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ABSTRACT

We consider the problem of efficient inference of the Average Treatment Effect in a sequential ex-
periment where the policy governing the assignment of subjects to treatment or control can change
over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability
Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previ-
ously made in the literature. This central limit theorem enables efficient inference at fixed sample
sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic
confidence sequences that are considerably tighter than previous methods. These anytime-valid
methods enable inference under data-dependent stopping times (sample sizes). Additionally, we use
propensity score truncation techniques from the recent off-policy estimation literature to reduce the
finite sample variance of our estimator without affecting the asymptotic variance. Empirical results
demonstrate that our methods yield narrower confidence sequences than those previously developed
in the literature while maintaining time-uniform error control.

Keywords Average Treatment Effect, Anytime-valid Inference, Confidence Sequences

1 Introduction

Randomized experiments with two treatment arms, also known as A/B tests, are widely used across many domains.
Classical statistical tools (fixed-time methods) require the analyst to select the sample size in advance and only perform
inference when this sample size is reached. However, modern A/B testing platforms enable continuous monitoring of
results, which allows analysts to make repeated decisions about whether to stop or continue an experiment based on the
data observed so far. For example, an analyst might decide to run an experiment precisely until a test statistic becomes
statistically significant, at which point they may stop and declare a treatment effective. When the test statistic is based
on a fixed-time method, this can lead to inflated false positive (type-I error) rates. In fact, when used in this fashion,
fixed-time methods based on the central limit theorem will in general cause these type-I error rates to go to 1 as t→ ∞,
a result that is implied by the law of the iterated logarithm [Robbins, 1952, Johari et al., 2017].

Statistical tools which enable valid inference in this setting are known as anytime-valid methods. To illustrate the
distinction, consider a confidence interval (CI) for a parameter of interest θ. A (1− α) CI for θ is an interval [Lt, Ut]
based on a sample of size t with the property that

∀t ∈ N+,P(θ ∈ [Lt, Ut]) ≥ 1− α. (1)

∗Some of this work was performed while at J.P. Morgan Chase & Co.
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The coverage guarantee in (1) only holds when the sample size (aka stopping time) t is fixed in advance. By contrast, a
confidence sequence (CS) for θ is a sequence of intervals such that

P(∀t ∈ N+, θ ∈ [Lt, Ut]) ≥ 1− α. (2)

The coverage guarantee in (2) is uniform in the sample size, which enables valid inference under data-dependent
stopping times. This means that the analyst can continually monitor the experiment and adaptively choose when to
stop without inflating the type-I error rate. A CS can be constructed so that time-uniform coverage is guaranteed
asymptotically, a notion which is defined rigorously in Waudby-Smith et al. [2023].

Continuous monitoring also enables analysts to adaptively update the policy governing the assignment of subjects
to treatment vs. control. Adaptive experiments in general enable more efficient estimation of treatment effects than
non-adaptive experiments, such as a traditional experiment which randomly assigns each subject to treatment or
control with probability 0.5 [Hahn et al., 2011]. Adaptive designs can therefore enable users to spend less resources
running experiments while also minimizing the number of subjects that are exposed to ineffective or possibly harmful
treatments. Additionally, mid-stream changes to experimental designs are sometimes imposed by considerations other
than statistical efficiency, such as changes to budgets or unexpected impacts of the treatment on a business metric. It is
therefore desirable to be able to perform inference under a wide range of adaptive settings.

As an example of this problem setting, consider a pharmaceutical company running a trial to test whether a treatment
is effective or not to gain regulatory approval. The pharmaceutical company would like to gain approval quickly
by concluding the trial using as few samples as possible. Without prior knowledge of the effect size, choosing an
appropriate sample size is difficult. If an overly large sample size is chosen, then the company will have wastefully run
the trial longer than necessary, keeping an effective treatment away from patients. However, if the chosen sample size is
too small, then the trial may be inconclusive, in which case the entire cost of the trial is wasted. With standard fixed-time
inference tools, the company must start the trial from the beginning, or abandon the treatment. If an anytime-valid
method is used, then the company can simply continue the trial without worrying about inflating the false positive rate.
To protect participants from potentially harmful treatments, it is common to track the results of an experiment as they
are observed. It is also possible that a treatment is so overwhelmingly effective that the company would like to conclude
the trial immediately and gain regulatory approval. All these settings involve data-dependent stopping times, which
require anytime-valid methods rather than fixed-time methods.

In this paper, we consider inference for the Average Treatment Effect (ATE), which is the expected difference in
outcomes between the two treatment arms, in the context of adaptive experiments. Kato et al. [2021] proposed
the Adaptive Augmented IPW (A2IPW) estimator, which, when coupled with a particular adaptive design, yields
asymptotically efficient CIs based on the central limit theorem [Hahn et al., 2011]. Furthermore, Kato et al. [2021]
analyzed finite-sample regret (in terms of mean squared error) and showed that under certain conditions their adaptive
design improves the regret bound compared to a non-adaptive design. They also provided a CS for the ATE using
concentration inequalities based on nonasymptotic variants of the law of the iterated logarithm (LIL).

In a similar, but independent line of research, Dai et al. [2023] proposed an experimental design such that the variance
of an adaptive IPW estimator asymptotically achieves the variance under the optimal Neyman design, the fixed (non-
adaptive) design that minimizes the variance of the IPW estimator but is unknown in practice due to dependence on
unknown parameters. They provided a treatment assignment policy that achieves sublinear regret, in terms of the
estimator’s variance, through the use of a variant of online stochastic projected gradient descent. They also provided an
asymptotically-valid Chebyshev-type CI for the ATE. In contrast to our work, their work studied this problem from a
design-based potential outcomes framework, which assumes deterministic potential outcomes, and did not consider
contexts or covariates. Our work assumes that contexts and potential outcomes are drawn at random. We provide an
asymptotically valid Wald-type CI for an A2IPW estimator and provide anytime-valid inference tools.

Our contributions are both theoretical and empirical. Theoretically, we provide semiparametric efficient (approximate)
inference at fixed times under weaker (more general) conditions than in the previous literature. Empirically, we adapt
state-of-the-art CSs to the setting of adaptive A/B tests and show superior performance in a sequential testing setting
using a treatment assignment policy from our fixed-time theory. Explicitly, our contributions are:

• Theory: We prove a central limit theorem for the A2IPW estimator under weaker assumptions than those
utilized by Kato et al. [2021], enabling approximately valid inference at fixed sample sizes. While these results
are valid for arbitrary adaptive designs (with some mild restrictions), we propose a design which adaptively
truncates the treatment assignment probabilities for finite sample stability [Waudby-Smith et al., 2024]. We
show that this estimator is semiparametric efficient when paired with the proposed design.

• Empirical Results: We couple the A2IPW estimator with anytime-valid methods which yield much tighter
intervals (more powerful inference) than the methods in Kato et al. [2021]. We derive CSs based on test
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Figure 1: A single run of an experiment with bounded outcomes and the ATE set to 0.4 (simulation setup of
Appendix F.4 with πt ∈ [0.3, 0.7]). We propose confidence sequences (AsympCS, Pr-PI, Hedged) that are narrower
than previous work Kato et al. [2021].

(super)martingales [Waudby-Smith and Ramdas, 2023], as well as asymptotic CSs [Waudby-Smith et al.,
2023].

To offer a demonstrative example, Figure 1 compares our CSs to previous work for a single sequential experiment. Our
inference methods provide narrower intervals, leading to higher statistical power.

2 Problem Setting and Fixed-Time Inference

2.1 Experimental Process

We follow the same problem setting and data generating process as described in Kato et al. [2021], with minor
modifications to their notation. Subjects are indexed by t ∈ N+ and arrive sequentially. For each subject, the
experimenter observes a context Xt ∈ X , where X is the context domain, then assigns a treatment At ∈ {0, 1},
and then observes an outcome Yt ∈ R. We denote by Yt(a) the potential outcome corresponding to treatment a, for
a ∈ {0, 1}, and we assume that Yt = 1[At = 0]Yt(0) + 1[At = 1]Yt(1), where 1[·] denotes the indicator function.
That is, we assume that a given subject’s outcome depends only on their own treatment assignment and not on the
treatment assignments of other subjects [Rubin, 1980, 1986]. The accumulated data after T subjects (equivalently, T
time steps, where T ∈ {N+ ∪∞}) consists of a set {(Xt, At, Yt)}Tt=1, whose distribution is

(Xt, At, Yt) ∼ p(x)πt(a | x,Ωt−1)p(y | a, x),

where Ωt−1 = {(Xs, As, Ys) : s ≤ t− 1} denotes the history. We denote the domain of Ωt−1 by Ht−1. We assume
that {(Xt, Yt(0), Yt(1))}Tt=1 are independent and identically distributed (iid). However, our treatment assignments are
not fixed over time, and depend on previous observations. We define the propensity score πt(a | x,Ωt−1) from the
experimenter’s policy, πt : A×X ×Ht−1 7→ [0, 1]. Although the context and potential outcomes are independent over
time, the observed outcomes {Yt}Tt=1 are dependent due to dependence in the policy.

Remark 1. Although we assume {Xt, Yt(0), Yt(1)}Tt=1 to be iid, our results can be extended to a non-iid setting in
which we estimate the running mean of the individual treatment effects, 1

T

∑T
t=1 θt, where θt = (Yt(1)−Yt(0)) denotes

the individual treatment effect for subject t. As a special case of that setting, when {Xt, Yt(0), Yt(1)}Tt=1 are iid, we
recover the ATE, since 1

T

∑T
t=1 θt → θ0.

As data collection may be costly, time consuming, or high risk, the experimenter may not want to continue until
some predetermined sample size. Conversely, an experimenter may reach a predetermined sample size and consider
proceeding with further data collection, for example because they consider the results inconclusive. This type of
data-dependent stopping requires methods which can handle peeking [Ramdas et al., 2023], and is the focus of Section 3.
Under the anytime-valid inference methods described in that section, the experimenter can choose to stop the experiment,
continue under the current policy, or continue under a modified policy, without inflating the type-I error rate.
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2.2 Estimating the Average Treatment Effect

Additional notation: Our notation follows Kato et al. [2021] with minor modification. Let a be a treatment in A. We
denote E[Yt(a) | x], E[Y 2

t (a) | x], Var(Yt(a) | x), and E[Yt(1) − Yt(0) | x] as f(a, x), e(a, x), v(a, x), and θ0(x),
respectively. Let f̂t(a, x) and êt(a, x) denote estimators of f(a, x) and e(a, x) constructed from Ωt, respectively.2 We
denote the ℓ2 norm of a function as ∥f∥22 =

∫
{f(x)}2 dP(x).

Adaptive Estimator: We denote the causal parameter of interest, the ATE, as θ0 = E(Y (1) − Y (0)), where the
subscript t is dropped to emphasize time invariance. In an experimental setting, the treatment probabilities are known
and the Inverse-Probability Weighted (IPW) estimator produces an unbiased estimate of θ0. The Augmented IPW
(AIPW) estimator extends the IPW estimator to include regression estimates, which can reduce the variance of the
estimator, while maintaining unbiasedness [Robins et al., 1994, Chernozhukov et al., 2018]. Recently, Kato et al.
[2021] extended the AIPW estimator to the setting of an adaptive experiment by defining the Adaptive AIPW estimator
(A2IPW). The key difference between the two estimators is the use of data-dependent propensity scores πt, which can
be updated at each time point t based on the accumulated data Ωt−1. The A2IPW estimator, given that T subjects have
been observed, is defined as θ̂A2IPW

T = 1
T

∑T
t=1 ht, where

ht =

(
1[At = 1](Yt − f̂t−1(1, Xt))

πt(1 | Xt,Ωt−1)
− 1[At = 0](Yt − f̂t−1(0, Xt))

πt(0 | Xt,Ωt−1)
+ f̂t−1(1, Xt)− f̂t−1(0, Xt)

)
.

Hadad et al. [2021] presented a more general form of an adaptive AIPW estimator. In their definition, the individual
iterates are weighted by adaptive evaluation weights to guarantee asymptotic normality of the weighted average. θ̂A2IPW

T
can therefore be viewed as a special case in which the evaluation weights are set to be equal.

Hahn et al. [2011] showed that the policy that minimizes the semiparametric lower bound of the asymptotic variance for
regular estimators of the ATE is πAIPW, defined as

πAIPW(1 | Xt) =

√
v(1, Xt)√

v(1, Xt) +
√
v(0, Xt)

.

Hahn et al. [2011] derived this lower bound in the context of a two-stage experimental design. Armstrong [2022]
showed that for estimating the ATE of a binary treatment, no further first-order asymptotic efficiency gain is possible in
a purely adaptive experiment. This policy depends on unknown quantities of the underlying data generating process.
The policy proposed in Kato et al. [2021] estimates the unknown quantities from the observed data and is defined as

πA2IPW,Kato
t (1 | Xt,Ωt−1) =

√
v̂t−1(1, Xt)√

v̂t−1(1, Xt) +
√
v̂t−1(0, Xt)

,

where v̂t−1 denotes an estimate of v using the first t− 1 samples. For numerical stability, Kato et al. [2021] mixed this
policy with a non-adaptive policy that assigns treatment with probability 0.5. As the sample size grows, the mixing
gradually assigns a greater weight to the estimated optimal policy. This mixing scheme prevents noisy estimates of
v from inducing high variance in the observed (ht)

T
t=1 early in the experiment and does not affect the asymptotic

properties of the estimator. In a similar spirit, we explicitly define a truncation schedule for the propensity scores
generated by our policy. However, our truncation schedule is not only useful for improving finite sample stability in
practice; it is also a technical device that allows us to relax the assumptions needed for our results below. We define our
policy as

πA2IPW
t (1 | Xt,Ωt−1) =

(
πA2IPW,Kato
t (1 | Xt,Ωt−1) ∨

1

kt

)
∧
(
1− 1

kt

)
, (3)

where kt ∈ [2,∞) is a user-chosen truncation parameter. Since our theorem below holds in a more general setting, we
can apply this truncation to arbitrary policies π̃t, denoting

πt =

(
π̃t ∨

1

kt

)
∧
(
1− 1

kt

)
. (4)

Note that setting kt = 2 results in πt(At = 0 | Xt,Ωt−1) = πt(At = 1 | Xt,Ωt−1) = 0.5, and kt → ∞ results in
the non-truncated policy π̃t. The policy truncation that we utilize is inspired by Waudby-Smith et al. [2024], where
truncation circumvents required knowledge of the maximal importance weight in off-policy evaluation. Our empirical
results show that truncation can improve finite-sample performance for well-chosen kt, which aligns with the results in
the preceding work.

2In general, f̂ can be any arbitrary estimator. In Theorem 1, we simply require f̂ to be consistent for f .
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2.3 Fixed-Time Confidence Intervals

We now turn to constructing CIs with asymptotic coverage guarantees. Kato et al. [2021] defined zt = ht − θ0 and
showed that {zt}Tt=1 forms a martingale difference sequence (MDS). They then utilized a MDS central limit theorem
to show θ̂A2IPW is asymptotically Gaussian. They further showed that θ̂A2IPW is semiparametric efficient under the
asymptotic policy. We provide the same results under weaker assumptions, as elaborated after the theorem.

Theorem 1 (Asymptotic Distribution of θ̂A2IPW
T ). Assume {(Xt, At, Yt)}Tt=1 follow the data generating process

described in Section 2.1. Let π̃t : A×X 7→ (0, 1) be an arbitrary sequence of policies, and let πt be the corresponding
truncated policies as defined in (4). Assume 1

π(a|x) < C1 <∞ and v(a, x) < C2 <∞ for all x ∈ X and a ∈ {0, 1}
for some constants C1 and C2. Assume kt∥f̂t − f∥2 = oP(1) and kt∥πt − π∥2 = oP(1) for some policy π. Further,
assume that Var(f̂t | Ωt−1) < C3 <∞ and Var(πt | Ωt−1) < C4 <∞ for all x ∈ X , a ∈ {0, 1}, and t ∈ {1, 2, . . . },
for some constants C3 and C4. Under these assumptions, we have

√
T (θ̂A2IPW

T − θ0)
d−→ N(0, σ2),

where σ2 is the semiparametric lower bound of the asymptotic variance for regular estimators of θ0 under the policy
π(a | x), given by

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

In particular, if we have π = πAIPW, then θ̂A2IPW
T is semiparametric efficient.

Proof is provided in Appendix A. Note that Kato et al. [2021] assumed that Yt and f̂t are uniformly bounded and that f̂t
and πt converge pointwise. By contrast, we only assume that v(a, x) are uniformly bounded, that f̂t and πt converge in
ℓ2 norm, and that f̂t and πt have uniformly bounded conditional variances. Kato et al. [2021] also assumed that πt is
uniformly bounded away from 0, whereas we only make this assumption on π, the stationary policy which πt converges
to. By utilizing truncation, we can satisfy the assumption that the policies πt (at fixed times) are uniformly bounded.
However, truncation is still relevant to relax convergence assumptions. Our proof uses a MDS central limit theorem
given by Dvoretzky [1972], which is used in a similar fashion by Zhang et al. [2021]. This form of a MDS central limit
theorem states conditions based on the second moment of zt conditional on Ωt−1, and lends itself directly to weakening
pointwise convergence assumptions on f̂ and πt.

In contrast to Kato et al. [2021], truncation plays a key role in our derivation of the asymptotic distribution of θ̂A2IPW
T

and, in turn, the conditions required of kt are of particular interest. If kt increases to infinity, then as long as the
non-truncated policy π̃t converges to some non-truncated policy π̃, the truncated policy πt will also converge to π̃ (and
the theorem would apply as long as kt increased slowly enough that kt max(∥f̂t−f∥2, ∥πt−π∥2) = oP(1)). If, instead,
kt remains constant or increases to a finite bound, then the truncated policy πt will converge to an appropriate truncation
of π̃, and the theorem would still apply as long as max(∥f̂t − f∥2, ∥πt − π∥2) = oP(1). When we have π = πAIPW,
we are implicitly assuming that we have independently selected kt such that truncation becomes asymptotically inactive.
Note that if π̃t were uniformly bounded away from 0, as assumed in Kato et al. [2021], then we could simply set
kt = 1/min(π̃t(x), 1 − π̃t(x)) so that π̃t = πt, meaning we never actively truncate π̃t. In that case, the conditions
in [Kato et al., 2021, Theorem 1] would imply the conditions in our theorem. The following remark alludes to how
selecting kt can lead us to semiparametric efficient inference with our proposed policy πA2IPW

t .
Remark 2 (Semiparametric Efficiency). Assume that we set kt such that limt→∞ kt > sup 1

πAIPW . Assume that the
estimated conditional variance function v̂t is consistent for v such that ∥πA2IPW

t − πAIPW∥2 = oP(1). If kt grows
at a rate such that kt∥πA2IPW

t − πAIPW∥2 = oP(1) and all other assumptions of Theorem 1 hold, then θ̂A2IPW
T is

semiparametric efficient.

In the final sentence of Theorem 1, we state that if πt converges to πAIPW, then the semiparametric lower bound is
minimized with respect to π [Hahn et al., 2011]. In order to make use of this result, we require an adaptive policy that
converges to πAIPW. Remark 2 states that πA2IPW

t is such a policy as long as our estimates of v are consistent and our
truncation does not vanish too quickly. The rate at which kt is allowed to increase as per the conditions in Remark 2
depends on the rate that v̂t converges to v. In practice this rate is unobservable, and it is worth acknowledging this
limitation. Addressing this limitation is an interesting direction for future research.

A t-statistic, along with an explicit CI, are defined in Appendix F.2. Although our interval is the same as the one given in
Kato et al. [2021], our relaxed assumptions make its use applicable in more general settings, such as when the potential
outcomes follow a distribution without bounded support.
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3 Anytime-Valid Inference in Adaptive Experiments

We now construct confidence sequences (CSs) for the ATE that utilize the A2IPW estimator. Kato et al. [2021]
developed such CSs via concentration inequalities based on the law of the iterated logarithm (LIL) as derived in
Balsubramani [2015] and Balsubramani and Ramdas [2016], which are today known to be loose in constants [Howard
et al., 2021]. The concentration inequality derived for θ̂A2IPW

T [Kato et al., 2021, Thm. 4] depends on the unknown
treatment effect θ0, although we believe it is probably a trivial extension to replace this with an estimate of θ0. Indeed,
though their derivation uses the true value θ0, their experiments use a running estimate for θ0 based on {ht}T−1

t=1 .

In contrast, we present CSs for the ATE based on more recent, state-of-the-art methods for inference of means of random
variables in sequential settings [Waudby-Smith and Ramdas, 2023, Waudby-Smith et al., 2024]. All our sequences are
fully empirical, meaning they do not depend on unknown parameters. We will see that these these methods empirically
yield much tighter intervals than those previously derived. This section thus yields the first practically tight and
theoretically sound CSs for using the semiparametric efficient A2IPW estimator in adaptive experiments.

3.1 Betting Confidence Sequences

We first derive a CS using results from Waudby-Smith and Ramdas [2023] and Waudby-Smith et al. [2024]. Since these
CSs do not require independence between observations, their use in the setting of adaptive experimentation is natural.
The approach is based on a set of capital processes, each of which can be understood as the accumulated wealth of a
gambler playing a game against nature. More precisely, we construct one capital process for each θ′ ∈ Θ, the parameter
space. At each time t, the confidence set corresponds to the set of θ′ ∈ Θ such that the respective capital process has
not exceeded an improbable level of wealth for a fair game parameterized by θ′. By constructing the capital process
at θ0 to be a test martingale, the probability that the capital process ever exceeds the value 1

α is bounded by α [Ville,
1939]. This gives time-uniform type-1 error control, allowing the analyst to reject any θ′ for which the respective capital
process exceeds 1

α .
Theorem 2 (Hedged-CS [Hedged]). Assume we observe data following the data generating process of Section 2.1.
Assume Yt ∈ [0, 1] and πt(1 | Xt,Ωt−1) ∈ [ 1

kt
, 1− 1

kt
] for all t ∈ 1, . . . , T . If we define

K+
T (θ

′) :=

T∏
t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) :=

K+
T (θ

′) +K−
T (θ

′)

2
,

then

CHedged
T :=

⋂
t≤T

{
θ′ ∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a (1− α)-CS for θ0, where (λt(θ
′))Tt=1 ∈

(
−1

kt−θ′ ,
1

kt+θ′

)
is a predictable sequence that may be interpreted as

an analyst’s betting strategy.

Proof and other details can be found in Appendix C. Before providing intuition for the proof, we note that although we
assume Yt ∈ [0, 1], our result holds for any bounded Yt by rescaling.

K+
T (θ

′) and K−
T (θ

′) can be interpreted as capital processes for a gambler who is betting in favor of θ0 > θ′ and θ0 < θ′

respectively. Since we wish to produce two-sided intervals, we take the mean of these two process to form MT (θ
′).

This is equivalent to a gambler partitioning their wealth equally between two games. The analyst must choose a
predictable betting strategy for each game, λt(θ′). In theory, this betting strategy could be different at each possible
value of θ′. Moreso, apart from a bounded range, the only restriction on λt(θ′) is that it is predictable, meaning that
it cannot depend on the current or any future observations. However, since our parameter space is continuous, an
exhaustive search over an infinite set of θ′ is not feasible. Waudby-Smith and Ramdas [2023] propose a method to set
λt to be quasi-convex in θ′ so that the confidence set forms an interval. With quasi-convexity, it is sufficient to partition
the parameter space and perform a grid-search; see their paper for further details and a variety of settings of λt. For
brevity, we defer the details of setting λt to Appendix C.3.

3.2 Empirical Bernstein Confidence Sequences

The confidence set produced by Theorem 2 can be computationally expensive, as a grid search is performed over
θ′ ∈ [−1, 1]. A significant drawback is a lack of closed-form presentation. In this section we present a closed-form
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CS which has slight degradation in performance, but enjoys faster computation. This CS is based on an empirical
Bernstein-type process that is shown to be a test supermartingale [Waudby-Smith and Ramdas, 2023]. Since this process
inverts a test supermartingale, the concentration inequality is a looser bound than those produced by test martingales.

Without loss of generality, assume that we observe Yt ∈ [0, 1], for all t ∈ 1, . . . , T , and that the propensity scores, πt,
are all truncated to fall in [ 1

kt
, 1− 1

kt
]. Following a similar technique as in Waudby-Smith et al. [2024], we define

ξt =
ht

kt + 1
, ξ̂t−1 =

(
1

t− 1

t−1∑
i=1

ξi

)
∧ 1

kt + 1
, and ψE(λ) = − log(1− λ)− λ. (5)

ξt can be viewed as a scaled version of ht. ξ̂t−1 is then a sample average of ξ up through observation t− 1. By only
using previous observations, this value is predictable, whereas the quantity ξ̄t, defined below in equation (7), uses the
current observation and is therefore not predictable. The scaling in ξt and truncation in ξ̂t−1 are necessary technical
tools to construct a test supermartingale, as shown by Waudby-Smith and Ramdas [2023].

Similarly to the Hedged-CS of Theorem 2, there are user-specified parameters, (λt)Tt=1, which have an effect on the
finite-sample performance of our forthcoming CS. (λt)Tt=1 can be any (0, 1)-valued predictable process. Waudby-Smith
et al. [2024] provide an empirically promising setting, inspired by fixed-time empirical Bernstein CIs,

λt =

√
2 log(2/α)

σ̂2
t−1t log(1 + t)

∧ c, where c = 0.5, (6)

σ̂2
t =

σ2
0 +

∑t
i=1(ξi − ξ̄i)

2

t+ 1
, and ξ̄t =

(
1

t

t∑
i=1

ξi

)
∧ 1

kt + 1
. (7)

σ̂2
t and ξ̄t can be interpreted as estimates of the mean and variance of ξ. The value σ2

0 can be viewed as a prior guess for
the variance of ξ, and setting σ2

0 = 1
4 is a reasonable choice. We are now ready to present the CS.

Theorem 3 (Predictable Plug-In Empirical Bernstein CS [Pr-PI]). Assume we observe data following the data generating
process of Section 2.1. Assume that Yt ∈ [0, 1] and πt(1 | Xt,Ωt−1) ∈ [ 1

kt
, 1− 1

kt
] for all t ∈ 1, . . . , T. Let ξt, ξ̂t−1,

ψE(λ), λt, σ̂2
t , and ξ̄t be defined as in (5), (6), and (7) respectively. We have that

CPr−PI
T :=

∑T
t=1 λtξt∑T

t=1 λt/(kt + 1)
±

log(2/α) +
∑T

t=1

(
ξt − ξ̂t−1

)2
ψE(λt)∑T

t=1 λt/(kt + 1)
,

forms a (1− α) CS for θ0.

Proof is provided in Appendix D, and follows the truncation technique used in Waudby-Smith et al. [2024]. When kt
does not grow quickly, meaning propensities are truncated more aggressively, intervals tend to be narrower at small t.
When kt grows quickly, then finite sample performance is sacrificed for performance at large t. The effect of truncation
is consistent with the Hedged-CS.

3.3 Asymptotic Confidence Sequences

Because of their stronger time-uniform guarantees, the CSs in the preceding section produce intervals that have larger
widths than their fixed-time CI counterparts. In the fixed-time setting, exact error coverage is not guaranteed, and the
analyst must rely on asymptotic coverage guarantees. Waudby-Smith et al. [2023] introduce the sequential analogue of
asymptotic CIs, asymptotic CSs (AsympCS), by defining a sequence of intervals which converges to some (unknown)
CS. We now define our AsympCS for θ0.
Theorem 4 (Asymptotic CS [AsympCS]). Assume {(Xt, At, Yt)}Tt=1 follow the data generating process described in
section 2.1. Furthermore, assume E(|Yt|2+δ) <∞ for some δ > 0. Let σ̂2 be an estimator of Var(ht), and ρ > 0 be a
user-specified parameter. For all t ∈ 1, . . . , T , we have that

CAsympCS
T :=

 1

T

T∑
t=1

ht ±

√√√√2(T σ̂2
T ρ

2 + 1)

T 2ρ2
log

(√
T σ̂2

T ρ
2 + 1

α

) ,

forms a (1− α)-AsympCS for θ0. Further, the width of CAsympCS
T at time T can be (approximately) minimized by setting

ρ =

√
−2 logα+ log(−2 logα+ 1)

T
.
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Figure 2: Cumulative error probability (a, c) and power (b, d) as functions of sample size, of experiments from
Appendix F.3 and Appendix F.4. The first row corresponds to the experiment with Bernoulli outcome, and the bottom
row corresponds to the experiment with bounded, continuous outcomes. Intervals based on the CLT (Theorem 1),
AsympCS (Theorem 4), Pr-PI (Theorem 3), Hedged (Theorem 2), and [Kato et al., 2021, Theorem 4] begin at t = 50.

Proof is provided in Appendix E. The value of ρ that minimizes interval width at a certain sample size follows from
Waudby-Smith et al. [2023, Appendix B.2]. Although this interval does not yield exact coverage, empirically most
errors occur quite early during the experiment. Its applicability for reasonable sample sizes provides a noticeable gain
in power in comparison to the exact CSs. The only user-specified parameter is ρ, a positive scalar which specifies at
what intrinsic time the AsympCS should be tightest, with lower values corresponding to tightness at earlier times. We
set this parameter to 0.5 in our simulations; for more details, see Waudby-Smith et al. [2023]. We also note that the
theorem we make use of from Waudby-Smith et al. [2023] allows for time-varying conditional means. This suggests
that the results of Theorem 4 can be extended to time-varying treatment effects, which we leave for future work.

4 Empirical Results

We empirically compare our methods to Kato et al. [2021, Thm. 4]. We run two simulations with 1000 iterations each:
one with Bernoulli outcomes, and one with continuous, bounded outcomes. 5000 total samples are collected for each
iteration and intervals are constructed following each sample. We employ sequential sample-splitting on f̂ and ê to avoid
double-dipping and overfitting [Waudby-Smith et al., 2023]. Sequential sample-splitting permanently allocates each
sample to one of two data folds upon observation. We fit models for f̂ and ê separately on each fold, giving four models
in total. Predictions of f̂ and ê are produced from the model fit from the opposite fold. For an individual observation,
we estimate the conditional variance by setting v̂(a, x) = ê(a, x)− (f̂(a, x))2. When determining πA2IPW

t , f̂ and ê
are calculated by averaging predictions of the models from both splits, as this calculation occurs prior to observing and
assigning the data point to a split. In our simulations, we clip v̂ to be no less than 0.01 to avoid division by zero or
negative values. During the first 100 samples, f̂(1, Xt) = 1, f̂(0, Xt) = 0, and πt = 0.5. For policy truncation, we
set kt =

kt−1

0.999 where k1 = 2. Since the method of Kato et al. [2021] does not utilize time-varying bounds (at least in
its present form), using the worst-case bound for the propensities is a conservative way to guarantee time-uniform
validity of their CS. Using our proposed truncation scheme can then make these CSs extremely wide. To remedy this,
we observe that setting kt = 5 works well for Kato et al. [2021, Thm. 4]. Figure 2 shows results for these simulations
when a Random Forest is used for f̂ and ê, and are discussed in detail in the subsequent subsections. Appendix F
provides additional results using a k-Nearest Neighbors model.
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Figure 3: When πt is bounded in a narrower range, intervals produced by a Pr-PI CS are narrower at smaller t.

4.1 Bernoulli Outcomes

In Figure 2, plots (a) and (b) show aggregated results across 1000 iterations of a simulation with Bernoulli outcomes
where the ATE = 0.1. Full details of the data generating process can be found in Appendix F.3. Our methods provide
significantly narrower intervals due to leveraging tighter concentration inequalities, as well as using time-varying
truncation. Performance between our proposed CSs is inline with expectations from the CS literature. Specifically,
the AsympCS provides the narrowest interval, at the expense of higher miscoverage probabilities. Since we begin
constructing intervals at t = 50, we avoid experiencing severe interval miscoverage early in the experiment, which
prevents inflating the cumulative miscoverage rate. By doing so, we have empirically controlled the time-uniform error
probability at level α = 0.05. The Hedged-CS provides tighter intervals than the closed form Pr-PI. This is because the
Hedged-CS inverts a test martingale instead of a test supermartingale. Waudby-Smith and Ramdas [2023] note that this
removes a source of conservatism in generating CSs; however, this comes at a higher computational cost.

4.2 Bounded Outcomes

Plots (c) and (d) in Figure 2 show aggregated results across 1000 iterations of a simulation with a bounded, continuous
outcomes where the ATE = 0.1. The data generating process can be found in Appendix F.4. Results in this section
follow an identical pattern to the results in the Bernoulli experiment.

The data generating process yields data which is noticeably heteroskedastic. This implies that πAIPW will produce
values that are close to 0 and 1. However, when t is small, f̂ and ê can be noisy estimates of the true, unobservable f
and e. In this case, the truncation schedule plays an interesting balance of preventing noisy estimates of f and e from
inducing high variance in h̄t, while still allowing πt to converge to the optimal policy at an appreciable rate.

4.3 Effect of Truncation Schemes

The policy studied in this work is deemed optimal because it minimizes the asymptotic variance of an unbiased estimator,
the A2IPW estimator. The width of a CI based on the CLT has a direct dependence on the asymptotic variance of the
estimator. Naturally, minimizing the asymptotic variance leads to a sense of optimal inference, by minimizing the mean
squared error (MSE). In our proof of Theorem 1, we make use of kt to bound propensity scores away from 0 and 1. In
turn, we require that kt∥f̂t − f∥2 = oP(1) and kt∥πt − π∥2 = oP(1). The rate at which kt increases is limited by the
rates that ∥f̂t − f∥2

p−→ 0 and ∥πt − π∥2
p−→ 0. We also use truncation as a technical tool when considering bounds on

(λt)
T
t=1 in Theorem 2 and Theorem 3.

Our primary concern in this work lies in anytime-valid inference, and as such, greater attention towards the width of
the intervals produced by our CSs at fixed times is warranted. Since the propensity scores set by our policy appear
in the denominator of θ̂A2IPW

T , propensity scores near 0 or 1 can make ht arbitrarily large. The CSs with fixed-time
error control considered in this paper make use of the boundedness of ht. Particularly, the proofs make use of an
underlying test (super)martingale, which by construction is non-negative. For example, non-negativity is guaranteed

9
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by scaling λt(θ′) such that λt(θ′)(ht − θ′) > −1 for the Hedged-CS. Temporarily subscribing to the betting analogy
of Waudby-Smith and Ramdas [2023], an inherent trade-off arises where the analyst must balance the allowable size
of their bet, λt(θ′), with the bounds of the evidence presented by nature, (ht − θ′). The opportunity to observe large
evidence comes at the cost of placing small bets.

This effect is noted explicitly by Waudby-Smith et al. [2024, Remark 2]. In our setting, their intuition implies that faster
growth in kt will yield a smaller asymptotic variance at the cost of having wider intervals at small t. In this section,
we empirically show that a departure from our optimal policy through truncation will yield narrower intervals at finite
times.

We consider a simulation that follows a similar set up to that used in Section 4.2, where we modify kt to be constant.
Specifically we set kt = 1/πt,min and we vary πt,min ∈ {0.5, 0.45, 0.40, 0.30, 0.20, 0.10}. For an explicit data
generating process, see Appendix F.5. We note that πAIPW, can be close to 0 or 1, and as a result, we truncate the
optimal policy. Results of a single iteration are shown in Figure 3. More aggressive truncation (larger values of πt,min)
leads to narrower intervals for small t, however, once t is sufficiently large, less aggressive truncation (smaller values of
πt,min) provides narrower intervals. These results suggest that optimizing an adaptive policy for statistical inference at
finite times is an interesting direction for future work.

5 Conclusion

We have provided both confidence intervals (CIs) and confidence sequences (CSs) for the ATE in adaptive experiments
using the A2IPW estimator. The CI based on the CLT achieves the semiparametric lower bound of the asymptotic
variance under weaker assumptions than in previous work. The CSs with time-uniform error control surpass the
performance of previous work considerably. Our methods apply to arbitrary adaptive designs, but we also propose a
particular policy truncation scheme that preserves the asymptotic efficiency of the A2IPW estimator while improving
finite sample performance. We emphasize that the inference tools (the CIs and CSs) and our proposed policy are
individual contributions which do not require the use of one another.

This work provides a clear framework for using the A2IPW estimator in adaptive experiments. There are many
interesting directions for further research. As mentioned in Section 4.3, the truncation scheme used can have a
considerable impact on finite sample performance. In the context of bounded random variables, Shekhar and Ramdas
[2023] derive lower bounds on the width of a CS and show that betting-based confidence sets are nearly optimal. In our
adaptive experiment, the analyst sets the bounds of the observed random variable ht, and could explore minimizing the
lower bound of the width of our CSs using their results. Separately, our adaptive design focuses purely on efficient
statistical inference. In bandit experiments, an analyst may wish to minimize the regret, so that patient welfare is
maximized by treatment assignments. An interesting direction for future work is incorporating a notion of regret
in the treatment assignments, such as the scheme proposed by Simchi-Levi and Wang [2023]. Lastly, we have only
considering performing inference on the ATE. An interesting line of future work would be extending these results to
other causal estimands.
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A Proof of Theorem 1

A.1 High-Level Roadmap

Our proof follows a similar style to the proof of Kato et al. [2021]. We consider a martingale difference sequence
(MDS) and apply a central limit theorem to find the asymptotic distribution of the sample mean of the MDS. The main
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departure of our proof from their proof is the statement of the central limit theorem which is amenable to making
assumptions standard in causal inference.

To outline the proof, first we state our assumptions. Next we establish that {zt}Tt=1, where zt = ht − θ0, is a MDS.
We then state the MDS central limit theorem by Dvoretzky [1972] and show that {zt}Tt=1 satisfies the necessary
conditions. For the sake of brevity, we defer much of the tedious algebra to Appendix B. Since z̄T = T−1

∑T
t=1 zt =

T−1
∑T

t=1(ht − θ0) = θ̂A2IPW
T − θ0, this result allows us to characterize the asymptotic distribution of θ̂A2IPW

T .

A.2 Assumptions

• IID Contexts and Potential Outcomes : {Xt, Yt(0), Yt(1)}Tt=1 are independent and identically distributed.

• Convergence of Regression : kt∥f̂t − f∥2 = oP(1)

• Convergence of Policy : kt∥πt − π∥2 = oP(1).

• π Bounded Away from 0 : 1
π < C1 for all x ∈ X , and a ∈ {0, 1}, where C1 is a constant such that C1 <∞.

• Finite Conditional Variance : v(a, x) < C2 for all x ∈ X , and a ∈ {0, 1}, where C2 is a constant such that
C2 <∞.

• Finite Conditional Variance of Predictions : Var(f̂t−1(a,Xt) | Ωt−1) < C3 for some C3 <∞ for all x ∈ X ,
a ∈ {0, 1}, and t ∈ {1, 2, . . . }.

• Finite Conditional Variance of Policy : Var(πt | Ωt−1) < C4 for some C4 < ∞ for all x ∈ X , a ∈ {0, 1},
and t ∈ {1, 2, . . . }.

A.3 zt is a MDS

Kato et al. [2021] show the first necessary condition, E(zt | Ωt−1) = 0. For completeness we present this step here.

E
[
zt | Ωt−1

]
= E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = k]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

+ f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

∣∣∣∣∣ Ωt−1

]

= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

+ E

[
1[At = 1]

(
Yt − f̂t−1(1, Xt)

)
πt(1 | Xt,Ωt−1)

−
1[At = 0]

(
Yt − f̂t−1(0, Xt)

)
πt(0 | Xt,Ωt−1)

∣∣∣ Xt,Ωt−1

] ∣∣∣∣∣ Ωt−1

]
= E

[
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0 + f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

∣∣∣ Ωt−1

]
= 0.

The second required condition is E|zt| < ∞. By assumption E(z2t | Ωt−1) < M < ∞, where M is some constant.
This follows by uniformly bounded variance assumptions, since E(zt | Ωt−1) = 0. Since E(z2t ) = E(E(z2t | Ωt−1)), it
follows that E(z2t ) <∞, since the expectation of a uniformly bounded variable is bounded. This implies existence of
the first moment.

A.4 MDS Central Limit Theorem

Kato et al. [2021] used a MDS CLT which requires (condition b) a finite 2 + δ moment (δ > 0) for |zt|. Instead we use
the MDS CLT as stated by Dvoretzky [1972]. This statement contains a Lindeberg type condition where we must only
consider the second moment of |zt|. Since we do not assume boundedness, we opt for this Lindeberg-type statement.
For completeness, we present this theorem as it is stated in Zhang et al. [2021, Theorem 2].
Theorem 5 (MDS Central Limit Theorem). Let ZT (P)T≥1 be a sequence of random variables whose distributions are
defined by some P ∈ P and some nuisance component η. Moreover, let ZT (P)T≥1 be a martingale difference sequence
with respect to Ωt, meaning EP,η[Zt(P) | Ωt−1] = 0 for all t ≥ 1 and P ∈ P. If we assume that,

1. 1
T

∑T
t=1 EP,η

[
z2t | Ωt−1

] p−→ σ2 uniformly over P ∈ P, where σ2 is a constant 0 < σ2 <∞, and that,
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2. for any ϵ > 0, 1
T

∑T
t=1 EP,η

[
zt(P)21 [|zt(P)| > ϵ] | Ωt−1]

] p−→ 0 uniformly over P ∈ P,

then
√
T (z̄t)

d−→ N(0, σ2) uniformly over P ∈ P.

Dropping the requirement of the conditions holding uniformly over P ∈ P recovers the original result by Dvoretzky
[1972]. Below we show that these two conditions are satisfied. It follows that

√
T (z̄t) =

θ̂A2IPW − θ0√
T

d−→ N(0, σ2),

where

σ2 = E

[
1∑

a=0

v(a,Xt)

π(a | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]
.

A.4.1 Condition 1 (Conditional Variance)

We wish to show that

1

T

T∑
t=1

E
[
z2t | Ωt−1

] p−→ σ2 = E

[
1∑

a=0

v
(
a,Xt

)
π(a | Xt)

+
(
f(1, Xt)− f(0, Xt)− θ0

)2]
.

This is equivalent to showing
1

T

T∑
t=1

(
E
[
z2t | Ωt−1

]
− σ2

) p−→ 0.

To reduce notational clutter, let E(Xt | Ωt−1) be denoted as Et−1(Xt). Kato et al. [2021, Appendix B] show

E
[
z2t | Ωt−1

]
− σ2 = Et−1

[
(Yt(1)− f̂t−1(1, Xt))

2

πt(1 | Xt,Ωt−1)
+

(Yt(0)− f̂t−1(0, Xt))
2

πt(0 | Xt,Ωt−1)

+
(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
+ 2(f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt))(f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0)

]

− Et−1

[
(Yt(1)− f(1, Xt))

2

π(1 | Xt)
+

(Yt(0)− f(0, Xt))
2

π(0 | Xt)
+ (f(1, Xt)− f(0, Xt)− θ0)

2

]

=

1∑
a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (8)

+ 2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
(9)

+ Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
. (10)

We now consider terms (8), (9) and (10) individually. We make use of auxiliary lemmas and defer proofs to Appendix B.
In all of the lemmas below, we keep all assumptions from Appendix A.2.
Lemma 1 (Convergence of (8)). Under the assumptions of Theorem 1, we have

1∑
a=0

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 = oP(1).

Lemma 2 (Convergence of (9)). Under the assumptions of Theorem 1, we have

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).
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Lemma 3 (Convergence of (10)). Under the assumptions of Theorem 1, we have

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

Given Lemmas 1, 2, and 3, convergence in probability to zero for each term is established, and therefore so is the
convergence of the sum. Convergence of the conditional variance of the MDS is then established. So far we have shown
that Et−1

[
z2t
] p−→ σ2, but we wish to show that 1

T

∑T
t=1

(
Et−1

[
z2t
]
− σ2

) p−→ 0.

Let at = Et−1
[
z2t
]

and a = σ2. It follows that E[at] = E[|at|] < M <∞ for all t and some constant M , where the
equality holds since at > 0. This uniform boundedness implies that at is uniformly integrable. Since it is also true that
at

p−→ a, then by the LR convergence theorem, we have that at → a in L1, which implies E
[
|Et−1[z2t ]− σ2|

]
→ 0

[Loève, 1977].

Kato et al. [2021] show through Markov’s inequality that 1
T

∑T
t=1

(
Et−1

[
z2t
]
− σ2

) p−→ 0 if E
[
|Et−1[z2t ]− σ2|

]
→ 0.

So condition 1 is satisfied.

A.4.2 Condition 2 (Conditional Lindeberg)

We seek to show that for any δ > 0,

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.

Define bt = z2t 1(|zt| > δ
√
T ). Then bt = z2t w.p. P(|zt| > δ

√
T ) and 0 otherwise. By Chebyshev’s inequality,

P(|zt| > δ
√
T ) ≤ Var(zt)

δ2T
.

We note that Var(zt) = E(z2t ) <∞. This gives

lim
T→∞

Var(zt)
δ2T

= 0,

which implies that bt
p−→ 0, and bt

d−→ 0.

Note that |bt| ≤ z2t , and E(z2t ) <∞. By the dominated convergence theorem, limT→∞ E(bt) = E(limT→∞ bt) = 0.
Hence, we have

1

T

T∑
t=1

E
(
z2t 1

[
|zt| > δ

√
T
] ∣∣∣ Ωt−1

)
p−→ 0.

B Auxiliary Lemmas and Proofs

This appendix shows proofs for auxiliary lemmas used in Appendix A. The proofs involve tedious algebra and are
included in full detail for completeness.

B.1 Proof of Lemma 1

The term considered in Lemma 1, specifically term (8), involves a summation over the potential treatments, we choose
to focus on a single arbitrary treatment, a, and show that the term for an individual treatment converges to zero in
probability, and hence, so does the sum.

Et−1


(
Yt(a)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)


= Et−1


(
Yt(a)− f̂t−1(a,Xt) + f(a,Xt)− f(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (11)

14
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= Et−1


(
(Yt(a)− f(a,Xt)) +

(
f(a,Xt)− f̂t−1(a,Xt)

))2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

 (12)

= Et−1

[
(Yt(a)− f(a,Xt))

2

πt(a | Xt,Ωt−1)
+

2 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

(13)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

− (Yt(a)− f(a,Xt))
2

π(a | Xt)

]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(14)

+ 2Et−1

 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

 .
Above, (11) simultaneously adds and subtracts f(a,Xt), while (12) and (13) square the binomial term. In equation (14),
we factor (Yt(a)− f(a,Xt))

2 from the first and final terms, and utilize linearity of expectation. Continuing,

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]

+ 2Et−1

 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+

(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)


≤ Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(15)

+ 2Et−1

 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ Et−1

[
kt

(
f(a,Xt)− f̂t−1(a,Xt)

)2]

= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(16)

+ 2Et−1

 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

Inequality (15) follows since our policy is truncated within [ 1
kt
, 1− 1

kt
]. Equation (16) uses norm notation in the final

term so that we may reference our assumptions further in the proof. We now turn our focus to simplifying the middle
term of equation (16),

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]

+ 2Et−1

 (Yt(a)− f(a,Xt))
(
f(a,Xt)− f̂t−1(a,Xt)

)2
πt(a | Xt,Ωt−1)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(17)

+ 2

(
Et−1

[
Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2]
− Et−1

[
f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2])
+ kt

(
∥f̂(a)− f(a))∥2

)2
15
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= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]]
(18)

− Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]])
(19)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
,

where equation (17) expands the term of interest, and terms (18) and (19) apply the law of iterated expectation.
Conditioning on Xt, the only non-constant term in terms (18) and (19) is Yt(a), whose conditional expectation on Xt

is f(a,Xt). Therefore, the terms (18) and (19) reduce to 0. Simplifying, we have

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ 2

(
Et−1

[
E
[

Yt(a)

πt(a | Xt,Ωt−1)

(
f(a,Xt)− f̂(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]]

− Et−1

[
E
[

f(a,Xt)

πt(a | Xt,Ωt−1)

(
f̂(a,Xt)− f(a,Xt)

)2 ∣∣∣ Xt,Ωt−1

]])

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
(20)

+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
.

By assumption, kt∥f̂(a,Xt) − f(a,Xt)∥2 = oP(1). It follows then that kt
(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= oP(1).

Equation (20) can be further simplified to

Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ kt

(
∥f̂(a,Xt)− f(a,Xt))∥2

)2
= Et−1

[
(Yt(a)− f(a,Xt))

2

(
1

πt(a | Xt,Ωt−1)
− 1

π(a | Xt)

)]
+ oP(1)

= E
[
E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1) (21)

= E
[
π(a | Xt)− πt(a | Xt,Ωt−1)

π(a | Xt)πt(a | Xt,Ωt−1)
E
[
(Yt(a)− f(a,Xt))

2
∣∣∣ Xt,Ωt−1

] ∣∣∣ Ωt−1

]
+ oP(1) (22)

≤ C1C2ktEt−1 [π(a | Xt)− πt(a | Xt,Ωt−1)] + oP(1) = oP(1). (23)

Equation (21) follows from the law of total expectation. In equation (22) πt(a | Xt,Ωt−1) given Xt and Ωt−1 is
constant, and can be moved out of the inner expectation, away from (Yt(a)− f(a,Xt))

2. The bound (23) then utilizes
our policy truncation and our assumption that 1

π is uniformly bounded by C1. We are able to bound the denominator
with a constant, and move this constant outside of the expectation. Simultaneously, we note that the inner expectation is
by definition v(a, x). By assumption, v(a, x) is bounded uniformly by C2 <∞. The bound 23 reduces to oP(1), since
convergence in ℓ2 implies convergence in ℓ1, and the Lemma is proved.

B.2 Proof of Lemma 2

We look to prove that

2Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)]
= oP(1).
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For simplicity, we temporarily ignore the constant. Continuing,

Et−1
[(
f(1, Xt)− f(0, Xt)− f̂t−1(1, Xt) + f̂t−1(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
= Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
(24)

+ Et−1
[(
f(0, Xt)− f̂(0, Xt)

)
(f(1, Xt)− f(0, Xt)− θ0)

]
≤

√
Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

(25)

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
,

where equation (24) separates terms from different treatments and utilizes the linearity of expectation. Bound (25) then
follows from applying the Cauchy-Schwarz inequality. We conclude by showing√

Et−1

[(
f(1, Xt)− f̂t−1(1, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

+

√
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

= ∥f̂ − f∥2
√
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]
+ ∥f̂ − f∥2

√
Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

2
]

= oP(1).

Using norm notation and applying the assumption of convergence of regression in ℓ2-norm, convergence is established,
and the lemma is proved.

B.3 Proof of Lemma 3

We wish to prove that

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= oP(1).

We begin by expanding this term,

Et−1

[(
f̂t−1(1, Xt)− f̂t−1(0, Xt)− θ0

)2
− (f(1, Xt)− f(0, Xt)− θ0)

2

]
= Et−1

[((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
+ (f(1, Xt)− f(0, Xt)− θ0)

)
(26)

×
((
f̂(1, Xt)− f̂(0, Xt)− θ0

)
− (f(1, Xt)− f(0, Xt)− θ0)

)]

= Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)
(27)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

Equation (26) arises from the fact that a2 − b2 = (a+ b)(a− b) for real numbers a, b. Equation (27) then collapses θ0
to a single term. We now add and subtract f(1, Xt) and f(0, Xt) to the first term of equation (27), giving

Et−1

[(
(f̂(1, Xt) + f(1, Xt))− (f(0, Xt) + f̂(0, Xt))− 2θ0

)

17
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×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
(28)

×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
.

Equation (28) completes this step, and rearranges terms so that we may use the assumption of convergence of regression.

Next, distributing the second term in equation (28), along with the use of the linearity of expectation gives

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt)) + 2 (f(1, Xt)− f(0, Xt)− θ0)

)
×
((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]

= Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))]
. (29)

The first term in equation (29) converges in probability by assumption. For the second term, we distribute f(1, Xt)−
f(0, Xt)− θ0) yielding

Et−1

[(
(f̂(1, Xt)− f(1, Xt)) + (f(0, Xt)− f̂(0, Xt))

)2 ]
(30)

+ 2Et−1

[
(f(1, Xt)− f(0, Xt)− θ0)

((
f̂(1, Xt)− f(1, Xt)

)
+
(
f(0, Xt)− f̂(0, Xt)

))
= Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(31)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1). (32)

Applying the Cauchy-Schwarz inequality to each term in equation (32) gives

Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(1, Xt)− f̂(1, Xt)

)]
(33)

+ Et−1
[
(2 (f(1, Xt)− f(0, Xt)− θ0))

(
f(0, Xt)− f̂(0, Xt)

)]
+ oP(1)

≤

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(1, Xt)− f̂(1, Xt)

)2]
(34)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
Et−1

[(
f(0, Xt)− f̂(0, Xt)

)2]
+ oP(1)

=

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 (35)

+

√
Et−1

[
(2 (f(1, Xt)− f(0, Xt)− θ0))

2
]
∥f̂ − f∥2 + oP(1).

Equation (35) follows from the bound (34) by definition. Since ∥f̂ − f∥2 = oP(1), Equation (35) reduces to oP(1), and
the lemma is proved.

18
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C Proof of Theorem 2

C.1 Proof Outline

The proof adapts the proof of Waudby-Smith et al. [2024, Theorem 1] to our problem setting. The only departure in our
proof is that our parameter space and (λt)

T
t=1 are not strictly non-negative. We include this proof to demonstrate how

our bounds on λt originate as well as showing how our proof does not make use of the mirroring technique to form a
(1 − α)-upper CS. Although these adjustments are immediate and obvious to those familiar with the anytime-valid
inference literature, we include this proof for completeness. We begin by stating and proving a lemma that demonstrates
how to construct an arbitrary (1− α) Betting-CS for our problem setting. We then construct a Hedged-CS, where we
specify the capital process, the convex combination, relevant user-specified parameters and invoke our adapted lemma.

C.2 Constructing a (1− α) Betting-CS

Lemma 4. Assume we observe data following the data generating process of Section 2.1. Assume that Yt ∈ [0, 1]
∀t ∈ 1, . . . , T. Suppose that πt(1 | Xt,Ωt−1) ∈ [ 1

kt
, 1− 1

kt
] for all t ∈ 1, . . . , T, then

CBetting
T :=

⋂
t≤T

{
θ
′
∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) CS for θ0, where λt is a predictable sequence.

Proof. Note that πt(a | Xt,Ωt−1) ∈ [ 1
kt
, 1− 1

kt
] and consequently ht ∈ [−kt, kt]. Inspired by the truncation technique

used by [Waudby-Smith et al., 2024, Theorem 1], we show that MT (θ0) in Equation (36) is a test martingale,

MT (θ0) :=
T∏

t=1

(1 + λt(θ0)(ht − θ0)) . (36)

For MT (θ0) to be a test martingale, we must show M0(θ0) = 1, {MT (θ0)}Tt=1 is non-negative, and that
ET−1 (MT (θ0)) =MT−1(θ0).

MT (θ0) is non-negative if (1 + λt(θ0)(ht − θ0)) > 0 ∀t ∈ 1, . . . , T . Waudby-Smith and Ramdas [2023] state this
condition in their Proposition 3 as requiring λt(θ0) (ht − θ0) > −1. Consider the case when (ht − θ0) < 0. We have
that

1 + λt(θ0)(ht − θ0) ≥ 1 + λt(θ0)(−kt − θ0).

In this case, λt(θ0) ∈ (−∞, 1
kt+θ0

) will give

1 + λt(θ0)(−kt − θ0) > 1 +
−kt − θ0
kt + θ0

= 0.

Next consider when (ht− θ0) > 0, then setting λt(θ0) ∈
(

−1
kt+θ0

)
guarantees λt(θ0)(ht− θ0) > −1. Taking the union

of these sets gives λt(θ0) ∈
(

−1
kt−θ0

, 1
kt+θ0

)
, and we conclude that MT (θ0) is non-negative.

Next, we check the condition on the conditional expectation,

ET−1 (MT (θ0)) = ET−1 (MT−1(θ0)× (1 + λT (θ0)(hT − θ0))

=MT−1(θ0)(1 + λT (θ0)ET−1(hT − θ0)

=MT−1(θ0)(1 + λT (θ0)× 0) =MT−1(θ0).

MT (θ0) is therefore a test martingale. By Ville’s inequality for non-negative supermartingales,

P
(
∃T ∈ N+,MT (θ0) ≥

1

α

)
≤ α.

It follows that the set

CBetting
T :=

{
θ
′
∈ [−1, 1] :

T∏
t=1

(
1 + λt(θ

′
)(ht − θ

′
)
)
<

1

α

}
,

forms a (1− α) confidence set.
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C.3 Hedged-CS

Following suggested values from Waudby-Smith and Ramdas [2023], we set

λt =

√
2 log(2/α)

σ̂2
t−1t log(1 + t)

∧ c, where c = 0.5, (37)

θ̂t =
1
2 +

∑t−1
i=1 hi

t
,

σ̂2
t =

1
4 +

∑t
i=1(hi − θ̂)2

t
.

We define

K+
T (θ

′) :=
T∏

t=1

(1 + λt(θ
′)(ht − θ′)), K−

T (θ
′) :=

T∏
t=1

(1− λt(θ
′)(ht − θ′)),

MT (θ
′) := mK+

T (θ
′) + (1−m)K−

T (θ
′),

where m = 0.5 (in general, m ∈ [0, 1]). Letting λt(θ′) = λt as defined in Equation (37), and truncated to fall within(
−1

kt−θ′ ,
1

kt+θ′

)
, both K+

T (θ
′) and K−

T (θ
′) are test martingales when θ′ = θ0. It follows that MT (θ

′) is also a test
martingale when θ′ = θ0 [Waudby-Smith and Ramdas, 2023, Theorem 3]. By Lemma 4,

CHedged
T :=

⋂
t≤T

{
θ
′
∈ [−1, 1] : MT (θ

′) <
1

α

}
,

forms a valid (1− α)-CS. We now focus computing CHedged
T .

If λt does not depend on θ
′

(apart from truncating the domain), Waudby-Smith and Ramdas [2023] show that,
empirically, CHedged

T forms an interval at each time T . We can then search over a grid of possible values of θ
′ ∈ [−1, 1],

and set lower and upper bounds as

LHedged
T = sup

t∈{1,...,T}
inf
T

{
θ
′
∈ [−1, 1] : MT (θ

′) <
1

α

}
,

UHedged
T = inf

t∈{1,...,T}
sup
T

{
θ
′
∈ [−1, 1] : MT (θ

′) <
1

α

}
.

As a result, [LHedged
T , UHedged

T ] forms a (1− α)-CS for θ0.

D Proof of Theorem 3

Proof. Note that ξt − ξ̂t−1 > −1. Given this fact, Waudby-Smith et al. [2024, Lemma 1] show that the process

MT = exp

{
T∑

t=1

λt

(
ξt −

θ0
kt + 1

)
−

T∑
t=1

(
ξt − ξ̂t−1

)2
ψE(λt)

}
, (38)

is a test supermartingale. Using Ville’s inequality, they invertMt to form a (1−α)-lower CS. We define an (1−α)-Upper
CS by defining ξt = −ht

kt+1 , and apply a union bound, which gives the result.

E Proof of Theorem 4

Proof Outline (ht)
T
t=1 is recognized to be a sequence of random variables with conditional mean θ0 and conditional

variance σ2. This allows us to invoke Theorem 2.5 from Waudby-Smith et al. [2023]. In order to do so, we must verify
three assumptions.
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Assumption 1 (Cumulative variance diverges almost surely) This assumption is satisfied in Appendix A where we
establish that the average conditional variance of zt (which equals the average conditional variance of ht) does not
vanish. It follows that their sum diverges.

Assumption 2 (Lindeberg-type uniform integrability) We mush show that there exists some 0 < κ < 1 such that
∞∑
t=1

E
[
(ht − θ0)

2
1
(
(ht − θ0)

2 > V κ
t

)
| Ωt−1

]
V κ
t

<∞ almost surely,

where Vt =
∑t

i=1 σ
2
i .

As is noted in Waudby-Smith et al. [2023], this equation is satisfied if 1/K ≤ E |ht − θ0|q < K a.s. for all t ≥ 1 and
for some constant K > 0. Without loss of generality, assume q = 2 + δ. We have that

E|ht − θ0|q ≤ E(|ht|q) + E(|θ0|q).

Note that E(|ht|q) ∝ E(|Yt|q) <∞. Then pick K∗ = K + E(|ht|q) and the condition holds.

Assumption 3 (Consistent variance estimation) We must show that the estimator, σ̂2
t , of σ̃2

t satisfies
σ̂2
t

σ̃2
t

a.s.−−→ 1.

Our estimator is the sample average of the variances estimated thus far. We note that zt is a square-integrable MDS.
Hence, we utilize the Strong Law of Large Numbers for a MDS, and we can establish that the sample average of the
squared deviations converges almost surely to the variance of zt. We establish that σ̂2(zt) = σ̂2(ht) by showing

σ̂2(zt) =
1

T

T∑
t=1

(zt − z̄t)
2

=
1

T

T∑
t=1

(
ht − θ0 −

1

T

T∑
t=1

(ht − θ0)

)2

=
1

T

T∑
t=1

(
ht − θ0 + θ0 − h̄T

)2
= σ̂2(ht).

By the SLLN, σ̂2(ht) = σ̂2(zt)
a.s.−−→ Var(zt) = Var(ht).

F Implementation Details

F.1 Performance Metrics

We explicitly define “Cumulative Error Probability” and “Power”, the performance metrics shown in Figures 2, 4, and 5.
These are both functions of the sample size.

At time T , the Cumulative Error Probability (Error) is defined as
Error(T ) := P(∃t ∈ {50, . . . , T} s.t. θ0 ̸∈ [Lt, Ut]).

We can empirically estimate this probability over 1000 repetitions of our simulation. For each iteration, we construct
confidence sets at each time. We denote the confidence set at time T for iteration i as [Li,T , Ui,T ]. We define our
estimate as

Êrror(T ) :=
1

1000

1000∑
i=1

1[∃t ∈ {50, . . . , T} s.t. θ0 ̸∈ [Li,t, Ui,t]].

In Figure 2, we denote the null hypothesis as θH0
= 0. At time T , we denote the power as

Power(T ) := P(∃t ∈ {50, . . . , T} s.t. θH0
̸∈ [Lt, Ut]).

Our empirical estimate of this function is

P̂ower(T ) :=
1

1000

1000∑
i=1

1[∃t ∈ {50, . . . , T} s.t. θH0
̸∈ [Li,t, Ui,t]].
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Figure 4: Utilizing a kNN regressor for the protocol used in Figure 2. The policy used for Pr-PI is modified to be
truncated within [0.2, 0.8].

F.2 θ̂A2IPW T-Statistic

In Section 2.3, Theorem 1 gives an asymptotic distribution for the θ̂A2IPW estimator which depends on σ2. In practice,
we typically do not have access to σ2 and we must estimate this quantity, denoted as σ̂2. With σ̂2 p−→ σ2, we may invoke
Slutsky’s Theorem, and use σ̂2 in place of σ2. Similarly to Kato et al. [2021], we call this our t-statistic,

√
T (θ̂A2IPW − θ0)

σ̂2

d−→ N(0, 1).

In Assumption 3 of Appendix E, we show that our variance estimator converges almost surely, implying convergence in
probability. Our asymptotic CI is

CT := h̄t ± z1−α
2

σ̂2

√
T
,

where σ̂2 = 1
T

∑T
t=1

(
ht − h̄T

)2
.

F.3 Bernoulli Outcome Simulation

In Section 4.1 and Figure 2 plots (a) and (b), we simulate (Xt, At, Yt)
T=5000
t=1 , where

Xt ∼ N([03], I3),

βT = [−2,−3, 5] ,

πt =

( √
v̂t−1(1,Xt)√

v̂t−1(1,Xt) +
√
v̂t−1(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

pt = 0.9× logit (0.5 +Xtβ) + 0.1At,

Yt ∼ Bernoulli (p = pt) .

With the data generating process above, θ0 = 0.1. We ran two separate simulations, where one used k-Nearest
Neighbors Regressor (kNN) and the other used Random Forest Regressor (RF) for f̂ and ê. We employ sample-splitting
and cross-fitting in an effort to avoid over fitting. For the first 50 samples, we let πt(1 | Xt,Ωt− 1) = 0.5 while
sufficient samples are collected to give reliable regression estimates. For the regression estimates used in ht, we use
sample means conditioned on At until t = 50. We ran 1000 iterations using the DGP above, results for the simulation
when RF is used are shown in Figure 2. We provide results for the simulation using kNN in Figure 4.

22



Semiparametric Efficient Inference in Adaptive Experiments

Figure 5: Results for simulation described in Appendix F.4 using a k-Nearest Neighbor regressor.

Figure 6: Power curves for AsympCSs constructed using different values of ρ. Curves are based on 256 iterations of the
simulation setup described in Appendix F.3.

F.4 Bounded Continuous Outcomes Simulation

We now consider simulations with a continuous response, as described in Section 4.2 and shown in Figure 2, plots (c)
and (d). Data was simulated as

Xi ∼ Uniform(0, 1), for i ∈ {1, 2, 3},

πt =

( √
v̂t−1(1,Xt)√

v̂t−1(1,Xt) +
√
v̂t−1(0,Xt)

)
,

kt =
kt−1

.999
, k1 = 2 if method not Kato, else kt = 5,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

βT = [−0.04,−0.01, 0.05],

ϵ0 ∼ Uniform(−0.05, 0.05, )

Y0 = 0.4 +Xβ + ϵ0,

ϵ1 ∼ Uniform(−4.5Xβ, 4.5Xβ),

Y1 = 0.4 +Xβ + θ0 + ϵ1.

In our simulations we set θ0 = 0.1. Again, we use kNN and random forest (RF) regressors to estimate f̂ and ê.
Similarly, we employ sample-splitting and cross-fitting. For the first 50 samples, we again let πt(1 | Xt,Ωt− 1) = 0.5.
For the regression estimates used in ht, we use sample means conditioned on At until t = 50. We ran 1000 iterations
using the DGP above, results for the simulation when RF is used are shown in Figure 2. We provide results for the
simulation using kNN in Figure 5.

23



Semiparametric Efficient Inference in Adaptive Experiments

F.5 Effect of Truncation on Inference

Although the modifications made to the DGP in Appendix F.3 are only minor made to the simulation described in
Section 4.3 and shown in Figure 3, we provide an explicit DGP for completeness. We assume that we have oracle
access to v, allowing us to calculate πAIPW. We set kt to be a constant. The DGP is

Xt ∼ N([03], I3),

βT = [−2,−3, 5] ,

πt =

( √
v(1,Xt)√

v(1,Xt) +
√
v(0,Xt)

)
,

kt =
1

πt,min
,

At ∼ Bernoulli
((

πt ∨
1

kt

)
∧ (1− 1

kt
)

)
,

pt = 0.1× logit (0.5 +Xtβ) + 0.4At,

Yt ∼ Bernoulli (p = pt) .

F.6 Selecting ρ for an AsympCS

When constructing an AsympCS, the analyst must select a value for ρ. If the analyst wishes to minimize width of the
interval produced at a specific sample size, T , then the analyst can accomplish this by setting

ρ =

√
−2 logα+ log(−2 logα+ 1)

T
.

In practice, the analyst may not have prior knowledge of the effect size magnitude or may not know how long the
experiment could last. In this case, it may not be clear for which T ρ should be tuned to. In our simulations we begin
constructing CSs at a sample size of T = 50. For the sake of simplicity in presentation, we chose to set ρ = 0.5 across
all experiments. Setting ρ = 0.5 yields an AsympCS with tight intervals approximately at the start of inference. To
understand the effect of setting ρ = 0.5 on the performance of the AsympCS, we performed 256 iterations of the
Bernoulli outcome simulation described in Appendix F.3 while varying ρ. We found that setting ρ = 0.5 for this
scenario is a reasonable choice and the resulting AsympCS produces intervals with widths that allow for high power
early in the experiment. Figure 6 shows power curves of the AsympCSs constructed using different levels of ρ.
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