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ABSTRACT: Regional warming and associated changes in hydrologic systems pose challenges to water supply manage-
ment in river basins of the western United States and call for improved understanding of the spatial and temporal variabil-
ity of runoff. We apply a network of total width, subannual width, and delta blue intensity tree-ring chronologies in
combination with a monthly water balance model to identify droughts and their associated precipitation P and temperature
T footprints in the Truckee–Carson River basin (TCRB). Stepwise regression gave reasonably accurate reconstructions,
from 1688 to 1999, of seasonal P and T (e.g., R2 5 0.50 for May–September T). These were disaggregated to monthly val-
ues, which were then routed through a water balance model to generate “indirectly” reconstructed runoff. Reconstructed
and observed annual runoff correlate highly (r 5 0.80) from 1906 to 1999. The extended runoff record shows that twentieth-
century droughts are unmatched in severity in a 300-yr context. Our water balance modeling reconstruction advances the
conventional regression-based dendrochronological methods as it allows for multiple hydrologic components (evapotranspi-
ration, snowmelt, etc.) to be evaluated. We found that imposed warming (38 and 68C) generally exacerbated the runoff defi-
cits in past droughts but that impact could be lessened and sometimes even reversed in some years by compensating factors,
including changes in snow regime. Our results underscore the value of combining multiproxy tree-ring data with water
balance modeling to place past hydrologic droughts in the context of climate change.

SIGNIFICANCE STATEMENT: We show how water balance modeling in combination with tree-ring data helps
place modern droughts in the context of the past few centuries and a warming climate. Seasonal precipitation and tem-
perature were reconstructed from multiproxy tree-ring data for a mountainous location near Lake Tahoe, and these re-
constructions were routed through a water balance model to get a record of monthly runoff, snowmelt, and other water
balance variables from 1688 to 1999. The resulting extended annual runoff record highlights the unmatched severity of
twentieth-century droughts. A warming of 38C imposed on reconstructed temperature generally exacerbates the runoff
anomalies in past droughts, but this effect is sometimes offset by warming-related changes in the snow regime.

KEYWORDS: Paleoclimate; Tree rings; Regression analysis; Hydrologic models; Climate variability;
Interannual variability

1. Introduction

Instrumental records over the past century have shown that
the seasonal discharge regime of rivers and streams in the
western United States varies substantially from year to year
in response to the varied impact of large-scale ocean and

atmospheric climate oscillations (Cayan et al. 1999; McCabe
et al. 2008, 2004). At the same time, climate model simula-
tions based on greenhouse warming show that moisture stress
in the western United States is likely to increase (Garfin et al.
2013; Seager et al. 2007), with possibly drastic transformations
of ecosystems and landscapes in the next decades as a conse-
quence of severe heat waves and their effects on forests
(Allen et al. 2010; Millar and Stephenson 2015; Trumbore
et al. 2015). Properly evaluating modern changes and the like-
lihood of future changes benefits from a historical perspective
that goes beyond the instrumental record to capture underly-
ing long-term dynamics that would otherwise be impossible to
detect (National Research Council 2006). The short instru-
mental record cannot fully capture the extent of hydroclimatic
episodes lasting several decades that have affected the Sierra
Nevada (e.g., Kleppe et al. 2011) and sometimes impacted
widely separate major river basins of the western United
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States simultaneously (MacDonald et al. 2008; Meko et al.
2012).

Record extension is used in water resource management to
improve estimates of average, extremes, and overall probabil-
ity distributions of hydroclimatic parameters (Salas et al.
2016). Proxy records derived from growth layers of long-lived
tree species have been used to augment time series of stream-
flow (Meko et al. 2001), precipitation (Gray et al. 2004), soil
moisture (Yin et al. 2008), snow water equivalent (Wood-
house 2003), Palmer drought severity index (PDSI) (Cook
et al. 2004), standardized precipitation index (Touchan et al.
2005), flood events (St. George and Nielsen 2003), and lake
levels (Bégin 2001).

Streamflow, or discharge, reconstructions have long been
applied in water resource studies to place the variability of
the instrumental period in a multicentury context (Meko and
Woodhouse 2011). They have also been applied for a context
on general circulation model (GCM) projections of future
droughts (Gray and McCabe 2010; Lutz et al. 2012), to iden-
tify ocean–atmosphere drivers of droughts and wet periods
(Brito-Castillo et al. 2003; Hu et al. 2023) and to help decipher
the causes of the rise and fall of ancient empires (Chen et al.
2022). Streamflow reconstructions are generally produced by
statistical regression of a single hydrological parameter, such
as water-year-total river discharge, on tree-ring chronologies
or some linear combination of chronologies. The more ad-
vanced statistical models allow for special treatment of persis-
tence and quantification of the uncertainty of reconstruction
(Meko and Woodhouse 2011; Salas et al. 2015).

Reconstructing river discharge directly by regression of an
observed discharge series on tree rings has clearly not only
produced many useful reconstructions but also must be ulti-
mately recognized as a “black box” approach. A reconstructed
low annual discharge, for example, could be associated with
very dry and cool conditions or alternatively with moderately
dry and hot conditions. Statistics-only retrospective studies
also ignore possible changes in the watershed (e.g., vegetative
cover, channel morphology, and seasonality of climate) that
change the relationship between moisture sensed by the trees
and runoff reaching the gauge (Biondi and Strachan 2012). A
promising new approach makes use of mechanistic watershed
models (Gray and McCabe 2010; Lutz et al. 2012; Shamir et al.
2020), which offer the flexibility to incorporate assumptions on
environmental conditions, to obtain spatially explicit recon-
structions, and to test the sensitivity of reconstructed discharge
to past watershed changes.

Such models have been recently applied in dendrohydrol-
ogy at annual (Saito et al. 2008), seasonal (Solander et al.
2010), and monthly (Gray and McCabe 2010) time scales and
can produce reconstructions of multiple components of the
water balance, including streamflow, actual evapotranspira-
tion, and snow water equivalent (Saito et al. 2015). The ability
to model snowmelt and its relationship to temperature is criti-
cal in the western United States, where snowmelt can contrib-
ute as much as from 1/2 to 3/4 of the total annual runoff
(Williams and Tarboton 1999) and where the snowmelt con-
tribution is likely to be altered under climate change scenarios
(Klos et al. 2014; Wieder et al. 2022). Climatological water

balance (WB) models that operate on a monthly time scale
and require only precipitation and temperature as time series
input are especially suitable for hydrologic reconstruction be-
cause the climate inputs can be derived from tree rings using re-
gression-based approaches. Widely used in dendrohydrology is
the McCabe–Wolock monthly water balance model (McCabe
and Wolock 2007; McCabe and Markstrom 2007), which has
been applied for interpretation of dendrohydrologic signals in
North America (Gray and McCabe 2010; Gangopadhyay et al.
2015) and North Africa (Meko et al. 2020).

In this paper, we apply the McCabe–Wolock WB model to
the tree-ring reconstruction of runoff in the Truckee–Carson
River basin (TCRB), at the boundary between Nevada and
California in the western United Sates. The TCRB was cho-
sen because of the societal importance of water supply in con-
nection with the Lake Tahoe basin, the Reno/Sparks urban
centers, the rural and native American communities in those
basins, and the multiple ecological services that depend on
TCRB freshwater. In addition, besides the availability of key
data, including hydrologic, climatic, and tree-ring records,
these basins have been the target of recent reconstructions of
natural flows by conventional methods (Biondi and Meko
2019; Harris and Csank 2023). We contrast two ways of recon-
structing annual runoff through a WB model. In the direct ap-
proach, the observed WB model output runoff summed over
the water year is regressed on tree-ring data in the reconstruc-
tion model. What we broadly refer to as indirect reconstruc-
tion of runoff is regression-based reconstruction of annual or
seasonal climate variables from tree-rings, followed by rout-
ing of those reconstructions}after temporal disaggregation,
if needed}through a WB model (e.g., Saito et al. 2008; Gray
and McCabe 2010; Meko et al. 2020). Indirect reconstruction
is more complicated than direct reconstruction but gives the
possibility of examining separate impacts of precipitation P
and temperature T on runoff variations. Briefly, the steps in
our implementation of indirect reconstruction are as follows:
1) seasonal total P and seasonal average T climate variables
are regressed on tree-ring data to get reconstructed P and T;
2) the seasonal climate reconstructions are statistically disag-
gregated to monthly values, which are routed through the
WB model to get monthly output runoff (and other water bal-
ance variables); and 3) WB model output is summed over
months to get the indirectly reconstructed annual runoff.

A challenge to indirect reconstruction is capturing seasonal
P and T signals with tree rings. To this end, our newly devel-
oped tree-ring network includes chronologies of total width,
subannual width (Griffin et al. 2011), and delta blue intensity
(Babst et al. 2016; Reid and Wilson 2020; Heeter et al. 2021;
Yue et al. 2023). Instead of attempting to reconstruct full-
basin runoff, we focus on “point” runoff, or the output of the
WB model at a specified latitude, longitude, and elevation.
The point might be a key location for contribution to basin
runoff, or be important for some other diagnostic reason (e.g.,
coordinates of a tree-ring site). We apply the WB model to a
set of selected points at a wide range of elevations and assess
whether the model runoff from one or more points effectively
summarizes the interannual variability of basin runoff as mea-
sured by natural flows from records at stream gauges. One
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objective of this paper is to evaluate whether a multivariable
tree-ring network can effectively reconstruct the seasonal pre-
cipitation P and temperature T needed as WB model input
for indirect reconstruction of runoff. A second objective is to
determine whether the runoff history, especially the record of
drought severity, differs appreciably depending on whether
generated by direct or indirect reconstruction. Finally, we
seek to illustrate how tree-ring data combined with WB
modeling can be used for clues to the sensitivity of runoff dur-
ing past droughts in the TCRB to changing temperature and
watershed conditions.

2. Data and methods

a. Study area

The TCRB is the combined basin of the Truckee (7900 km2)
and Carson (10000 km2) Rivers, which drain northeastward
from the Sierra Nevada near Lake Tahoe (Fig. 1). Elevation
ranges from more than 3000 m in the Sierra Nevada to less than
1200 m at the terminus of the Truckee River at Pyramid Lake
and of the Carson River in the Carson Sink. The TCRB in-
cludes the cities of Reno and Sparks, Nevada, as well as numer-
ous smaller cities and the highly developed recreation area

around Lake Tahoe. Water issues are a major concern in the
TCRB. More than 400 000 people depend on the flow of the
two rivers, with competing demands from municipalities,
agriculture, industry, and recreation (Bureau of Reclamation
2015, 2021). Steep climatic gradients related to elevation
characterize the basin. Mean annual precipitation ranges
from more than 180 cm in the high Sierra to less than 13 cm
in the Carson Sink and is about 81 cm at Tahoe City, at an el-
evation of 1908 m on the shore of Lake Tahoe (Bureau of
Reclamation 2015).

Most of the annual precipitation in the Sierra Nevada falls
as snow from November to April, but summer thunderstorms
sometimes deliver considerable localized precipitation (Bureau
of Reclamation 2015). Peak flows on the Truckee and Carson
usually occur in the spring runoff season (April–July) and are
driven by snowmelt, and occasional severe winter floods are
caused by rain on snow events (Bureau of Reclamation 2015).
Climate projections for western North America include as
much as a 68C increase in annual temperature by the year 2100,
with a corresponding shift to proportionally more of the annual
precipitation as rain (Christensen et al. 2007). An assessment of
projections from 12 different climate models suggests an increase
of more than 38C warming in the Truckee Basin (Bureau of
Reclamation 2021). Climate observations in the TCRB support

FIG. 1. Truckee–Carson Basin and locations of climatic stations and tree-ring chronologies. Climate network in-
cludes 73 GHCN precipitation and 32 temperature stations. Tree-ring network comprises 31 chronologies, but there
are fewer points because of multiple species or data types at some coordinates. The basin includes three of Nevada’s
largest cities (inset map), including Reno, with an estimated population exceeding 273 000 in 2022 (U.S. Census
Bureau 2024).
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incipient change. Between 1910 and 2008, the average annual
temperature at Tahoe City has risen more than 18C and the per-
centage of annual precipitation as snow has dropped from 54%
to 34% (Bureau of Reclamation 2015).

b. Tree-ring data

A network of 37 chronologies of total width, earlywood
width, latewood width, and delta blue intensity from multiple
tree species (Table S1 in the online supplemental material)
was assembled from the authors’ collections and the Interna-
tional Tree-Ring Data Bank (ITRDB 2023). The chronologies
are from 21 distinct tree-ring sites in the snow zone (above
1500 m) in the climate footprint of the TCRB (Biondi and
Meko 2019) and cover a common period of 1670–1999.
Screening for a minimum allowable sample size of 5 cores and
expressed population signal (EPS) of 0.85 (Wigley et al. 1984)
reduced the network to 31 chronologies and a common period
of 1685–1999 (Fig. 1; Table S1). For 6 of the 31 chronologies,
the EPS threshold was relaxed to 0.75 to allow better repre-
sentation of all four variable types and to include two tree
species (Tsuga mertensiana and Abies magnifica) known from
previous studies to have a strong snow signal (e.g., Gedalof
and Smith 2001; Lepley et al. 2020; Shamir et al. 2020; Littell
et al. 2023).

Core indices were calculated by fitting tree-ring measure-
ments with a 100-yr cubic smoothing spline (Cook and Peters
1981) and then dividing the measurements by the fitted curve.
Site chronologies were then computed as the biweight mean
of the core indices and variance-stabilized, following Osborn
et al. (1997), to remove possible variance trend due to chang-
ing sample size. These conventional steps of chronology de-
velopment were implemented using the dendrochronology
program library in R (dplR) software package (Bunn 2008).
Residual (autocorrelation removed) rather than standard
chronologies were preferred for subsequent analysis because
the standard chronologies have considerably higher autocor-
relation than annual precipitation streamflow records from
the TCRB.

c. Climatic data

Global Historical Climate Network (GHCN, version 4)
monthly precipitation (Peterson and Vose 1997) and monthly
mean temperature (Menne et al. 2018), with the maximum cov-
erage of 1870–2021, were downloaded for 73 precipitation sta-
tions and 32 temperature stations in the domain 37.58–42.08N
and 1178–1228W (Fig. 1; Table S2). These station records were
spatially interpolated for later use in WB modeling by inverse
distance weighting of standardized anomalies (Jones and Hulme
1996) to 20 WB modeling points distributed over the TCRB at
elevations between 1414 and 2779 m (Fig. 2; Table S3). Points
were selected with the objective of sampling high, medium, and
low elevations in the Truckee and Carson Basins. Eighteen of the
points are above the gauges providing natural flows, and both ba-
sins are roughly equally represented. Standardized anomalies
were computed using station means and standard deviations for
the reference period 1941–70. GHCN stations were required to
have no more than three (precipitation) or six (temperature)

missing years of data in any month of the year in the reference
period. Spatial interpolation made use of the nearest m stations
(m# 5) with data and resulted in a continuous record of monthly
GHCN P and T for 1870–2021 at each of the 20 modeling points.

The standardized monthly anomalies at the 20 points were
converted back to original units of P and T using PRISM data
(Daly et al. 2008) means and standard deviations appropriate
for the elevations and coordinates of the 20 points. Monthly
time series, 1895–2021, for P and T at the 20 model points
were downloaded with PRISM explorer (PRISM 2023), and
the long-term (1895–2021) monthly means and standard devi-
ations were applied for the conversion. The interpolated
GHCN monthly series were then truncated to start with cal-
endar year 1895 to avoid using data from an extremely sparse
GHCN station network in subsequent analyses.

d. Hydrologic data

Monthly full natural flow data for the Truckee River at
Farad (TRF), California; the East Fork Carson (EFC) River
near Gardnerville, Nevada; and West Fork Carson (WFC)
River at Woodfords, California (Fig. 2), were downloaded from
the California Data Exchange Center (CDEC 2023). These
data were summed into totals for the water year (October–
September). All three gauges cover water years 1939–2022 but
all begin in different years: 1906 for the TRF, 1923 for EFC,
and 1939 for WFC. The extremely high interseries correlation
(r . 0.97; 1939–2022) of these flow records supported statistical
extension of the TCRB natural flows back to water year 1906
from subsets of the three gauges (appendix A).

The resulting time series of TCRB water-year natural flow,
1906–2022, referred to from here on as “natural flow,” varies
greatly on annual and decadal time scales (Fig. 3a). Prominent
drought features are extreme single-year low flows in 1924,
1977, and 2021, as well as multiyear droughts in the 1930s and
late 1980s to early 1990s. Starting with 1977, the amplitude of
highs and lows increases, culminating in the swing from a re-
cord high in 2017 to near-record low in 2021.

Descriptive statistics of natural flow differ little between
the period with data at all three gauges and earlier years
(Table 1). The mean for 1939–2021 (0.9333 billion cubic me-
ters) is 3% higher than the mean for 1906–38. The standard
deviation increases by 8% from the earlier to the later period.
Natural flows are not significantly autocorrelated in any of the
three intervals examined.

e. Water balance modeling

The monthly water balance for a soil column can be
written as

RO 5 P 2 AET 2 DS, (1)

where RO is the total runoff, P is the precipitation, AET is
the actual evapotranspiration, and DS is the change in water
storage in the soil and overlying snowpack. The RO in Eq. (1)
is assumed to include surface and subsurface runoff.

Time series inputs required by the McCabe–Wolock WB
model, which addresses Eq. (1) at a monthly time step, are
monthly total P and monthly mean T. A small fraction of the
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monthly P is assigned to direct runoff, and the remainder is
subject to evapotranspiration from the soil column (Fig. B1).
The T influences evapotranspiration through potential evapo-
transpiration (PET), which is estimated by the Hamon equa-
tion (Hamon 1961). The T also affects the fraction of P
assigned as snowfall and the rate of melting of the snowpack.
The actual evapotranspiration (AET) depends on both PET
and the soil moisture. Excess soil moisture (above a specified
capacity) becomes surplus runoff.

An important setting in the WB model is the water holding
capacity (WHC), which depends on the depth and properties
of the soil. The vegetative cover would also be expected to in-
fluence WHC because the depth of soil responsive to evapo-
transpiration depends on rooting depth of plants. Output
of the model includes snow accumulation, snowmelt, soil
moisture, and runoff. The model equations are described in
detail by McCabe and Markstrom (2007) and are not repeated
here. Parameter settings specific to our study are given in
appendix B.

The WB model was run with P and T input for calendar
years 1895–2021 at 20 points distributed over the basin be-
tween elevations 2653 and 1414 m (Fig. 2; Table S2). All ex-
cept two points are above the three stream gauges used to

represent the natural flows (Fig. 2). Early calendar years
(1895–1904) of model output were discarded because of the
sparsity of the climate station network in early years, and to
allow for spinup of the WB model from initial conditions
(Gray and McCabe 2010). Water years 1906–2021 of model
output were used for subsequent analyses.

f. Reconstruction modeling and analysis of
reconstructions

Point RO for a selected representative point in the TCRB
(point 7 in Fig. 2) was reconstructed from tree-ring chronol-
ogies directly and indirectly through a WB model. The pre-
dictand y for direct reconstruction is the water-year total of
RO output by the WB model from input of observed P and
T at point 7. The predictand y for indirect reconstruction of
RO is observed seasonal total P and seasonal average mean T.
We statistically disaggregate the reconstructed seasonal
climate values to monthly values (appendix C) and route
those through the WB model to get the indirectly recon-
structed RO.

Although the regression predictand y is different for direct
and indirect reconstruction, the regression procedure we use
is the same. The two-stage procedure, versions of which have

FIG. 2. Stream gauge locations and points for WB modeling. Gauges, from north to south, are TRF, California;
EFC near Gardnerville, Nevada; and WFC at Woodfords, California. The 20 modeling points (Table S3) are broadly
classified by elevation as high, medium, and low. Point 7 (marked) is the focus of direct and indirect tree-ring recon-
struction of runoff.
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previously been applied in reconstructions of streamflow (e.g.,
Meko et al. 2001, 2007), is summarized in Fig. 4 and described
in detail in appendix D. Stage 1 is stepwise regression of y on
lagged tree-ring chronologies to convert each chronology into
a separate single-site reconstruction (SSR) of y. Stage 2 is multi-
site reconstruction (MSR) and consists of stepwise regression of
y on principal component (PC) scores of the SSRs to get a

final reconstruction model combining information from multi-
ple sites.

The regression approach includes two types of screening in-
tended to emphasize chronologies with a strong signal for y
and to lessen the chance of model overfitting. The full set of
SSRs is first screened to eliminate chronologies whose models
are weak or temporally unstable. Cross validation (Michaelsen
1987) and split-sample validation (Snee 1977) are applied in this
screening. The PCs of those SSRs are then screened if necessary
to reduce the size of the predictor pool for the MSR regression
model. We cap the size of this pool at no more than Nc/10 PCs,
where Nc is the number of years in the model calibration
period, and assign priority in screening to a higher absolute
value of correlation of a PC with y.

As an additional safeguard against overfitting, stepwise re-
gressions in stages 1 and 2 apply a cross-validation stopping
rule (Wilks 2019) to cut off entry of predictors. Entry is
stopped if an additional step would result in the decreased
skill of validation as measured by the reduction of error (RE)
statistic (Fritts et al. 1990). Further, an early segment of years
of y is withheld for independent validation of the reconstruc-
tion on data not used in any way for screening chronologies
or tuning models. Agreement of reconstructed and observed
RO is checked for this period by the Nash–Sutcliffe efficiency
(NSE; Nash and Sutcliffe 1970). We conduct an iterative exercise
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FIG. 3. Runoff history of Truckee–Carson Basin from natural flows and a WB model. (a) Z scores of full natural
flow sum for three gauges on Truckee and Carson Rivers and of WB model output runoff at point 7. The Z scores are
computed using 1906–2021 means and standard deviations. (b) WB model runoff for point 7 and averaged over
20 points (see Fig. 2). The 1939–99 segment of WB model runoff used for calibration of tree-ring reconstruction mod-
els is shaded green. Long-term means, plotted as horizontal lines in (b), and annotated correlations are computed on
the common period 1906–2021.

TABLE 1. Statistics of the observed full natural flow and
model output runoff for subperiods. The statistics are mean,
standard deviation, skew, and lag-1 autocorrelation computed
for the water year; units are billion cubic meters for flow and
millimeters for runoff.

Seriesa Interval Mean Std dev Skew r(1)

N. flow 1939–99 0.933 0.450 0.49 0.10
1906–38 0.905 0.415 0.59 0.06
1906–2021 0.905 0.461 0.87 0.08

Pt-7 RO 1939–99 726.1 290.8 0.36 0.20
1906–38 658.9 217.0 0.36 20.06
1906–2021 698.5 281.4 0.63 0.18

20-pt RO 1939–99 591.7 221.4 0.25 0.24
1906–38 528.3 162.0 0.16 0.06
1906–2021 563.6 213.8 0.49 0.24

a RO series are for point 7 and averaged over all 20 points (Fig. 2).
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in which the size of the pool of potential predictors for the final
model is varied from 1 to Nc/10, and we truncate the size of the
pool at the step preceding the first drop in NSE.

To emphasize fluctuations at decadal and longer time scales,
reconstructions are smoothed using a 15-weight Gaussian filter
(Mitchell et al. 1966) with a frequency response of 0.50 at wave-
length 17.2 years. Filter weights are listed in Table S4. Applied
to a random annual series, this filter gives a similar reduction in
variance as a 10-yr running mean. Accordingly, an estimated
95% CI was plotted on the smoothed reconstruction at
ŷs 6 1:96 RMSE/

����

10
√

, where RMSE is the cross-validation root-
mean-square error of the annual reconstruction.

One round of two-stage regressions was run for the direct
reconstruction of point-7 RO and four rounds for the indirect
reconstruction. The predictand for direct reconstruction is the
observed model-output RO. The regression predictands for
the indirect reconstruction models are total P and average T for
the cool and warm seasons October–April and May–September.
Reconstructions of seasonal P and T were disaggregated to
monthly data needed for WB modeling by partitioning the
seasonal values into monthly values proportional to monthly
distributions of observed P and T for analog years in the in-
strumental period (appendix C).

The accuracy of the regression models for reconstruction of
RO was summarized with calibration and validation statistics.
To facilitate comparison, all models are calibrated and cross
validated on the same years, 1939–99. This period is repre-
sented by a relatively dense network of climate stations for
GHCN interpolation and also by natural flows directly com-
puted from gauged flows (i.e., not extended). The period
1906–38 is held back for a purely independent check of model
performance with the NSE. Correlations and time series plots

are used to check agreement of direct and indirect reconstruc-
tions with each other and with previously published natural
flow reconstructions of the Truckee and Carson Rivers. Fi-
nally, the indirect reconstruction method is exploited to exam-
ine the sensitivity of the relative standing of past droughts to
two factors: 1) warming of 38 or 68C, which is consistent with
year-2100 projections for the TCRB (Bureau of Reclamation
2015) and western North America (Christensen et al. 2007);
and 2) a radical reduction (halving) of assumed available wa-
ter capacity. Analyses in this paper were done in a combina-
tion of the R, MATLAB, and FORTRAN programming
environments.

3. Results and discussion

a. Observed runoff history

The strong dependence of hydrology on elevation in the
TCRB is reflected in the 1906–2021 water-year statistics of
WB model input and output at the 20 model points plotted on
the map in Fig. 2. Mean P ranges from 1656 mm at the highest
point to 239 mm at the low point in Reno. The corresponding
RO for those two points is 1229 and 16 mm. For compari-
son, the mean annual basin runoff computed by dividing
the mean annual natural flow by the sum of the areas above
the three gauges providing the natural flows (Fig. 2) is 266 mm.
Both P and RO are highly spatially correlated, especially
at the higher elevations most important to runoff. The
median point-to-point correlation is r 5 0.97 for P and
r 5 0.87 for RO.

Spatial coherence of winter precipitation in the Sierra
Nevada explains the high point-to-point correlations noted
above. Another likely contributing factor is the inverse-
distance interpolation of station P to points; interpolation
effectively acts as spatial smoothing of station anomalies. Re-
gardless of the cause, the similarity of times series variations of
P and RO at the various model points led us to focus tree-ring
reconstruction on a single representative point (point 7) lo-
cated 2 km off the southwestern shore of Lake Tahoe at an el-
evation of 2190 m (Fig. 2; Table S2). Scaled for differences in
mean and standard deviation, RO at point 7 closely tracks
TCRB natural flows (Fig. 3a) as well as RO averaged over all
20 points (Fig. 3b).

b. Regression

Regression models for all five predictands}water-year RO
and cool-season and warm-season P and T}are statistically
significant, explain at least 34% of the predictand variance
(adjusted R2), and have positive skill as measured by cross
validation (Table 2; Fig. S1). The number of chronologies
contributing to the nonrejected SSR models ranges from 17
for RO to 5 for cool-season T (Table 2). The tree-ring signal
is strongest for runoff and cool-season P (adjusted R2 . 0.70),
which is reasonable for drought-sensitive trees in a region
with a winter-dominant precipitation regime, but for even the
weakest model (cool-season T, adjusted R2 5 0.34), the re-
gression is highly significant (F5 11.5; p, 0.0001; Fig. S1d).

FIG. 4. Sketch illustrating two-stage regression procedure applied
in direct and indirect reconstruction. Steps after the estimation of
SSR’s comprise the MSR, which includes PCA of the SSRs fol-
lowed by regression with the PC scores as predictors. Both SSR
and MSR include loops for cross validation and split-sample valida-
tion, as described in the main text and appendix D.
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The skill statistics RE and NSE do not have theoretically
based significance tests, but a positive statistic indicates that
the reconstruction has lower mean-square error than a null
reconstruction consisting of the calibration-period (RE) or
validation-period (NSE) observed mean in every year. The
five models have positive skill of cross validation (RE . 0)
and, except for cool-season T and warm-season P, have posi-
tive skill of validation (NSE . 0) on the early period, 1906–38
(Table 2). Observed and reconstructed predictands are signifi-
cantly correlated (p , 0.01) except for the cool-season T
model over 1906–38. Given a sample size of 33 years, the critical
correlation for significance at p , 0.01 is r 5 0.47 (r2 5 0.22)
based on the normal distribution and the estimated variance of
a correlation coefficient computed as a function of degrees of
freedom (Wilks 2019).

Although all models cross validate, the performance in the
held-back years (1906–38), as judged by NSE and r2, suggests
that our tree-ring data have no useful signal for cool-season T
and a questionable signal for warm-season P. Analysis of re-
siduals for the five MSR regression models turned up just one
flag (Table 2).

The SSR results for warm-season T (10 models accepted)
are especially encouraging for indirect RO reconstruction be-
cause T in the warm season impacts RO through evapotrans-
piration. A map of adjusted R2 for these SSR models shows
that chronologies with a significant signal for warm-season T
at point 7 are widely scattered, with no obvious geographical
proximity to point 7 (Fig. 5). The sign of regression weight on
the first predictor to enter stepwise for 8 of the 10 accepted
models for warm-season T indicates a negative relationship of
T with the tree-ring variable and for the other two models in-
dicates a positive relationship (Table S5). The eight tree-ring
chronologies negatively related to warm-season T are width
variables (total, earlywood, or latewood) and lags are impor-
tant in their regression models. Lag t 1 1 tree-ring index was
the first to enter stepwise, with a negative sign, for seven of
the eight models. This lag may reflect a snowpack-related
growth response: high growth in year t 1 1 following a deep
snowpack and cool summer in year t. This phenomenon has
been observed in previous studies (e.g., Lepley et al. 2020;
Shamir et al. 2020; Gedalof and Smith 2001).

Delta blue intensity is the tree-ring variable for the two
chronologies positively related to warm-season T, and lag-0
was the first lag to enter those models. The strongest warm-
season signal in the set of 10 accepted chronologies belongs to
delta blue intensity, with the SSR model for one chronology
explaining 40% of the variance of warm-season T at point 7 in
the 1939–99 calibration period (Fig. S5). Expanded networks
of blue-intensity chronologies could be valuable in future
studies applying WB modeling to study hydrologic droughts
with tree rings in western U.S. basins.

Screening resulted in a widely varying number of PCs in
the predictor pools for the MSR stepwise models (Table 2).
The NSE computed on data held back from calibration con-
sistently indicated that the predictor pool should be trun-
cated at fewer than six variables. This finding is illustrated
with the change in calibration and validation statistics for the
RO regression model (Fig. 6). Regression adjusted R2 and
cross-validation RE continue rising to a maximum pool size
of 6, but skill of independent verification in the held-back
period 1906–38 as measured by NSE peaks at step 5. Similar
results were found for the other four regression models, none
of which ended up with a predictor pool larger than five
(Table 2).

c. Runoff reconstructions

Long-term records of tree-ring chronologies, 1685–1999,
were substituted into the regression models summarized in
Table 2 to get direct and indirect reconstructions of RO with
a common period 1688–1999. Indirect reconstruction, unlike
direct reconstruction, does not constrain the reconstructed
and observed means of y to be equal for the calibration pe-
riod. The indirect reconstruction of RO has a slight negative
bias, 24.4 mm, or less than 1% of the observed 1939–99 mean
(726.1 m). We made no bias adjustment to the reconstruction
before subsequent time series comparisons and analyses.

The direct and indirect reconstructions closely track one
another and are highly correlated (r 5 0.93) over the 1906–99
period in common to reconstructions and observed model-
output RO (Fig. 7). The indirect reconstruction falls outside
the 50% confidence interval of the direct reconstruction in
25 of the 94 years 1906–99. The largest departures from the

TABLE 2. Calibration and validation statistics of stepwise regression models for reconstruction of RO, seasonal P, and seasonal T
at point 7. Statistics are adjusted R2, reduction-of-error, squared correlation of observed and reconstructed predictand for 1906–38,
and the NSE for 1906–38. All models are calibrated and cross validated on 1939–99. All the R2 values listed represent significant
models as measured by the p value for the overall F of regression (see Fig. S1).

Predictanda Screeningb R2 RE r2 NSE Flagsc

Runoff 17-5-3 0.71 0.70 0.42 0.31 None
Cool-season P 17-5-5 0.72 0.73 0.37 0.31 None
Warm-season P 14-1-1 0.41 0.40 0.28 20.01 None
Cool-season T 5-3-3 0.34 0.30 0.04 20.09 None
Warm-season T 10-4-2 0.50 0.49 0.57 0.39 Auto (p 5 0.04)
a Runoff is water year; seasons are October–April andMay–September.
b Number of SSRs passing screening, number of PCs of those SSRs in the pool of potential predictors, and number selected by stepwise
regression for the final model.
c Flags for failure of tests in analysis of residuals, with associated p value for rejection of null hypothesis: residuals were tested (see data and
methods) for normality zero lag-1 autocorrelation (Auto), homoskedasticity of variance, and linear trend (Trend).
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confidence interval are in 1998 on the negative side and in
1984 on the positive side. Both reconstructions are highly cor-
related (r $ 0.79) with observed RO, 1906–99. The correla-
tion with observed RO is slightly higher (r 5 0.85, direct;
r 5 0.87, indirect) for the 1939–99 regression calibration pe-
riod and lower (r 5 0.65, direct; r 5 0.59, indirect) for the
1906–38 period withheld from calibration.

Correlations of the observed model with reconstructed runoff
as well as the NSE for the held-back years 1906–38 suggest that
the direct and indirect reconstructions in this basin are compa-
rably accurate. The NSE slightly favors the direct reconstruc-
tion, but conclusions from statistics for the early twentieth
century are problematic because the thinning network of cli-
mate stations makes the interpolated climate at point 7 more
uncertain then (Table S2). Moreover, large year-to-year fluctua-
tions in runoff that would be expected to drive tree-ring re-
sponses are less common in 1906–38 than in later years (Fig. 7).

Direct and indirect reconstructions capture isolated single
dry years (e.g., 1924) as well as multiyear droughts, such as
the three consecutive years of low observed RO in 1959–61

(Fig. 7). The RO anomaly in specific years is sometimes
greatly underestimated (e.g., 1977) or overestimated (e.g.,
1988). Reconstruction error cannot be eliminated completely
because climate is only one of many factors influencing tree
growth (Fritts 1976). Moreover, even the observed runoff is
inherently uncertain because it was generated by an imperfect
hydrologic model whose input is spatially interpolated station
climatic data. The relative timing of precipitation and plant
processes governing tree growth could be important in ampli-
fying runoff reconstruction errors in particular years. For ex-
ample, in the 127-yr record of GHCN-interpolated precipitation
at point 7 (Table S6), water year 1977 had the record-low
October–April precipitation followed by the 13th wettest
May–June. The 1977 ring in many trees from our conifer collec-
tions in the Sierra Nevada is not unusually narrow. We speculate
that the absence of an appreciable snowpack in 1977 was com-
pensated for in some trees by the unusually high precipitation
near the start of the period of cambial growth.

Reasons for such large reconstruction errors can perhaps
be unraveled by diagnostic studies using daily climatic data

FIG. 5. Map showing chronologies whose SSRs pass screening for reconstruction of warm-season temperature
at point 7. Symbols sized proportional to the adjusted R2 of the SSR model and color coded for the sign of the first
predictor to enter the stepwise regression model. Analogous maps for the other four regression predictands (e.g.,
cool-season P) are included in Fig. S2.
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(Jevšenak et al. 2024), process models of tree growth (He et al.
2017), and hydrologic models operating at a daily time step
(Shamir et al. 2020). The accuracy of our runoff reconstruc-
tions as measured by regression calibration statistics is compa-
rable to that of streamflow reconstructions in the semiarid
West from widely varying tree-ring networks and statistical

reconstruction approaches (e.g., Meko et al. 2001; Wise 2010;
Margolis et al. 2011; Biondi and Meko 2019; Harris and Csank
2023), but errors could possibly be reduced in future studies
by expansion of the TCRB tree-ring network to include more
chronologies. Errors in dry years could be addressed, for ex-
ample, with total-width chronologies from the exceptionally
precipitation-sensitive blue oak (Quercus douglasii) species
(Meko et al. 2011), which are below the elevations of deep
snowpack but within the climate footprint of the basin (Biondi
and Meko 2019). Errors of indirect reconstruction could possi-
bly be reduced by taking advantage of tree-ring variables
capable of better resolving seasonal or subseasonal climate
anomalies in precipitation and temperature. Our network in-
cludes just a few chronologies of subannual width and delta
blue intensity. More of these could be developed from existing
wood collections for better spatial coverage of the basin.
Quantitative wood anatomy might also be explored for im-
proved reconstruction of subseasonally resolved climate inputs
(Panyushkina et al. 2003; Gennaretti et al. 2022). A shortcom-
ing of our indirect RO reconstruction model is the lack of an
independently verified signal for T variation in the cool season
(Table 2). The signal could possibly be improved by allowing
the predictor pool for the model to include existing cool-
season T reconstructions derived from large-scale tree-ring
networks (e.g., Wahl et al. 2014).

Smoothed direct and indirect reconstructions are strongly
coherent (r 5 0.91) over their full length and are broadly con-
sistent with previously published reconstructions (Fig. 8). The
twentieth century has lower lows and higher highs than earlier
centuries at this level of smoothing. The most prominent ex-
tended earlier periods of high and low runoff are centered
near 1780 and 1810, respectively. Peaks and troughs in the
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FIG. 7. Tracking of observed point 7 runoff by direct and indirect reconstructions, 1906–99. Confidence interval
(50%) of the direct model is plotted at ŷ 6 0:674 49 RMSE, where ŷ is the reconstructed runoff and RMSE is the
root-mean-square error computed from cross-validation residuals. The horizontal line marks the 1906–99 mean
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direct and indirect reconstructions generally coincide but
sometimes differ considerably in amplitude. For example,
peaks near 1700 and 1838 are relatively amplified in the direct
reconstruction, and troughs near 1707, 1822, and 1844 are
relatively amplified in the indirect reconstruction.

A low-frequency feature highlighted by all four reconstruc-
tions plotted in Fig. 8 is the unmatched low runoff in the
1930s. Runoff peaks near 1700, 1745, 1907, and 1983 and lows
near 1780, 1844, 1933, and 1988 are major features in all four
reconstructions. A high in the 1740s and a low in the 1840s
are less pronounced in our reconstructions than in the other
reconstructions. Differences in reconstructions could arise
from use of different forms of the reconstruction statistical
model, differences in tree-ring networks, or differences in the
target model predictand. Our network is restricted to chronol-
ogies in the snow zone of the Sierra Nevada, but the other
two reconstructions (Fig. 8b) draw on a broader spatial net-
work of chronologies, including Quercus douglasii from lower
elevations in California (Meko et al. 2011). Our reconstruc-
tions differ from previous reconstructions also in that we in-
clude delta blue intensity and subannual width chronologies
and lags in the regression models.

The annual series corresponding to the smoothed series
plotted in Fig. 8 are also strongly coherent. Direct and indirect

reconstructions are significantly correlated with one another
(r 5 0.89; N 5 312; p , 0.01) and with the reconstructions for
the Truckee and Carson Rivers (Fig. S3).

d. Drought history comparison

Drought severity was summarized by running means of
length 2, 5, 10, and 20 years of reconstructed RO expressed as
a percentage of “normal,” which we define as the 1939–99 ob-
served mean (726.1 mm). The most severe drought in a partic-
ular interval by this measure is the lowest running mean with
an ending year in the interval. Droughts of 1688–1905 and
1906–99 serve as a convenient contrast between “twentieth cen-
tury” and “earlier” droughts because the reliable “observed”
model-output RO and the natural flow series for our study both
begin with water year 1906.

Maximum drought severity by direct and indirect recon-
structions for the twentieth century and earlier years is sum-
marized in Fig. 9. Direct and indirect reconstructions agree
the most severe droughts occurred in the twentieth century.
This result is consistent with previous tree-ring studies
highlighting the severity of twentieth-century droughts in
nearby regions in a multicentury context (e.g., Meko et al.
2001, 2011).
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FIG. 8. Consistency of smoothed reconstructed runoff variations for point-7 runoff with other published reconstruc-
tions. (a) Direct and indirect reconstructions of point-7 runoff and (b) Z scores of water-year natural-flow reconstruc-
tion of Carson River (Harris and Csank 2023) and Truckee River (Biondi and Meko 2019). All series truncated to
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tions. Smoothing by Gaussian filter (weights listed in Table S4). Corresponding annual time series (before smoothing)
are plotted in Fig. S3.
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The indirect reconstruction has slightly lower extremes
than the direct reconstruction for three of the four running
means, with a maximum difference of 2% for the 10-yr run-
ning mean. Lowest running means become less severe with in-
crease in averaging period. For the indirect reconstruction,
the low is 16% of normal for 2-yr droughts and 77% of nor-
mal for 20-yr droughts.

A closer look at ranked 2- and 10-yr extremes summarized for
the 1688–1999 reconstruction shows that the direct and indirect
reconstructions identify many of the same droughts but switch
the order of severity (Table 3). Six of the eight top-ranking 2-yr
droughts and 10-yr droughts in the two reconstructions are the
same, although with different ranks. For this assessment, the
10-yr droughts ending in 1829 (direct) and 1831 (indirect) are es-
sentially the same drought because they overlap by 8 years.

Although 1987–88, the extreme 2-yr drought in the direct
and indirect reconstructions, is indeed a low in observed RO
(Fig. 7), the severity is overestimated in the tree-ring record.
This overestimation is also reflected by the position of the
horizontal dashed observed line above the lowest bars for
2-yr running means by as much as 22% (Fig. 9). Regression-
based reconstructions are generally conservative in that the
variance of reconstructed y is less than that of observed y for
the calibration period. Reconstructed y anomalies in individ-
ual years, however, are not constrained by regression to be
less extreme than observed anomalies. The particular over-
stressing of drought severity in 1988 by these reconstructions
may reflect an amplified shock to the trees of one exception-
ally dry year following another. Drought legacy, which de-
scribes the multiyear impact of drought events on tree
growth (Peltier and Ogle 2019; Gazol et al. 2020), has been
used to explain the occasional inability of tree-ring chronol-
ogies in the TCRB to accurately track “whiplash” events,
such as an extremely dry year followed by an extremely wet
year (Winitsky et al. 2023).

e. Drought sensitivity analysis

Indirect reconstruction allows the possibility of testing the
sensitivity analysis of reconstructed runoff variations to as-
sumed past changes in P, T, or WB model parameters.
The sensitivity of the most extreme droughts, 1688–1905, to
two scenarios of warming and one of reduced WHC is sum-
marized in Fig. 10. The more extreme warming of 68C exacer-
bates the lows in RO by 6%–10%, depending on length of the
running mean. Decreasing the WHC by 50% has the opposite
effect of lessening the severity of the droughts. The effect of
decreased WHC is about a 3%–7% increase in RO, depend-
ing on length of moving average. For the longer droughts
(10- and 20-yr), halved WHC almost offsets the reduction of
RO caused by 68C warming (Table 4). Although the modeled

TABLE 3. Lowest 2- and 10-yr running means of point-7
runoff, 1688–1999, by direct and indirect reconstruction. Ending
year of running mean is followed by percentage of normal RO.
Normal defined as the observed mean RO (WB output) for the
1939–99 calibration period of the regression model or 726 mm.

2-yr 10-yr

Direct Indirect Direct Indirect

Rank Year % Year % Year % Year %

1 1988 (17.9) 1988 (16.4) 1937 (70.8) 1937 (68.5)
2 1795 (27.6) 1729 (36.3) 1994 (71.6) 1785 (71.3)
3 1777 (45.9) 1777 (37.2) 1785 (74.7) 1994 (72.5)
4 1934 (48.9) 1871 (38.8) 1850 (82.8) 1850 (77.7)
5 1729 (50.7) 1795 (39.4) 1831 (83.0) 1829 (79.5)
6 1783 (51.1) 1783 (48.8) 1802 (83.8) 1737 (80.0)
7 1961 (51.7) 1961 (49.3) 1738 (85.5) 1765 (83.4)
8 1977 (51.7) 1823 (49.4) 1865 (86.6) 1712 (83.8)
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FIG. 9. Three-century context for multiyear droughts by direct
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length 2, 5, 10, and 20 years for reconstructed water-year runoff at
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FIG. 10. Sensitivity of most severe indirectly reconstructed
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impact on RO of such an extreme warming seems slight in
terms of percentage of mean RO, 68C warming applied to the
period before the twentieth century would be enough to cause
RO anomalies during the most extreme 5-, 10-, and 20-yr
droughts in the 1700s to be more severe than those of the
twentieth century (Table 4). The milder 38C warming scenario

only slightly (,5%) exacerbates the RO anomaly for running
means of the reconstruction, with a decrease of less than 2%
in RO for the 10-yr running mean (Fig. 9).

The unexpectedly small decline in modeled running-mean
RO during some droughts in response to warming is ex-
plained by the impact of warming on the monthly snow re-
gime. This effect is illustrated by the 10-yr period 1776–85, the
second ranking low reconstructed running mean of that length
according to the indirect reconstruction (Table 3). In that in-
terval, 38C warming resulted in decreased RO in 6 years and
increased RO in 4 years. For the year of largest increased run-
off, 1779, the monthly RO, snowmelt, soil water storage, and
evapotranspiration are modified such that more P falls as rain
instead of snow in the winter and immediately runs off, leav-
ing less water soil water available for loss to evapotranspira-
tion in the later, warmer months of the year (Fig. 11).

Whether full-basin runoff in particular years would have in-
creased in response to 38C warming would require extension
of this sensitivity analysis from a single representative point
(point 7) to the full basin, as the snow-regime response to
warming would logically vary as a function of elevation and
the particular monthly P and T at the location. We acknowl-
edge also that results could change for alternative assump-
tions of parameter values for the McCabe–Wolock WB
model and for alternative hydrologic models (e.g., Shamir
et al. 2020; Grogan et al. 2022).
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FIG. 11. Monthly indirectly reconstructed RO, snowmelt, soil moisture, and evapotranspiration in water year 1779
with no change (NC) in T and with the imposed warming of 38C. Input WB-model monthly P and T for the NC
scenario in 1779 are plotted in Fig. S4.

TABLE 4. Impact of warming and reduced WHC on modern
context of droughts, 1688–1905.

Lengtha

RO changeb (%) End year

DT DWHC 1906–99c 1688–1905d

2 24.1 (28.9) 3.1 1988 –

5 24.7 (210.4) 6.6 1936 1798
10 21.6 (26.5) 6.3 1937 1785
20 22.0 (27.1) 5.4 1939 1795

a Length (year) of running mean.
b Change in RO expressed as a percentage of the 1939–99 mean
observed RO (726 mm) in response to assumed warming of 38C
(68C) (T) applied evenly to all months of year, 1688–1905, or
assuming halving (to 75 mm) ofWHC.
c Ending year of lowest reconstructedm-yr mean, 1906–99.
d Ending years ofm-yr means in 1688–1905 that drop lower than the
lowest running mean in 1906–99 because of 68C imposed warming.
No pre-1906m-yr running means dropped below the lowest observed
running mean in 1906–99 in response to a 38C imposed warming.
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The compensation for impacts of warming on RO by
warming-related changes in watershed conditions deserves
more attention. In our analysis, a 50% reduction in WHC was
found to more than offset an imposed warming of 38C. A
more complete sensitivity analysis would associate plausible
scenarios of change in WHC and other model parameters
with changes in vegetative and soil cover expected with warm-
ing. Systematic testing of multiple scenarios is beyond the
scope of this paper but should be a focus of future work using
WB models and indirect reconstruction.

4. Conclusions

Like many other river basins in the western United
States, the TCRB faces water management challenges exac-
erbated by increasing water demand and climate change. In
this paper, water balance (WB) modeling and regression
are applied to climatic data and tree-ring chronologies to
place runoff variations during severe TCRB droughts in a
long-term context. Results, consistent across reconstruction
approaches, indicate that extreme multiyear droughts of
the twentieth century are unmatched in severity back to at
least the late 1600s and suggest that a temperature increase
of 38C superimposed on the past would actually have
yielded a slight increase in annual runoff in some years of
past severe extended droughts because of a changing snow-
melt regime.

Runoff reconstruction in the TCRB through a monthly WB
model was possible with a limited available network of tree-
ring chronologies of various data types, including delta blue
intensity. Future studies would benefit from tree-ring data
with improved temporal resolution of P and T anomalies and
from extension of chronologies to cover droughts of the more
distant past (e.g., late 1500s) and the twenty-first century.
Given the importance of a changing snowmelt regime to the
runoff response to regional warming, an improved tree-ring
signal for cool-season T would be especially valuable. Runoff
reconstruction through WB models could find water resource
applications in other river basins, especially those lacking
long-time series of natural flow or whose gauged streamflow
records are distorted by dams and other human influence.
Whether part of the runoff reconstruction process itself, as
in this study, or as a complementary diagnostic tool, WB
modeling can contribute to a better understanding of the cli-
matic signatures of droughts and wet periods in the tree-
ring record.
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shire water balance model (Panyushkina et al. 2023). The
aforementioned data and software as well as additional sup-
plemental material can be accessed at the University of Ari-
zona Research Data Repository (https://doi.org/10.25422/
azu.data.25541590).

APPENDIX A

Extension of Natural Flows

This appendix describes the statistical extension of the
TCRB natural flows (three-gauge sum) from 1939 to 2022
back to 1906 from gauges with data before 1939. The nat-
ural flows for TRF, EFC, and WFC (Fig. 2) have starting
years 1906, 1923, and 1939. The extension was made us-
ing time series of natural flow summed over the water
year.

Assume a predictor series x, a predictand series y requir-
ing extension, an observation yi in a specific year i requiring
estimation, and a value xi of the predictor series in year i.
Further, define C as a reference period during which both x
and y have data. The following quantile-analog method was
used for estimation: The time series x and y for period C
are sorted, the quantile of xi in C is determined by linear
interpolation, and the same quantile of y in C is used as the
estimate of yi. This method was applied to extend WFC
back to 1923 from predictor EFC and to extend both WFC
and EFC over 1906–22 using predictor TRF. After exten-
sion of the individual records, the TCRB natural flow se-
ries, water years 1906–2022, was computed as the sum of
EFC 1 WFC 1 TRF.

APPENDIX B

Water Balance Model

This appendix contains additional details about the WB
modeling. The FORTRAN code for the WB model was ob-
tained from Greg McCabe (U.S. Geological Survey 2015,
personal communication) and was compiled and run on a
laptop with a Linux (Ubuntu) operating system using the
GNU FORTRAN 11.4.0 compiler. The model (Fig. B1)
runs at a monthly time step. We used the default program
settings of model parameters, listed below. For ease of ref-
erence, we use the same abbreviations for WB model terms
as McCabe and Markstrom (2007):

1) WHC 5 150 mm; water holding capacity of the soil (soil
moisture storage capacity)
Excess of soil moisture storage S above WHC in the
monthly accounting is allocated to runoff (RO). It is nec-
essary to assume an S at the start of the accounting
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(January of first year). The WB output for several years
after that can be distorted by incorrect specification of ini-
tial S (Gray and McCabe 2010). Our input monthly pre-
cipitation P and temperature T data start in January
1895, but we do not begin interpreting model output
until water year 1906. We assume initial saturation
(S 5 150 mm), which might be reasonable in the Sierra
Nevada. If WHC is exceeded in the monthly accounting,
the excess is assigned as “surplus.” For the sensitivity
exercise, the water holding capacity was halved, WHC 5

75 mm.
2) tsnow 5 24.08C; threshold T for snow

Below this threshold of monthly mean T, all P is snow,
or Psnow.

3) train 5 7.08C; threshold T for rain
Above this threshold of monthly mean T, all P is rain, or
Prain. Between a monthly mean T of train and tsnow, the
fraction of P as Prain varies linearly in proportion to the
fraction (T 2 tsnow)/(train 2 tsnow).

4) directfac 5 0.05; decimal fraction of Prain to direct runoff
This small fraction of total Prain is assumed to immedi-
ately (same month) contribute to direct RO rather than
to enter into the water balance of the soil column, no mat-
ter how dry that soil is.

5) rfactor5 0.50; runoff factor
The decimal fraction of surplus assigned to RO. All of the
surplus computed for a month is not assigned to RO in
that same month but is gradually released according to
this rule.

6) xmeltcoeff 5 0.47; daily melt coefficient
This coefficient along with the difference T 2 Tsnow deter-
mines what fraction of the snow water storage is assigned
to snowmelt runoff in the month. [Notation here is
taken from the FORTRAN program rather than
McCabe and Markstrom (2007).] The snowmelt is com-
puted as xmelt 5 xmeltcoeff(T 2 Tsnow)N, where N is
the number of days in the month. This equation can
yield an xmelt greater than the actual snow water stor-
age, and in that case, the entire snowpack is assumed to
melt (i.e., xmelt cannot exceed the existing snow water
storage).

APPENDIX C

Temporal Disaggregation of Reconstructed Seasonal
P and T

Temporal disaggregation in this paper is defined as the
conversion of a tree-ring reconstruction of seasonal total P
or seasonal average T into the monthly values needed as in-
put to the WB model for indirect reconstruction of runoff.
This appendix describes the analog method adopted for dis-
aggregation. Let ŷt be the reconstructed seasonal P, say,
covering water years 1688–1999, designated here as period B.
Assume that observed y and its monthly values are available
for a recent interval A, 1901–99, which overlaps B. Further,
let ŷk be the reconstructed seasonal P for some year prior to
A. For P, the analog method assigns the same monthly pro-
portions of seasonal p as the observed monthly proportions in
the “analog” year, defined as the year t in A with ŷt closest to
ŷk. For T, the monthly means in the analog year are shifted
by some constant (same for all months) so that the seasonal
average is the same as in the reconstruction year.

APPENDIX D

Two-Stage Regression

This appendix lists the steps in reconstruction of a predic-
tand y from tree-ring data by two-stage regression. The
same form of model applies to the indirect and direct re-
constructions of point-7 annual (water year) runoff gener-
ated in this paper. For direct reconstruction, y is the model
output RO from a water balance model using observed pre-
cipitation P and temperature T as model input. For indirect
reconstruction, y is either seasonal total observed P or sea-
sonal average T. Supplemental material ReconAnalogTCRB.
zip contains all input data, R scripts, and R functions needed
to carry out the regression modeling described in the main
paper.

1) Regress yt stepwise forward on the pool of five potential
predictors consisting of xt lagged 22 years to 12 years
from yt, where x is a residual tree-ring chronology and the
subscript t is a year. As each predictor enters, cross vali-
date the model by leave-nine-out cross validation}
preserves independence of calibration and validation sets
when model includes lags (Meko 1997). Entry is stopped
if next step fails to yield an increase in validation skill as
measured by the reduction of error (RE) statistic (Fritts
et al. 1990). All models in this paper were calibrated on
the years 1939–99 of y, except for the special case of posi-
tive lags in the final model and tree-ring data ending in
1999. In that case, the calibration period was necessarily
shortened to 1939–98 or 1939–97, depending on how
many positive lags.

2) Split the full calibration period in half and recalibrate the
model from the previous step on the first half and validate
on the second half and then exchange the calibration and
validation halves. Record the skill of split-sample valida-
tion by the RE statistic for each half.

FIG. B1. Simplified sketch of the WBmodel. Figure adapted from
McCabe and Markstrom (2007).
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3) Accept the model from step 1, only if the following four
conditions are satisfied: 1) full-period calibration is statis-
tically significant (p # 0.05 for regression overall-F), 2)
full-period model has skill (RE . 0) as measured by cross
validation, 3) both split-sample calibrations yield positive
RE, and 4) the final model is physically logical in that at
least one of the lagged predictors is nonnegative. This last
condition eliminates models that imply the current year’s
P, say, can be predicted from past year’s tree-ring index.

4) Repeat steps 1–3 for all 31 tree-ring chronologies, result-
ing in N1 # 31 single-site models passing screening.

5) Apply the N1 regression models to the long-term tree-ring
chronologies to generate N1 single-site reconstructions.

6) Run a principal component analysis (PCA) on the common-
period matrix of the N1 SSRs. The PCA is run on the co-
variance matrix of the SSRs because variance differences
among the SSRs are important. A high variance reflects a
strong signal for y in the chronology. The PCA yields N1

principal components (PCs) and a time series matrix of N1

PC scores.
7) Screen the matrix of PC scores, if needed, so that it in-

cludes just the N2 PCs most highly correlated (absolute)
with y if needed so that only the N2 # N1 most highly cor-
related (absolute value) with y are retained. As a safe-
guard against chance relationships and overfitting, only
the N2 # Nc/10 highest correlated PCs are retained, where
Nc is the number of years in the regression model calibra-
tion period. As described in the paper, we repeat regres-
sion analyses with N2 varying from 1 to Nc/10 and truncate
the size of the pool at the smallest size giving the maxi-
mum NSE when the model is applied to predict y for the
held-back period 1906–38.

8) Regress y forward stepwise on the PC scores from the
preceding step to get the final or multisite reconstruction
(MSR) model. Again, as with the SSR models, a cross-
validation (leave-nine-out) stopping rule is applied to avoid
adding predictors that do not increase validation skill.

9) Substitute the long-term PC scores into the MSR model
to generate the final reconstruction.
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