulary in English
and Portuguese.

RQ.2.1 Summary. It is possible to individually predict the API-domain labels for each
project with a precision of 0.864, recall of 0.786, and F-measure of 0.811 using the
Random Forest algorithm, BODY as the corpus, and unigrams.

RQ.2.2: To what extent can we automatically attribute API-domain labels to issues using
data from other projects?

Next, we merged the datasets that use English vocabulary (RTTS, JabRef, Audacity, and
PowerToys), predicting the API-domain labels for all the projects. Removing the project
with Portuguese vocabulary was necessary since the BERT model was trained with English
vocabulary. The predictions were carried out with BODY as the corpus (and unigrams for the
TF-IDF). Figure 11 shows the performance obtained with diverse algorithms. RF still had
the best precision while the MLPC had the best F-measure; BERT had better precision than
MLKNN and better recall than Logistic Regression. BERT was less impacted by the loss
of metrics when predicting the API-domain labels with the all-projects combined dataset
(Table 20 - Appendix A).

Binary Relevance Evaluation Metrics by Algorithm

Evaluation Metrics

I Precision
084 I Recall
' BN F-measure
]
L

0.74

Performance
o
o
s

0.54

0.4 4

RandomForest DecisionTree LogisticRegression MLPClassifier MLKNN Bert
Evaluation Metrics by Algorithm

Fig. 11 Performance comparison between machine learning algorithms using the dataset with all projects -
Vocabulary: EN

@ Springer

Empirical Software Engineering (2023) 28:116 Page310f52 116

RQ.2.2 Summary. Predicting using a dataset with all English-language projects com-
bined decreased the precision by 9.15% using Random Forest and increased the precision
using BERT by 20.63%.

RQ.2.3: To what extent can we automatically attribute API-domain labels to issues using
transfer learning?

Finally, Table 12 shows the results for all combinations tested with transfer learning. The
results had a significant range in precision and recall varying from 0.713 to 0.296 in precision
predicting RTTS and PowerToys, respectively, and from 0.525 to 0.175 in recall predicting
Audacity and RTTS, respectively.

Additionally, we ran a transfer learning experiment targeting the RTTS project labels eval-
uated by developers (Section 6.2). We dropped all labels with fewer than three evaluations and
up to 50% of “Not Important” evaluations (see Fig. 12). Therefore, in the RTTS project, the
labels that persisted are: “Network”, “Logging”, “Setup”, “Micro/services”, and “UI”. Since
Audacity, JabRef, and PowerToys projects were not evaluated by developers (Section 6), they
were not included in this experiment. We observed a small increase in precision (0.713 to
0.718) and a significant increase in recall (9.7% - 0.175 to 0.272) and F-measure (11.3% -
0.281 to 0.394) - Table 12.

RQ.2.3 Summary. Transferring learning with diverse configurations considering source
and target projects decreased the metrics from 15.12% to 64.74% and the recall from
33.21% to 77.74%, depending on the sources and target project. Evaluating the transfer
learning concerning only the API-domain labels evaluated as important by the developer
who solved the issues improved the recall by 9.7% and F-measure by 11.3%.

6 RQ3 - Evaluating the API-Domain Labels with developers

Considering human input is very relevant in machine learning studies, we labeled some issues
and presented them to developers that solved the same issues previously to receive feedback
about how useful the API-domain labels could be if available at the time they worked on the
issues.

6.1 Method

To answer RQ3, we use the Random Forest algorithm, issue description BODY as the corpus,
and unigrams (the best configuration we found in RQ.2) to generate labels for the issues.

Table 12 Overall performance from models created to evaluate the transfer learning

Training Test P R F

RTTS, Audacity, PowerToys JabRef 0.305 0.294 0.299
JabRef, Audacity, PowerToys RTTS 0.713 0.175 0.281
JabRef, RTTS, PowerToys Audacity 0.688 0.284 0.402
JabRef, RTTS, Audacity PowerToys 0.296 0.525 0.379
JabRef, Audacity, PowerToys RTTS* 0.718 0.272 0.394

* RTTS - labels most important to the users (Section 6.2)

@ Springer

116 Page 32 of 52 Empirical Software Engineering (2023) 28:116

6.1.1 Labels generation

We predicted labels for 91 issues (PowerToys = 21, Audacity = 18, Cronos = 24, and RTTS
= 28). The predictions covered all the 29 proposed API-domain labels (Cloud and ML do
not have samples in our projects). We selected the most recently closed issues from the
projects to get better chances of finding the developer who fixed the issues and they recall
the problem solved. However, some issues had to be discarded when the contributor who
solved them was not working for the enterprise anymore or when the OSS contributors did
not answer our contact (Section 6.1.2). The use of the most recent issues and the availability
of the participants created an unbalanced set of labels for evaluation and we use our best
effort to include the most representative set of API-domain labels possible in the empirical
experiment.

6.1.2 Contributors assessment

In this step, we recruited 20 participants (PowerToys (1), Cronos (13), and RTTS (6)). To
recruit participants from those projects we sent emails to maintainers from PowerToys and
Audacity and contacted development managers from Cronos and RTTS. We asked partic-
ipants from those projects to evaluate if the labels represent the skills needed to solve the
issues and could help newcomers or experienced developers who want to choose an issue. All
of the participants were experts in their project and were asked to evaluate the issues to which
they contributed in the past. Indeed, the number of issues evaluated by participants varied
according to their past contributions. Each issue was evaluated by only one participant. The
participants received a gift card as a token of appreciation for their participation.
We asked the following questions:

— How important do you consider having these labels on the issue to help new contributors
identify the skills needed to solve them? (Evaluate each label) (Likert: Very Important,
Important, Moderately Important, Slightly Important, Not Important)

— Why?

— What labels are missing?

6.1.3 Analysis

Based on the data gathered in the contributors’ assessment, we performed a quantitative
analysis to assess the generated labels. To analyze the open questions in which the contributors
could explain their opinions about the labels generated, we employed open coding and axial
coding procedures (Strauss and Corbin, 1998).

6.2 Results

From the 91 issues predicted, we received 29.67% feedback (26 issues and 16 different API-
domain labels). We did not receive feedback from the Audacity contributors. PowerToys had
only one contributor who evaluated only three issues encompassing only four labels. Due to
insufficient data, we removed this project from the results.

Cronos. A total of 13 contributors assessed the generated labels. Based on the results
(Fig. 12), the contributors described 5 labels (i.e., DevOps, Ul, DB, Lang, and Security) as
very important or important and APM, Setup, NLP, and 1O labels unimportant. DevOps, UlI,

@ Springer

Empirical Software Engineering (2023) 28:116 Page330f52 116

RTTS Project - Labels scale counts Cronos Project - Labels scale counts
10 - 14
Not Important Not Important
8 Slightly Slightly
® Moderately ® Moderately
® Important ® Important
6 ® Very Important ® Very Important
2 @
c e
3 =
8 38
4
2
0 l 0
2 = 3 «Q 2 = o o
: ' & ° 0§ & 2

Setup

<

Logging
Setup
Network
DevOps
Lang
Parser
DevOps
Security

Services
Data.Struct

Fig. 12 Labels assessment by project

DB, and Lang were highly rated as important, with many “Very important” and “Important”
evaluations. Not all the participants justified their response, but among the reasons those
contributors mentioned that “It was a simple Ul issue.” (P15) indicating the success of the
“UI” prediction. Another developer mentioned “This issue also required database, logic and
lang skills.” (P6). This issue was tagged with “UI” and “DevOps” (evaluated as “Very impor-
tant”) but the developer missed some skills. Related to the missing labels, some contributors
mentioned that “The issue is related to a restriction. It requires Ul skills and DevOps skills
(not included in the predictions. [...] But it also requires other skills.” (P18). Another con-
tributor also missed some labels and mentioned “This issue also required database, logic,
and language skills.” (P06).

RTTS. Concerning the RTTS project, five contributors assessed the labels generated for
the issues they had solved; in this scenario, we have contributors evaluating from 1 to 3
issues each. Our findings (Fig. 12) highlight that the following labels were classified by
contributors as important to very important: Services, UI, Logging, Setup, Network, and
Data Structure. Among the reasons contributors highlighted, we can observe the positive
feedback as mentioned in: “I can totally agree with the labels for this, as to find the problem
and apply the solution all the skills are necessary.” (P20). Moreover, contributors classified
the following labels as not important or slightly important: Lang, Parser, DevOps, UI, and
Data Structure. Some contributors mentioned that: “I partially agree, some of the labels could
give an initial point of view to the reported issue, but some are not related, like Language,
Data structure and Setup” (P2). Some contributors reported missing some labels according
to what was mentioned: “Logging skills would be necessary to troubleshoot the issue and
get the relevant information from the application, while service skills (knowledge about how

@ Springer

116 Page 34 of 52 Empirical Software Engineering (2023) 28:116

service discovery and the service registry in the system works) would be necessary to find
that the service version of the requested service didn’t match what was registered. As for
Network, it could have been useful to be able to determine that this issue was not caused
by some error/faulty response from the requested service, but in this case, the log stated
explicitly that the requested service did not exist. I don’t find that the other labels/skills apply
to this issue.” (P04).

RQ.3. Summary. Our findings suggest the labels would be useful to help identify the
skills needed to solve them. The efficiency of labels generated differs by project, for
Cronos we had 61.9% of the labels evaluated in the range from slightly to Very important
and 64.4% in the RTTS project in the same range.

7 Discussion

This section discusses our results and future work.

Do developers have a well-defined preference about labels? The feedback shared by
study participants in Section 4 showed us the importance of the different types of labels
to ease the issue selection process. However, the developers expressed preferences about
different types of labels, and some preferences are ambiguous. For instance, P32 indicated
“The technology used” when we asked what kind of labels they want to see in the issues. The
technology could refer to a “programming language,” or an “API.” While both classifications
could be used, we would prefer to define the technology as API because it is more specific
than a programming language or even a framework that can encompass many libraries. A
similar situation emerged with “priority” (P12). The “priority” could be restricted only to
“low” or “high,” or could it include other aspects like the “impact on operations”, as suggested
by P15.

We can group the kind of labels in technology (technology, API, programming language,
database, framework, and architecture layer) and management (type, priority, status, difficulty
level, GitHub info). Management labels are more often used in issue trackers. In this work,
we propose to add to the issues a kind of technological label, the API-domain labels, which
we claim are a proxy for the skills needed to solve an issue. Nonetheless, one should avoid
overloading the issue trackers with too many labels. Future research can investigate the right
balance of offering labels without creating a visual overhead for the contributor.

Are API-domain labels relevant? Our findings show that participants considered API-
domain labels relevant in selecting issues. More specifically, newcomers to the projects
considered API-domain labels more relevant than other general labels that describe the com-
ponents and slightly more favored than management labels describing the type of issue. This
suggests that a higher-level understanding of the API domain is more relevant than deeper
information about the specific component in the project.

When controlling for issue type and component, API-domain labels were considered more
relevant for experienced coders than novices (or students). This suggests that novices may
need more help than “just” the technology for which they need skills. Our results also show
that novices could be helped if the issues provide additional details about the complexity
levels, how much knowledge about the particular APIs is needed, the required/recommended
academic courses needed for the skill level, estimated time to completion, contact for help,
etc.

@ Springer

Empirical Software Engineering (2023) 28:116 Page350f52 116

Although each contributor is a newcomer when they move to a new project, previous
experience counts when the new project shares technology with the previous projects. As
opposed to experienced newcomers, who may transfer knowledge from previous projects and
jump directly to the issue solution, novice newcomers spend more time understanding the
project structure, the underlying technology, and how to set up the environment (Santos et al.,
2022) which might suggest why practitioners from the industry and experienced participants
selected more API-domain labels than students and novices. Perhaps the API granularity is
deeper than what the novices are looking for. Future research may consider the appropriate
technical information to assist novice newcomers.

In addition to API-domain labels, what issue characteristics are relevant to identify
skills in issues? In addition to labels, new contributors mentioned the TITLE, BODY, and COM-
MENTS as sources of information to identify the necessary skills to work on the issues. Such
elements can be structured with issue templates or written in an ad-hoc manner. Santos et al.
(2022) asked maintainers to suggest community strategies to help newcomers find a suitable
issue. Among the identified strategies, maintainers suggested 15 diverse ways of labeling
the issues (e.g., labeling with skills, knowledge area, programming languages, libraries, and
others) and several ways of organizing the issues, which include creating templates.

While these other issue elements may indicate the skills and other characteristics of the
issues that are not on the labels, some issues — and existing templates — are incomplete,
lacking important information for contributors. The SW2H analysis we applied in this paper
can help us to holistically understand what should be written in issues by covering the seven
dimensions of information - who, why, when, what, where, how to solve and how big is
the issue . Future work can use the SW?2H questions to inspect the completeness of existing
templates in terms of covering the seven dimensions of information.

Despite the importance of issue templates, we removed template sentences in an effort to
clean repeated text to be ingested by the data processing pipeline. For example, one template
sentence is “Steps to reproduce.” Since this fixed text appears in many issues (regardless of
their categories) and the templates had changed over time, we decided to remove it before
processing the issue corpus. This removal only affects the trained model, and we still should
use the results of the SW2H analysis to create a human-oriented template able to point new
contributors to information relevant to them.

What are the effects of the corpus characteristics on the labels’ classifications?
Observing the reported results (TF-IDF) for different corpora used as input, we noticed
that the model created using only the issue body performed similarly to the models using the
issue title, body, and comments, and better than the model using only the title. By inspecting
the results, we noticed that by adding more words to create the model, the matrix of features
becomes sparse and does not improve the classifier’s performance.

We also found co-occurrence among labels. For instance, “Test”, “Logging”, and “i18n”
appeared often together (Fig. 13). This is due to the strong relationship found in the source
files. By searching the references for these API-domain categories in the source code, we
found “Test” in 4,579 source code files, compared to “Logging” in 903. The label “i118n”
appeared in only 73 files. On the other hand, the API-domain labels for “CG” and “Security”
usually do not co-occur. “CG” only appeared in five java files, while “Security” appeared in
only 47 files. Future research can investigate co-occurrence techniques to predict co-changes
in software artifacts (e.g., (Wiese et al., 2017)) in this context.

Figure 13 exhibits the labels’ co-occurrence for the dataset containing all the projects. A co-
occurrence matrix presents the number of times each label appears in the same context as each
possible other label. Examining the aforementioned co-occurrence data, we can determine
some expectations and induce some predictions. For example, the “DB” label (Database)

@ Springer

116 Page 36 of 52 Empirical Software Engineering (2023) 28:116

util

NLP 01

Network

DB

Interpreter

Error Handling
Logging [£ 084 072

Lang [0} 08 [055 0
Data Structure ik X 078 0.61
DevOps |1/ 071 047

i8n . X 0.88 083 K
Setup 026 072 071

Logic R 0. 0.76 |83
Microservices). 3 079 072
Test A 084 078

Search |

10

ur g

Parser [k

Security

Big Data

Event Handling il 0. 06 057 062

068 062 072

i 051 05 [k 046 15 048 048 (!

Thread 3 X 0.89 1067 kLY 0.8 X 07 072 08

Multimedia Fi& 062 054 X . 051 049 055 056 Li¥: 8§ 0.58 4
cG X ¥ 0 .52 6 o. [018)

Os i X X 45 0 . 78 033 . CLJ 061 081 066 054 077 |0.59 KX 021

=

Network

DB

Interpreter
Error Handling
Logging

Lang

Data Structure
DevOps

i18n

Setup

Logic
Microservices
Test

Search

10

ul

Parser

Event Handling
App

GIs

Thread
Multimedia

Fig. 13 Heat Map - Label correlation in the dataset with all projects combined. The darker, the more correlation
exists between the labels

occurred with more frequency alongside “Network™ and “Thread.” So, it is possible to guess
when an issue has both labels, and we likely can suggest a “Database” label, even when the
machine learning algorithm could not predict it. A possible future work can combine the
machine learning algorithm proposed in this work with frequent itemset mining techniques,
such as apriori (Agrawal et al., 1993).

What are the difficulties in labeling accurately? We suspect that the high occurrence
of “UI”, “Util”, and “Logic” labels (> 500 issues) compared with the low occurrence of
“i18n”, “Interpreter”’, “GIS”, and “NLP” (< 57 issues) may influence the precision and
F-measure values. We tested the classifier with only the top 5 most prevalent API-domain
labels and observed no statistically significant differences. One possible explanation is that
the transformation method used to create the classifier was Binary Relevance, which creates
a single classifier for each label and overlooks possible co-occurrence.

The dataset is unbalanced due to the characteristics of the projects. Since JabRef, for
instance, is a desktop application, the API-domain label “UI” appears more frequently.
Table 13 shows the confusion matrix for the dataset containing all projects (for individ-
ual projects, see the appendix). This impacts the prediction of the minor labels even with the

@ Springer

Empirical Software Engineering (2023) 28:116 Page370of52 116

Zgg'ge‘éorfn‘;‘:l?:‘f‘zggf;:x data ApI_domain TN FP FN TP Precision Recall

selected model with all projects APM 125 4 44 8 0.66 0.15
App 80 22 19 60 0.73 0.75
Big Data 152 0 29 0 0 0
Data Structure 78 24 6 73 0.75 0.92
DB 163 2 11 5 0.71 0.31
DevOps 113 26 0 42 0.61 1
Error Handling 97 32 5 47 0.59 0.90
Event Handling 162 1 8 10 0.9 0.55
GIS 178 2 0 1 0.33 1
Interpreter 173 2 3 3 0.6 0.5
10 141 8 5 27 0.77 0.84
i18n 166 7 5 3 0.3 0.375
Lang 112 36 0 33 0.47 1
Logging 174 1 4 2 0.66 0.33
Logic 68 9 2 102 091 0.98
Micro/services 151 1 23 6 0.85 0.2
Network 175 0 6 0 0
NLP 164 0 17 0 0 0
(N 119 9 45 0.83 0.84
Parser 101 28 3 49 0.63 0.94
Search 134 9 15 23 0.71 0.6
Security 151 0 30 0 0 0
Setup 38 56 9 78 0.58 0.89
Test 166 0 15 0 0 0
Ul 10 33 3 135 0.8 0.97
Util 84 4 16 77 0.95 0.82
Total 3275 316 286 829

SMOTE algorithm, which improves the occurrences of rare labels. Some labels only appear
in a few projects. Therefore, even when they are common in a specific project when training
and testing with all projects, they may become rare. The recommendation of labels with poor
results should be avoided because of the risk of indicating a wrong skill to the contributor.

Despite the lack of accuracy in predicting the rare labels, we were able to predict those
with more than 200 occurrences (all projects together) with reasonable precision (0.84) and/or
recall (0.78). We argue the project’s nature contributes to the number of issues related to their
domain. For example, since the Audacity project is an audio editor and recorder, a high
occurrence of “UI”, “IO”, and “Multimedia” labels is expected. We argue that Audacity’s
nature contributes to the number of issues related to the labels above. Labels with few samples
suffered from low or unstable metrics. “DB”, for example, varied from 0.09 to 0.9 in recall
on predictions depending on the text/train split.

Improving the performance of BERT. In addition to the number of occurrences of a
label, the BERT metrics can be improved by increasing the training set size. Wang et al.
(Wang et al., 2021) and their exploration of several trained deep learning models for GitHub

@ Springer

116 Page 38 of 52 Empirical Software Engineering (2023) 28:116

labeling provide important insights into potential performance increases with BERT. The
authors showed that the BERT model performed better than the other language models for
large datasets with at least 5,000 issues, achieving the highest accuracy, precision, recall, and
F-measure scores. However, for small datasets with less than 5,000 issues, CNN outperformed
BERT as the best model overall. This suggests that BERT depends on the size of the training
set of corpus data. Therefore, the performance of BERT when labeling GitHub issues will
improve with an increased dataset size for the targeted open-source project. When the project
datasets were merged (Table 11), the BERT metrics decreased the difference from about 26%
to 6% in precision compared to the other classifiers.

What is the impact of the expert classification? Experts can also help increase the
classification metrics for all models. We could observe the C++ project achieved the best
F-measure compared with the Java and C# projects (0.84, 0.82, and 0.80, respectively, with
small to large effect sizes). Although we evaluated only one C++ project, the results might
suggest after examining Table 8 that the number of APIs evaluated by the experts impacts
the metrics we will obtain. On the other hand, manual evaluation of a high number of APIs
may make generalization unfeasible. The classification carried out by the experts in the
C++ project comprised a higher percentage of APIs analyzed. This might be caused by the
language characteristics: the libraries’ names parsed from the C++ source code had limited
information about their use. Thus, classification was more time-consuming. Indeed, the C++
project demanded more effort from the experts to classify it. Ultimately, it became a more
detailed classification with better prediction metrics.

While experts’ analyses are time-consuming, some outlier projects require much less
effort than others. For instance, experts analyzed fewer than 3% of the APIs in RTTS. Since
this project imports popular libraries, reuses many libraries across the entire source code
and is modular, the expert’s work was easier. A possible relationship between popular APIs,
modularization, and expert evaluation should be explored in future work. Another possible
future work should identify what programming language characteristics impact the expert
classification.

To what extent does the proposed method generalize? The semi-automatic classifi-
cation process decreased the effort carried out by the experts to define the expertise of the
APIs. Despite there being considerable effort remaining, as the dataset increases, the rate
of new APIs to classify should decrease since projects reuse an average of 35-53% of core
APIs. Third-party libraries account for 8-32% and 45% on average (Core + third-party). The
use of popular open-source APIs could lead to an impressive 85% of shared APIs between
projects (Qiu et al., 2016). Farther, the project sizes grow much more quickly than the size
of uniquely-used API entities (Qiu et al., 2016).

Thus, the demand for expert evaluation should decrease significantly when the number
of mined libraries reaches a critical mass (for each programming language), and even new
projects may use previous expert evaluations.

This might impact the method when applied to industry projects, which may use a variety of
unique non-free APIs. However, API sharing may happen inside companies or business units,
repeating the phenomenon of the libraries’ critical mass. Nevertheless, we did not observe
this effect, and we could predict labels for an OSS project using data from an industry project.

To what extent does the model perform transfer learning? Transfer learning is crucial
when projects lack data for training (cold start) or the time or infrastructure to develop their
own models. This can be particularly problematic in the industry since the data can have
restricted access due to security precautions or to comply with procedures or laws. In this
situation, the ability to use a pre-trained model is necessary. Using pre-trained models to
predict from new data is also desirable because it is faster and cheaper than retraining a

@ Springer

Empirical Software Engineering (2023) 28:116 Page390of52 116

model every time a new source project is added to the dataset (Nam et al., 2013; Seah et al.,
2013). The projects may also benefit from the complementary data from another project when
the project dataset is too small for training a predictive model.

The transfer learning experiments found a decrease in precision and recall. The metrics
definition: Precision = % and Recall = TPT+7F;N indicates the number of False
Negatives (FN) and False Positives (FP) that should impact the results. For example, in
training and testing individual projects, the RTTS project had a small number of PFs and FNs
compared to the transfer learning experiment when RTTS was a target project (Tables 14
and 15). When targeting the RTTS project, the high number of FNs significantly decreased
the recall metric. On the other hand, targeting PowerToys, the number of FPs negatively
impacted the precision (Tables 15, 22, and 12). The projects only shared a small number of
labels (5 in 31) and are imbalanced among the datasets. For example, “Setup” is popular in
the RTTS project and rare in JabRef, suggesting the conditional probability distribution of
the sources and targets differ. These characteristics might determine which projects match
and, therefore, be used to decide the transfer learning source or target. Future work should
investigate whether the domain, platform (Web, Desktop, Mobile), architecture, or other
project property derives a good match. Furthermore, investigating proxy techniques, such as
the one proposed by Nam et al. (2013), to minimize the data distribution difference between
target and source projects to predict software engineering defects can be applied to predictions
of domain labels of API. Results for the JabRef (Table 25) and Audacity (Table 26) projects
using transfer learning are available in Appendix A. We can observe the high number of
FP and FN comparing the Audacity transfer learning results in Table 26 and the results of
training and testing the Audacity dataset alone (Table 23). Similarly, we can observe the same
pattern in the JabRef results in Tables 21 and 25.

Table 14 Confusion matrix and performance. Project RTTS trained/tested alone

API-domain TN FP FN TP Precision Recall F-measure
APM 112 4 2 24 0.85 0.92 0.88
Big Data 134 1 2 5 0.83 0.71 0.76
Data Structure 25 36 3 78 0.68 0.96 0.80
DB 84 4 19 35 0.89 0.64 0.75
DevOps 60 17 13 52 0.75 0.80 0.77
Error Handling 126 5 4 7 0.58 0.63 0.60
Event Handling 129 0 2 11 1 0.84 0.91
il8n 121 6 7 8 0.57 0.53 0.55
Lang 28 29 11 74 0.71 0.87 0.78
Logging 47 24 18 53 0.68 0.74 0.71
Microservices 1 12 0 129 0.91 1 0.95
Network 65 20 21 36 0.64 0.63 0.63
Parser 69 17 14 42 0.71 0.75 0.73
Security 129 0 8 5 1 0.38 0.55
Setup 66 10 33 33 0.76 0.50 0.60
Ul 4 15 0 123 0.89 1 0.94
Total 1200 200 157 715

@ Springer

116 Page 40 of 52 Empirical Software Engineering (2023) 28:116

Table 15 Confusion matrix and performance: Project RTTS - transfer learning

API-domain TN FP FN TP Precision Recall F-measure
APM 197 0 38 0 0 0 0
Data Structure 100 0 135 0 0 0 0
DB 145 0 90 0 0 0 0
Error Handling 223 0 12 0 0 0 0
Event Handling 212 0 23 0 0 0 0
Lang 114 0 121 0 0 0 0

10 44 21 131 39 0.65 0.22 0.33
i18n 214 0 21 0 0 0 0
Logging 102 22 91 20 0.47 0.18 0.26
Logic 13 17 146 59 0.77 0.28 0.41
Microservices 28 0 206 1 1 0.004 0.009
Network 129 0 106 0 0 0 0
Parser 156 0 79 0 0 0 0
Setup 115 14 98 8 0.36 0.07 0.12
Thread 175 0 60 0 0 0 0

Ul 3 38 26 168 0.81 0.86 0.84
Total 1970 112 1383 295

How did the contributors rate the labels generated for the issues they solved? Overall,
participants evaluated the generated labels with positive feedback. The labels classified as
important or very important across all the projects were: DevOps (10), DB (5), Services (4),
UI (14), Lang (5), Security (1), and Logging (3). Moreover, the labels that were classified as
not important were: APM (8), Setup (7), Data Structure (6) and UI (9), and Security (2).

In the Cronos/MTT project, all four best-evaluated labels (Fig. 12) had recall above 0.7,
and two of the four worst-evaluated ones (Fig. 12) had recall < 0.7. A threshold could
determine whether a label must be reported (Table 16).

Table 16 Confusion matrix and performance: Project PowerToys - transfer learning

API-domain TN FP FN TP Precision Recall F-measure
APM 264 1 88 0 0 0 0
App 315 9 28 1 0.66 0.76 0.71
Data Structure 344 3 6 0 0.03 0.40 0.06
il8n 209 134 4 6 0 0 0
Interpreter 342 1 10 0 0 0 0
Logging 153 196 0 4 0.007 0.25 0.01
Logic 173 27 100 53 0.01 1 0.02
Microservices 0 348 0 5 0.25 0.49 0.33
Parser 6 105 10 232 0.07 0.13 0.09
Setup 351 0 2 0 0.50 0.07 0.13
Test 174 82 56 41 0.006 0.66 0.01
Ul 105 245 1 2 0.68 0.92 0.78

@ Springer

Empirical Software Engineering (2023) 28:116 Page410f52 116

Participants from Cronos projects mentioned they would like to see the label “Data Struc-
ture” for the evaluated issues. This occurred because we removed the label Data Structure
once it was generated for 90% of the issues selected in the Cronos project. One possibility
for that case would be to include in the description of the project that it is strongly based on
data structures and that the reported issues likely would involve this knowledge.

In addition, participants reported some labels could provide a clue for looking for the
bug’s root cause or determining the work needed to address a new feature request. For
Example: “...some of the labels could give an initial point of view to the reported issue”
(P2) or “Network: While network tag wasn’t that necessary for this particular case, the
issue could have been caused by a communication error between the services in which case
they would have been” (P4). On the other hand, some participants preferred not to see more
general labels, like Data Structure or Logging, since they are present in many issues: “Data
Structure is literally everywhere, there wouldn’t be any program without them” (P1), while
others missed the Data Structure label (not present in the predicted list because it reached the
90% threshold) and suggested including it (P14, P16, and P17). Future work can determine
how to address developer preferences regarding the inclusion of general labels.

The generalization of the method proposed in this paper assisted us in embracing more
projects. Nevertheless, it also brought problems. We proposed generic labels able to fit a
wide range of project types. This might explain the comments about the generic labels. “...It
was a backward compatibility issue with user-defined configuration data, so with a generous
interpretation Setup was accurate, but I would have preferred Information Model or Domain
Model had it existed” (P1). Analyzing the participant’s suggestion for a “Validation” label,
we recollect to the point where the NLP similarity suggested possible API domains for the
library related to the issue and the experts’ choice. We found the selected API domain was
“Logic” since no “Validation” API-domain label was available. If the experts came from
the project, perhaps the API-domain label “Validation” could be present and thus meet the
participant’s needs.

Future work can explore more API-domain labels to expand and propose more options
to fit additional projects. Customizing labels for the project may generate more precise
directions about the skills needed but will require more expert work time. On the other hand,
generalization expands the method to a huge range of projects and can decrease the meaning
level of the API domains.

What are the practical implications for different stakeholders? New contributors.
API-domain labels can help open-source contributors, enabling them to review the skills
needed to work on the issues upfront. This is especially useful for new contributors and
casual contributors (Pinto et al., year; Balali et al., 2018), who have no previous experience
with the project terminology.

Project maintainers Automatic API-domain labeling can help maintainers distribute team
effort to address project tasks based on required expertise. Project maintainers can also
identify which type of APIs generate more issues. Our results show that we can predict the
most prominent API domains—in this case “Util” and “Logic”— with precision up to 95%
and 91%, respectively (see Table 13).

Platform/Forge Managers Participants often selected TITLE, BODY, and LABELS to look for
information when choosing an issue to which to contribute. Our results can be used to propose

@ Springer

116 Page 42 of 52 Empirical Software Engineering (2023) 28:116

better layouts for the issue list and detail pages, prioritizing them against other information
regions (2). In the issue detail page on GitHub, for instance, the label information appears
outside of the main contributor focus, on the right side of the screen.

Templates to guide GitHub users in filling out the issues’ body to create patterns can be
useful in not only making the information space consistent across issues, but also helping
automated classifiers that use the information to predict API labels. For instance, some of
the wrong predictions in our study could be caused by titles and bodies with little useful
information from which to generate labels.

Research The scientific community can extend the proposed approach to other languages
and projects, including those with more data and different algorithms. Our approach can also
be used to improve tools that recommend tasks matched to new contributors’ skills and career
goals (e.g., (Sarma et al., 2016)).

Education Educators who assign contributions to OSS as part of their coursework (Pinto
et al., 2017) can also benefit from our approach. Labeling issues in OSS projects can help
them select examples or tasks for their classes, bringing a practical perspective to the learning
environment.

8 Threats to Validity

The threats to validity are divided into “internal,” “construct,” and “external.”

Internal Validity. One of the threats to the validity of this study is the API domain
categorization. We acknowledge the threat that different individuals can create different
categorizations, which may introduce some bias in our results. To mitigate this problem,
three individuals, including two senior developers and a contributor to the JabRef project,
created the API-domain labels categories aiming to generalize to any type of project. In the
future, we can improve this classification process with a collaborative approach (e.g., (Ferreira
Moreno et al., 2018; Lu et al., 2017)).

Although participants with different profiles participated in the JabRef user study, the
sample cannot represent the entire population, and the results can be biased. The study ran-
domly assigned a group to each participant. However, some participants did not finish the
questionnaire, and the groups ended up lacking balance. Also, the way we created subgroups
can introduce bias in the analysis. The practitioners’ classification as industry and students
were done based on the location of the recruitment, and some students could also be indus-
try practitioners and vice-versa. However, the results of this analysis were corroborated by
aggregation according to experience level.

Construct Validity. Another concern is the number of issues in our dataset and the link
between issues and pull requests. To include an issue/key/tracking ID in the dataset, we
linked it to its solution submitted via pull request (or “revision” and “trouble id”). By linking
them, we could identify the APIs used to create the labels and define our ground truth
(check Section 5.1.1). This study does not identify issues merged without PR information
We manually inspected a random sample of issues (or “keys” and “tracking ids”) to check
whether the data was correctly collected and reflected what was shown on the ITS interface.
Two authors manually examined 100 tasks randomly picked up from the projects, comparing

@ Springer

Empirical Software Engineering (2023) 28:116 Page43of52 116

the collected data with the GitHub interface. All records were consistent, and all of the issues
in this validation set were correctly linked to their pull requests. When the linked data had
more than one correspondence, we concatenated all data using the appropriated corpus entry
(title, body, comments, description, and summary). Some of the linked data occasionally had
repeated text, and can overfit our model. Future versions may improve the data cleaning step.
Unlike the other projects, Cronos had multiple linked data through the following columns:
“pai” and “ramo,” “linked issue” and “key,” and “key” and “ramo.” This creates a recursive
situation where we may link each update with many “keys” in different ways. We preferred
to keep it simple, using only the linked data that was similar to the other projects: “key”” and
“ramo.”

In prediction models, overfitting occurs when a prediction model exhibits random error or
noise instead of an underlying relationship. During the model training phase, the algorithm
used information not included in the test set. To mitigate this problem, we also used a shuffle
method to randomize the training and test samples.

Further, we acknowledge that we did not investigate whether the labels helped the users
find the most appropriate tasks. It was not part of the user study to evaluate how effective
the API labels were in finding a match with user skills. Our focus was on understanding the
relevance that the API-domain labels have on the participants’ decisions. Besides, we did not
evaluate how false positive labels would impact task selection or ranking. However, we believe
the impact is minimal since in the three most selected issues, out of 11 recommendations
in the JabRef project, only one label was a false positive. In addition, when we asked the
participants to pick issues with the API labels + project labels (treatment group) or project
labels (control group), we might introduce some bias. Indeed, evaluating the difference of
relevance perception introduced by the appearance of the new (API-domain) labels should
have some influence brought by the poor performance of the project’s labels, masking the
difference in the measurement experiment. Investigating the effectiveness of API labels by
an experiment matching contributors and tasks skills and identifying the problems caused by
misclassification are potential avenues for future work. The empirical experiment to pick an
issue and ask the relevant regions for that choice may introduce a bias since the participant
only selected an issue and did not solve the issue.

When classifying the issues and linked pull requests, we compared the files changed with
the parsed source code files at the last version of the projects. If the updated source file is not
present anymore, the pull request is discarded.

External Validity. Generalization is also a limitation of this study. The outcomes could
differ for other projects, programming languages ecosystems, or even issues written in a
different language. To address this limitation, we extended the previous study (Santos et al.,
2021) in that direction, mining different projects, including three programming languages,
and two natural languages (or vocabularies). Nevertheless, this study showed how a multi-
label classification approach could be useful for predicting API-domain labels and how
relevant such a label can be to new contributors. Moreover, the API-domain labels that we
identified can generalize to other projects that use the same APIs across multiple project
domains (Desktop and Web applications). Many projects adopt a typical architecture (MVC)
and frameworks (JavaFX, JUnit, etc.), which makes them similar to many other projects. As
described by Qiu et al. (2016), projects adopt common APIs, accounting for up to 53% of
the APIs used. Moreover, our data can be used as a training set for automated API-domain
label generation in other projects.

@ Springer

116 Page 44 of 52 Empirical Software Engineering (2023) 28:116

9 Conclusion

We investigated whether API-domain labels are used by newcomers to select an issue and
what information newcomers use to decide what issue to contribute. We found that industry
practitioners and experienced coders prefer API-domain labels more often than students and
novice coders. Participants prefer API-domain labels over component labels already used
in the project. Users would like to see labels with information about issue type, priority,
programming language, complexity, technology, and API and pick an issue based on title,
body, comments, and labels.

We also investigate to what extent we can predict API-domain labels. We mined data from
22,231 issues from five projects and predicted 31 API-domain labels. Training and testing the
projects separately, TF-IDF with the Random Forest algorithm (RF), and unigrams obtained
a precision of 84% and overcame BERT (precision of 62%). Data from the issue body offered
the best results. However, when predicting the API-domain labels for all projects together, RF
precision decreased to 78%, and BERT increased to 72%, suggesting the positive sensibility
of the BERT technique when applied to larger datasets.

Transferring learning from diverse sources and targets resulted in a decrease in evaluation
metrics with an extensive range of values regarding precision and recall. Future work should
investigate ways to determine when or how to apply transfer learning to API-domain labels
among projects.

Finally, developers agreed that up to 64.4% of the API-domain labels are important to
identify the skills and therefore should help to solve the issues if they are available.

This” study is a step toward helping new contributors match their API skills with each task
and better identify an appropriate task to start their onboarding process into an OSS project.

Acknowledgements This work is partially supported by the National Science Foundation under Grant num-
bers 1815486, 1815503, 1900903, and 1901031, CNPq grant #313067/2020-1. CNPq/MCTI/ENDCT grant
#408812/2021-4 and MCTIC/CGI/FAPESP (grant #2021/06662-1). We also thank the developers who spent
their time answering our questionnaire.

Data Availibility Statement The datasets generated during and/or analyzed during the current study are avail-
able in the zenodo repository.

Declarations
Conflicts of interest The authors declare that they have no conflict of interest.

Appendix A

Additional data from RQ2 results. Some data were presented with box plots in Section 5.2.

The redundant data (and more detailed) about the experiments are available here in tables.
We also include the confusion matrix for all projects trained and tested alone (Tables 21,

22,23,24,25 and 26). The confusion matrix for the RTTS project is in Table 14 on Section 7.

9 https://doi.org/10.5281/zenodo.6869246

@ Springer

https://doi.org/10.5281/zenodo.6869246

Empirical Software Engineering (2023) 28:116

Page 450f52 116

Table 17 Overall performance from models created to evaluate the corpus

Model Corpus Precision Recall F-measure Hla

TD-IDF Title (T) 0.830 0.794 0.809 0.117

TD-IDF Body (B) 0.840 0.786 0.811 0.116

TD-IDF T,B 0.839 0.799 0.817 0.113

TD-IDF T, B, Comments 0.831 0.796 0.812 0.116

BERT Title (T) 0.616 0.592 0.596 0.277

BERT Body (B) 0.599 0.598 0.591 0.27

BERT T,B 0.595 0.559 0.568 0.269

BERT T, B, Comments 0.597 0.587 0.582 0.266

Hla*

* Hla - Hamming Loss

Table 18 Overall performance Model Precision Recall F-measure Hla*

from models created to evaluate

the number of grams unigrams (1,1) 0.841 0829 0.834 0.115
bigrams (2,2) 0.844 0.809 0.825 0.119
trigrams (3,3) 0.841 0.809 0.822 0.123
quadrigrams (4,4) 0.845 0.798 0.819 0.125
Hla*
* Hla - Hamming Loss

Ili)l:ll’lel;ll?) dg:irrigtg ergreri::&c;e Model Hla Precision Recall F-measure

the algorithms DecisionTree 0.105 0.861 0837 0.847
Dummy 0.202 0.749 0.658 0.698
LogisticRegression 0.120 0.858 0.792 0.822
MLPClassifier 0.107 0.853 0.846 0.848
MLKNN 0.126 0.837 0.801 0.816
RandomForest 0.107 0.864 0.836 0.849
BERT 0.277 0.601 0.574 0.578
Hla*
*Hla — HammingLoss

Table20 Overall perfo_rmance Model Hla* Precision Recall F-measure

from models created using the

dataset with all projects merged pecisionTree 0.157 0.768 0576 0.654

to evaluate the algorithms o .
LogisticRegression 0.167 0.779 0.504 0.611
MLPClassifier 0.154 0.766 0.595 0.666
MLKNN 0.179 0.709 0.555 0.617
RandomForest 0.153 0.785 0.573 0.659
BERT 0.219 0.725 0.511 0.593

* Hla - Hamming Loss

@ Springer

116 Page 46 of 52 Empirical Software Engineering (2023) 28:116

Table 21 Overall performance from the selected model - JabRef project

API-domain TN FP FN TP Precision Recall
Network 13 6 8 19 0.76 0.70
DB 43 1 0 2 0.67 1
Interpreter 12 9 5 20 0.69 0.8
Logging 0 7 0 39 0.85 1
Data Structure 45 0 0 1 1 1
il8n 40 0 5 1 1 0.17
Setup 33 3 1 9 0.75 0.9
Microservices 42 0 4 0 0 0
Test 41 0 3 2 1 0.4
10 6 0 40 0.87 1

Ul 2 0 40 0.95 1
App 41 1 2 2 0.67 1

Table 22 Overall performance from the selected model - Powertoys project

API-domain TN FP FN TP Precision Recall
APM 72 3 11 7 0.70 0.39
Interpreter 91 0 1 1 1 0.50
Logging 92 1 0 0 0 0
Data Structure 90 1 0 2 0.67 1
il8n 92 0 1 0 0 0
Setup 47 6 11 29 0.83 0.72
Logic 87 1 0 5 0.83 1
Microservices 70 1 15 7 0.88 0.32
Test 91 1 0 0.50 1
Search 41 6 8 38 0.86 0.83
Ul 25 15 1 52 0.78 0.98
Parser 87 1 2 3 0.75 0.60
App 22 12 0 59 0.83 1

@ Springer

Empirical Software Engineering (2023) 28:116

Page 47 of 52 116

Table 23 Overall performance from the selected model - Audacity project

API-domain TN FP FN TP Precision Recall
Ut 38 3 2 13 0.81 0.87
APM 50 1 2 3 0.75 0.60
Network 54 0 0 2 1.00 1.00
DB 49 1 2 4 0.80 0.67
Error Handling 37 3 2 14 0.82 0.88
Logging 52 0 1 3 1.00 0.75
Thread 46 1 0 9 0.90 1.00
Lang 54 0 0 2 1.00 1.00
Data Structure 15 8 2 31 0.79 0.94
i18n 48 2 0 6 0.75 1.00
Setup 13 5 2 36 0.88 0.95
Logic 3 0 0 53 1.00 1.00
10 10 3 [§ 37 0.93 0.86
Ul 6 2 0 48 0.96 1.00
Parser 51 1 0 4 0.80 1.00
Event Handling 28 6 1 21 0.78 0.95
App 29 4 4 19 0.83 0.83
GIS 50 1 2 3 0.75 0.60
Multimedia 15 4 5 32 0.89 0.86
CG 50 0 1 5 1.00 0.83
Table 24 Overall performance from the selected model - Cronos/MTT project

API-domain TN FP FN TP Precision Recall
NLP 34 0 9 9 1.00 0.50
APM 9 0 0 43 1.00 1.00
DB 37 0 4 11 1.00 0.73
Lang 10 1 2 39 0.97 0.95
DevOps 0 5 0 47 0.90 1.00
Setup 18 6 8 20 0.77 0.71
10 43 0 4 5 1.00 0.56
Ul 0 2 0 50 0.96 1.00
Security 9 4 2 37 0.90 0.95

@ Springer

116 Page 48 of 52

Empirical Software Engineering (2023) 28:116

Table 25 Confusion matrix and performance: Project JabRef - transfer learning

API-domain TN FP FN TP Precision Recall
Network 65 7 43 3 0.30 0.07
DB 107 8 3 0 0 0
Interpreter 71 0 47 0 0 0
Logging 45 3 63 7 0.70 0.10
Data Structure 98 16 4 0 0 0
il8n 103 0 15 0 0 0
Setup 43 72 0 3 0.04 1
Microservices 77 24 12 5 0.17 0.29
Test 77 13 23 5 0.28 0.18
10 33 0 67 18 1.00 0.21
Ul 35 13 68 0.66 0.84
App 90 0 19 0.17 1
Table 26 Confusion matrix and performance: Project Audacity - transfer learning

API-domain TN FP FN TP Precision Recall
APM 127 1 0 0 0
Network 132 1 0 0 0
DB 117 0 20 0 0 0
Error Handling 105 0 32 0 0 0
Logging 88 41 7 1 0.02 0.13
Thread 122 0 15 0 0 0
Lang 133 0 4 0 0 0
Data Structure 37 0 100 0 0 0
il8n 118 0 19 0 0 0
Setup 28 1 94 14 0.93 0.13
Logic 5 10 60 62 0.86 0.51
10 31 8 65 33 0.80 0.34
Ul 0 18 9 110 0.86 0.92
Parser 126 1 10 0 0 0
Event Handling 68 0 69 0 0 0
App 58 33 12 34 0.51 0.74

References

Agrawal R, Imielifiski T, Swami A (1993) Mining association rules between sets of items in large databases. in
Proceedings of the 1993 ACM SIGMOD international conference on management of data, pp 207-216
Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc Y-G (2008) Is it a bug or an enhancement? a text-based
approach to classify change requests. in Proceedings of the 2008 conference of the center for advanced
studies on collaborative research: meeting of minds, pp 304-318

@ Springer

Empirical Software Engineering (2023) 28:116 Page49of52 116

API definition (2022) Available: https://languages.oup.com/google-dictionary-en/

Balali S, Steinmacher I, Annamalai U, Sarma A, Gerosa MA (2018) Newcomer’ barriers. . . is that all? an
analysis of mentors’ and newcomers’ barriers in OSS projects. Comput Supported Coop Work 27(3-
6):679-714

Barcomb A, Stol K, Fitzgerald B, Riehle D (2020) Managing episodic volunteers in free/libre/open source
software communities. IEEE Trans Softw Eng:1-1

Behl D, Handa S, Arora A (2014) A bug mining tool to identify and analyze security bugs using naive bayes
and tf-idf. in 2014 International Conference on Reliability Optimization and Information Technology
(ICROIT). IEEE, pp 294-299

Bettenburg N, Just S, Schréter A, Wei3C, Premraj R, Zimmermann T (2007) Quality of bug reports in eclipse.
in Proceedings of the 2007 OOPSLA workshop on eclipse technology exchange, ser. eclipse "07. New
York, NY, USA: ACM, pp 21-25

Blanco A, Casillas A, Pérez A, de Ilarraza AD (2019) Multi-label clinical document classification: impact of
label-density. Expert Syst Appl 138:112835

Charte F, Rivera AJ, del Jesus MJ, Herrera F (2015) Mlsmote: approaching imbalanced multilabel learning
through synthetic instance generation. Knowl-Based Syst 89:385-397

Devlin J, Chang M-W, Lee K, Toutanova K (2019) Bert: pre-training of deep bidirectional transformers for
language understanding. in NAACL,

Ducasse S, Pollet D (2009) Software architecture reconstruction: a process-oriented taxonomy. IEEE Trans
Softw Eng 35(4):573-591

El Zanaty F, Rezk C, Lijbrink S, van Bergen W, C6té M, McIntosh S (2020) Automatic recovery of missing
issue type labels. IEEE Softw

Fast bert repository (2021) Available: https://github.com/utterworks/fast-bert

Feng Y, Jones J, Chen Z, Fang C (2018) An empirical study on software failure classification with multi-
label and problem-transformation techniques. in 2018 IEEE 11th International Conference on Software
Testing, verification and validation (ICST). IEEE, pp 320-330

Ferreira Moreno M, Sousa Dos Santos WH, Costa Mesquita Santos R, Fontoura De Gusmao Cerqueira R
(2018) Supporting knowledge creation through has: the hyperknowledge annotation system. in 2018
IEEE International Symposium on Multimedia (ISM), 239-246

Flach PA, Kull M (2015) Precision-recall-gain curves: Pr analysis done right. in NIPS 15

Goel E, Abhilasha E, Goel E, Abhilasha E (2017) Random forest: a review. Int J Adv Res Comput Sc Softw
Eng 7(1)

Guggulothu T, Moiz SA (2020) Code smell detection using multi-label classification approach. Softw Quality
J28(3):1063-1086

Herrera F, Charte F, Rivera AJ, del Jesus MJ (2016) Multilabel classification: problem analysis, metrics and
techniques, 1st ed. Springer publishing company, incorporated

Huang Y, Wang J, Wang S, Liu Z, Wang D, Wang Q (2021) Characterizing and predicting good first issues.
in Proceedings of the 15th ACM/IEEE international symposium on Empirical Software Engineering and
Measurement (ESEM), pp 1-12

Izadi M, Ganji S, Heydarnoori (2021) Topic recommendation for software repositories using multi-label
classification algorithms. Empir Softw Eng 26:93

Izadi M, Heydarnoori A, Gousios G (2021) Topic recommendation for software repositories using multi-label
classification algorithms. Empirical Softw Eng 26:09

Izadi M, Akbari K, Heydarnoori A (2022) Predicting the objective and priority of issue reports in software
repositories. Empirical Softw Eng 27(2):1-37

KallisR, Di Sorbo A, Canfora G, Panichella S (2019) Ticket tagger: machine learning driven issue classification.
in 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, pp 406—
409

Klock ACT, Gasparini I, Pimenta MS (2016) SW2H framework: a guide to design, develop and evaluate
the user-centered gamification. in Proceedings of the 15th Brazilian symposium on human factors in
computing systems, pp 1-10

Lin B, Zampetti F, Bavota G, Di Penta M, Lanza M (2019) Pattern-based mining of opinions in q&a websites.
in 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). IEEE, pp 548-559

LuY,LiG,ZhaoZ, Wen L, JinZ (2017) Learning to infer API mappings from API documents. in International
conference on knowledge science, engineering and management. Springer, pp 237-248

Nam J, Pan SJ, Kim S (2013) Transfer defect learning. in 2013 35th international conference on software
engineering (ICSE). IEEE, pp 382-391

Ohno T (1982) How the toyota production system was created. Japanese Econ Studies 10(4):83-101

Pacaiova H (2015) Analysis and identification of nonconforming products by SW2H method. Center for Quality

@ Springer

https://languages.oup.com/google-dictionary-en/
https://github.com/utterworks/fast-bert

116 Page 50 of 52 Empirical Software Engineering (2023) 28:116

Park Y, Jensen C (2009) Beyond pretty pictures: examining the benefits of code visualization for open source
newcomers. in Proceedings of the 5th IEEE international workshop on visualizing software for under-
standing and analysis, ser. VISSOFT *09. IEEE, pp 3-10

Pereira RB, Plastino A, Zadrozny B, Merschmann LH (2018) Correlation analysis of performance measures
for multi-label classification. Inf Process Manag 54(3):359-369

Perez Q, Jean P-A, Urtado C, Vauttier S (2021) Bug or not bug? that is the question. in 2021 IEEE/ACM 29th
International Conference on Program Comprehension (ICPC). IEEE, pp 47-58

Petkovic D, Sosnick-Pérez M, Okada K, Todtenhoefer R, Huang S, Miglani N, Vigil A (2016) Using the
random forest classifier to assess and predict student learning of software engineering teamwork. in 2016
IEEE Frontiers in Education Conference (FIE). IEEE, pp 1-7

Pingclasai N, Hata H, Matsumoto K-I (2013) Classifying bug reports to bugs and other requests using topic
modeling. in 2013 20Th asia-pacific software engineering conference (APSEC), vol 2. IEEE, pp 13-18

Pinto GHL, Figueira Filho F, Steinmacher I, Gerosa MA (2017) Training software engineers using open-source
software: the professors’ perspective. in 2017 IEEE 30th Conference on Software Engineering Education
and Training (CSEE&T). IEEE, pp 117-121

Pinto G, Steinmacher I, Gerosa MA (2016) More common than you think: an in-depth study of casual contrib-
utors. in IEEE 23rd international conference on software analysis, evolution, and reengineering, SANER
2016, Suita, Osaka, Japan, 14-18 March 2016 - vol 1, pp 112-123

Pushphavathi T, Suma V, Ramaswamy V (2014) A novel method for software defect prediction: hybrid of
fcm and random forest. in 2014 International Conference on Electronics and Communication Systems
(ICECS). IEEE, pp 1-5

Qiu D, Li B, Leung H (2016) Understanding the API usage in Java. Inf Softw Technol 73:81-100

Ramos J, et al (2003) Using TF-IDF to determine word relevance in document queries. in Proceedings of the
first instructional conference on machine learning, vol 242. Piscataway, NJ, pp 133-142

Ravichandiran S (2021) Getting started with google BERT: build and train state-of-the-art natural language
processing models using BERT. Packt Publishing Ltd

Romano J, Kromrey J, Coraggio J, Skowronek J (2006) Appropriate statistics for ordinal level data: Should
we really be using t-test and Cohen’sd for evaluating group differences on the NSSE and other surveys?
in Annual meeting of the florida association of institutional research, pp 1-3

Saito T, Rehmsmeier M (2015) The precision-recall plot is more informative than the roc plot when evaluating
binary classifiers on imbalanced datasets. PloS One 10(3):e0118432

Santos F, Trinkenreich B, Nicolati Pimentel JE, Wiese I, Steinmacher I, Sarma A, Gerosa M (2022) How to
choose a task? mismatches in perspectives of newcomers and existing contributors. Empirical Softw Eng
Meas

Santos I, Wiese I, Steinmacher I, Sarma A, Gerosa MA (2022) Hits and misses: newcomers’ ability to identify
skills needed for OSS tasks. in 2022 IEEE international conference on software analysis, evolution and
reengineering (SANER), pp 174-183

Santos F, Wiese I, Trinkenreich B, Steinmacher I, Sarma A, Gerosa MA (2021) Can i solve it? identifying apis
required to complete OSS tasks. in 2021 IEEE/ACM 18th international conference on Mining Software
Repositories (MSR). IEEE, pp 346-257

Sarma A, Gerosa MA, Steinmacher I, Leano R (2016) Training the future workforce through task curation
in an OSS ecosystem. in Proceedings of the 2016 24th ACM SIGSOFT international symposium on
foundations of software engineering, pp 932-935

Satapathy SM, Acharya BP, Rath SK (2016) Early stage software effort estimation using random forest
technique based on use case points. IET Softw 10(1):10-17

Savidis A, Savaki C (2021) Software architecture mining from source code with dependency graph clustering
and visualization. in IVAPP, 12

Seah C-W, Tsang IW, Ong Y-S (2013) Transfer ordinal label learning. IEEE Trans Neural Netw Learn Syst
24(11):1863-1876

Sheskin D (2020) Handbook of parametric and nonparametric statistical procedures, S5th edn. Chapman & Hall

Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf
Process Manag 45(4):427-437

spacy industrial-strength natural language processing (2021) https://spacy.io/. Accessed 04 Oct 2021

Stanik C, Montgomery L, Martens D, Fucci D, Maalej W (2018) A simple nlp-based approach to support
onboarding and retention in open source communities. in 2018 IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME). IEEE, pp 172-182

Steinmacher I, Silva MAG, Gerosa MA, Redmiles DF (2015) A systematic literature review on the barriers
faced by newcomers to open source software projects. Inf Softw Technol 59:67-85

@ Springer

https://spacy.io/

Empirical Software Engineering (2023) 28:116 Page 510f52 116

Steinmacher I, Conte TU, Gerosa MA (2015) Understanding and supporting the choice of an appropriate task
to start with in open source software communities. in 2015 48th Hawaii international conference on
system sciences. IEEE, pp 5299-5308

Steinmacher I, Conte T, Gerosa MA, Redmiles D (2015) Social barriers faced by newcomers placing their first
contribution in open source software projects. in Proceedings of the 18th ACM conference on computer
supported cooperative work & social computing, ser. CSCW’15. New York, NY, USA: Association for
computing machinery, pp 1379-1392

Steinmacher I, Treude C, Gerosa MA (2018) Let me in: guidelines for the successful onboarding of newcomers
to open source projects. IEEE Softw, vol 36(4):41-49

Strauss A, Corbin J (1998) Basics of qualitative research techniques. Sage publications, Thousand oaks, CA

Szumilas M (2010) Explaining odds ratios. J Canadian Acad Child Adolescent Psych 19(3):227

Tantithamthavorn C, McIntosh S, Hassan AE, Matsumoto K (2019) The impact of automated parameter
optimization on defect prediction models. IEEE Trans Softw Eng 45(7):683-711

Transformers documentation (2021). Available: https://huggingface.co/docs/transformers/index

Tsoumakas G, Katakis I, Vlahavas I (2009) Mining multi-label data. Data Mining Knowl Discover
Handbook:667-685

Uddin G, Khomh F (2019) Automatic mining of opinions expressed about apis in stack overflow. IEEE Trans
Softw Eng:1-1

Vadlamani SL, Baysal O (2020) Studying software developer expertise and contributions in stack overflow
and GitHub. in 2020 IEEE International Conference on Software Maintenance and Evolution (ICSME).
IEEE, pp 312-323

Van Gompel M, Van Den Bosch A (2016) Efficient n-gram, skipgram and flexgram modelling with colibri
core. J Open Res Softw 4(1)

Vargas-Baldrich S, Linares-Vasquez M, Poshyvanyk D (2015) Automated tagging of software projects using
bytecode and dependencies. in 2015 30th IEEE/ACM international conference on Automated Software
Engineering (ASE). IEEE, pp 289-294

Vaz L, Steinmacher I, Marczak S (2019) An empirical study on task documentation in software crowdsourc-
ing on topcoder. in 2019 ACM/IEEE 14th International Conference on Global Software Engineering
(ICGSE). IEEE, pp 48-57

Wang J, Sarma A (2011) Which bug should i fix: helping new developers onboard a new project. In Proceedings
of the 4th international workshop on cooperative and human aspects of software engineering, ACM,
pp 76-79

Wang J, Zhang X, Chen L (2021) How well do pre-trained contextual language representations recommend
labels for GitHub issues?. Knowl-Based Syst 232:107476. Available: https://www.sciencedirect.com/
science/article/pii/S0950705121007383

Wiese IS, Ré R, Steinmacher I, Kuroda RT, Oliva GA, Treude C, Gerosa MA (2017) Using contextual infor-
mation to predict co-changes. J Syst Softw 128:220-235

Xia X, LoD, Wang X, Zhou B (2013) Tag recommendation in software information sites. in 2013 10th Working
conference on mining software repositories (MSR). IEEE, pp 287-296

You Y, LiJ, Reddi S, Hseu J, Kumar S, Bhojanapalli S, Song X, Demmel J, Keutzer K, Hsieh C-J (2020) Large
batch optimization for deep learning: training bert in 76 minutes. in International conference on learning
representations. Available: https://openreview.net/forum?id=Syx4wnEtvH

Zhang M-L, Zhou Z-H (2007) Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogni
40(7):2038-2048

Zhou Y, Tong Y, Gu R, Gall H (2016) Combining text mining and data mining for bug report classification. J
Softw Evol Process 28(3):150-176

Zhu 'Y, Pan M, Pei Y, Zhang T (2019) A bug or a suggestion? an automatic way to label issues. arXiv:1909.00934

Zimmermann T, Premraj R, Bettenburg N, Just S, Schroter A, Weiss C (2010) What makes a good bug report
IEEE Trans Softw Eng, vol 36(5), pp 618-643

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://huggingface.co/docs/transformers/index
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://www.sciencedirect.com/science/article/pii/S0950705121007383
https://openreview.net/forum?id=Syx4wnEtvH
http://arxiv.org/abs/1909.00934

116 Page 52 of 52 Empirical Software Engineering (2023) 28:116

Authors and Affiliations

Fabio Santos'(® - Joseph Vargovich' - Bianca Trinkenreich’ - Italo Santos' -
Jacob Penney' - Ricardo Britto* - Joao Felipe Pimentel' - Igor Wiese? -
Igor Steinmacher' . Anita Sarma3 - Marco A. Gerosa'

Joseph Vargovich
joseph_vargovich@nau.edu

Bianca Trinkenreich
bianca_trinkenreich@nau.edu

Italo Santos
italo_santos @nau.edu

Jacob Penney
jacob_penney @nau.edu

Ricardo Britto
ricardo.britto @ericsson.com

Jodo Felipe Pimentel
joao.pimentel @nau.edu

Igor Wiese
igor@utfpr.edu.br

Igor Steinmacher
igor.steinmacher @nau.edu

Anita Sarma
anita.sarma@oregonstate.edu

Marco A. Gerosa
marco.gerosa@nau.edu

Northern Arizona Unversity, Arizona Flagstaff, USA

2 Universidade Tecnolégica Federal do Parand, Curitiba, Parand, Brazil
3 Oregon State University, Corvallis, Oregon, USA
4

Ericsson - Blekinge Institute of Technology, Karlskrona, Gotaland, Sweden

@ Springer

http://orcid.org/0000-0001-8069-3158

	Tag that issue: applying API-domain labels in issue tracking systems
	Abstract
	1 Introduction
	2 Related Work
	3 Method Overview
	4 Relevance of the Labels to New Contributors (RQ1)
	4.1 Method
	4.1.1 Participants
	4.1.2 Experiment Planning
	4.1.3 Questionnaire Data Collection
	4.1.4 Questionnaire Data Analysis

	4.2 Results

	5 Label Predictions (RQ2)
	5.1 Method
	5.1.1 Phase 1 - Mining Software Repositories
	5.1.2 Phase 2 - API classification
	5.1.3 Phase 3 - Building the Multi-label Classifiers

	5.2 Results

	6 RQ3 - Evaluating the API-Domain Labels with developers
	6.1 Method
	6.1.1 Labels generation
	6.1.2 Contributors assessment
	6.1.3 Analysis

	6.2 Results

	7 Discussion
	8 Threats to Validity
	9 Conclusion
	Acknowledgements
	Appendix A
	References

