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Abstract: Changes in the hydrologic regime impose great challenges for grain production. We investi-
gated the impact of dry and wet extremes on the recent losses of crops in Severo-Kazakhstanskaya
Oblast (SKO), where 25% of Kazakhstan’s wheat is produced. We reconstructed the Palmer Drought
Severity Index (June–August PDSI) and average grain yields (with an explained variance of 48%
and 44%, respectively) using five tree ring width chronologies. The extended history of the moisture
variability and yields of spring wheat, oats, and barley shows the strong impact of hydrology, rather
than the heat, on the grain production. We defined three distinctive hydrologic regimes in SKO:
(1) 1886–1942, (2) 1943–1977, (3) 1978–2023. The early regime had fewer drought events, including
some that covered a single year. Their duration increased up to 3 years in the second period. The
latest regime is an extreme mode of hydrologic variability with events abruptly switching from
extremely dry to extremely wet conditions (called “whiplash”). The 21st century regime signifies
that the intensified and prolonged decade-long drought transitioned into pluvial condition. The new
regime created sizable instability for grain producers. This crop yield reconstruction denotes the
potential of the tree-ring proxy for understanding the impact of climate change on the agriculture
and food security of Central Asia.

Keywords: wheat; oats; barley; tree-ring reconstruction; Central Asia; food security

1. Introduction

Increased climatic variability and more frequent extreme weather raise concerns about
the sustainability of high crop yields in the near future [1–4]. In this study, we investigate
the impact of climate change on grain crop production in Kazakhstan. Kazakhstan is an
important producer of grains in Central Asia and a major exporter of wheat to Europe and
Asia [5]. In the Severo-Kazakhstanskaya Oblast (hereafter designated SKO), where 25% of
the country’s wheat is produced, wheat yields, particularly in the last two decades, have
increased significantly. In part, the recent high yields have been sustained by governmental
subsidies, higher quality cultivars, and improved harvesting technology. Nonetheless,
in the last 3–4 years, extremely cold springs, mid-summer heat, and extremely wet late
summers struck an agricultural industry that lost up to 50% of its grain crops due to
delayed or shortened developmental stages of the wheat phenology, which consequently
impaired the quality and quantity of the grain crop. Kazakhstan statistical services estimate
up to a 72% drop in wheat and barley yields for the marketing year 2023/24 in northern
Kazakhstan (https://fas.usda.gov/regions/kazakhstan, access on 10 April 2024).

The majority of studies on the impact of climate change on grain crops have focused
on the rising temperatures, extreme heat, and droughts that adversely affect plant growth
and development [4,6–10]. At a global scale, for each degree rise in temperature, wheat
production is estimated to decline by 6% [7]. In Eurasian breadbaskets, wheat at the
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grain filling stage is most vulnerable to the heat of extreme temperatures [11,12], while
high evapotranspiration during the wheat heading and flowering stages makes the crop
sensitive to drought [13]. Understanding the impact of soil moisture and precipitation
on grain yields carries a significant degree of uncertainty due to their dependency on
the phenological stage of the cultivated species. Experimental studies have attributed a
wide range of impacts from precipitation on the phenological stages of barley and oats by
measuring the adaptability of oats to excess moisture at an early growth stage (0–28 days
after sowing to grain filling) and the risky intolerance of barley to heavy rains [14]. Wheat
does not react much to water stress during the milk–grain stages, yet short-term flooding
significantly lowers photosynthetic activity, and, if it occurs during the stem elongation
phase, the flooding may lead to crop failure [15]. The consensus predicts that grain yields
would be reduced considerably if high temperature extremes and heavy precipitation
become more frequent [3,4,6,16]. The biomass accumulation of the grain depends not only
on temperature or precipitation but also on the interaction between the extreme weather
conditions and the reproductive and grain filling stages of plant growth [17,18].

The goal of this study is to estimate the impact of hydrologic regime change on
grain production in SKO, the breadbasket of Kazakhstan. SKO cultivates spring wheat on
2,567,603 ha, barley on 489,757 ha, and oats on 43,504 ha. Although wheat is grown over a
wide range of environments and climatic regimes [19], northern Kazakhstan is considered
a zone of extreme agroclimatic conditions for wheat production, since it is in a forest steppe
biome with mixed hydrologic regimes of arid steppe and mesic boreal forest (Figure 1).
Paradoxically, such complexity of the hydroclimate regime prompts the failure of wheat
crops that are affected by both moisture deficit and water excess. The sensitivity of wheat
crops to the impact of water stress is highly variable and depends on the phenological
stage of the plant, as well as the duration, intensity, and frequency of the water stress [20].
Forecasting long-term trends in crop productivity requires an understanding of the decadal
and multidecadal variability of hydrologic regimes in a particular area, since precipitation
is a highly variable parameter. We hypothesize that in SKO the frequency and duration
of extreme mesic and extreme arid conditions may control the trend in grain production.
In this paper, we use tree-ring width proxies to reconstruct the interannual, decadal, and
multidecadal variability of moisture and grain yields.

Tree-ring proxies have been successfully applied to reconstruct the yield of agricultural
crops under various agroclimatic states. In dendrochronology, the relationship between
the hydrologic regime (specifically droughts) and crop yields has been recognized from
the very early association of tree ring growth with the climate [21,22]. Surprisingly, up
to now there are very few well-calibrated reconstruction models for the yields of corn,
rye, and wheat from Central America, North Africa, Fennoscandia, South Siberia, and
China [23–28].

2. Materials and Methods
2.1. Study Area

Severo-Kazakhstanskya oblast (also called the Northern Kazakhstan region), the
capital of which is the city of Petropavl, is one of the principal producers of grain crops in
Central Asia. This administrative division of the Republic of Kazakhstan is approximately
600 km by 375 km (52◦ N–55◦ N latitude and 65◦ E–74◦ E longitude). It has a highly
productive chernozem soil, and its agroclimatic resources are favorable for the growth of
cereals, ligaments, oilseeds, and forage grasses [29]. The province is situated in a forest
steppe biome with small patches of temperate steppe to the southwest and southeast
(Figure 1a). There is a temperate continental climate. As observed at the Petropavlovsk
weather station (Figure 1b), the summer is warm (July +19.29 ◦C) with 60–70% relative
humidity, and the winter is cold (January −17.5 ◦C). The annual precipitation is 350 mm
with a summer maximum (July). The length of the pine growing season is about 3 months.
The season starts between March 28 and May 25.
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The climatology of the region is suitable for the cultivation of grains, especially wheat
(Triticum aestivum L.), oats (Avena sativa L.), and barley (Hordeum vulgare L.). The cultivation
of these crops requires the average sum of the active temperatures above 10 ◦C (SAT)
to be between 1500 ◦C and 1900 ◦C for ripening. The optimal temperature of the seed
germination is +7 ◦C–10 ◦C for spring wheat and +12 ◦C–16 ◦C for the other grains. The
SAT regime is critical for the first 16–29 days of grain growth, which occurs in June. The
optimum precipitation for grain growth is ca. 200 mm [29].
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plotted as the median (red horizontal line) over the interquartile range (blue box), and the red cross 
symbols are placed at values more than 1.5 times the interquartile range marked above or below the 
box. If there are no such outliers, the bracket marks the data extremes. The X-axis shows months 
from January (J) to December (D). 
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Table 1. Statistics of tree-ring width chronologies used in this study. 

# Site 
Code 

Coordinates Number 
Trees 

Span Length, 
Years  

EPS ≥ 0.85 
Start Year 

Interserial 
Correlation 

St. 
Dev. 

1 CRO 54.06° N 
69.10° E 

22 1850–2010 161 1877 0.69 0.42 

2 CBK 53.56° N 
69.31° E 

27 1842–2011 170 1856 0.62 0.31 

3 CSA 
52.62° N 
68.79° E 

30 1785–2010 226 1818 0.75 0.45 

4 * russ364 
53.44° N 
49.78° E 

33 1786–2014 229 1802 0.64 0.34 
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Figure 1. Geography and climate of the studied Severo-Kazakhstanskaya Oblast (SKO). (a) Ecological
map of Kazakhstan [30] (modified) and location of the modeling data: red triangles = weather stations,
and black circle = tree-ring sites from Tables 1 and 2. Blue marks the lakes. SKO mainly overlaps
with the forest steppe ecological zone. (b) Climagraph boxplot of Petropavlovsk weather station
(1933–2022). Note that Petropavl city used to have the name of Petropavlovsk and the weather
station still carries this name. Monthly precipitation (top) and temperature (bottom) are plotted as
the median (red horizontal line) over the interquartile range (blue box), and the red cross symbols are
placed at values more than 1.5 times the interquartile range marked above or below the box. If there
are no such outliers, the bracket marks the data extremes. The X-axis shows months from January (J)
to December (D).

2.2. Tree-Ring Data

In the reconstruction, we used five tree-ring width chronologies of Pinus sylvestris,
two of which were calculated from the cross-dated time series archived at the International
Tree-Ring Data Bank [31,32]. Three other chronologies were developed using the standard
techniques for wood sample preparation and cross-dating [33]. The tree-ring sites sampled
across SKO are about 400 km apart, and two sites are in the Russian Federation near the
border with Kazakhstan (Figure 1a map and Table 1).

The tree-ring index chronology was calculated with a biweight robust mean of the
detrended tree series. The detrending was completed with a cubic smoothing spline [34],
applied to the cross-dated ring width measurements. The chronology variance was stabi-
lized with the Briffa method [35], which accounts for the dependency of the variance on
the sample size of the chronology population. The chronologies included 22–33 tree series
and spanned between 161 and 229 years, ending in 2010–2014. Tree-ring chronologies were
computed in the ARSTAN program [36]. Residual versions with removed autocorrelation
(res) were used in the reconstruction modeling. The coherence of the tree-ring width
variance in a chronology (the averaged curve) was measured with the EPS (the expressed
population signal), which quantifies the degree to which a particular sample size represents
a hypothetically perfect chronology with unaffected variance due to the reduced sample
size in the early part [37]. The tree-ring index chronologies included in the modeling were
truncated to the EPS ≥ 0.85 interval.
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Table 1. Statistics of tree-ring width chronologies used in this study.

# Site Code Coordinates Number
Trees Span Length,

Years
EPS ≥ 0.85
Start Year

Interserial
Correlation St. Dev.

1 CRO 54.06◦ N
69.10◦ E 22 1850–2010 161 1877 0.69 0.42

2 CBK 53.56◦ N
69.31◦ E 27 1842–2011 170 1856 0.62 0.31

3 CSA 52.62◦ N
68.79◦ E 30 1785–2010 226 1818 0.75 0.45

4 * russ364 53.44◦ N
49.78◦ E 33 1786–2014 229 1802 0.64 0.34

5 * russ367 53.36◦ N
46.89◦ E 31 1799–2014 216 1803 0.57 0.31

* Chronologies from the International Tree-Ring Data Bank [31]. EPS is expressed population signal that quantifies
the sample size. St. Dev. is Standard Deviation.

2.3. Climate Data

Table 2 provides information about the two weather stations from SKO used in the
correlation analysis. The monthly data regarding precipitation (mm) and mean air tempera-
ture (◦C) measured at the Saumalkol weather station were obtained from the KazHydroMet
archive. The Petropavlovsk data are from the Global Historical Climate Network (GHCN),
version 3 [38], downloaded from https://climexp.knmi.nl (accessed on 15 November
2023). The two datasets start at 1966 and 1933, respectively, and were updated until 2022.
The monthly self-calibrated Palmer Drought Severity Index (scPDSI) was downloaded
from http://climexp.knmi.nl (accessed on 15 November 2023). The index is calculated
from the HadCRUT4 surface air temperature and precipitation over a calibration period
of 1950–1979 using local conditions [39,40]. The June–August scPDSI series of a grid of
53◦ N–54◦ N × 67◦ E–68◦ E over the period of 1947–2020 (98 years) was used for the tree
ring reconstruction model.

Table 2. Monthly climate data used in this study. #1 is temperature and precipitation from the Global
Historical Climate Network (GHCN), and #2 from the KazHydroMet. #3 is the self-calibrating Palmer
Drought Severity Index (PDSI).

# Station Name Interval Latitude, ◦N Longitude, ◦E Elevation, asl

1 Petropavlovsk 1933–2022 54.83 69.15 134 m
2 Saumalkol 1966–2022 53.18 68.06 325 m
3 PDSI grid 1947–2020 53–54 67–68 n/a

2.4. Crop Data

Averaged data of grain yields at the province-level (the oblast) in centner per hectare
for the internal 1945–2022 (75 yrs) were assembled from reports of the Kazakhstan statistical
services (KazStat). The data were collected from collective (prior to 1991) and industrial
farms with an intensive production of grain crops. The average yield data measured in
centner per hectare include the three main crops in the region: spring wheat, oats, and
barley, which were analyzed; hereafter, they are called the grain yield. Table 3 shows the
growth dates of these crops in SKO.

https://climexp.knmi.nl
http://climexp.knmi.nl
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Table 3. Growth statistics of the analyzed grain groups in SKO.

Grain Sow Dates Harvest Dates Length of Growth

Spring Wheat 15–25 May 15–25 August 80–100 days
Oats 25 May–5 June 15–31 August 70–100 days

Barley 25 May–5 June 25 July–10 August 65–80 days

2.5. Statistical Analysis

The relationship of the climate with tree rings and grain yield was estimated with
the Seascorr MatLab program [41], which calculates Pearson correlations and partial cor-
relations between tree-ring index series (or the crop yield) and monthly data on mean air
temperature and precipitation aggregated over seasons of variable lengths: one, three, and
six months. The significance of Pearson correlations and partial correlations between the
variables was assessed with Monte Carlo simulations. The correlation analysis estimates
the main climatic parameter and the seasonal window influencing the variance in the tree
ring and grain growth series. The grouping of primary correlations is used to select the
seasonal window for reconstructing the PDSI.

The reconstructed models were built using the ReconAnalog R-program that preforms
a two-stage stepwise regression [42]. The stage 1 stepwise regression screens a set of lagged
tree ring chronologies and converts each chronology into a separate single-site reconstruc-
tion (SSR). Stage 2 is a multi-site reconstruction (MSR) that fits the stepwise regression on
the principal component (PC) scores of the SSRs to assemble a final reconstruction model
from multiple sites. The PCA is performed on the covariance matrix to scale the variability
of the tree ring chronologies. This two-stage approach called SSR-MSR emphasizes the
strong signal span between multiple chronologies and lessens any model over-fitting. The
approach was applied to a reconstruction of the stream flow from multiple tree-ring sites,
e.g., [43]. The cross-validation and split-sample validation of the MSR model were per-
formed for the 1947–2010 (PDSI Model) and 1945–2012 (Grain Yield Model) periods. The
skill of the reconstruction was estimated with the reduction in error (RE) statistic reported
for both the cross-validation and split-sample validation [44]. The testing for normality in
the cross-validation residuals was performed with the root mean square error (RMSE). The
residuals were also analyzed to validate the best fit with the Durbin–Watson statistic (DW),
which detects prediction errors [45]. The F-statistic was used for calculating the significance
of the regression model considering the degrees of freedom.

3. Results and Discussion
3.1. Tree Ring Reconstructions

We calculated five tree-ring index chronologies of Scots pine and used their residual
versions in the reconstruction. Table 1 shows a strong common signal and stabilized
sample size variance after 1885 in these records. The correlation analyses between the
climate and tree-ring chronologies and the average grain yield series show that the climate
impacts pine tree growth and grain yield in the same way. A warm Jun–Aug reduces plant
growth (Figure 2), while summer precipitation positively influences growth. The primary
temperature correlations are negative and indicate that a cooler spring and June decrease
the evapotranspiration and preserve the soil moisture for longer, helping the plants initiate
growth. Additionally, grain plants experience the negative impact of temperatures in May
when the seeds germinate (the sowing stage). The partial correlation of the grain yield
with precipitation is weaker in spring and early summer, suggesting that the soil holds
the snowmelt water well and the plants have sufficient moisture. This tendency breaks by
July, and the moisture stress on plants becomes visibly stronger, which is detected from the
stronger correlation with the precipitation in July and August. A warm fall is important for
the growth transition to dormancy but irrelevant to wheat and barley, because their harvest
takes place in August. It is noteworthy that temperature has no significant impact on the
studied plants outside of the warm season, while the impact of the hydrologic regime
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compounds annually because of the soil moisture (Figure 2, the 12-month season results).
The mixed climatic signal retained by both temperature and precipitation variations is
important for highlighting the matching impact of soil moisture on the pine tree ring
proxies and grain crops. The tree rings and grain crops from other regions of Inner Eurasia
showed similar correlation patterns with the climate [26–28].
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Figure 2. The behavior of climatic signals in the tree-ring width chronologies and the SKO record
of the average grain yield. The correlations of (a) the CRO tree-ring width chronology and the
Petropavlovsk weather station for the 1933–2010 period (78 yrs), and (b) the average grain yield
and the Saumalkol weather station for the 1968–2022 period (55 yrs). Seascorr outputs [41]: top
plot for each panel shows primary correlations and the bottom plot shows partial correlations. P-
precipitation, blue bars, and T-temperature, red bars. The results are shown for season lengths of 1,
3, 6, and 12 months with variable ending months. The significance estimated by the Monte Carlo
method is coded by color variance for two α levels. The x-axis labels months starting from September
of the previous year (S*) to September of the current year (S).

The climate response of the grain group related to the phenology of spring wheat,
barley, and oats in SKO, although these correlations are not detailed, due to the lack of
individual crop statistics and the low-resolution monthly climate data that we used. Physio-
logically, wheat and barley prefer a cool June [30]. Tillering occurs best at June temperatures
of 10–12 ◦C, which stimulate the intensive development of the root system. The reproduc-
tive growth occurs in June–early July for spring wheat. The moisture sensitivity of wheat
appears the highest during a 20–30-day growth stage of stem elongation [46]. A moisture
deficit due to high transpiration in May–June and low precipitation in July are the main
factors of crop failure and a reduced grain yield in the study area [12,47]. A heavy rain
episode in August may severely affect the crop production due to harvest complications
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and crop damage (according to personal communication with farmers) and such a signal
may be present in the yield records, but it is not accounted for in our analysis.

We employed the response of tree-ring growth to temperature and precipitation in
building reconstruction models for (1) the Jun–Aug PDSI and (2) grain yields. The two-
stage SSR–MSR screening selected for the PCA overlapping variance set of the tree-ring
chronologies, adding one altered record for each model: russ367 to the PDSI model and
russ367 to the grain yield model (Figure 3). Figure 4 shows the variability modes of the
tree-ring chronologies included in the PCA covariance matrix. The loadings of individual
chronologies differ in the four PCs. The contrast in the climate signal of some chronologies
is probably related to the variation in the seasonality of its responses. As discussed earlier,
the pine growth and grain crop development show a slight difference of seasonal windows
sensitive to the soil moisture (Figure 2). The final MSR screening selected PC1 and PC2 for
the PDSI model (Figure 3a), and for the yield model—PC1, PC2, and PC4 (Figure 3b).
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loadings of the individual chronologies.
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Figure 4. Verification of the tree ring regression models. Observed (Obs), reconstructed (Recon),
and cross-validated-predicted (CVpred) time series plotted for the Jun-Aug PDSI model (a) and the
average grain yield, ct/ha (b) in SKO. Summary statistics for the calibration and verification are
shown in Table 4.
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Table 4. Calibration and validation statistics of the stepwise regression reconstruction models. The
Jun−Jul PDSI model with a calibration period of 1947−2010 (64 years) and two split periods for
validation: (A) 1947−1978 and (B) 1979−2010. Grain yield model: calibration period of 1945–2012
(68 years) and two split periods for validation: (A) 1945–1978 and (B) 1979–2012.

Predictand
Tree Ring

Series in PC
Predictors

R2
adj DW F RMSE REsplit A REsplit B

Model
Jun–Aug

PDSI

CSA, CBK,
CRO, russ364 0.48 1.61

p = 0.10

29.7
df = (3,64)
p = 1e−09

1.62 0.35 0.46

Model
Crop Yield

CSA, CBK,
CRO, russ367 0.44 1.3

p = 0.27

18.6
df = (4,68)

p = 8.44e−09
3.01 0.44 0.53

R2
adj is R-squared adjusted for number of predictors in model, DW—Durbin–Watson statistic and its p-value

(p > 0.05 indicates no lag-1 autocorrelation in residuals); F—statistic with p value (p < 0.05 indicates significant
model), RMSE—root of mean squared, and RE—reduction in error.

The regression PDSI model, calibrated for the period of 1947–2010, is as follows:

yˆ = aoˆ + b1ˆx1 + b2ˆx2 (1)

where x1 is the PC1 and x2 is the PC2 of the corresponding PCA matrix and ao, b1, and b2
are the estimated regression constants and coefficients. This is the estimated Jun–Aug PDSI.
The fitted regression model for the PDSI, where y = −0.37 − 0.93 × PC1 + 0.40 × PC2, has
the following statistics for the calibration period: R2 = 0.49, R2

adj. = 0.48, and F(2,62) = 29.7
(p < 0.000).

The regression grain yield model, with a calibration period of 1945–2012, is as follows:

yˆ = aoˆ + b1ˆx1 + b2ˆx2 + b3ˆx3 (2)

where x1 is the PC1, x2 is the PC2, and x3 is the PC3 from the other PCA matrix and
ao, b1, b2, and b3 are the estimated regression constants and coefficients. This is the
estimated average grain yield for SKO. The fitted regression model for the yield, where
y = 9.92 − 1.11 × PC1 − 0.96 × PC2 + 1.12 × PC4, has the following calibration statistics:
R2 = 0.47, R2

adj. = 0.44, and F(3,65) = 18.6 (p < 0.000).
Figure 4 shows the reconstructed and cross-validated curves for each modeled pa-

rameter, where the difference between the comparable curves is small. This indicates
the good fit of the regression models and the accuracy of the reconstructed values. The
cross-validation statistics in Table 4 support this visual conclusion and demonstrate the
stability of the modeled dependencies within the early and late parts of the calibrated
period. The residuals are normally distributed and have no significant dependence on
the fitted values (see the RE split values in Table 4). The RMSE estimates the normally
distributed errors, which once again points to the high quality of the reconstructions. The
explained variance of the SKO grain yields in our model (47%) is very similar to other tree
ring calibrated models from the forest steppe environments of South Siberia and northern
China [27,28], although tree ring models from extremely dry environments like the arid
land of North Africa may have 74% of explained variance for precipitation influencing the
wheat yields [24]. This indicates the high potential of tree-ring proxies for modeling crop
yields in the breadbaskets of Inner Eurasia, where tree-ring networks are available [48].

3.2. Extended History of Moisture Availability

The PDSI tracks short-term agricultural drought well since it responds quickly to
changes in the soil water-holding capacity [1,39]. The PDSI values significantly corre-
late with the measured soil moisture content over summer in Inner Eurasia reaching
0.4–0.8 correlation values [39]. Globally, the PSDI values range from −10 (dry) to +10 (wet)
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with values below −3 representing severe to extreme dryness (drought) and above +3 an
extreme wet spell. In the studied region, the highest (wettest) year was recorded in 2002
(+4.8) and the driest occurred in 1975 (−4.0), although different siPDSI datasets do not hold
the maximum values for the same years.

The reconstruction extends the history of the PDSI observations in SKO back to 1886
(Figure 5a) and shows three hydrologic regimes over the last 139 years: (1) 1886–1942, a low
variability period with only two extreme droughts in 1911 (PDSI −3.7) and 1920/1921 (PDSI
−4.1 and −3.3, respectively), (2) 1943–1977 period of decadal-scale moderate droughts
and moderate wet summers, (3) 1978–2023 period with very high inter-annual variability
and abrupt shifts between extremely dry and extremely wet years. In the second period,
dry or wet extremes last ca. 3 years, but more recently their duration increases up to
a decade. Figure 6 demonstrates the latest decadal extremely dry and extremely wet
spells. We found that the stable hydrologic state (the first period) shifted to an alternative
hydrologic regime (the third period), and this happened gradually (during the second
period). The high annual variability of the PDSI indicates the large change in soil water-
holding capacity over summer from one year to another. A high-variability alternating
mode of concurrent high/low precipitation and temperature is called “whiplash” that
was just recently described in California and other arid states of the southwest of the
U.S. with tree-ring modeling [49,50]. This feature refers to the most severe and rapid
hydroclimate switches between extremes in consecutive years. The most evident “whiplash”
years occurred in 1928–29, 1937–38, 1940–41, 1942–43, 1947–49, 1950–51, 1964–65, 1994–95,
2002–04, and 2010–13 with a single year shift of the absolute PDSI value exceeding 4
(Figures 5 and 6). The latest record of the PDSI in SKO shows that the duration of extreme
events is amplified and culminates in two decadal-long extremes (Figure 6).
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Figure 5. Extended history of (a) the summer PDSI and (b) grain yield (ct/ha) in SKO, Kazakhstan,
reconstructed with tree ring chronologies, 1886–2013. Reconstructed curves (blue line with dots) and
its 50% confidence interval (red shade) computed with the RMSE. The PDSI with values below−3
represents severe to extreme drought and above +3 an extremely wet year.
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Figure 6. The latest history of the PDSI in Jun–Aug and the grain yield (ct/ha) available for SKO
from observations, 1945–2022. The vertical line is 2013, the last year of the tree-ring reconstruction
(Figure 5). Notice the 1964–65 “whiplash” years, the strongest in the record with the PDSI values
shifting from 4.35 to −2.35.

Steventson et al. [51] projected using a multi-assemblage of climate-coupled models
(CMIP5 and CMIP6) reflecting large soil moisture trends that would be considered an
extreme drought or a pluvial event today. These are projected to become the average
conditions after the middle of the 21st century. The “whiplash” phenomenon may signal
a change in the baseline of the soil moisture content. The climate projections for large
regions like Europe, western North America, the Western Amazon, and Australia signify
the increased frequency and intensity of both extremely wet and extremely dry precipitation
events during the 21st century [48,51–53]. We think that northern Kazakhstan (a forest
steppe biome) could be one of the smaller regions where large soil moisture changes
will prevail in the future and lead to the emergence of prolonged and extreme droughts
and recurring extreme pluvial conditions. The heat extremes appear less significant for
influencing the soil moisture levels here, which generally agrees with the uncertainty in
understanding the linkage between the heat waves and agricultural droughts [54]. For
example, the Russian heatwave of 2010 [55] did not show up in the PDSI record as a dry
extreme, the soil was very dry several years before this thermal extreme (Figure 6).

Changes in the precipitation trends and the extremes contribute to the soil moisture
variability [39]. The gauged observations show the significant changes in the seasonal
precipitation and decline of spring–summer temperatures in SKO (Figure 7). The cooling
temperature trend after 2011 (about 3 ◦C for spring and 1 ◦C for summer) and the near
doubling of winter precipitation intensify the soil moisture excess due to weakened evapo-
transpiration. A slightly positive precipitation trend in the summer most likely sustains
the prolonged extreme wetting over the most recent decade as well (Figure 7). Compared
to other better studied regions in south Europe and Inner Eurasia, precipitation modeling
in northern Kazakhstan is lacking, in part due to its marginal location between eastern
Europe and Central Asia. A few studies report an intensification of the total and extreme
precipitation and changes in the seasonality of moisture dynamics in Central Asia in the
southern arid lands and the high mountains [53,54,56,57].

Besides the short-term atmospheric variability associated with hydrologic extremes, the
soil moisture feedback is also linked to the longer-term variability in the SST anomalies and
teleconnections of atmospheric circulation e.g., [54,58,59]. Qing et al. [60] looked into the
changing moisture compared with the soil depth and showed that soil moisture–atmosphere
feedback mechanisms have triggered a significant increase in the occurrence of transition
from drought to pluvial conditions (0.24−1.03% per year) globally during 1980−2020. The
mechanism behind the drought and pluvial transitions was explained by the plants’ use of
the moisture in the root zone soil instead of the moisture in the topsoil layer, which affects
the water storage in the root zone layer and regulates the surface evaporation [60,61]. Thus,
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more and more transitional regions are switching into the drought–pluvial regime, and we
think our studied region is one of them.

Agriculture 2024, 14, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 7. Seasonal temperature and precipitation observed at the Petropavlovsk weather station, 
1933–2016: (a) temperature anomaly (1970–1999) for spring (April–May) and summer (June–Au-
gust), and (b) seasonal precipitation for winter (November–March), spring (April–May), summer 
(June–August), and fall (September–October). 

The empirical evidence of the atmospheric circulation changes over Eurasia suggests 
weaker upper air extratropical westerlies and a wavier circulation over a larger meridional 
gradient that is conducive to the more frequent and persistent synoptic patterns linked to 
extreme weather events [62–64]. The weakened zonal winds and westerlies are consistent 
with the more southern trajectories of snowstorms and the waning of midlatitude storm 
tracks in summer [57,65,66]. Cook et al. [48] demonstrated that anticyclonic circulation 
over European Russia and low pressure east of the Caspian Sea plays a critical role in the 
mid-summer extreme and extended droughts in the studied region. Overall, despite the 
uncertainty regarding the mechanism of extreme precipitation that drives their frequency 
and duration in northern Kazakhstan, the extended tree-ring record of the PDSI clearly 
indicates the hydrologic regime shift toward more persistent and pronounced extreme 
droughts and pluvial spells. In the last two decades, we observe the transition from pro-
nounced drought into decade-long pluvial events that may be the result of moisture–at-
mosphere feedback mechanisms. 

3.3. Drought Impact on Grain Yields in SKO 
Since 1945, the average yield of grain in SKO was 10.42 centner per hectare (1 centner 

≈ 100 kg or 0.1 ton) in the south (a steppe biome) and 12.94 centner/ha in the north (a forest 
steppe biome). In recent decades, the yield has been steadily increasing and remained high 
after 2003 at an average of 13.29 centner/ha (27.5% above the average) in the south and 
17.39 centner/ha (34.4% above the average) in the north. The average grain yields used in 
the modeling fluctuate between 3 centner/ha and 22 centner/ha with a mean of 21.95 cent-
ner/ha (a standard deviation of 4.5). The additional 3–4 centner per hectare compared to 
1945 is a significant gain for the farmers in this region. The increased duration of the 

Figure 7. Seasonal temperature and precipitation observed at the Petropavlovsk weather sta-
tion, 1933–2016: (a) temperature anomaly (1970–1999) for spring (April–May) and summer
(June–August), and (b) seasonal precipitation for winter (November–March), spring (April–May),
summer (June–August), and fall (September–October).

The empirical evidence of the atmospheric circulation changes over Eurasia suggests
weaker upper air extratropical westerlies and a wavier circulation over a larger meridional
gradient that is conducive to the more frequent and persistent synoptic patterns linked to
extreme weather events [62–64]. The weakened zonal winds and westerlies are consistent
with the more southern trajectories of snowstorms and the waning of midlatitude storm
tracks in summer [57,65,66]. Cook et al. [48] demonstrated that anticyclonic circulation
over European Russia and low pressure east of the Caspian Sea plays a critical role in the
mid-summer extreme and extended droughts in the studied region. Overall, despite the un-
certainty regarding the mechanism of extreme precipitation that drives their frequency and
duration in northern Kazakhstan, the extended tree-ring record of the PDSI clearly indicates
the hydrologic regime shift toward more persistent and pronounced extreme droughts
and pluvial spells. In the last two decades, we observe the transition from pronounced
drought into decade-long pluvial events that may be the result of moisture–atmosphere
feedback mechanisms.

3.3. Drought Impact on Grain Yields in SKO

Since 1945, the average yield of grain in SKO was 10.42 centner per hectare (1 centner
≈ 100 kg or 0.1 ton) in the south (a steppe biome) and 12.94 centner/ha in the north
(a forest steppe biome). In recent decades, the yield has been steadily increasing and
remained high after 2003 at an average of 13.29 centner/ha (27.5% above the average) in
the south and 17.39 centner/ha (34.4% above the average) in the north. The average grain
yields used in the modeling fluctuate between 3 centner/ha and 22 centner/ha with a
mean of 21.95 centner/ha (a standard deviation of 4.5). The additional 3–4 centner per
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hectare compared to 1945 is a significant gain for the farmers in this region. The increased
duration of the extreme hydrologic events may have overwhelming implications for crop
management. The longer these extreme events last, the lower the crops.

In general, the spring wheat, oats, and barley production in northern Kazakhstan is
challenged by insufficient heat and extreme precipitation fluctuating between a moisture
deficit and water excess [60,67]. Heat stress for the plants via temperatures of +30 ◦C and
above and a rapid increase in night-time temperature is possible here but rarely occurs
in spring–early summer when the wheat tissues and reproductive processes are most
sensitive to being burnt and to low photosynthesis [68,69]. The tree-ring reconstruction
of grain yields (Figure 5b) hints that the late 19th century and the 1930s and 1970s were
quite favorable for grain production in SKO. Extremely low yields of the crops could have
occurred in the 1910s due to the moisture deficit. Interestingly, the historical chronicles
report a severe and prolonged drought during 1929–33 (5 years) near Astana (former
Akmola) bordering SKO to the south [70], yet our records show no dry extremes at that
time nor any abnormally low potential yields. In our record, the most significant and
prolonged decline in the grain yield occurred in 1918–1921 (Figure 5).

The moisture record does not coincide completely with the yield series but shows
many similarities. Our reconstructions indicate that in the past the summer PDSI ranging
between +2 and −2 values over several consecutive years represents the most favorable
conditions that lead to higher average grain yields. We attribute this range of the PDSI to
the optimal regime for the early phenological stages (the leaf and tiller development and
the stem elongation), which are crucial for a good yield in SKO [12,46,47]. In contrast, the
consequent years with a large magnitude of the changes in the PDSI (the “whiplash” years)
correlate with low yields (Figure 5). In some years, the relationship falls apart (e.g., 1975–77,
1945–49, 2004, 2008–11, and 2019–21). It is hard to say what other climatic or non-climatic
factor(s) influenced the grain growth. The climate–crop yield system is complex, and
globally the variations of crop production may be impacted by up to 30–35% by climate
change [3,4]. Together or separately, climatic and non-climatic factors shape the adaptation
response of farming to the new hydrologic state. The recent modernization of farms and
increased access to high-productive technologies, as well as governmental subsidies, may
reduce or cancel the impact of climate factors. The statistical record of crops (Figure 6)
indicates that sometimes the farmers in SKO are highly capable of sustaining good yields
even in extreme hydrologic years, yet their success partially depends on the spatial extent
and timing of the climatic parameters [5]. The spatial regression modeling estimates a
reduction in wheat and barley yields after 1980 in northern Kazakhstan by 1.9% and 4.8%,
respectively [11]. Our tree ring reconstructions clarify that the intensity, frequency, and
duration of hydrologic extremes are increasing, and more consideration should be given to
the new hydrologic regime in SKO after 1978.

4. Conclusions

The tree-ring width chronologies of Scots pine from northern Kazakhstan have a
mixed summer temperature and precipitation signal that is similar to the climate controls
of spring wheat, oats, and barley crops. Moisture is the common limiting factor of the
growth for these plants in the region. We used this strong climate–growth relationship
and built two well-fitting regression models (0.44–0.48 R2

adj) to reconstruct the PDSI in
Jun–Aug (linked to soil water-holding capacity variations) and the average grain yield
in SKO. A new 139-year history of the climate and crop production over the period of
1886–2022 helps to understand the variability and interaction of these two parameters
prior to the observations. We found that that the frequency and duration of the extreme
hydrologic events have significantly changed since 1978 toward (1) more variable moisture
conditions sometimes swinging from one extreme to another over 1–2 years (“whiplash”
years), (2) more pronounced extreme events in the 21st century. The reconstructions suggest
that northern Kazakhstan may have transitioned from drought to a pluvial regime, which
was probably triggered by moisture feedback to large-scale atmospheric circulation changes
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as a result of the warming climate. The reconstructed history of climate and crop production
provides crucial data and insights for understanding the impact of climate warming on
the long-term trend in grain yields and water–land use management addressed to regional
and global food security. We believe tree-ring networks from marginal and arid lands
(forest steppe and low-elevation biomes) need to be further investigated and utilized in
crop yield modeling.
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