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ABSTRACT
Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric
approaches to modeling distributions of data. The specific assumption of log-concavity is motivated by
applications across economics, survival modeling, and reliability theory. However, there do not currently
exist valid tests for whether the underlying density of given data is log-concave. The recent universal
inference methodology provides a valid test. The universal test relies on maximum likelihood estimation
(MLE), and efficient methods already exist for finding the log-concave MLE. This yields the first test of log-
concavity that is provably valid in finite samples in any dimension, for which we also establish asymptotic
consistency results. Empirically,wefind that a randomprojections approach that converts thed-dimensional
testing problem into many one-dimensional problems can yield high power, leading to a simple procedure
that is statistically and computationally efficient.
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1. Introduction

Statisticians frequently use density estimation to understand the
underlying structure of their data. To perform nonparametric
density estimation on a sample, it is common for researchers
to incorporate shape constraints (Carroll, Delaigle, and Hall
2011; Koenker and Mizera 2018). Log-concavity is one popular
choice of shape constraint; a density f is called log-concave if
it has the form f = eg for some concave function g. This class
of densities encompasses many common families, such as the
normal, uniform (over a compact domain), exponential, logistic,
and extreme value densities (Bagnoli and Bergstrom 2005, Table
1). Furthermore, specifying that the density is log-concave poses
a middle ground between fully nonparametric density estima-
tion and use of a parametric density family. As noted in Cule,
Samworth, and Stewart (2010), log-concave density estimation
does not require the choice of a bandwidth, whereas kernel
density estimation in d dimensions requires a d × d bandwidth
matrix.

Log-concave densities havemultiple appealing properties; An
(1997) describes several. For example, log-concave densities are
unimodal, they have at most exponentially decaying tails (i.e.,
f (x) = O(exp(−c‖x‖)) for some c > 0), and all moments of
the density exist. Log-concave densities are also closed under
convolution, meaning that if X and Y are independent random
variables from log-concave densities, then the density ofX+Y is
log-concave as well. A unimodal density f is strongly unimodal
if the convolution of f with any unimodal density g is unimodal.
Proposition 2 of An (1997) states that a density f is log-concave
if and only if f is strongly unimodal.
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In addition, log-concave densities have applications in many
domains. Bagnoli and Bergstrom (2005) describe applications of
log-concavity across economics, reliability theory, and survival
modeling. (The latter two appear to use similar methods in the
different domains of engineering and medicine, respectively.)
Suppose a survival density function f is defined on (a, b) and has
a survival function (or reliability function) F̄(x) = ∫ b

x f (t)dt.
If f is log-concave, then its survival function is log-concave as
well. The failure rate associated with f is r(x) = f (x)/F̄(x) =
−F̄ ′(x)/F̄(x). Corollary 2 of Bagnoli and Bergstrom (2005)
states that if f is log-concave on (a, b), then the failure rate r(x)
is monotone increasing on (a, b). Proposition 12 of An (1997)
states that if a survival function F̄(x) is log-concave, then for
any pair of nonnegative numbers x1, x2, the survival function
satisfies F̄(x1 + x2) ≤ F̄(x1)F̄(x2). This property is called the
new-is-better-than-used property; it implies that the probability
that a new unit will survive for time x1 is greater than or equal
to the probability that at time x2, an existing unit will survive an
additional time x1.

Given the favorable properties of log-concave densities and
their applications across fields, it is important to be able to
test the log-concavity assumption. Previous researchers have
considered this question as well. Cule, Samworth, and Stewart
(2010) develop a permutation test based on simulating from
the log-concave MLE and computing the proportion of original
and simulated observations in spherical regions. Chen and Sam-
worth (2013) construct an approach similar to the permutation
test, using a test statistic based on covariance matrices. Hazelton
(2011) develops a kernel bandwidth test, where the test statistic

© 2024 American Statistical Association and Institute of Mathematical Statistics
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Figure 1. Rejection proportions for tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave. The permutation test from Cule, Samworth, and Stewart (2010) is valid
or approximately valid for d ≤ 3, but it is not valid for d ≥ 4. Our test that combines random projections and universal inference (Algorithm 3) is provably valid for all n and
d while having high power.

is the smallest kernel bandwidth that produces a log-concave
density. Carroll, Delaigle, and Hall (2011) construct a metric
for the necessary amount of modification to the weights of a
kernel density estimator to satisfy the shape constraint of log-
concavity, and they use the bootstrap for calibration. While
these approaches exhibit reasonable empirical performance in
some settings, none of the aforementioned papers have proofs
of validity (or asymptotic validity) for their proposed methods.
As one exception, An (1997) uses asymptotically normal test
statistics to test implications of log-concavity (e.g., increasing
hazard rate) in the univariate, nonnegative setting. A general
valid test for log-concavity has proved elusive.

As an example, Figure 1 shows the performance of the per-
mutation test of log-concavity from Cule, Samworth, and Stew-
art (2010) and a random projection variant of our universal
test. Section 3.1 explains the details of the permutation test, and
Algorithm 3 explains this universal test. Section 4 providesmore
extensive simulations. If φd represents the N(0, Id) density and
γ ∈ (0, 1), then f (x) = γφd(x)+(1−γ )φd(x−μ) is log-concave
only when ‖μ‖ ≤ 2. We simulate the permutation test in the
γ = 1/2 setting for 1 ≤ d ≤ 5 and n = 100, testing the null
hypothesis that the true underlying density f ∗ is log-concave.We
setμ = (μ1, 0, . . . , 0), so that ‖μ‖ = |μ1|.We use a significance
level of α = 0.10. Each point represents the proportion of
times we rejectH0 over 200 simulations. Figure 1 shows that the
permutation test is valid at d = 1 and d = 2 and approximately
valid at d = 3. Alternatively, at d = 4 and d = 5, this
test rejects H0 at proportions much higher than α, even when
the underlying density is log-concave (‖μ‖ ≤ 2). In contrast,
the universal test is valid in all dimensions. Furthermore, this
universal test has high power for reasonable ‖μ‖ even as we
increase d.

To develop a test for log-concavity with validity guarantees,
we consider the universal likelihood ratio test (LRT) intro-
duced in Wasserman, Ramdas, and Balakrishnan (2020). This
approach provides valid hypothesis tests in any setting in which
we can maximize (or upper bound) the null likelihood. Impor-
tantly, validity holds in finite samples and without regularity
conditions on the class of models. Thus, it holds even in high-
dimensional settings without assumptions.

SupposeFd is a (potentially nonparametric) class of densities
in d dimensions. The universal LRT allows us to test hypotheses
of the form H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd. In this
article, Fd will represent the class of all log-concave densities in
d dimensions.

Assumewe have n iid observationsY1, . . . ,Yn with some true
density f ∗. To implement the split universal LRT, we randomly
partition the indices from 1 to n, denoted as [n], into D0 and
D1. (Our simulations assume |D0| = |D1| = n/2, but any
split proportion is valid.) Using the data indexed by D1, we fit
any density f̂1 of our choice, such as a kernel density estimator.
The likelihood function evaluated on a density f over the data
indexed by D0 is denoted L0(f ) = ∏

i∈D0 f (Yi). Using the data
indexed by D0, we fit f̂0 = arg max

f∈Fd

L0(f ), which is the null

maximum likelihood estimator (MLE). The split LRT statistic is

Tn(f ) = L0(̂f1)/L0(f ).

The test rejects if Tn(̂f0) ≥ 1/α.

Theorem 1. (Wasserman, Ramdas, and Balakrishnan 2020)
Tn(̂f0) is an e-value, meaning that it has expectation at most one
under the null. Hence, 1/Tn(̂f0) is a valid p-value, and rejecting
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the null when Tn(̂f0) ≥ 1/α is a valid level-α test. That is, under
H0 : f ∗ ∈ Fd,

P(Tn(̂f0) ≥ 1/α) ≤ α.

Wasserman, Ramdas, and Balakrishnan (2020) prove Theo-
rem 1, but Appendix A.1 contains a proof for completeness. It
is also possible to invert this test, yielding a confidence set for
f ∗, but for nonparametric classes Fd, these are not in closed
form and are hard to compute numerically, so we do not pursue
this direction further. Nevertheless, as long as we are able to
construct f̂0 (or actually simply calculate or upper bound its like-
lihood), it is possible to perform the nonparametric hypothesis
test described in Theorem 1.

Prior to the universal LRT developed by Wasserman, Ram-
das, and Balakrishnan (2020), there was no hypothesis test for
H0 : f ∗ is log-concave versus H1 : f ∗ is not log-concave
with finite sample validity, or even asymptotic validity. Since it
is possible to compute the log-concave MLE on any sample of
size n ≥ d + 1, the universal LRT described above provides
a valid test as long as |D0| ≥ d + 1. The randomization in
the splitting above can be entirely removed—without affect-
ing the validity guarantee—at the expense of more computa-
tion. Wasserman, Ramdas, and Balakrishnan (2020) show that
one can repeatedly compute Tn(̂f0) under independent random
splits and average all the test statistics; since each has expectation
at most one under the null, so does their average. It follows that
the test based on averaging over multiple splits still has finite
sample validity.

Section 2 reviews critical work on the construction and
convergence of log-concave MLE densities. Section 3 describes
the permutation test from Cule, Samworth, and Stewart (2010)
and proposes several universal tests for log-concavity. The log-
concave MLE does suffer from a curse of dimensionality, both
computationally and statistically. Hence, our most important
contribution is a scalable method using random projections to
reduce the multivariate problem into many univariate testing
problems, where the log-concave MLE is easy to compute. (This
relies on the fact that if a density is log-concave then every
projection is also log-concave.) Section 4 compares these tests
through a simulation study. Section 5 explains a theoretical
result about the power of the universal LRT for tests of log-
concavity. All proofs and several additional simulations are
available in the appendices. Code to reproduce all analyses is
available at https://github.com/RobinMDunn/LogConcaveUniv.

2. Finding the Log-ConcaveMLE

Suppose we observe an iid sample X1, . . . ,Xn ∈ R
d from a

d-dimensional density f ∗, where n ≥ d + 1. Recall that Fd
is the class of log-concave densities in d dimensions. The log-
concave MLE is f̂n = arg max

f∈Fd

∑n
i=1 log{f (Xi)}. Theorem 1 of

Cule, Samworth, and Stewart (2010) states that with probability
1, f̂n exists and is unique. Importantly, this does not require
f ∗ ∈ Fd.

The construction of f̂n relies on the concept of a tent function
h̄y : Rd → R. For a given vector y = (y1, . . . , yn) ∈ R

n and
given the sample X1, . . . ,Xn, the tent function h̄y is the smallest

concave function that satisfies h̄y(Xi) ≥ yi for i = 1, . . . , n. Let
Cn be the convex hull of the observations X1, . . . ,Xn. Consider
the objective function

σ(y1, . . . , yn) = − 1
n

n∑
i=1

yi +
∫
Cn

exp{h̄y(x)}dx.

Theorem 2 of Cule, Samworth, and Stewart (2010) states that σ
is a convex function, and it has a unique minimum at the value
y∗ ∈ R

n that satisfies log(̂fn) = h̄y∗ .
Thus, to find the tent function that defines the log-concave

MLE,we need tominimizeσ over y ∈ R
n. σ is not differentiable,

but Shor’s algorithm (Shor 2012) uses a subgradient method to
optimize convex, non-differentiable functions. This method is
guaranteed to converge, but convergence can be slow. Shor’s r-
algorithm involves some computational speed-ups over Shor’s
algorithm, and Cule, Samworth, and Stewart (2010) use this
algorithm in their implementation. Shor’s r-algorithm is not
guaranteed to converge, but Cule, Samworth, and Stewart (2010)
state that they agree with Kappel and Kuntsevich (2000) that
the algorithm is “robust, efficient, and accurate.” The LogCon-
cDEAD package for log-concave density estimation in arbitrary
dimensions implements this method (Cule, Gramacy, and Sam-
worth 2009).

Alternatively, the logcondens package implements an
active set approach to solve for the log-concave MLE in one
dimension (Dümbgen and Rufibach 2011). This algorithm is
based on solving for a vector that satisfies a set of active con-
straints and then using the tent function structure to compute
the log-concave density associated with that vector. See Sec-
tion 3.2 of Dümbgen, Hüsler, and Rufibach (2007) for more
details.

Figure 2 shows the true f ∗ and log-concaveMLE (̂fn) densities
of several samples from two-component Gaussian mixtures.
The underlying density is f ∗(x) = 0.5φd(x) + 0.5φd(x − μ).
Again, this density is log-concave if and only if ‖μ‖ ≤ 2. (We
develop this example further in Section 4.) In the n = 5000
and d = 1 setting, we simulate samples X1, . . . ,Xn ∼ f ∗ and
compute the log-concaveMLE f̂n on each random sample. These
simulations use both the LogConcDEAD and logcondens
packages to fit f̂n. logcondens only works in one dimension
but is much faster than LogConcDEAD. The two packages
produce densities with similar appearances. Furthermore, we
include values of n−1 ∑n

i=1 log(f ∗(xi)) on the true density plots
and n−1 ∑n

i=1 log(̂fn(xi)) on the log-concave MLE plots. The
log-likelihood is approximately the same for the two density
estimation methods.

In the first two rows of Figure 2, the true density is log-
concave and in this case, we see that n−1 ∑n

i=1 log(̂fn(xi)) is
approximately equal to n−1 ∑n

i=1 log(f ∗(xi)). When ‖μ‖ = 4,
the underlying density is not log-concave. The log-concaveMLE
at ‖μ‖ = 4 and n = 5000 seems to have normal tails, but it is
nearly uniform in the middle.

Appendix B.1 contains additional plots of the true densities
and log-concaveMLE densities when n = 50 and d = 1, n = 50
and d = 2, and n = 500 and d = 2. In the smaller sample d =
1 setting, we still observe agreement between LogConcDEAD
and logcondens. When d = 2 and the true density is log-
concave, the log-concave MLE is closer to the true density at

https://github.com/RobinMDunn/LogConcaveUniv
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Figure 2. Densities from fitting log-concave MLE on n = 5000 observations. The true density is the Normal mixture f∗(x) = 0.5φ1(x) + 0.5φ1(x − μ). In all settings, the
LogConcDEAD and logcondens packages return similar results. In the ‖μ‖ = 0 and ‖μ‖ = 2 log-concave settings, the log-concave MLE is close to the true density.
In the ‖μ‖ = 4 non-log-concave setting, the log-concave densities appear to have normal tails and uniform centers.

larger n. Alternatively, when d = 2 and the true density is not
log-concave, the log-concave MLE density again appears to be
uniform in the center.

Cule, Samworth, and Stewart (2010) formalize the conver-
gence of f̂n. Let DKL(g‖f ) be the Kullback-Leibler (KL) diver-
gence of g from f . Define f LC = arg min

f∈Fd

DKL(f ∗‖f ) as the

log-concave projection of f ∗ onto the set of all log-concave
densities Fd (Samworth 2018; Barber and Samworth 2021). In
the simplest case, if f ∗ ∈ Fd, then f LC = f ∗. Regardless of
whether f ∗ ∈ Fd, suppose f ∗ satisfies the following conditions:∫
Rd ‖x‖f ∗(x)dx < ∞,

∫
Rd f ∗ log+(f ∗) < ∞ (where log+(x) =

max{log(x), 0}), and the support of f ∗ contains an open set. By
Lemma1ofCule and Samworth (2010), there exists some a0 > 0
and b0 ∈ R such that f LC(x) ≤ exp(−a0‖x‖ + b0) for any
x ∈ R

d. Theorem 3 of Cule, Samworth, and Stewart (2010) states
that for any a < a0,∫

Rd
exp(a‖x‖)|̂fn(x) − f LC(x)|dx → 0 almost surely.

This means that the integrated difference between f̂n and f LC
converges to 0 even when we multiply the tails by some expo-
nential weight. Furthermore, Theorem 3 of Cule, Samworth, and
Stewart (2010) states that if f LC is continuous, then

sup
x∈Rd

{
exp(a‖x‖)|̂fn(x) − f LC(x)|

}
→ 0 almost surely.

In the case where f ∗ ∈ Fd, it is possible to describe rates of
convergence of the log-concave MLE in terms of the Hellinger
distance. The squared Hellinger distance is

h2(f , g) =
∫
Rd

(f 1/2 − g1/2)2.

As stated in Chen, Mazumder, and Samworth (2021) and shown
in Kim and Samworth (2016) and Kur, Dagan, and Rakhlin

(2019), the rate of convergence of f̂n to f ∗ in squared Hellinger
distance is

sup
f ∗∈Fd

E[h2(̂fn − f ∗)] ≤ Kd ·
{
n−4/5 d = 1
n−2/(d+1) log(n) d ≥ 2

,

where Kd > 0 depends only on d.

3. Tests for Log-Concavity

We first describe a permutation test as developed in Cule,
Samworth, and Stewart (2010), and then we propose several
universal inference tests. The latter are guaranteed to control
the Type I error at level α (theoretically and empirically), while
the former is not always valid even in simulations, as already
demonstrated in Figure 1.

3.1. Permutation Test (Cule, Samworth, and Stewart 2010)

Cule, Samworth, and Stewart (2010) describe a permutation test
of the hypothesis H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd. First,
this test fits the log-concave MLE f̂n on Y = {Y1, . . . ,Yn}. Then
it draws another sample Y∗ = {Y∗

1 , . . . ,Y∗
n } from f̂n. Next, it

computes a test statistic based on the empirical distributions of
Y and Y∗. As the permutation step, the procedure repeatedly
“shuffles the stars” to permute the observations in Y ∪ Y∗
into two sets of size n, and it recomputes the test statistic on
each permuted sample. We reject H0 if the original test statistic
exceeds the 1 − α quantile of the test statistics computed from
the permuted samples. We explain the permutation test in more
detail in Appendix E.1.

Intuitively, this test assumes that if H0 is true, Y and Y∗ will
be similar. Then the original test statistic will not be particularly
large relative to the test statistics computed from the permuted
samples. Alternatively, ifH0 is false, Y andY∗ will be dissimilar,
and the converse will hold. This approach is not guaranteed to
control the Type I error level. Figure 1 shows cases both where
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Algorithm 1 For H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd, compute the subsampling test statistic or run the test.
Input: n iid d-dimensional observations Y1, . . . ,Yn from unknown density f ∗,

number of subsamples B, significance level α, any density estimation approach.
Output: The subsampling test statistic Tn or the test result.

1: for b = 1, 2, . . . ,B do
2: Randomly partition [n] intoD0,b andD1,b such that |D0,b| = |D1,b| = n/2.
3: Where L0,b(f ) = ∏

i∈D0,b
f (Yi), compute f̂0,b = arg max

f∈Fd

L0,b(f ).

4: Fit a density f̂1,b on {Yi : i ∈ D1,b}, using the input density estimation approach.
5: Compute Tn,b = L0,b(̂f1,b)/L0,b(̂f0,b).
6: if B−1 ∑b

j=1 Tn,j ≥ 1/α then return rejection of hypothesis.
7: return the subsampling test statistic Tn = B−1 ∑B

j=1 Tn,j.

the permutation test performs well and where the permutation
test’s false positive rate is much higher than α.

3.2. Universal Tests in d Dimensions

Alternatively, we can use universal approaches to test for log-
concavity. Theorem 1 justifies the universal approach for testing
whether f ∗ ∈ Fd. Recall that the universal LRT provably
controls the Type I error level in finite samples. To implement
the universal test on a single subsample, we partition [n] intoD0
and D1. Let f̂0 be the maximum likelihood log-concave density
estimate fit on {Yi : i ∈ D0}. Let f̂1 be any density estimate fit on
{Yi : i ∈ D1}. The universal test rejects H0 when

Tn =
∏
i∈D0

{̂f1(Yi)/̂f0(Yi)} ≥ 1/α.

The universal test fromTheorem 1 holds when Tn is replaced
with an average of test statistics, each computed over random
partitions of [n]. Algorithm 1 explains how to use subsampling
to test H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd. The jth random
partition of [n] produces a test statistic Tn,j. The subsampling
approach rejects H0 when B−1 ∑B

j=1 Tn,j ≥ 1/α. Note that
each test statistic Tn,j is nonnegative. In cases where we have
sufficient evidence against H0, it may be possible to reject H0
at some iteration b < B. That is, for any b such that 1 ≤
b < B,

∑B
j=b+1 Tn,j ≥ 0. If there is a value of b < B such

that B−1 ∑b
j=1 Tn,j ≥ 1/α, then it is guaranteed that Tn =

B−1 ∑B
j=1 Tn,j ≥ 1/α. Algorithms 1–3 incorporate this fact by

rejecting early if we have sufficient evidence against H0.
Both logcondens (d = 1) and LogConcDEAD (d ≥ 1)

compute the log-concaveMLE f̂0. The choice of f̂1, which can be
any density, is flexible, and we explore several options.
Full Oracle The full oracle approach uses the true density f ∗
in the numerator. That is, in Algorithm 1, the input density
estimation approach is to set f̂1,b = f ∗. This method is a helpful
theoretical comparison, since it avoids the depletion in power
that occurs when f̂1,b does not approximate f ∗ well. We would
expect the power of this approach to exceed the power of any
approach that estimates a numerator density on {Yi : i ∈ D1,b}.
PartialOracleThe partial oracle approach uses a d-dimensional
parametric MLE density estimate in the numerator. Suppose we
know (or we guess) that the true density is parameterized by
some unknown real-valued vector θ∗ ∈ R

p such that f ∗ = fθ∗ .

In Algorithm 1, the input density estimation approach is to set
f̂1,b = fθ̂1,b , where θ̂1,b is the MLE of θ over {Yi : i ∈ D1,b}. If
the true density is from the parametric family (fθ : θ ∈ R

p), we
would expect this method to have good power relative to other
density estimation methods.
Fully Nonparametric The fully nonparametric method uses a
d-dimensional kernel density estimate (KDE) in the numerator.
In Algorithm 1, the input density estimation approach is to set
f̂1,b to the kernel density estimate computed on D1,b. Kernel
density estimation involves the choice of a bandwidth. The ks
package (Duong 2021) in R can fit multidimensional KDEs and
has several bandwidth computation procedures. These options
include a plug-in bandwidth (Wand and Jones 1994; Duong
and Hazelton 2003; Chacón and Duong 2010), a least squares
cross-validated bandwidth (Rudemo 1982; Bowman 1984), and
a smoothed cross-validation bandwidth (Jones, Marron, and
Park 1991; Duong andHazelton 2005). In the parametric density
case, we would expect the fully nonparametric method to have
lower power than the full oracle method and the partial oracle
method. If we do not want to make assumptions about the true
density, this may be a good choice.

3.3. Universal Tests with Dimension Reduction

Suppose we write each random variable Y ∈ R
d as Y =

(Y(1), . . . ,Y(d)). As noted in An (1997), if the density of Y is
log-concave, then the marginal densities of Y(1), . . . ,Y(d) are all
log-concave. In the converse direction, if the marginal densities
of Y(1), . . . ,Y(d) are all log-concave and Y(1), . . . ,Y(d) are all
independent, then the density of Y is log-concave. Proposition
1 of Cule, Samworth, and Stewart (2010) uses a result from
Prékopa (1973) to deduce a more general result. We restate
Proposition 1(a) in Theorem 2.

Theorem 2. (Proposition 1(a) of Cule, Samworth, and Stewart
2010) Suppose Y ∈ R

d is a random variable from a distribution
having density f ∗ with respect to Lebesgue measure. Let V be a
subspace of Rd, and denote the orthogonal projection of y onto
V as PV(y). If f ∗ is log-concave, then the marginal density of
PV(Y) is log-concave and the conditional density f ∗Y|PV (Y)(· | t)
of Y given PV(Y) = t is log-concave for each t.

When considering how to test for log-concavity, An (1997)
notes that univariate tests for log-concavity could be used in
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Algorithm 2 For H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd, compute the axis-aligned projection test statistics or run the test.
Input: n iid d-dimensional observations Y1, . . . ,Yn from unknown density f ∗,

number of subsamples B, significance level α.
Output: d test statistics T(k)

n , k = 1, . . . , d, or the test result.
1: for k = 1, 2, . . . , d do
2: for b = 1, 2, . . . ,B do
3: Randomly partition [n] intoD0,b andD1,b such that |D0,b| = |D1,b| = n/2.
4: Estimate a one-dimensional density f̂1,b,k on {Y(k)

i : i ∈ D1,b}.
5: Estimate the log-concave MLE f̂0,b,k on {Y(k)

i : i ∈ D0,b}.
6: if B−1 ∑b

j=1
∏

i∈D0,j {̂f1,j,k(Y(k)
i )/̂f0,j,k(Y(k)

i )} ≥ d/α then stop, reject null.

7: Compute the test statistic T(k)
n = B−1 ∑B

b=1
∏

i∈D0,b
{̂f1,b,k(Y(k)

i )/̂f0,b,k(Y(k)
i )}

8: return the test statistics T(k)
n , k = 1, . . . , d.

the multivariate setting. For our purposes, we use Theorem 2’s
implication that if f ∗ is log-concave, then the one-dimensional
projections of f ∗ are also log-concave.We develop new universal
tests on these one-dimensional projections.

To reduce the data to one dimension, we take one of two
approaches.

3.3.1. Dimension Reduction Approach 1: Axis-aligned
Projections

We can represent any d-dimensional observation Yi as Yi =
(Y(1)

i ,Y(2)
i , . . . ,Y(d)

i ). Algorithm 2 describes an approach that
computes a test statistic for each of the d dimensions.

We reject H0 : f ∗ ∈ Fd if at least one of the d test statistics
T(1)
n , . . . ,T(d)

n exceeds d/α. Instead of checking this condition at
the very end of the algorithm, we check this along the way, and
we stop early to save computation if this condition is satisfied
(line 6). This rejection rule has valid Type I error control because
under H0,

P({T(1)
n ≥ d/α} ∪ {T(2)

n ≥ d/α} ∪ · · · ∪ {T(d)
n ≥ d/α})

≤
d∑

k=1
P(T(k)

n ≥ d/α) ≤ d(α/d) = α.

If we do not simply want an accept-reject decision but would
instead like a real-valued measure of evidence, then we can
note that pn := dmink∈[d] 1/T(k)

n is a valid p-value. Indeed
the above equation can be rewritten as the statement P(pn ≤
α) ≤ α, meaning that under the null, the distribution of pn is
stochastically larger than uniform.

To run the test, we must fit some one-dimensional density
f̂1,b,k on {Y(k)

i : i ∈ D1,b}. We consider two density estimation
methods; the same applies to the next subsection. Thus, for the
universal LRTs with dimension reduction, we consider four total
combinations of two dimension reduction approaches and two
density estimation methods.
Density Estimation Method 1: Partial Oracle This approach
uses parametric knowledge about the true density. The numer-
ator f̂1,b,k is the parametric MLE fit onD1,b.
Density Estimation Method 2: Fully Nonparametric This
approach does not use any prior knowledge about the true den-
sity. Instead, we use kernel density estimation (e.g., ks package
with plug-in bandwidth) to fit f̂1,b,k.

3.3.2. Dimension Reduction Approach 2: Random
Projections

We can also construct one-dimensional densities by projecting
the data onto a vector drawn uniformly from the unit sphere.
Algorithm 3 shows how to compute the random projection test
statistic Tn. As discussed in Section 3.2, Theorem 1 justifies the
validity of this approach. In short, each individual projection test
statistic Tn,j is an e-value, meaning that it has expectation of at
most one under the null. Thus the average of Tn,j values is also
an e-value. Since each Tn,j is nonnegative, if there is some k <

nproj such that (1/nproj)
∑k

j=1 Tn,j ≥ 1/α, then we can rejectH0
without computing all nproj test statistics.

We expect random projections (with averaging) to work
better when the deviations from log-concavity are “dense,”
meaning there is a small amount of evidence to be found
scattered in different directions. In contrast, the axis-aligned
projections (with Bonferroni) presented earlier are expected
to work better when there is a strong signal along one or a
few dimensions, with most dimensions carrying no evidence
(meaning that the density is indeed log-concave along most
axes).

4. Example: Testing Log-Concavity of Normal
Mixture

We test the permutation approach and the universal approaches
on a normal mixture distribution, which is log-concave only at
certain parameter values. Naturally, when testing or fitting log-
concave distributions in practice, onewould eschew all paramet-
ric assumptions, so the restriction to normal mixtures is simply
for a nice simulation example. See Appendix D for another such
example over Beta densities.

Let φd be the N(0, Id) density. Cule, Samworth, and Stewart
(2010) note a result that we state in Fact 1.

Fact 1. For γ ∈ (0, 1), the normal location mixture f (x) =
γφd(x) + (1− γ )φd(x− μ) is log-concave only when ‖μ‖ ≤ 2.

Cule, Samworth, and Stewart (2010) use the permutation test
to test H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd in this setting. We
explore the power and validity of both the permutation and the
universal tests over γ = 0.5, varying ‖μ‖, and dimensions d ∈
{1, 2, 3, 4}.
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Algorithm 3 For H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd, compute the random projection test statistic or run the test.
Input: n iid d-dimensional observations Y1, . . . ,Yn from unknown density f ∗,

number of subsamples B, significance level α, number of random projections nproj.
Output: The random projection test statistic Tn or the test result.

1: for k = 1, 2, . . . , nproj do
2: Draw a vector V uniformly from the d-dimensional unit sphere. To obtain V ,

draw X ∼ N(0, Id) and set V = X/‖X‖.
3: Project each Y observation onto V . The projection of Yi is PV(Yi) = YT

i V .
4: for b = 1, 2, . . . ,B do
5: Randomly partition [n] intoD0,b andD1,b such that |D0,b| = |D1,b| = n/2.
6: Estimate a one-dimensional density f̂1,b,k on {PV(Yi) : i ∈ D1,b}.
7: Estimate the log-concave MLE f̂0,b,k on {PV(Yi) : i ∈ D0,b}.
8: Compute the test statistic Tn,k = B−1 ∑B

b=1
∏

i∈D0,b
{̂f1,b,k(PV(Yi))/̂f0,b,k(PV(Yi))}.

9: if n−1
proj

∑k
j=1 Tn,j ≥ 1/α then stop, reject null.

10: return the random projection test statistic Tn = n−1
proj

∑nproj
j=1 Tn,j.

Figure 3. Rejection proportions for tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave. When d = 1, the permutation test and the full oracle universal test
have similar power. The full oracle universal approach remains valid in higher dimensions, but it has low power for moderate ‖μ‖when d ≥ 3.

4.1. Full Oracle (in d Dimensions) has Inadequate Power

We compare the permutation test from Section 3.1 to the full
oracle universal test, which uses the true density in the numer-
ator, from Section 3.2. Figure 1 showed that the permutation
test is not valid in this setting for d ≥ 4, n = 100, and
B = 99. In Appendix B.2, we show that the permutation
test’s rejection proportion is similar if we increase B to B ∈
{100, 200, 300, 400, 500}. In addition, we show that if we increase
n to 250, the rejection proportion is still much higher than 0.10
for ‖μ‖ ≤ 2 at d = 4 and d = 5. In the same appendix,
we also show that the discrete nature of the test statistic is
not the reason for the test’s conservativeness (e.g., d = 1) or
anticonservativeness (e.g., d = 5).

To compare the permutation test to the full oracle universal
test, we again set μ = (μ1, 0, . . . , 0). Figure 3 shows the
power for d ∈ {1, 2, 3, 4} on n = 100 observations. For the
universal test, we subsample B = 100 times. Each point is
the rejection proportion over 200 simulations. For some ‖μ‖
values in the d = 1 case, the full oracle test has higher power
than the permutation test. For most (d, ‖μ‖) combinations,
though, the full oracle test has lower power than the permu-
tation test. Unlike the permutation test, though, the univer-
sal test is provably valid for all d. In Figure 3, we see that
as d increases, we need larger ‖μ‖ for the universal test to
have power. More specifically, ‖μ‖ needs to grow exponentially
with d to maintain a certain level of power. (See Figure 14 in
Appendix B.3.)
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In Appendix E.2, we briefly discuss the trace test from Sec-
tion 3 of Chen and Samworth (2013) as an alternative to the
permutation test. Similar to the permutation test, simulations
suggest that the trace test is valid in the d = 2 setting, but
it does not control Type I error in the general d-dimensional
setting.

4.2. Superior Performance of Dimension Reduction
Approaches

We have seen that the full oracle universal LRT requires ‖μ‖ to
grow exponentially to maintain power as d increases.We turn to
the dimension reduction universal LRT approaches, and we find
that they produce higher power for smaller ‖μ‖ values.

We implement all four combinations of the two dimen-
sion reduction approaches (axis-aligned and random projec-
tions) and two density estimation methods (partial oracle and
fully nonparametric). We compare them to three d-dimensional
approaches: the permutation test, the full oracle test, and the
partial oracle test. The full oracle d-dimensional approach
uses the split LRT with the true density in the numerator
and the d-dimensional log-concave MLE in the denominator.
The partial oracle approaches use the split LRT with a two
component Gaussian mixture in the numerator and the log-
concave MLE in the denominator. We fit the Gaussian mixture
using the EM algorithm, as implemented in the mclust pack-
age (Scrucca et al. 2016). The fully nonparametric approaches
use a kernel density estimate in the numerator and the log-
concave MLE in the denominator. We fit the kernel den-
sity estimate using the plug-in bandwidth in the ks package
(Duong 2021).

Figures 4 and 5 compare the four dimension reduction
approaches and the d-dimensional approaches. The six universal
approaches subsample at B = 100. The random projection
approaches set nproj = 100. The permutation test uses B = 99
permutations to determine the significance level of the original
test statistic. Both figures use the normal locationmodel f ∗(x) =
0.5φd(x) + 0.5φd(x − μ) as the underlying model. However,
Figure 4 uses μ = −(‖μ‖, 0, . . . , 0), while Figure 5 uses μ =
−(‖μ‖d−1/2, ‖μ‖d−1/2, . . . , ‖μ‖d−1/2). The axis-aligned pro-
jection method has higher power in the first setting, but the
othermethods do not have differences in power between the two
settings.

Figures 4(a) and 5(a) compare all seven methods. There are
several key takeaways. The universal approaches that fit one-
dimensional densities (axis-aligned projections and random
projections) have higher power than the universal approaches
that fit d-dimensional densities. (When d = 1, the “Partial
oracle, axis-aligned projections,” “Partial oracle, d-dim,” and
“Partial oracle, random projections” approaches are the same,
except that the final method uses Bnproj subsamples rather than
B subsamples.) As intuition for this behavior, even one pro-
jection with particularly strong evidence against log-concavity
may provide sufficient evidence to reject log-concavity. See
Appendix C for more discussion. The permutation test is not
always valid, especially for d ≥ 4.

To compare the four universal approaches that fit one-
dimensional densities, we consider Figures 4(b) and 5(b), which

zoom in on a smaller range of ‖μ‖ values for those fourmethods.
In both Figures 4(b) and 5(b), for a given dimension reduc-
tion approach (axis-aligned projections or random projections),
the partial oracle approach has slightly higher power than the
fully nonparametric approach. For a given density estimation
approach, the dimension reduction approach with higher power
changes based on the setting. When μ = −(‖μ‖, 0, . . . , 0)
(Figure 4(b)), the axis-aligned projection approach has higher
power than the random projections approach. This makes sense
because a single dimension contains all of the signal. When
μ = −(‖μ‖d−1/2, ‖μ‖d−1/2, . . . , ‖μ‖d−1/2) (Figure 5(b)),
the random projections approach has higher power than the
axis-aligned projection approach. This makes sense because all
directions have some evidence againstH0, and there exist linear
combinations of the coordinates that have higher power than any
individual axis-aligned dimension.

4.3. Time Benchmarking

Table 1 displays the average run times of the seven methods
that we consider. Each cell corresponds to an average (in sec-
onds) over 10 simulations at (‖μ‖ = 0, ‖μ‖ = 5, ‖μ‖ =
10). Except for the restriction on ‖μ‖, these simulations use
the same parameters as Figure 4. We arrange the methods in
rough order from longest to shortest run times in d = 1.
The random projection methods have some of the longest run
times at ‖μ‖ = 0. If the random projection methods do not
have sufficient evidence to reject H0 early, they will construct
Bnproj test statistics. Each of those Bnproj test statistics requires
fitting a one-dimensional log-concave MLE and estimating a
partial oracle or fully nonparametric numerator density. The
permutation test is faster than the random projection tests in the
‖μ‖ = 0 setting, but it does not stop early for larger ‖μ‖. The
axis projection and d-dimensional universal approaches have
similar run times for d ≤ 2. (In fact, for d = 1 the partial
oracle axis projection and partial oracle d-dimensional methods
are the same.) The axis projectionmethods compute amaximum
of Bd test statistics, and the d-dimensional methods compute a
maximum of B test statistics. Since the d-dimensional universal
approaches repeatedly fit d-dimensional log-concave densities,
they are the most computationally expensive approaches for
large d.

4.4. Counterpoint: Non-Log-Concave Density with
Log-ConcaveMarginals

In the previous normal locationmixture example, the projection
methods have power because the projection distributions are not
all log-concave. While Theorem 2 states that log-concavity of a
density implies log-concavity of the lower dimensional projec-
tions, the converse is not guaranteed to hold. As an example,
suppose f ∗ : R2 → R is the normal mixture density given by
f ∗(x) = (2 · 2π)−1(exp(−‖x‖2/2) + σ−2 exp(−‖x‖2/2σ 2)),
where σ = √

3. This density is not log-concave, but all of its one-
dimensional projections are log-concave. (See Appendix A.2.)
Figure 6 shows power results from simulations of several full-
dimensional and projection approaches to test H0 : f ∗ ∈ Fd
versus H1 : f ∗ /∈ Fd across varying n. The d-dimensional
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Figure 4. Power of tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave. μ vector for second component is μ = −(‖μ‖, 0, . . . , 0). (a) The projection-based
universal tests decrease the gap in power between the permutation test and the d-dimensional universal tests for d ≥ 2. The power of the projection tests only exhibits a
moderate curse of dimensionality. (b) Partial oracle numerators have higher power than fully nonparametric numerators. Since all signal againstH0 is in the first component
ofμ, the axis-aligned projection tests have higher power than the random projection tests within each choice of numerator.

approaches have some power to detectH1, but even at n = 1600
the estimated power is only about 0.13. The projection methods
do not have power since all projections are log-concave. Hence,
the projection methods will not always have higher power than
the d-dimensional approaches, but in this example even the d-
dimensional approaches do not have high power. If one is not
sure whether the projected or full-dimensional test will have
higher power, one can simply run both, average the resulting
test statistics, and threshold the average at 1/α. Since the average
of e-values is an e-value, such a test is still valid, and the test is
consistent if either of the original tests is consistent.

5. Theoretical Power of Log-Concave Universal Tests

Our simulations have shown that the universal LRTs can have
high power to test H0 : f ∗ ∈ Fd versus H1 : f ∗ /∈ Fd. We
complement this with a proof of the consistency of this test. For
the rest of this section, think of f ∗ /∈ Fd.

First, we review and introduce some notation. Let f̂1,n be an
estimate of f ∗, fit on D1,n. Let f̂0,n be the log-concave MLE of
f ∗ fit on D0,n, that is, f̂0,n = arg max

f∈Fd

∑
i∈D0,n log(f (Yi)). The

universal test statistic is

Tn =
∏

i∈D0,n

f̂1,n(Yi)

f̂0,n(Yi)
, (1)

and we reject H0 if Tn ≥ 1/α.
Let f LC denote the log-concave projection of f ∗, that is, f LC =

arg min
f∈Fd

DKL(f ∗‖f ), where for densities p, q,DKL(p‖q) is the KL
divergence DKL(p‖q) := ∫

p(x) log(p(x)/q(x)) dx. We further
define theHellinger divergence h(p, q) := ‖√p/2−√

q/2‖2. h is
well-defined for nonnegative functions (and not only densities)
and is a metric on such functions.

Finally, we define some set notation: supp(f ∗) := {x :
f ∗(x) > 0} denotes the support of the measure induced by f ∗,
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Figure 5. Power of tests of H0 : f∗ is log-concave versus H1 : f∗ is not log-concave.μ vector for second component isμ = −(‖μ‖d−1/2, ‖μ‖d−1/2, . . . , ‖μ‖d−1/2). (a)
In this second choice ofμ structure, the projection-based universal tests also decrease the gap in power between the permutation test and the d-dimensional universal tests
for d ≥ 2. The power of the projection tests only exhibits a moderate curse of dimensionality. (b) Since the signal against H0 is equally distributed across the components
ofμ, the random projection tests have higher power than the axis-aligned projection tests.

and for a measurable set S ⊂ R
d, int(S) and ∂S, respectively,

denote its topological interior and boundary.

5.1. Assumptions

We reiterate that the validity of the universal LRT only requires
the assumption of iid data. However, for the universal LRT to
be powerful (when f ∗ /∈ Fd), we need a few relatively mild
conditions.

Assumption 1. (Regularity of f ∗) Let P∗(dx) := f ∗(x)dx.
We assume that if X ∼ f ∗, then E[‖X‖] < ∞,
E[max(log f ∗(X), 0)] < ∞, int(supp(f ∗)) �= ∅, and that for
every hyperplane H, P∗(H) < 1.

Assumption 1 enforces standard conditions imposed in the
log-concave estimation literature (Cule and Samworth 2010). In
particular, the finiteness of E[‖X‖] and E[max(log f ∗, 0)] yield

the existence of the log-concave projection f LC (defined earlier),
and the remaining conditions impose weak regularity properties
that ensure convergence of f̂0,n to f LC.

For power, we fundamentally need our estimate f̂1,n to
be close enough to the true (non-log-concave, under the
alternative) distribution f ∗, relative to Fd. An assumption
of KL-consistency, that is, assuming DKL(f ∗‖̂f1,n) → 0
as n → ∞, would certainly suffice. The following con-
dition is weaker, though, and it only requires DKL(f ∗‖̂f1,n)
to get smaller than a critical Hellinger distance of f ∗ from
log-concavity.

Assumption 2. (Estimability of f ∗) We assume that f̂1,n is a good
estimator of f ∗, in the sense that if we use n/2 iid draws from f ∗
to construct f̂1,n, then for all θ > 0,

lim
n→∞P

(
DKL(f ∗‖̂f1,n)
h2(f ∗, f LC)

<
1
200

,
∫

f ∗(x) log2(f ∗(x)/̂f1,n(x)) dx < θn

)
= 1.
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Table 1. Average run time (in seconds) of log-concave tests at (‖μ‖ = 0, ‖μ‖ = 5, ‖μ‖ = 10), using the same parameters as Figure 4.

Method d = 1 d = 2 d = 3 d = 4

Partial oracle, random projections (150, 50, 0.94) (160, 110, 1.7) (150, 140, 3.2) (160, 140, 3.7)
Fully NP, random projections (120, 71, 0.67) (110, 100, 1.3) (120, 110, 2.6) (120, 120, 4.2)
Permutation test (51, 50, 51) (52, 52, 52) (54, 54, 53) (61, 62, 62)
Partial oracle, axis projections (8, 3.6, 0.1) (16, 5.7, 0.19) (24, 12, 0.26) (32, 25, 0.34)
Fully NP, axis projections (7.6, 5.8, 0.098) (15, 11, 0.17) (23, 19, 0.25) (30, 23, 0.33)
Partial oracle, d-dim (6.6, 3.9, 0.093) (21, 22, 0.68) (71, 74, 75) (300, 330, 350)
Full oracle, d-dim (6.1, 1.2, 0.073) (20, 21, 0.3) (70, 72, 74) (300, 340, 340)

NOTE: The universal methods run faster when there is more evidence againstH0, which allows for early rejection. It is faster to compute log-concaveMLEs in one dimension
(e.g., projection methods) than in general d dimensions.

Figure 6. Power of the universal test for log-concavity in a setting where the two-dimensional density is not log-concave but all one-dimensional projections are log-
concave. The estimated power is the rejection proportion over 200 simulations at α = 0.10 for a given value of n. Values of rejection proportions are jittered by at most
0.005 for plotting. Full-dimensional approaches have power above α at n ∈ {1400, 1600}. Projection approaches never reject log-concavity.

Assumption 2 is satisfied if f̂1,n estimates f ∗ in a KL divergence
sense better than f LC approximates f ∗ in a Hellinger sense and
if the variance of the log-ratio log(f ∗/̂f1,n) does not grow too
fast. Estimation in KL divergence is largely driven by the tail
behavior of f ∗; the f̂1,n estimation procedure needs to ensure
that f̂1,n does not underestimate the tails of f ∗. In many settings,
we will have DKL(f ∗‖̂f1,n) → 0, thus satisfying the assumption.
However, we do not requireDKL(f ∗‖̂f1,n) to go to 0—it is enough
for the divergence to get smaller than h2(f ∗, f LC)/200. While
this criterion is still stringent enough to be practically relevant,
it makes the theoretically favorable point that the universal LRT
for log-concavity does not require consistent density estimation
of f ∗ in a strong (KL) sense. In our argument, the role of
Assumption 2 is to control how large f ∗/̂f1,n can get in a manner
similar to Theorems 3 and 4 of Wong and Shen (1995).

5.2. Result and Proof Sketch

We are now in a position to state our main result. We provide a
proof sketch, leaving the details to Appendix A.3.

Theorem 3. Suppose Assumptions 1 and 2 hold. Then the uni-
versal likelihood ratio test for log-concavity with test statistic (1)
is consistent. That is, limn→∞ PH1(Tn ≥ 1/α) = 1.

Proof sketch. We assume throughout that H1 is true, meaning
that f ∗ is not log-concave. For brevity, we use P to denote PH1 .
We begin by decomposing Tn into

Tn =
∏

i∈D0,n

f̂1,n(Yi)

f ∗(Yi)︸ ︷︷ ︸
=:1/Rn

·
∏

i∈D0,n

f ∗(Yi)

f̂0,n(Yi)︸ ︷︷ ︸
=:Sn

= Sn/Rn.

Let ε := h(f ∗, f LC). Further, suppose n ≥ 100 log(1/α)/ε2.
Now observe that

{Tn < 1/α} ⊂ {Rn > exp(nε2/100)} ∪ {Sn < exp(nε2/50)},

since outside this union, Sn/Rn ≥ exp(nε2/100) ≥ 1/α. Thus,
it suffices to argue that

P
(
Rn > exp(nε2/100)

) + P
(
Sn < exp(nε2/50)

) → 0.

The two assumptions contribute to bounding these terms. In
particular, Assumption 1 implies that Sn is big, while Assump-
tion 2 implies that Rn is small.

Sn is big. Observe that since h(f ∗, f LC) > 0, the likelihood
ratio

∏
i∈D0,n f

∗(Yi)/f LC(Yi) tends to be exponentially large
with high probability. We can use Markov’s inequality and the
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properties of Hellinger distance to show that for ξ > 0 (and
particularly for large ξ ),

P

⎛⎝ ∏
i∈D0,n

f ∗(Yi)/f LC(Yi) < ξ

⎞⎠≤ √
ξEY∼f ∗

[√
f LC(Y)/f ∗(Y)

]n/2
= √

ξ(1 − h2(f ∗, f LC))n/2.
We would thus expect that the same holds for the ratio of
interest

∏
i∈D0,n f

∗(Yi)/̂f0,n(Yi). The regularity conditions from
Assumption 1 enable this, by establishing that f̂0,n → f LC in
the strong sense that for large n, f̂0,n lies in a small bracket
containing f LC. This pointwise control allows us to use results
from empirical process theory to show that for large enough n,∏

i∈D0,n f
∗(Yi)/̂f0,n(Yi) grows at an exponential rate similar to∏

i∈D0,n f
∗(Yi)/f LC(Yi).

Rn is small. The smallness of Rn relies on two facts: (1) f̂1,n is
fit on {Yi : i ∈ D1,n} and evaluated on an independent dataset
{Yi : i ∈ D0,n}, and (2) under Assumption 2, f̂1,n approximates
f ∗ in a strong sense with high probability.

Concretely, we observe that since f̂1,n is determined given
the data in D1,n, we may condition on D1,n and study
the tail behavior of Rn on D0,n. Further observing that
EY∼f ∗ [log(f ∗(Y)/̂f1,n(Y))] = DKL(f ∗‖̂f1,n), applying Tcheby-
cheff ’s inequality to logRn yields

P
(
Rn > exp(nε2/100) | {Yi : i ∈ D1,n}

)
≤

∫
f ∗(x) log2(f ∗(x)/̂f1,n(x))dx

n((ε2/50 − DKL(f ∗‖̂f1,n))+)2
,

where (z)+ = max(0, z). Assumption 2 lets us argue that with
high probability over {Yi : i ∈ D1,n}, this upper bound vanishes
as n → ∞.

6. Conclusion

We have implemented and evaluated several universal LRTs
to test for log-concavity. These methods provide the first tests
for log-concavity that are valid in finite samples under only
the assumption that the data sample is iid. The tests include a
full oracle (true density) approach, a partial oracle (parametric)
approach, a fully nonparametric approach, and several LRTs
that reduce the d-dimensional test to a set of one-dimensional
tests. For reference, we compared these tests to a permutation
test although that test is not guaranteed to be valid. In one
dimension, the universal tests can have higher power than the
permutation test. In higher dimensions, the permutation test
may falsely reject H0 at a rate much higher than α, but the
universal tests are still valid in higher dimensions. As seen
in the Gaussian mixture case, dimension reduction universal
approaches can have notably stronger performance than the
universal tests that work with d-dimensional densities.

Several open questions remain. Theorem 3 presented a set
of conditions under which the universal LRT has power that
converges to 1 as n → ∞. As discussed, it may be possible
to weaken some of these conditions. In addition, future work
may seek to theoretically derive the power as a function of
the dimension, number of observations, and signal strength. As
shown in one example (Figure 14 of Appendix B), the signalmay
need to grow exponentially in d to maintain the same power.

Supplementary Materials

Appendix: The appendix contains proofs of all theoretical results
(Appendix A), additional simulations and visualizations for the two-
component normal mixture setting (Appendix B), discussions on the
relative power of full-dimensional and projection tests (Appendix C),
simulations to test log-concavity when data arise from a Beta distribu-
tion (Appendix D), and additional details on the permutation test and
trace test for log-concavity (Appendix E). (pdf file)

R code: The R code to reproduce the simulations and figures is available at
https://github.com/RobinMDunn/LogConcaveUniv.
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