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Given a composite null P and composite alternative Q, when and how
can we construct a p-value whose distribution is exactly uniform under the
null, and stochastically smaller than uniform under the alternative? Similarly,
when and how can we construct an e-value whose expectation exactly equals
one under the null, but its expected logarithm under the alternative is posi-
tive? We answer these basic questions, and other related ones, when P and
Q are convex polytopes (in the space of probability measures). We prove that
such constructions are possible if and only if Q does not intersect the span
of P. If the p-value is allowed to be stochastically larger than uniform under
P € P, and the e-value can have expectation at most one under P € P, then
it is achievable whenever P and Q are disjoint. More generally, even when P
and Q are not polytopes, we characterize the existence of a bounded nontriv-
ial e-variable whose expectation exactly equals one under any P € P. The
proofs utilize recently developed techniques in simultaneous optimal trans-
port. A key role is played by coarsening the filtration: sometimes, no such
p-value or e-value exists in the richest data filtration, but it does exist in some
reduced filtration, and our work provides the first general characterization
of this phenomenon. We also provide an iterative construction that explic-
itly constructs such processes, and under certain conditions it finds the one
that grows fastest under a specific alternative Q. We discuss implications for
the construction of composite nonnegative (super)martingales, and end with
some conjectures and open problems.

1. Introduction. Consider a universe of distributions IT on a sample space (X, F),
where X is a Polish space. The data are generated according to some P € 1. Let P and
Q be disjoint subsets of I1. When we say we are testing P, we mean that we are testing the
null hypothesis P € P. When we say we are testing P against Q, we mean additionally that

the alternative hypothesis is P € Q.
We ask (and answer) several central questions in this paper. The first one is:

(Q-exact-p). Given a null P and an alternative Q, when can we find an exact p-value for P that has
nontrivial power under Q? To elaborate, we would like to find a [0, 1]-valued random variable T that
is exactly uniform for every P € P, but is stochastically smaller than uniform under every Q € Q.

The second central question in this paper is the following:

(Q-exact-e). Given a null P and an alternative Q, when does there exist an exact e-value for P that
has nontrivial power under Q? To elaborate, we would like to find a nonnegative random variable X
such that EP[X] =1 for every P € P, but EQ[log X]>0 (or EQ[X] > 1) forevery Q € Q.

We will provide a complete answer to both questions in this paper, when P and O are convex
polytopes in the space of probability measures on X. The solution is surprisingly clean and
will be explained soon below.
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We also answer the nonexact versions of both problems, where we only require the p-value
T to be stochastically larger than uniform under any P € P:

(Q-general-p). Given a null P and an alternative Q, when does there exist a p-value for P that has
nontrivial power against Q? (see Terminology below.)

Or, for the e-value, we require that EP[X] <1 for any P € P:

(Q-general-e). Given a null P and an alternative Q, when does there exist an e-value for P that has
nontrivial “e-power” against Q? (see Terminology below.)

For these nonexact problems, we can still provide a clean characterization of the existence
for both (Q-general-p) and (Q-general-e). An immediate follow-up question is:

(Q-power). Suppose that we know the p-values or e-values in the above questions do exist. How can
we algorithmically construct powerful, or even optimal, ones?

This question is important for the application of our ideas in hypothesis testing.

These appear to be rather fundamental questions, and our answers will be proved using re-
cent techniques in simultaneous optimal transport, combined with classical convex geometric
arguments. A natural motivation for exactness of p-values and e-values comes from the triv-
ial observation that, in the case of a simple null hypothesis, any nonexact p-value or e-value
can be strictly improved. Although this is not necessarily true for composite hypotheses, the
existence of such exact p-values and e-values, as well as the trade-off between exactness and
power, is useful for the design of tests.

Note that in the characterizations for (Q-exact-p) and (Q-general-p) above, a technical
condition of joint nonatomicity will be assumed, which is essentially equivalent to allowing
for external randomization. Our proofs are constructive and yield a simple iterative construc-
tion addressing (Q-power), called SHINE (Separating Hyperplanes Iteration for Nontrivial
and Exact e/p-variables), that can in principle explicitly build these objects and calculate
their values on a given dataset, but it is only computationally feasible for low-dimensional

settings.
Towards the end of the paper, we show how answers to the above two questions help
answer a final related question:

(Q-martingale). Given a null P and an alternative Q, can we determine if there is a nonnegative
(super)martingale M for P°° that grows to infinity under Q°°? In other words, when can we find a
process M that is a nonnegative (super)martingale under P°° simultaneously for every P € P, but
it almost surely grows to infinity under Q°° for every Q € Q?

Before proceeding, we introduce important terminology used throughout the paper.
Terminology. We define pivotal, exact, and nontrivial e- and p-variables below.

1. A random variable X is pivotal for P if X has the same distribution under all P € P.

2. A nonnegative random variable X is a e-variable for P if EP[X] <1 forall P € P.
An e-variable X for P is exact if EF[X] =1 for all P € P. We say X is nontrivial for Q if
EC[X] > 1 for all Q € Q. An e-variable X for P is said to have nontrivial e-power against
Q if foreach Q € O, EQ[log X]=>0.

3. A nonnegative random variable X is a p-variable for P if P(X < a) < « for all
o €(0,1) and P € P, and a p-variable X is exact if P(X <«a) =« for all ¢ € (0, 1) and
P € P. A p-variable X for P is nontrivial (or has nontrivial power) against Q if, for each
Q€ Q, O(X <a)>a forall o € (0, 1) with strict inequality for some « € (0, 1). Without
loss of generality, p-variables can be restricted to [0, 1] by truncation, without changing their
properties.

Note that an exact p-variable is always pivotal, but not vice versa. An exact e-variable need
not be pivotal, and a pivotal e-variable need not be exact. Since x — 1 > log x, an e-variable
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that has nontrivial e-power against Q is also nontrivial for Q. We will often omit P and Q in
our subsequent mentions of p/e-variables when they are clear from the context. Realizations
of e-variables are called e-values. Like many other authors, we do not distinguish these terms
when there is no confusion; the same applies to p-values and p-variables.

REMARK 1.1. For the majority of this paper, we suppress the raw data that is observed
and used to form the p-values or e-values. One may simply assume that we have observed
one data point Z from P. This Z could itself be a random vector of some size n > 1 lying in
(say) R for some d > 1 (which means P may be u” for some p on R%), but we leave all this
implicit. Thus our p-values and e-values can be treated as “single-period” statistics calculated
on a batch of data. We return to the multi-period (sequential) case briefly later in the paper.

Summary of contributions. We briefly summarize the main results of this paper below. With
the help of techniques from simultaneous transport, the existence of p/e-values for a con-
vex polytope P and a simple alternative Q = {Q} is fully characterized in Theorems 3.1
and 3.4: under a natural condition of nonatomicity, we show that pivotal, exact, and powerful
p/e-values exist if and only if Q ¢ SpanP; powerful p/e-values exist if and only if Q ¢ P.
Theorems 6.1 and 6.2 extend these earlier results to the case of composite alternatives that
are polytopes: for convex polytopes P and Q, similar conclusions as before hold with the
condition Q ¢ SpanP being replaced by Span? N Q = &, and the condition Q ¢ P being re-
placed by PN Q = &. Theorem 6.8 extends these results to the case of general (nonpolytope)
infinite P, Q, where the situation is more complicated: we now additionally need a common
reference measure and a closure with respect to the total variation distance.

For the particular case of a simple alternative (Q = {Q}), we can speak of maximizing the
e-power under Q among all exact e-variables. The exact e-variable with the largest e-power
is studied in a series of results including Theorems 4.4 and 4.7, and this finally leads to the
SHINE construction, with maximality of the constructed e-variable shown in Theorem 5.3,
providing an answer to (Q-power).

Finally, the above results directly give rise to an answer to (Q-martingale) by obtaining
sufficient conditions for the existence of a powerful e-process (Corollary 7.1).

Related results. The most directly related work is that of Griinwald, de Heide and Koolen
(2024), which focuses primarily on e-values, and in particular (Q-general-e). To paraphrase
one of their main results, consider any P and Q with a common reference measure, whose
convex hulls do not intersect. They show that as long as a particular “worst case prior” exists,
then one can construct an e-value for P which maximizes the worst case e-power for Q. This
is a topic we return to later in the paper, when we provide a more detailed geometric study
of (Q-general-p) and (Q-general-e) together. We need fewer technical conditions to establish
our results, but their additional assumptions allow them to handle general P, Q that are not
polytopes. See also Harremoés, Lardy and Griinwald (2023) for a very recent follow-up work
by the same group, which relaxes some of the original technical conditions.

A second related work is that of Ramdas et al. (2022). Here, the authors work in the
sequential setting and ask when nontrivial nonnegative (super)martingales for P>° := { P :
P € P} exist. We can paraphrase their geometric solution: assuming a common reference
measure, nontrivial nonnegative (super)martingales cannot exist if the “fork-convex hull” of
P> intersects Q°°.

The above papers hint at a deeper underlying geometric picture, and our work elaborates
significantly on this theme, completely characterizing the case of convex polytopes. One key
point is that the earlier works did not give a systematic and thorough treatment of what one
can accomplish in reduced filtrations, while this is a central aspect of our paper. Informally,
we will (optimally) transport P to a single measure w, while transporting Q to a single
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measure v # u, and this collapse of the null and alternative corresponds exactly to working
in a coarser o -algebra.

The above idea of transport from multiple measures to specified measures is addressed
in the framework of simultaneous transport studied by Wang and Zhang (2023). We borrow
several techniques from their work and build on them significantly to provide answers to our
questions. In particular, our work tightly connects arguably basic testing problems with the
modern theory of optimal transport.

A third classical yet fundamental related work is Kraft’s theorem (Kraft (1955), Theo-
rem 5), which states that if there is a o-finite reference measure R that dominates every
distribution in P U Q, then for each & > 0 there exists a [0, 1]-valued random variable X with
(1) inf E[X]> ¢+ sup EF[X]

QeQ PeP
if and only if the total variation distance dty(ConvP, ConvQ) > ¢. Kraft’s theorem serves as
a starting point for distinguishing sets of distributions (Hoeffding and Wolfowitz (1958)) and
impossible inference (Bertanha and Moreira (2020)). In particular, in Remark 6.3 below we
will see how Kraft’s theorem can answer (Q-general-e) above.

Finally, likelihood ratios play an intimate role throughout our paper, but in rather different
ways than classical hypothesis testing results. For general composite nulls and alternatives,
generalized likelihood ratio-based methods require certain regularity conditions in order for
Wilks’ theorem Wilks (1938) to apply, which in turn yields an asymptotically exact p-value.
An alternative, recent e-value approach is taken by universal inference Wasserman, Ramdas
and Balakrishnan (2020). Our paper takes a very different approach, designing nonasymptot-
ically exact p-values (Q-exact-p) or nonasymptotically conservative p-values (Q-general-p),
and also doing the same for e-values (Q-exact-e, Q-general-¢). We do not impose the regu-
larity conditions required for Wilks’ theorem to hold (our assumptions are different and quite
mild), and we are interested in when such p-values or e-values exist and how one can con-
struct them (Q-power). As a rough, but instructive, intuition for how likelihood ratios play a
role in our work, when deriving exact p-values or e-values, our method tries to find a transport
map that can simultaneously transport the entire composite P into a single uniform U, while
simultaneously transporting the composite Q into some distribution F' ## U. Now, having ef-
fectively converted the given composite problem into a point null U and a point alternative
F, one can use simple likelihood ratios to design either the p-values or e-values.

Background on e-values. E-values are an alternative to p-values, and they have recently been
actively studied in statistical testing by Wasserman, Ramdas and Balakrishnan (2020), Shafer
(2021), Vovk and Wang (2021), Griinwald, de Heide and Koolen (2024), and Howard et al.
(2021) under various names. Tests based on e-values are closely related to nonnegative super-
martingale techniques for testing and estimation, which date back to work by Robbins Darling
and Robbins (1967), Robbins and Siegmund (1974), and they emphasize continuous monitor-
ing, optional stopping or continuation of experiments. The notion of e-processes generalizes
that of likelihood ratios to composite hypotheses Ramdas et al. (2022). Some advantages of
testing with e-values are summarized in Wang and Ramdas (2022), Section 2. The idea of
testing with e-values is intimately connected to game-theoretic probability Shafer and Vovk
(2001, 2019). For a recent review on e-values and game-theoretic statistics, see Ramdas et al.
(2023).

Notation. We collect the notation we use throughout this paper.

1. Topology. For a set A C RY, A° (resp. A, 9A, A€, ConvA) is the interior (resp. clo-
sure, boundary, complement, convex hull) of A and aff A is the smallest affine subspace of
R? containing A. For an affine subspace § € RY, we denote by ri(A; S) is the relative interior
of A in S, that is, the interior of A in the relative topology on S.



EXISTENCE OF POWERFUL P/E-VALUES 2245

2. Probability and measure. All measures we consider will be finite and have a finite
first moment, that is, [ |x|u(dx) < oco. For a Polish space X, we let M(X) be the set of all
finite measures on X and IT(¥) be the set of probability measures on X. For u € M(RY),
we denote its barycenter by bary(u) := [pa xp(dx)/ M(Rd). For a finite set A of random
variables or probability measures on the same space, we define Conv.A and SpanA in the

usual sense of convex hull and span. We write X tay p M, or simply X faw W, if the random
variable X has distribution © under P. We say “a probability measure u is supported on a set
A” if u(A) = 1. This does not imply that A is closed or A = supp . The product measure is
denoted by P Q. If P={Py,..., P} and Q ={Q1, ..., Q) are two sets of probability
measures on X, we sometimes denote the tuple (Py, ..., Pr, Q1,..., Oy) by (P, Q). For
P, Q € M(X) we write P <« Q if P is absolutely continuous with respect to Q (sometimes
we say Q dominates P),and P~ Q if P <K Q K< P.

3. Stochastic orders. For F, G € TI(R), we write F <y G if F((—o0, a]) > G((—00, a))
foralla e R. Also, F < Gif F <g¢Gand F #G.For u,v € M(R?), we denote by s <cx v
if [¢pdp < [@dv for every convex function ¢, in which case we say w is smaller than v in

convex order.! If 41, v are probability measures and X £ u, Y ay v, we sometimes abuse
notation and write X <. Y instead of u <cx v. We write u < v if u(A) < v(A) for every
Borel set A.

4. Other notation. Bold symbols such as x and « will typically denote vectors. Write
ly=(,....,D eRL0,=(0,...,00e R, Ty ={xeRY | x; =-- - =x4) =Ry, and I} =
(xeR?|x;=---=2x4 >0} =Ry 1;. When the dimension d is clear, we may omit the
subscript d and write 1, 0, Z, Z™ instead. We let U; denote the Lebesgue measure on [0, 1].
Denote the Euclidean norm by ||-||.

Outline of the paper. 'The rest of this paper is organized as follows. Section 2 provides the
necessary mathematical background regarding convex order and simultaneous optimal trans-
port. The easier case with a simple alternative (| Q| = 1) will be solved first in Section 3. Un-
der suitable conditions, we solve the maximization problem of the e-power in Section 4 and
illustrate the SHINE construction for finding a powerful e-variable in Section 5 for a simple
alternative, thus answering (Q-power). We answer (Q-exact-p), (Q-exact-e), (Q-general-p)
and (Q-general-e) in full in Section 6, where we deal with a general composite (and even
infinite) alternative Q. Finally, an application to composite test (super)martingales related to
(Q-martingale) will be discussed in Section 7, followed by a summary in Section 8.

2. Preliminaries on convex order and simultaneous transport. In this section, we
collect results related to convex order and simultaneous transport for future use. We rely on
some results from Shaked and Shanthikumar (2007) and Wang and Zhang (2023).

In the setting of classical optimal transport theory, one usually starts with two measures
w € I1(X), v € T1(])) on Polish spaces X, ), and a typical goal would be optimizing a certain
functional over (X, Y) with respective marginals w, v (such (X, Y) are called couplings). The
set of such couplings is also referred to as transport plans. In certain cases, one is interested
in a special class of transport plans where Y is required to be a function of X. Such couplings
are called transport maps. See Santambrogio (2015) and Villani (2009) for background on
optimal transport.

A coupling (X,Y) on RY x R? is called a martingale coupling if E[Y|X] = X. Given
w,v e IRY), a martingale transport (plan) from p to v is a martingale coupling (X, Y)

such that X ay uand Y Ay v. We recall from Strassen (1965) that there exists a martingale

IThis is sometimes called the Choquet order in the mathematical literature, for example, Simon (2011).
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transport from p to v if and only if © <cx v (see point 3 in the notation subsection for a
definition). This result is called Strassen’s theorem. The relation <. is a partial order on
I1(RY). Given a subset N’ C TT(RY), we say u is a (Pareto) maximal element in N if there
exists no v € N such that v # u and u <cx v; we say u is the maximum element in N if
v <¢x p for each v € . These next facts can be found in Shaked and Shanthikumar (2007),
Section 3.A.

LEMMA 2.1. The followings hold for all integrable real-valued random variables:

(1) IfE[X]=E[Y], then X < Y ifand only if E[(X —a)+] <E[(Y —a)+] for all a € R.
@) If{X,} is a sequence of random variables that converge weakly to X and E[|X,|] —
E[IX]|], then X, 2ex Y = X =2 Y.

The recent work of Wang and Zhang (2023) proposed the notion of simultaneous optimal
transport as an extension of classical optimal transport. As explained above, classical optimal
transport theory concerns a coupling between two measures. In the setting of simultaneous
optimal transport, one starts from two d-tuples of probability measures p = (1, ..., itg) on
X and v = (v1,...,vg) on 2), and requires that the transport plan (or map) sends u; to v;
simultaneously for all 1 < j <d.If d =1, this coincides with the classical optimal transport.

Let us give a formal definition. For d > 1 and two R4-valued measures i, v on Polish
spaces X, ) (denoted by u € M(X)¢ and v € M(Q))?) such that u(X) = v()), let K(i, v)
and 7 (m, v) denote the set of all simultaneous transport plans and maps from p to v respec-
tively, that is, C(u, v) is the set of all stochastic kernels « such that

ap () = fx (e p(dx) = v (o),
and
T(u,v):{T:%—>2)|uoT_l=v}.

When d = 1, K(u, v) is often represented as the set of all joint distributions on X x )
whose marginals are g and v respectively, but for d > 1, we prefer the above representation.
The mathematical structure of simultaneous optimal transport is very different from classical
optimal transport, and the existence of simultaneous transport plans (or maps) is a nontrivial
question. To further characterize the existence of simultaneous transport maps and plans, we
need the notion of joint nonatomicity.

DEFINITION 2.2. Consider a tuple of probability measures . = (¢1, ..., ttg) on a Pol-
ish space X. We say that u is jointly atomless if there exists u > Zfl: 1 i and a random
variable £ such that under u, & is atomless and independent of (duy/du, ..., dug/duw).

As a simple example, (1 x Up, ..., ug x Up) on X x [0, 1] is jointly atomless for each
collection (i1, ..., ig) on X. We refer to Shen et al. (2019) and Wang and Zhang (2023) for
more discussions on this notion.

In statistical terms, the hypothesis {P;,..., P} as a tuple being jointly atomless is
equivalent to allowing for additional randomization, that is, simulating a uniform random
variable independent of the Radon—-Nikodym derivatives (dP;/dP,...,dPr/dP) for some
P e TI(X). It suffices if simulating a uniform random variable independent of existing ran-
dom variables is always allowed. Such an assumption is common in statistical methods based
on resampling or data splitting.
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FIG. 1. A showcase of simultaneous transport: here the input vector p is two-dimensional, as is the output
vector v. The two input distributions are discrete distributions over the same alphabet of size six and are drawn
in different colors in the top row, with the height of a bar indicating its mass. The two target distributions are
binary, indicated on the bottom row. The simultaneous transport requires that the maps that transport from j11 to
v1 (left) and from py to vy (right) are identical. This map is achieved by mixing (averaging) the Radon—Nikodym
derivatives. Denoting v =v| + vy and L = (1 + pp, we have %(1) = %(%(1) + %%(3) + %(4)), and
analogously for the other coordinate.

PROPOSITION 2.3.  Consider p € TI(X)? and v € TI(Y)?. Let A € R satisfy |A]; = 1,
and define | = XTM, and v := AT v. Assume that nj <K pandvi Lv foreach 1 < j<d.
Then,

(1) The set K(p, v) is nonempty if and only if
<dM1 de) <dV1 dVd)

_7 ey - ZCX - 90 -

du du /1y dv dv

where X|p means the distribution of a random variable X under a measure P.
(ii) Assume that p is jointly atomless. The set T (ju, v) is nonempty if and only if

(d.ul dua) o (dV1 dvd)
- - ). ¢ T s ey T
“ dv dv

T e

PROOF. Theorem 3.4 of Wang and Zhang (2023) implies that the statements hold with
A=(1/d,...,1/d). The more general case follows from Lemma 3.5 of Shen et al. (2019), in
the direction (iii) = (ii) there. [J

9
Vv

v

We briefly describe the intuition behind this result, which is crucial for our paper. In the
sequel, a coupling (X, Y) is backward martingale if E[X|Y] =Y ; that is, (¥, X) forms a
martingale. It is Monge if Y is a measurable function of X. The key observation is that the
pushforward x#p mixes the ratios between different coordinates of the (vector-valued) masses
of u at different places of X; see Figure 1. The “ratios” can be recognized as Radon—Nikodym
derivatives. The “mix” effect can be interpreted as a backward martingale transport, because
reversing the transport arrows (or equivalently, looking at the transport in the backward di-
rection) gives rise to a martingale coupling of the Radon—Nikodym derivatives. Strassen’s
theorem then gives the convex order constraint on the Radon—-Nikodym derivatives. In Wang
and Zhang (2023), such an observation leads also to the MOT-SOT? parity that relates the
simultaneous transport to the underlying backward martingale transport, which will be useful
for our purpose when constructing explicitly an e/p-variable. We state a weak form of the

2Here, MOT stands for martingale optimal transport, and SOT stands for simultaneous optimal transport.
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MOT-SOT parity below, which can be proved similarly to Corollary 3 of Wang and Zhang
(2023).

PROPOSITION 2.4. Let p € TI(X)¢ and v € TI(Y)? satisfy p < jq, v < vg (Where we
recall that g is the dth component of the vector-valued measure p), and K(p, v) nonempty.
Suppose that j is jointly atomless and (dp/djiq)l,., is atomless. Then there exists a backward
martingale coupling between (dp/dq)|,, and (dv/dvg)l,, that is also Monge. Moreover, if
we denote by h the map that induces this Monge transport, then there exists a simultaneous
transport map T € T (p, v) satisfying

)
@(T(x)) = h(dﬂd (x)), xeX.

In the above proposition, we have picked the dth entry pg, vg to evaluate the Radon—
Nikodym derivatives. One could as well use pj, v; forany 1 < j <d, or even 1, v. When
applying this result, we have in mind that the last entry of u, v will be given by the alter-
native and the rest by the null, which makes it convenient to evaluate the Radon—Nikodym
derivatives using the dth entry.

Finally, we recall the following basic fact on Radon—Nikodym derivatives.

LEMMA 2.5. Letd € N and t be a probability measure supported on Ri with mean 1.

Then there exist probability measures Fy, ..., Fg supported on [0, 1] such that
(dFl dFd) _
dUl’“.’dUl U,

PROOF. Since Uy is atomless, 7 (Uy, 7) # @.3 Pick (f1, ..., f1) € T(Uy, 1), and define
F; by dF;/dU; = f; for 1 <i <d. This is well-defined since f; is nonnegative a.e. and
EVi[fil=1foreach1<i<d. O

3. Composite null and simple alternative. In this section, we characterize the existence
of exact and pivotal p-variables and e-variables for composite null and simple alternative (sin-
gleton). Although our results in this case are covered by the more general result for composite
alternatives treated in Section 6, studying this setting first helps with building intuition behind
our proof techniques. Moreover, the concept of e-power studied in Section 4 is defined for a
single Q in the alternative hypothesis. We fix P = {Py, ..., P} and Q@ = {Q} in I1(X) and
will assume that

JA) (P, Q) is jointly atomless,

unless otherwise stated. The main results are Theorems 3.1 and 3.4 below. When
(AC) P,...,PLKLQ

holds, we define the measure y = (dP/dQ,...,dP./dQ)|p on RL.

THEOREM 3.1. Suppose that we are testing P = { Py, ..., Pr} against @ = {Q} and (JA)
holds. The following are equivalent:

(a) there exists an exact (hence pivotal) and nontrivial p-variable;
(b) there exists a pivotal, exact, bounded e-variable that has nontrivial e-power against Q;

31t is a standard fact in optimal transport that a Monge transport map from w to v exists if @ is atomless.
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(c) there exists an exact e-variable that is nontrivial against Q;

(d) there exists a random variable X that is pivotal for ‘P but has a different distribution
under Q, where the laws of X under both are atomless;

(e) it holds that Q ¢ Span(Py, ..., PL).

To prove Theorem 3.1, we need the following preparation.

LEMMA 3.2.  Suppose that Q ¢ Span(Py, ..., Pr) and (AC) holds. There exists a disjoint
collection of closed balls By, ..., By in RL of positive measure (under y) not containing 1
such that denoting by t; the point of B; closest to 1, we have 1 € Conv({t1, ..., %})°.

PROOF. Since Q ¢ Span(Py, ..., Pr), the measure y cannot have support contained in
a hyperplane in RZ by definition. In other words, aff suppy = RE. By Lemma H.1(ii) of the
Supplementary Material (Zhang, Ramdas and Wang (2024)), abbreviated as the SM hence-
forth, 1 = bary(y) € (Convsupp y)°. Therefore, there exist sy, ..., st € suppy such that
1 € (Conv{sy,...,s;})°. Let B; be the ball centered at s; with radius r > 0 for 1 < j <k.

For r small enough, these balls will be disjoint from 1, and the closest points 71, .. ., t satisfy
1eConv({ty,...,5r)°. O

PROPOSITION 3.3. We have Q ¢ Span(P, ..., Pr) if and only if there exist probability
measures G # F such that
K((P1,...,PL,0),(F,...,F,G)) #@.

If moreover (JA) holds, then Q ¢ Span(Py, ..., Pr) if and only if there exist probability mea-
sures G # F such that

T((Pr,...,PL,Q),(F,....,F,G)) #@.
In addition, in both cases above, we may pick F = Uj and G atomless.
PROOF. The “if” is clear since Q € Span(Py, ..., Pr) would imply G € Span(F) = {F}.

For “only if”, let F' = U; and consider first the case where (AC) holds. Then using Proposi-
tion 2.3 with d = L + 1, it suffices to prove that there exists some G >> F such that

(dPl dPr dQ)’ (dF dF dG>
A QECX

dQ,...,@,@ E,...,E,E G.
Equivalently, we need to show that
dpP dp dF dF
) y:(—%“”—iﬂ amC—““;—).

We will first consider a special type of density dF/dG which allows us to construct G
such that (2) holds. Suppose that

1 f0<x<1-g;

dG . £
_— — 11 f1l-— <1—-—
dF(x)_ +e& 1 e<x < >

l—e ifl—S<x<l,
2

where ¢ > 0 is a small number. Clearly, G is atomless. Moreover, (dF/dG)|g is con-
centrated on [(1 + &)~ ', (1 —&)~'] and IP’G[dF/dG = 1] = 1 — ¢. Therefore, the mea-
sure (dF/dG,...,dF/dG)|g is supported on the line segment {x € Rl | x; =--- =x €
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[(14 &)~ (1 —&)~ ']}, with mean 1 and PC[dF/dG # 1] = &. We will find a measure
(dF/dG,...,dF/dG)|¢ that satisfies the condition above and also (2).

Consider a disjoint collection of closed balls {B;}i<j<x in RE as constructed in
Lemma 3.2. By Lemma H.2 of the SM, there is § > 0 and a segment {(x e RE | x; =--- =
xr €[1 — 4,1+ 8]} containing 1, such that any measure of total mass § supported on it will
be smaller in extended convex order than some ¥ such that y <y |U’§:1 B, We choose ¢ > 0

so that (1 —&)~! < 1 4 8. As a result, the measure G constructed in the above paragraph

satisfies
((dF dF> )
o=l—,...,—
dG dG / |g

The measure (dF/dG, ...,dF/dG)|g — w is concentrated at 1, which is smaller in convex or-
der than any measure with barycenter 1 and the same total mass. Since bary(y) = bary(y) =
1, we conclude

<

—CX ‘)7
RE\(1)

(dF dF)‘ -
de"-’dG G_CXV'

If (AC) does not hold, then we define Q' = Q/2 + (P; + --- + Pr)/(2L), and repeat
the above arguments, so that there is « sending (Py,..., Pr, Q') to some (F,..., F,G’)
where G’ # F. By linearity, « also sends (Py, ..., P, Q)to (F,..., F,G) where G =2G’ —
F#F. O

PROOF OF THEOREM 3.1. The direction (a) = (b) is proved as Proposition A.5 of the
SM, (b) = (c) is clear from definition, (c) = (e) is proved as Proposition A.6 of the SM,
and (e) = (d) is Proposition 3.3. To show (d) = (a), let X be a random variable that has a
common law F under P € P, and law G under Q. Let ¢ be given in Lemma H.3 of the SM.
It follows immediately that ¢ o X is an exact p-variable. [

THEOREM 3.4. Suppose that we are testing P = { P, ..., Pp} against @ = {Q} and (JA)
holds. The following are equivalent:

(a) there exists a nontrivial p-variable;

(b) there exists a bounded e-variable that has nontrivial e-power against Q;
(¢c) there exists an e-variable that is nontrivial for Q,

(d) it holds that Q ¢ Conv(Py, ..., Pr).

REMARK 3.5. The directions (¢) < (e) in Theorem 3.1 and (c) < (d) in Theorem 3.4
also hold without (JA), in view of Proposition A.7 of the SM.

EXAMPLE 3.6.

law

() Let P, 2 Ber(0.1), P» 2 Ber(0.2), and 0 2 Ber(0.3). It follows that Q e
Span( Py, P»)\ Conv(P1, P»). By Theorems 3.1 and 3.4, a nontrivial e-variable (or p-variable)

exists, but an exact nontrivial e-variable (or p-variable) does not exist.
law law

(i1)) Let P ~ N(—1,1), P, ~ N(1,1),and Q fay N(O, 1). By Theorem 3.1, there exists a
pivotal exact nontrivial e-variable (or p-variable).

REMARK 3.7. When the sample space X is finite (say |X| =d) and Q ¢ SpanP, it is
easy to construct nontrivial exact e-variables. We can associate the distributions with their
Radon—Nikodym derivatives, which are just d-dimensional vectors, and one can consider an
e-variable of the form 1 4+ Y where Y is proportional to the orthogonal part of Q relative to
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the span of P (so that Y integrates to zero under any P € P, but has positive expectation
under Q). In case P = { P}, taking P as the reference measure, this construction yields ¥ =
a(dQ/dP — 1) for any « € [0, 1], and the e-variable is precisely dQ/dP when o = 1. For
infinite X, such a direct construction exploiting orthogonality is no longer possible because
the Radon—Nikodym derivatives do not live in a Hilbert space.

Next, Section 4 constructs a powerful exact e-variable by additionally imposing pivotality.

4. Constructing a powerful exact e-variable. We focus on e-variables in this section.
Provided the existence, our next step is to maximize the e-power of an e-variable that is
pivotal and exact. The e-power of an e-variable X can be measured by EZ[log X], which
has long been a popular criterion; see, for example, Kelly (1956), Breiman (1960), Bell and
Cover (1988), Shafer et al. (2011), Griinwald, de Heide and Koolen (2024), Waudby-Smith
and Ramdas (2024).% It has been recently called the e-power of X (Vovk and Wang (2024)),
a term we continue to use for simplicity. In this section, we will fix P = {Py, ..., Pr} and
Q = {Q}. Our goal is to solve

3) max EQ[log X1,

s.t. X : X is a pivotal exact e-variable.
This optimization problem turns out to be a special case of a more general problem that is
illustrated by (8) below. Such a connection will be explained in Section 4.1. We describe an
equivalent condition for the existence of a maximal element for (8) in Section 4.2. A further
sufficient condition in the case L = 2 is illustrated in Section 4.3. Section 4.4 contains a few
discussions regarding batching multiple data points and how it affects the e-power. Finally,
we provide several examples in Section 4.5. In this section, we let

“ LA
y = 0" 40 Q'

In particular, y is a probability measure on Ri with mean 1.

4.1. E-power maximization and convex order. We first recall the maximizer of e-power
in the case of a simple null versus a simple alternative, which has an explicit form. This fact
is used frequently in the above literature.

EXAMPLE 4.1. Let us first illustrate an example with simple null P = {P} (L = 1) and
simple alternative Q = {Q}. Clearly, any e-variable is pivotal. Thus (3) reduces to

max EQ[logX],
5) .
st. X:X>0, E'[X]=1.

By Gibbs’ inequality, the maximum value is attained by the likelihood ratio, that is, when
X =dQ/dP (see Shafer (2021) for this simple setting).

Below we illustrate the solution to (5) using our theory, which sheds light on the composite
null case. For simplicity, we assume (JA) and (AC). Denote by y := (dP/dQ)|p. Consider
the set M, of probability measures p such that p <cx y:

M, = {ME IT(R) : 1 Zex V}-

“4In short, it captures the rate of growth of the test martingale under the alternative Q; see Section 7.
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Using Lemma 2.5, every u € M,, (in fact also for . ¢ M, ) corresponds to a probability mea-
sure F such that (dF /dU;)|y, = u. By Proposition 2.3, there exists a random variable Y that
has law F under P and law U; under Q. Next, consider X of the form X = (dU;/dF)(Y),
and we optimize E€[log X] over F satisfying (dF/dUy)|uy, € M, . Itis clear that the con-
straint

du du
EF[X] :EP[—I(Y)] :EF[—I] =1
dF dF
is satisfied, and the objective in (5) becomes
dU; du; dF
E[log X =]EQ[1 (— Y )} =IEU1[1 —] =EU1[—1 —}
llog X] ¢\ qar T 84U,
We have thus arrived at the optimization problem
dF
max EY! |:— log —},
du

1

(6)

dF
st. FellR): FkU;, —

au, eM,.

Uj

The value (6) gives a lower bound on (5). Since the set M, has a maximum element y in
convex order, the problem (6) has a trivial solution EQ[— log(dP/dQ)]. This corresponds to
the solution to (5) using Gibbs’ inequality.

The fact that the two values (5) and (6) are the same is not a coincidence and holds more
generally for composite nulls, which we will prove in Theorem 4.2. With a composite null,
the main difficulty arises from solving (6), because the set M, has a complicated structure,
and may not contain a maximum element in convex order.

As explained in Example 4.1, the first step to solving (3) is to impose the further condition
that X is of the form (dG/dF)(Y) for some F, G, Y. As a consequence of Gibbs’ inequality,
this does not affect the optimal value of (3), as shown in the following result.

THEOREM 4.2. Assume (JA) and (AC). There exists a maximizer X to (3) of the form
X =(dG/dF)(Y), where F,G e TI(R),and Y € T((Py, ..., Pr, Q),(F,..., F,G)).

The fact that the log-optimal pivotal and exact e-variable is a likelihood ratio is quite
aesthetically appealing, a phenomenon that is known to be true without the restrictions of
pivotality and exactness Griinwald, de Heide and Koolen (2024), Larsson, Ramdas and Ruf
(2024), but in this more general case F could be a sub-probability distribution.

Given X = (dG/dF)(Y) where Y € T((P1,..., PL, Q), (F, ..., F,G)), we may rewrite

E9[log X1 =E? [mg(j—g(n)] =EC [— log d—F].

As a consequence of Proposition 2.3, the optimization problem (3) is equivalent to finding

dF
max [EC [— log —],
; dG
) drF dr dP; dpP;,
S.t. F,GeH(R):(—,...,—)‘ 56,((—,...,—)‘ .
dG dG /g do do /o

More generally, since x — —log x is convex on its domain, we may formulate the problem
of optimizing E¢[¢(dF /dG)] for all convex function ¢ : R, — R. In other words, let y
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be the law of (dP;/dQ,...,dP./dQ) under Q and introduce the set M, of probability
measures supported on Izr that is smaller than y in convex order, and our goal is to

max [ in =,
(®)
st. ueM,.
This will be the goal of the present section. The reader should keep in mind that unfortunately,
even if (8) allows a unique maximum element, it does not necessarily solve (3) uniquely when
the logarithm in (3) is replaced by other concave functions. This is because Theorem 4.2
requires Gibbs’ inequality, where the logarithm plays a crucial role.

4.2. Existence of the maximum element in convex order. To ease our presentation, we
will assume further that

N) y from (4) does not give positive mass to any hyperplane in R~ .

That is, for every half-space H € R¥, y (3H) = 0. This is a technical assumption which
greatly simplifies our proofs (as we will explain in Remarks 4.6 and 4.8), and we expect that
analogous results hold without such an assumption.

PROPOSITION 4.3.  Let y be a probability measure on Ri with mean 1. Consider x > 0.
There exists a closed half-space H, of RE and a measure v, supported on H,, such that:

(i) the positive diagonal T, ¢ H,;
(i) —1 € H,;
(iii) x1 € ol = H, NHS, where H, is the closed complement of H,;
(iv) the measure e :=y — iy is supported on HS, and the barycenters of wyx and pupye
both lieon . '

In this case, we call 0H, a separating hyperplane at x. Moreover, if (N) holds, there exists a
unique measure |y satisfying the above conditions, in which case it also holds that pxy =y |m,

and pge =y |me.

We remark that if y has a strictly positive density on RZ, then the above H, is unique.
Recall from (8) that our goal is to find the maximum element in M, in convex order.

THEOREM 4.4. Assuming (N), the following are equivalent.

(a) There exists a unique maximum element i in convex order in M, that is, |l <cx ¥
and for each v supported on T with v <. y, it holds that v <¢x .

(b) The class of measures {1y} x>0 from Proposition 4.3 is monotone (in the usual order),
thatis, forall x <y, py < py.

EXAMPLE 4.5. Suppose that L = 1. It is clear from the proof of Proposition 4.3 that
condition (b) in Theorem 4.4 is always satisfied. Therefore, the maximum element p in M,,
always exists. This agrees with Example 4.1, where the likelihood ratio maximizes the e-
power.

REMARK 4.6. The only place we used our assumption (N) is on the uniqueness of the
measure [, in Proposition 4.3. When there is no uniqueness, the condition (b) in Theorem 4.4
needs to be replaced by the existence of a monotone selection of measures {jty} x>0, €ach of
them satisfying the conditions in Proposition 4.3.
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supp p

suppy

FI1G. 2. lllustration of Theorem 4.7. The convex set I is enclosed by the red contour 1" on which y (the law of
(dP1/dQ,dP,/dQ) under Q) is supported. The measure ( is supported on the thick segment on the diagonal T.

The condition (b) in Theorem 4.4 is in general not easy to check, especially in higher
dimensions.” Later, we supply a sufficient condition in Section 4.3, and a few examples in
Section 4.5.

4.3. A sufficient condition in case |P| =2. When L =2, we provide a sufficient con-
dition for the class of measures {u},>0 to satisfy the monotonicity condition x <y —>
tx < fy. In view of Theorem 4.4, this condition implies the existence of the maximum ele-
ment u. We keep the same setting as in Section 4.2 and assume (N), with the exception that
L=2.

THEOREM 4.7. Assume (N), (JA), (AC). Suppose that there exists a convex set I' C R2
such that y (oI") = 1.5 Then there exists a unique maximum element [ in convex order in
M, . Moreover, u is the unique probability measure on the Iz+ with ([0, x]%) = e (R?),
where [y was given in Proposition 4.3 applied with L = 2. In particular, there exist distinct
measures F, G € I1(R) such that (dF/dG,dF/dG)|c = K, attaining the maximum in (7).

A pictorial illustration of Theorem 4.7 is given by Figure 2.

REMARK 4.8. With essentially the same arguments, we may remove assumption (N)
from Theorem 4.7. With the presence of atoms, selecting any monotone collection {ty}x>0
would be enough; see Remark 4.6.

4.4. On multiple observations. Before we proceed, let us discuss the case with multiple
data points. Suppose that instead of one data point, we observe n i.i.d. data points Zy, ..., Z,
in the space X from the experiment. The e-variable is built based on the n data points together
instead of a single data point. In other words, given P = {Py,..., P.} and Q = {Q}, we
build an e-variable for P" := {P[', ..., P/'} that is pivotal, exact, and has nontrivial e-power
against Q" := {Q"}. We first see that, as long as Q ¢ P and P is linearly independent, at most
two observations are needed to build a pivotal and exact e-variable based on Theorem 3.1.
Furthermore, without linear independence of ‘P, a finite number of observations would suffice
when the underlying space X is Euclidean.

3In this paper when we mention “dimension” we typically refer to the dimension of the null, but not the dimen-
sion of the underlying space X.
OThis assumption is far from being necessary, but might be convenient to verify.
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THEOREM 4.9. Suppose that X is an Euclidean space and Py, ..., Py are distinct prob-
ability measures on X. If Q € I1(X) satisfies Q ¢ P ={Pi, ..., PL}, then there exists k > 1
such that Q% ¢ SpanP* (and in particular Q% ¢ ConvPX). Moreover, if we also assume that
0 satisfies (AC) and that Py, ..., Py are linearly independent, then either Q ¢ SpanP or
Q? ¢ SpanP? (or both); in particular, either Q ¢ ConvP or Q? ¢ ConvP? (or both).

In the last claim above, one can show that neither the linear independence condition nor
(AC) can be removed. The proof of Theorem 4.9 is put in Section C of the SM, which relies
on the following fundamental fact: If X is an Euclidean space and Pi, ..., Py are distinct
probability measures on X, then there exists k > 1 (possibly large) such that P, ..., Pf
are linearly independent. This fact may be known, but we are not aware of a proof in the
literature, and we present it as Lemma C.3 in the SM. The weaker statement that there exists
k for which Q% ¢ Conv/P* also follows from Lemma 2 of Berger (1951).

EXAMPLE 4.10. Suppose that P, =~ Ber(0.1), P» ¥ Ber(0.2), and Q0 < Ber(0.3). We
explained in Example 3.6 that an exact nontrivial e-variable does not exist. Nevertheless,
Theorem 4.9 implies that QO ¢ Span(P?, P22), and hence an exact and nontrivial e-variable
exists for a batch of two data points. An example of such an e-variable X is given by

1.009 for w = (0, 0);
X(w)~ 10939 forw=1(0,1),(1,0);
1.338 forw=(1,1).

Let us denote by £, the maximum e-power with n data points for P"* against Q" using a
pivotal and exact e-variable, similarly as in (3).

PROPOSITION 4.11.  In the setting above, suppose that (AC) and (JA) hold, and Q ¢ P =
{P,...,Pr}. Foranyn,m e N, {4, > £,, + £y, In particular, £, /n converges to a positive
limit less than or equal to minpcp EQ[log(dQ/dP)].

The above proposition formalizes the straightforward observation that constructing an e-
value using m + n points is potentially more powerful than multiplying two e-values together
that were constructed separately using m and n points, respectively.

Is there a loss of e-power caused by imposing exactness or pivotality?. The superadditivity
property established in Proposition 4.11 implies in particular that £,» /2" is increasing in n.
The intuitive reason of the increase in the average e-power is partly due to the fact that the
pivotality constraint becomes less restrictive for a higher number of observations. To see
this, imagine laws P € P with a complicated entangled overlapping structure. To achieve
pivotality, we need to send all laws P simultaneously to a single distribution F, the ways
of which may be quite limited due to the overlapping structure.” On the other hand, with
multiple observations, the laws P", P € P have much fewer overlapping parts than P € P
do (for instance, P°°, P € P are mutually singular), meaning that there are more ways to
achieve pivotality.

It remains an open question whether £,,/n — minpcp EQ[log(dQ /dP)]. Note that this
conjectural limit can be different from minpcconyp EQ[log(dQ /dP)] because the linearity
structure is lost after taking powers. If the above question is answered in the affirmative,

7For instance, if P € P all have disjoint support (no overlap), the transport map can be picked independently
on the disjoint supports to send P to F, but this is not possible of P € P all have the same support.
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then the loss of e-power vanishes asymptotically, by noting that n minpcp E€[log(dQ/dP)]
is an upper bound on the theoretical best e-power for testing P" against Q" (see Exam-
ple 4.1). In Example 4.13, we present a setting of Gaussian distributions in which ¢,/n —
minpcp EQ[log(dQ /dP)] holds true. We conjecture that this limit holds true in general, but
we did not find a proof.?

4.5. Examples. The condition in Theorem 4.7 that y = (dP;/dQ,dP>/dQ)|g is sup-
ported on the boundary of a convex set is not very restrictive. When Py, P>, O € I1(R), the
vector of density functions ((dP;/dQ)(x), (dP»/dQ)(x)) forms a parameterized curve in R?
by x € R. In certain nice cases, such a curve lies on the boundary of a convex set. We illustrate
with a few examples below.

law law

EXAMPLE 4.12. Consider P; a N(-1,1), P, ~ N(1,1),and Q ~ N(O, 1). It follows
from a direct computation that

dP; dP; e _
©) yz(—,—)‘ (et )
a0 40/, £UN.1)

which is supported on the hyperbola {(x1, x3) € ]R%r | x1x2 = 1/e}, the boundary of the convex
set {(x1,x2) € Ri | x1x2 > 1/e}; see Figure 3 for an illustration. By Theorem 4.7, there exists
a unique maximal element x4 in M, in convex order.

Using the notation from Proposition 4.3, it is easy to see that H, = {(x1, x2) € R? | x1 +
x2 < 2x} and py = y|m,. Moreover, Theorem 4.7 yields that p is the unique probability
measure on Z* with

1
(10) 1([0, x1%) = 2®(log(v/ex +/ex2 —1)) =1 for x > NG

e
where @ is the Gaussian cumulative density function. It can be directly seen from the
figure below that points x, y € R are shrunk to a single point precisely when the points
(e*=1/2 ¢=*=1/2) and (¥~ 1/%, e=¥~1/2) are symmetric around Z. This happens if and only if
x = —y. In other words, the most powerful pivotal e-variable is a function of |Z|, where Z is
the observed data point. Using Example 4.1 on testing the simple hypothesis |Z]| ay |E + 1]
against |Z| fay ||, this e-variable is given by X = 2¢'/2/(e? + ¢~ %) = ¢'/2cosh(Z)7!,
and the e-power is E€[log X] ~ 0.125. In the sequential setting where i.i.d. observations
Zi,...,Z, are available (treated in the next example), we effectively reduce the filtration
generated by Z1, ..., Z, to the one generated by |Z|, ..., |Z,|. This corresponds to the in-
tuition that taking absolute value transports Pj, P, to the same measure but not for Q, and
indeed this is the optimal solution to (7).

EXAMPLE 4.13.  We consider the setting in Example 4.12 but instead of one data point,
we observe n i.i.d. data points Zy, ..., Z, in the experiment. Here, we build an e-variable
based on the n data points together instead of building an e-variable for each data point;
this allows for more flexibility than Example 4.12. In this setting, Py = N(—1,,, I;;), P, =

8The argument in Example 4.13 is analytical. On the other hand, numerical verification of this conjecture re-
mains a challenging task due to drastic extremal values of the Radon—Nikodym derivatives (in high dimensions,
almost all mass of (dP" /dQ")|p» concentrates near 0 or c0), exponential time complexity, and the slow conver-
gence of ¢, /n. We leave it as an open problem to design a more efficient iterative algorithm for this problem (or
more generally, computing numerically the best e-power in high dimensions), or to prove that one cannot exist.
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Fi1G. 3. Anillustration of Example 4.12: y is supported on the hyperbola x1xy = e~ 1 the optimal | is supported
on the red ray. Dashed arrows indicate the reduction of filtration.

N@1,, I,), and Q =N(,, I,,), where 1, =(1,...,1) e R", 0, = (0,...,0) € R", and I, is
the n x n identity matrix. It follows from a direct computation that

)= (dﬂ, ﬁ)‘ (o512, 2|

do do/lp
which is very similar to (9). Using a similar argument as in Example 4.12, the most pow-
erful pivotal e-variable is given by E, = ¢"/? cosh(}_7, Z:)~'. Note that this is different
from the sequential one built in Example 4.12 which is E = e/? [T, cosh(Z;)~!. The
contrast between E, and E is interesting to discuss. On the one hand, E, has better e-
power than E; since E, > E; due to the log-convexity of the cosh function. This is intu-
itive, as E effectively tests more null hypotheses such as N(u, I,,) for p € {—1, 1}" than
E,. On the other hand, n — E; is a martingale under both P; and P», but we can check
that n — E, is not a martingale under either P; or P;. In Section 5, we will compare the
e-power of the two approaches numerically, and in Section 7, we further discuss test martin-
gales. Finally, we note that £, /n = E€[log E,]/n — 1/2 = min;—; » E€[log(dQ/dP;)]/n,
and hence the upper bound in Proposition 4.11 is sharp. On the other hand, E9[log E /n=
1/2 —EQ[logcosh(Z)] ~ 0.125.

EUNO

EXAMPLE 4.14. Let us examine some further sufficient conditions with L = 2. Consider
P, P>, Q € TI(R) such that P, P, <« Q and dP;/dQ € CZ(R) for i =1, 2. Recall that a
simple C 2 parameterized curve (x(¢), y(¢)) in RR? lies on the boundary of a convex set if and
only if its curvature

X y// _ y/ X"
T @+ 0D

is always nonnegative or always nonpositive (Theorem 2.31 of Kiihnel (2015)). Therefore,

(dP1/dQ,dP>/dQ) lies on the boundary of a convex set if

<dP1>/<dP2>” <dP1)”<dP2>/
do do do do
remains of a constant sign. As a simple example, this is the case if P;, P>, Q are Gaussian

distributions on R with different means but the same variance, or with the same mean but
different variances. In particular, this recovers Example 4.12.
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More generally, suppose that Pj, P>, Q have densities pi, p2, g € C2(R) where ¢ is
strictly positive, and denote by W( fi, ..., f;) the Wronskian of f1,..., f,. Then we have
the further sufficient condition that

W((p1/q)', (p2/q)') #0 everywhere,

or equivalently, W (py, p2,q)(x) # 0 for all x € R. By the Abel-Liouville identity (Teschl
(2012)), this is the case if p1, p2, g form a fundamental system of solutions of the ODE

¥® =ap(x)y® +ar; (x)y " + ap(x)y

for some continuous functions ¢; : R — R, 0 <i <2.

In Section D of the SM, we show how to instantiate and employ Theorem 4.4 to an in-
law

structive example where P = { Py, P>, P3} and Q = {Q}, where P; Ay N0, 1), I), P, ~

law

N((—+/3/2,—1/2),1), P; Ay N((+/3/2,—1/2), 1), and Q ~ N((0,0), I), as well as some
other simple examples (such as distributions with bounded support and Q being uniform).

5. The SHINE construction. The current section develops the SHINE construction
(Separating Hyperplanes Iteration for Nontrivial and Exact e/p-variables), that effectively
produces a pivotal nontrivial exact e/p-variable via separating hyperplanes (see Proposi-
tion 4.3, which is the key to our construction). Unless otherwise stated, we follow the setup
of Section 4.

The first goal of the SHINE construction is to solve the optimization problem (8). In the
case where the condition in Theorem 4.4 is satisfied, the construction outputs the maximum
element. When the maximum element u does not exist or when the condition (b) in Theo-
rem 4.4 is hard to check, we provide a reasonable maximal element p in convex order. In the
second part of the SHINE construction, we recover the corresponding e/p-variable from the
output  in the first part. The two parts are respectively illustrated in Sections 5.1 and 5.2.
Relevant simulation results will be provided in Section F of the SM.

5.1. Description of the SHINE construction. Start with @ = 8¢, xfo) =1, and uﬁo) =y

from (4). At step s > 0, we are given pu®, {x(s)}1<k<zv and {M/ES)}1<I<<2V For each k, we ap-

(s)

ply Proposition 4.3 to the sub-probability measure w; ~ at the point x;; ) This yields a unique

decomposition of /L( ) into two measures, each having a barycenter on Z*. Denote them by

/LgskHl) and ;L(SH) For 1 <k <251 define x( s+D) bary(,u(s+ ). Finally, let x©*1 be the

probability measure having mass ;L(SH)(RL) on ka+ ) for every k, that is,
2s+l1
1
(11) ,u(s—i-l) — Z /1'](:+ )(RL)SXI((‘“)'
k=1

The output of the SHINE construction at step s is the measure ). We refer to Figure 4 for
an illustration in dimension L = 2.

It is easy to see that each ;1*) is centered at 1 and supported on Z+. Moreover, 1) <¢x ¥
by Strassen’s theorem because 1) is the aggregation of barycenters of different components
in the decomposition of y. By Markov’s inequality, the sequence {11} is tight and allows a
weak limit. In fact, an even stronger assertion can be made. Define {X;} as the coupling of
the first coordinate of {4} such that Xo = 1 and at each s > 0, for j = 2k — 1, 2k,

(:Y*H)(RL)
(Y+1)(RL) + M(Y+1)(RL)

(12) P(Xspr =2V X =x) =
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2
ug Lo

FI1G. 4. An illustration of the SHINE construction in dimension L = 2. Suppose that the measure y is supported

on the region enclosed by the red contour, where bary(y) = (1, 1). In the first step of the SHINE construction, we

use Proposition 4.3 to find a line £1 through (1, 1) that partitions y into two parts ,ugl) and ,uél), each of whose

barycenters lies on the diagonal. In the second step, we find a line £y through xil) = bary(u(ll)) that partitions

ugl) into two measures ugz) and ,ugz), each of whose barycenters lies on the diagonal, and similarly a line (3.

We then proceed iteratively.

By construction,

(s+1) (s+1) (L (s+1) (s+1) (L (), () L ()¢, 6+ L (s+1) mL
Xy Mo (RY) +xy" g (RY) =207 1y (RY) = 7 (g -y (RY) + gy (RT)).
It can thus be checked by direct calculation that E[ X1 | X5 = x,gs)] = x,ﬁs), meaning that
{ X} forms a nonnegative martingale, and hence converges a.s. to some X , by the martingale

convergence theorem. We call { X} the SHINE martingale (associated with y). Denote by
the law of X1 = (X0, ..., Xoo). Then pu <« y by Lemma 2.1(ii).

REMARK 5.1.  The first step of the construction, that is, after finishing step s = 0, already
contains a proof of Proposition 3.3, because &1 # ,u(l) =cx ¥. Nevertheless, the ideas behind
the original proof of Proposition 3.3 extend to the composite alternative scenario.

EXAMPLE 5.2. Suppose that L = 1, that is, we have simple null P versus simple alter-
native O, where P ~ Q. In this case, Proposition 4.3 applies trivially: for each s > 0 and

1 <k <27, the measure /L,(f) is decomposed into

(s) _ (s+1D) s+ . () (s)
M= ot F R I 0 baryuf) T baryul®).00°

As in (11), this results in a sequence of laws {(n®) s>0 on R that are increasing and smaller
than y in convex order. This is closely related to a martingale decomposition theorem by
Simons (1970): if we denote by {Z,}s>0 the natural martingale coupling of {/L(s)}sz(), then
Z; — Z a.s. for some Z that has law y. In other words, the e-variable obtained from the
SHINE construction converges to dQ/dP a.s. under both P and Q.

THEOREM 5.3. Assume (JA) and (AC). For any s, we have u® <¢ pnStY, and if
w® £ S+ then the inequality is strict, meaning that the above SHINE construction makes
progress at each step. Further, assuming (N), it produces a sequence of measures that con-
verges almost surely to a maximal element  in convex order in M,,. In this case, if there
exists a maximum element L, then the output of our SHINE construction converges to [4g.
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When we apply the construction in practice, we need to stop at finitely many steps, so we
will not always obtain an exactly maximal element. Later in Section 5.3, we show that the
e-power from the kth step in SHINE converges exponentially to the optimal value produced
by SHINE, with a rate that can be made explicit given mild moment conditions.

We note in particular that Lemma E.2 of the SM together with Theorem 5.3 yield that the
construction always gives an atomless measure p in the limit.

With the presence of atoms, the decomposition given by Proposition 4.3 is not necessarily
unique when applied to our construction. The degree of freedom of each .y is the measure
on the hyperplane dH,. To describe a well-defined construction, we need to specify iy |am,
uniquely for each x. Analyzing the maximality of the output remains a technical task, which
we do not discuss in this paper.

5.2. Recovering explicitly an e/p-variable. We aim first to recover our e-variable X,
which we recall from Theorem 4.2 is of the form X = (dG/dF)(Y), where Y € T ((Py, ...,
Pr,0),(F,...,F,G)) and F, G come from our SHINE construction. We have seen from
(11) and (12) that at the sth step, our construction leads to a canonical martingale coupling
of 1) and y that couples the mass [L]((S-H) (RL)3X(5+1) with ,u,(fﬂ). We denote the martingale
coupling by (Ajg, ['y), which is a random VCCtOI’kOf dimension 2L. Under assumption (N),
we know further that the measures { ,u,(f)} 1<k<2s are mutually singular, and hence (Ag, I'y) is
backward Monge, that is, in the backward direction we have Ay = h(I'5) for some h. Since
(P, ..., P, Q) is jointly atomless, we may apply Proposition 2.4 to find a simultaneous
transport map Y € T ((Py, ..., Pr, Q), (F,..., F, G)) such that for each x € X,
g—g(Y(x)) x1= h(?(x), s dﬂ(x)).

0 dQ
This leads to
dpP dP;,

-1 o ar
(X (x)) xl_h(dQ ), ..., 0

For example, the sth step of the construction gives explicitly
dP; dP;,
T (x )7 ceey T
do do

Note that the measures F', G can meanwhile be reconstructed from Lemma 2.5, and further
Lemma H.4(i) of the SM if one requires F = Uj. In this case, Y is the valid p-variable as

desired, which can be effectively described by the MOT-SOT parity of Wang and Zhang
(2023).

(x)), xeX.

(s+1)

13) (X)) ' x1=h(ExS) if( (x)> esuppul ™, xe X

EXAMPLE 5.4. Suppose that we are in the setting of Example 4.12, with P; ay N(-1, 1),

law law

P, ~ N(1,1),and Q ~ N(0, 1). Recall (9). By symmetry of y, it is clear that the separating
hyperplanes H, in the SHINE construction are given by H, = {(a, b) : a + b < 2x}. In the
first step of the construction, we locate the barycenters of the measures y|m, and y |ge. By
direct calculation, we obtain bary (y |p,) &~ 0.713 x 1 and bary(y |H€) ~ 1.743 x 1. Using (13),
the corresponding e-variable has the form

1403 if x| < log(v/e + Ve — 1);

X0 = 0.574 if |x| > log(v/e + e —1).

The resulting e-power E9[log X] is approximately 0.089. (One may compare this to the max-
imum e-power 0.12543, which can be directly computed from (10).) In general, we may
construct X in multiple steps.
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5.3. Convergence rate of SHINE. We complement Theorem 5.3 with the following result
on the convergence rate of the e-power given by the SHINE construction. Recall from (7) that
the e-power is given by E2[—log X ], where {X}} is the SHINE martingale.

THEOREM 5.5. Assume the same conditions as in Theorem 5.3. Suppose that there exists
& > 0 such that

r/7dpP:\2+e
(14) E? (d—Qj> :| <00 forsome j,
and
of dpj - ./
(15) E (dQ ) :| <00 forsome j'.

Consider the e-power EPy := EQ[— log X ] where { X} is the SHINE martingale. Then there
existr € (0, 1) and C > 0 such that

EP,, — EP; < Crk,
where EPs = E[—log X o] and Xy — Xoo a.s.

Our result relies on a particular feature of the SHINE martingale { X} produced by (12).
Intuitively, the martingale { X} has a binary tree representation, and the legs in the tree never
intersect with other legs at all levels. In this way, one gains control of the fluctuations of
the martingale from its values at previous times. The key step to proving Theorem 5.5 is
the following convergence rate of the L2 Wasserstein distance. In particular, this exponen-
tial convergence applies to the Simons martingale introduced by Simons (1970); see also
Example 5.2.

LEMMA 5.6. Suppose that the SHINE martingale { Xy }k>0 satisfies E[| X0 |?e] < o0 for
some € > 0 where X, — X a.s. Then there exist r =r(e) < 1 and a constant C > 0 (where
C may depend on ¢, the law of | Xy — X 1|, and E[lXoolerg]) such that

E[(Xi — Xo0)?] < Cr-.
If X is uniformly bounded, one can pick r < 0.827.

Lemma 5.6 immediately implies EP,, — EP; < Cr¥ for some r < 0.827 if dpP;/dQ
for each j is bounded above and bounded away from 0. The proofs of Theorem 5.5 and
Lemma 5.6 are collected in Section E of the SM.

6. Composite null and composite alternative. Our goal in this section is to extend The-
orems 3.1 and 3.4 to composite alternative, that is, when |P|, |Q| > 1. A full characterization
of the existence of (exact and pivotal) nontrivial p/e-variables is provided in the case where
both P and Q are finite. We also discuss the general case where P, Q are infinite, including
a few open problems.

6.1. Existence of an exact and pivotal p/e-variable for the finite case. We start with the
case where P, Q are both finite. That is, given P = {P,..., Pr} and Q ={Q1,..., Om}
such that (JA) holds, we characterize equivalent conditions for the existence of an (exact and)
nontrivial e-variable (or p-variable).

THEOREM 6.1. Assume (JA). Suppose that we are testing P = { P, ..., PL} against Q =
{01, ..., Oum}. The following are equivalent:
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(a) there exists an exact (hence pivotal) and nontrivial p-variable;

(b) there exists a pivotal, exact, bounded e-variable that has nontrivial e-power against Q;

(¢c) there exists an exact e-variable that is nontrivial for Q;

(d) there exists a random variable X that is pivotal for P and satisfies F ¢ Conv(G1, ...,
Gwm), where F is the law of X under every P € P and G is the law of X under Q; for
l<j=<M,

(e) it holds that Span(Py, ..., PL) NConv(Q1q,...,Ony) =9.

Furthermore, the equivalence of (c) and (e) does not require (JA).

THEOREM 6.2.  Assume (JA). Suppose that we are testing P ={Py, ..., PL} against Q =
{01, ..., OQum}. The following are equivalent:

(a) there exists a nontrivial p-variable;

(b) there exists a bounded e-variable that has nontrivial e-power against Q;
(¢c) there exists an e-variable that is nontrivial for Q;

(d) it holds that Conv(Py, ..., Pr) NConv(Q1,..., Qu) = 2.

Furthermore, the equivalence of (c¢) and (d) does not require (JA) or finiteness of P and Q.

REMARK 6.3. The equivalence of (¢) and (d) in Theorem 6.2 is a special case of Kraft’s
theorem, which we recall from (1). Note that here we do not require that P and Q are finite,
but only the existence of a reference measure R dominating P U Q. To see that Kraft’s theo-
rem implies the equivalence of (c¢) and (d) in Theorem 6.2 in case P or Q is infinite, suppose
that (c) holds. It follows that E2[X] > 1 > EP[X]forall P € P and Q € Q. Kraft’s theorem
implies the existence of some ¢ > 0 such that dry(ConvP, ConvQ) > ¢, and in particular,
(d) holds. On the other hand, if (d) is true, then Kraft’s theorem yields ¢ > 0 and X satis-
fying (1). A suitable linear transformation Y of X then satisfies EQ[Y]> 1 > EP[Y] for all
P € P and Q € Q (we may assume Y is positive since X is bounded by construction), and
the rest follows from the following Proposition 6.4, which will be proved as Proposition A.2
in the SM.

PROPOSITION 6.4. Assume the same setting as Theorem 6.2. Let X be a (pivotal and
exact) bounded e-variable for P that is nontrivial for Q. Then there exists a (pivotal and
exact) bounded e-variable for P that has nontrivial e-power against Q.

COROLLARY 6.5. Suppose that we are testing P against Q, where P and Q are convex
polytopes in I1. Denote by { P, ..., P.} (resp. {Q1, ..., Qum}) the vertices of the polytope P
(resp. Q) and assume that (P, ..., Pr, Q1, ..., Qum) is jointly atomless. Precisely the same
conclusions in Theorems 6.1 and 6.2 hold.

PrROOF. This follows immediately from Proposition A.1 of the SM. [J

COROLLARY 6.6. There exists a (pivotal and exact) e-variable nontrivial for O if and
only if there exists a (pivotal and exact) e-variable that has nontrivial e-power against Q.

PROOF. This is a direct consequence of Theorems 6.1 and 6.2, and Proposition A.5 of
the SM. O

EXAMPLE 6.7. Fix0<gq| <gy <1andlet P ={Ber(q;)} and @ ={Ber(p) |g2 < p <
1}. Corollary 6.5 then provides an exact nontrivial e-variable (or p-variable). Nevertheless,
such an exact nontrivial e-variable (or p-variable) would not exist if we replace P by {Ber(p) |
0<p=ql
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Due to the complication of convex order in higher dimensions, it remains a challenging
task how to generalize Theorem 4.7 and the SHINE construction to the composite alternative
case.

6.2. Infinite null and alternative. We first state a weaker version of Theorem 6.1 when
both P and Q may be infinite but allow a common reference measure.

THEOREM 6.8. Assume that there exists a common reference measure R € I1(X) such
that P < R for P € P and Q < R for Q € Q. There exists an exact bounded e-variable X
for P against Q satisfying infpco E€[log X] > 0 if and only if 0 ¢ SpanP + ConvQ, where
the closure is taken with respect to the total variation distance. If Q is tight, then we have the
further equivalence to SpanP N ConvQ = &.

Note that we have put a stronger assumption on the e-variable X (infpecg EC[log X] > 0)
than having nontrivial e-power against Q (for all Q € Q, E9[log X] > 0). Theorem 6.8 can
thus be seen as a sufficient condition for the existence of an exact e-variable that has nontrivial
e-power against Q. Dealing with pivotal p-variables appears beyond the techniques of this
paper.

We pose the open problem of characterizing the existence of pivotal, exact, and nontrivial
p/e-variables with P, Q infinite. For instance, in a very close direction, we pose the following
conjecture, strengthening Theorem 6.8. We expect that the theory of simultaneous transport
between infinite collections of measures will be helpful.

CONJECTURE 6.9. Suppose that P and Q are collections of probability measures on X
with a common reference measure. Assume also that (P, Q) is jointly atomless.” There
exists a pivotal and exact e-variable X satisfying infpcg E¢[log X] > 0 if and only if

0 ¢ SpanP + ConvQ, where the closure is taken with respect to the total variation distance.

Our next result shows that surprisingly, even in simple settings where P and Q are seem-
ingly distant, an exact e-variable may not exist.

PROPOSITION 6.10. Let P be an infinitely divisible distribution on R with a density p.
Consider P := {Py}ycgra that are the shifts of the measure P, where Py has density p(x —0).
Let Q be any distribution on R with a density q. Then for each Q that contains Q, there
exists no exact e-variable for P that is nontrivial for Q.

Note that here we have reached a slightly stronger conclusion than the forward direction
of Theorem 6.8, that even an unbounded e-variable would not exist. The absolute continuity
of Q cannot be removed. For instance, if Q has a mass at x € R?, X = 1 + 8, would be an
exact e-variable that is nontrivial for { Q}.

A particular instance of interest is when Q is Gaussian. In this case, Gangrade, Rinaldo
and Ramdas (2023) proved that for the set of all Gaussians (of all means and all covariances),
there does not exist an e-variable with nontrivial e-power, even nonexact. Thus, our result
is stronger in that it allows for a much smaller P that just includes all translations of any
single Gaussian, but it is weaker in that it only shows that an exact e-variable with nontrivial
e-power does not exist.

We conclude this section with the following example that shows pivotal and exact p/e-
values exist for a classic statistical problem. Technically, the construction below does not
require any of our previous results, but it leads to a SOT of infinite dimensions.

9If P or Q is infinite, this can be defined in a natural way as in Definition 2.2.
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EXAMPLE 6.11. Let P be the class of all symmetric distributions on R with no mass
at 0, and Q the class of distributions Q on R satisfying Q(R;) > 1/2. A typical case in
applications is to test whether the difference ¥ — X of pre-treatment measurement X and
post-treatment measurement Y is symmetric about 0. Many possible pivotal e-values for n
observations can be built based on the signs, the ranks, and the sizes of the data; see Ramdas
et al. (2020), Vovk and Wang (2024). For instance, with one observation, a simple e-value
is given by X (w) =3/2 if v > 0 and X (w) = 1/2 if w < 0, which is exact. Note that X is
also pivotal since X simultaneously maps P to the uniform distribution on {1/2, 3/2}. If one
allows for additional randomization using a uniform distribution on [0, 1], then

u/2 if w > 0;

X(@,u) = !(u 02 ifw<o, ‘SO

is a nontrivial exact p-value.

7. On the existence of nontrivial test (super)martingales. From here on, for ¢ €
{1,2,...}, let Z" denote (Zy,...,Z,), which represents data on X', and let F by default
represent the data filtration, meaning that 7; = o (Z").

A sequence of random variables Y = (Y;),>¢ is called a process if it is adapted to F, that
is, if ¥; is measurable with respect to F; for every . However, Y may also be adapted to a
coarser filtration G; for example, o (Y") could be strictly smaller than ;. Such situations will
be of special interest to us. Henceforth, F will always denote the data filtration, and G will
denote a generic subfiltration (which could equal F, or be coarser). An F-stopping time 7 is
a nonnegative integer-valued random variable such that {r <t} € F; for each r > 0. Denote
by T r the set of all F-stopping times, excluding the constant 0 and including ones that may
never stop. Note that if G € F, then Tg C T . In this section, P is a set of measures on the
sample space X*°.

Test (super)martingales. An integrable process M is a martingale for P with respect to G if
(16) E”[M; | G-1]= M-

for all > 1. M is a supermartingale for P if it satisfies (16) with “="relaxed to “<”. A (su-
per)martingale is called a test (super)martingale if it is nonnegative and My = 1. A process
M is called a test (super)martingale for P if it is a test (super)martingale for every P € P.
The process M is then called a composite test (super)martingale. We say that M has power
one against Q if E2[log M,] — oo under all Q € Q.

Itis easy to construct test martingales for singletons P = { P}: we can pick any Q < P, and
then the likelihood ratio process (dQ/dP)(X") is a test martingale for P (and its reciprocal is
a test martingale for Q). In fact, every test martingale for P takes the same form, for some Q.

Composite test martingales M are simultaneous likelihood ratios, meaning that they take
the form of a likelihood ratio simultaneously for every element of PP. Formally, for every
P € P, there exists a distribution Q¥ <« P and satisfies M; = (dQ* /dP)(X"). Trivially, the
constant process M; = 1 is a test martingale for each P, and any decreasing process tak-
ing values in [0, 1] is a test supermartingale for each P. We call a test (super)martingale
nondegenerate if it is not always a constant (or decreasing) process. Nondegenerate test su-
permartingales do not always exist: their existence depends on the richness of P.

On the existence of nondegenerate test (super)martingales. 1f P is too large, there may be
no nondegenerate test martingales with respect to F. To explain the situation, suppose that P
contains only measures of iid sequences with marginal distributions in a set P™" C T1(X).
Examples of the nonexistence phenomenon include the case when P™" is the set of all mean-
zero subGaussian distributions Ramdas et al. (2020), all log-concave distributions Gangrade,
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Rinaldo and Ramdas (2023), or all Bernoulli distributions Ramdas et al. (2022). In all these
cases, nondegenerate test martingales have been proven to not exist, at least in the original
filtration F. Sometimes, nondegenerate test supermartingales may still exist, as in the sub-
Gaussian case. But if P™¥ is too large or rich (as in the exchangeable and log-concave cases),
even nondegenerate test supermartingales do not exist.

However, the situation is subtle: in the above situations, there could still exist nondegen-
erate (or power one) test (super)martingales in some G C F. Indeed, for the exchangeable
setting described above, Vovk (2021) constructs exactly such a test martingale in a reduced
filtration. It is a priori not obvious exactly when shrinking the filtration allows for nontrivial
test (super)martingales to emerge, and how exactly one should shrink F (the relevant filtra-
tion G is not evident at the outset).

Our results for (exact) e-variables have direct implications for the existence of test (su-

per)martingales. For simplicity, consider the i.i.d. case, where each Z; % p for some
P eP™or P e Q" thatis, P={P® | P eP™}and Q={P®| P € QM¥}.

COROLLARY 7.1.  Let P™ and Q™" be subsets of [1(X) allowing for a common refer-
ence measure R € TI(X). If ConvP™ N Conv Q™ = &, then there exists a test supermartin-

gale for P that has power one against Q. If 0 ¢ (SpanP™ar 4 ConvQ™Mar), then there exists a
test martingale for P that has power one against Q.

The proof is immediate from Kraft’s theorem (see Remark 6.3) and Theorem 6.8, and does
not require the joint nonatomicity condition (JA). The conditions on P and Q imply that an
(exact) e-variable (based on ¢ sample points for any ¢) exists for P that is powerful against Q
by Corollary 6.5. We can form our (super)martingale by simply multiplying these e-values
for t = 1 (thus constructively proving the corollary).

We conjecture that the converse direction in the above corollary also holds, perhaps with
some additional conditions; in other words, we conjecture that if a test martingale for P has
power one against Q, then the span of P™" does not intersect Q™. (To explain why we can-
not directly invoke the reverse directions of our theorems, it is possible that the construction
of the e-variable at step ¢ can use information about the distribution gained in the first r — 1
steps. In short, there (of course) exist test (super)martingales that are not simply the prod-
ucts of independent e-values, and ruling those out requires further arguments, for example,
presented in the subGaussian setting by Ramdas et al. (2020).)

The first (supermartingale) part of Corollary 7.1 is closely related to the main result
by Griinwald, de Heide and Koolen (2024), albeit they require some extra technical conditions
in their theorem statement while relaxing the polytope requirement. The second (martingale)
part is new to the best of our knowledge, and is a key addition to the emerging literature on
game-theoretic statistics Ramdas et al. (2023).

REMARK 7.2. Let P™ = Conv({Py, ..., P.}) with L finite and suppose Q € SpanP™
but Q ¢ P™¥. By Theorem 3.1, there does not exist a nontrivial test martingale for P against
{Q°°} with respect to the original filtration. On the other hand, if (AC) holds, then by Theo-
rem 4.9, there exists a reduced filtration—in particular, formed by combining data points—
with respect to which a nontrivial test martingale exists.

8. Summary. This paper uses tools from convex geometry and simultaneous optimal
transport to shed light on some fundamental questions in statistics: when can one construct
an exact p/e-value for a composite null, which is nontrivially powerful against a composite
alternative? The answer, in the case where the null and alternative hypotheses are convex
polytopes in the space of probability measures, is cleanly characterized by convex hulls and
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spans of the null and alternative sets of distributions. Several other related properties, like
pivotality under the null, end up being central. For general null and alternative hypotheses
(which are not polytopes) that allow a common reference measure, we provide a further
characterization of the existence of an exact bounded e-variable that has a uniformly positive
e-power.

Our proofs are constructive when the alternative is simple, and in simple cases, we provide
corroborating empirical evidence of the correctness of our theory. A key role is played by the
shrinking of the data filtration (accomplished by the transport map which maps the composite
null to a single uniform). Implications for the existence of composite test (super)martingales
are also briefly discussed.

We mention some open problems along the way (see Conjecture 6.9 and Sections 4.4
and 7). For instance, it is of great interest to extend the SHINE construction to the composite
alternative setting.
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for pointing towards the convergence rate of the SHINE construction.

Codes used to generate simulation and numerical results can be found at https://github.com/Hun-
gryzzy/SHINE.

SUPPLEMENTARY MATERIAL

Supplement to “On the existence of powerful p-values and e-values for composite
hypotheses” (DOI: 10.1214/24-A0S2434SUPP; .pdf). The supplementary material Zhang,
Ramdas and Wang (2024) is devoted to the proofs and extra discussions. Section A contains
a few general results on the existence of p/e-values, followed by proofs of our main results
in Sections B—G, with the exceptions that Section D contains supplementary examples for
Section 4 and Section F contains simulation results for the SHINE construction. Section H
contains a few technical results that are used in our proofs.
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