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Abstract

An estimated 20,000 angiosperm species conceal pollen inside tubular poricidal anthers or
within modified petals. A bee releases pollen by vibrating its thorax and transferring the force
through its mandibles while biting the flower. While the floral morphology of buzz-pollinated
plants is diverse, the behaviors, dimensions and guilds of buzzing bees are limited. Floral
modifications should reflect the relative sizes of their co-adapted pollinator species but we do
not know what drives these size associations. We show that the optimal excitation point in the
vibration system of bumblebee-pollinated louseworts (Pedicularis) occurs precisely where
bumblebees bite these flowers. This leads to trait matching between a bumblebee’s individual
body length and the beak length of the flowers of each lousewort species. As bumblebees do
not visit flowers with beaks (galea) longer than their bodies it guarantees they bite the optimal

excitation point for pollen discharge.
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Main Text:

Buzz-pollination is a specialized but widely distributed pollination syndrome throughout
angiosperms (/). Pollen foraging insects (bees and a few flies) apply thoracic vibrations to
harvest pollen from flowers concealing pollen in tubular/conical structures (sensu (2)). More
than 20,000 angiosperm species, representing about 70 plant families are thought to be buzz-
pollinated (/, 3). Those plants rely upon at least 74 bee genera capable of buzzing these
modified flowers (4) while they grip floral organs with their mandibles and tarsal claws (3, 6).
Pollen grains inside hollow poricidal chambers are shaken out of their anthers via terminal
openings to be deposited on bees’ bodies, then transferred to hind legs or abdomens and carried
back to nests to provision offspring or siblings. The convergent evolution of buzz pollinated
flowers occurs in many plant groups(3) and might be "mimicked" by some orchid species
(Calopogon, Thelymitra) that make false anthers and bee visitors vibrate these structures
without receiving any reward (7). Many economically important crops including tomato,

eggplants, kiwi fruit, and blueberries are buzz-pollinated (§).

The morphology of buzz-pollinated flowers varies in organography, structure, and overall
flower size (9). The flowers of congeners may present different numbers of poricidal anthers
of divergent lengths and shapes (e.g., Solanum (10, 11)). Others show fusion (connation) of
anthers forming anther cones (e.g., Echeandia (12) and Solanum(11)). In other cases, some
species in the genus Pedicularis retain longitudinally dehiscent stamens within a galea, an
elongated and tubular hollow beak composed of connate petals (sensu (13)). It was suggested
previously that variation in flower form in buzz-pollinated species has the potential to allow
unrelated plant species to exploit the enormous variation in bee size and behaviours among
different bee species sharing the same habitat (/4, 15). Previous studies showed that flower
size predicted body lengths of the most frequent species of bees pollinating flowers with
poricidal anthers (/6).In addition, Bombus friseanus shows intraspecific variation in body sizes
leading to assortative foraging on different, buzz-pollinated Pedicularis species (17). It remains
unclear, though, as to which mechanism drives such size-dependent correlations between bees

and their buzz-pollinated host plants.
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Buzz-pollination is interpreted as a forced vibration system, where the force input is the
bee’s thoracic buzz while the vibration of the flower is the system response. Floral vibration is
affected by the physical properties of each flower and characteristic of the excitation force (bee
vibrations) including buzz frequency, duration and amplitude (5). The bee’s mass loading and
the excitation point should impact the system’s vibration dynamics and transmission as well
(18, 19). Nevertheless, the points at which the bee’s vibrations are transmitted to the flower
(the excitation point) has not been studied in detail. Although a bee’s vibrations are generated
by its thoracic muscles, these forces should be transmitted to the flower at the point where the
bee bites the flower due to the immediate connection between its head and thorax (6). Of greater
importance, as grains are released from the terminal openings of pollen-concealing structures
(e.g., the terminus of the Pedicularis petal beak) during vibration, a bee presses its body to
those openings to collect ejected pollen directly onto the ventral side of its abdomen (20).
Consequently, the location of the biting point and the dimensions of the pollen release structure

may confine a bee’s choice of flowers depending on its own body size.

We hypothesize that the excitation point (that is, where the bee bites and applies forces to
the flower) plays a critical role in the vibration amplitude of the flower. It could be the
mechanism driving a bee’s floral preferences. We used Pedicularis L. (Orobanchaceae) as our
model because it is one of the largest angiosperm genera with over 600 species in the Northern
Hemisphere (217). The genera Pedicularis (louseworts) and Bombus (bumblebees) have their
centers of diversity in the Himalaya-Heng Duan Mountains region (22). Almost all lousewort
species are bumblebee pollinated, and sympatric species in this floristic region often form co-
blooming swarms sharing the same Bombus species as their primary pollinators (23-26).
Bumblebees usually vibrate only beaked flowers of Pedicularis species for pollen, and forage
for nectar or pollen on sympatric but beak-less congeners(27). The floral diversity of beaked
species in this genus is higher than in beak-less species (27). The tube-like beak fulfils a similar
function to hollow, elongated and poricidal anthers in unrelated buzz-pollinated species, as
pollen grains are released at the terminus of the beak following vibration (Fig. 1A). Beak
morphology is more variable than poricidal anthers in terms of dimension and/or shape (Fig.
1C), making it an ideal model lineage to study interactions between bumblebees and buzz-

pollinated flowers.
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To test our hypothesis, we first recorded bumblebee behaviors and biting points, on eight
buzz-pollinated and Chinese Pedicularis species (Fig. 1D). We then developed computational
finite element models to assess the effects of different locations of excitation points and
different bee sizes affecting floral vibration under the same vibration modes. As the amplitude
of bee-mediated vibrations are the main determinants of the amount of pollen released when
flowers are buzzed (3, 28) it became the main dependent variable we used during simulations.
We then analyzed the relationship between bee body size and floral traits in situ. By combining
behavior observations, computational modelling, lab vibration experiments and an ecological
statistical survey, we now clarify the mechanism(s) driving any size-dependent correlations

between bee and flower morphology in buzz-pollinated congeners.
How bumblebee harvest pollen from beaked Pedicularis by vibration?

We assessed the behaviors of worker caste bumblebees recorded from 113 video clips.
Although these Pedicularis species show different modes of floral presentation, our videos
show that buzzing behaviors (floral sonication) of bumblebees and their biting points were
similar regardless of plant species or field site. (Fig. 2A-G). Bumblebees generally land on the
left side of the flower beak. All biting sites on eight Pedicularis species occur where the beak
connects to the body of the galea (Fig. 2H). Female bumblebees use their front and middle legs
to clasp the beak and press its abdomen to the beak’s terminal opening. The same bee’s thorax
almost never touches the beak. When bees begin to vibrate, the pollen released from the beak
is deposited on its abdomen. As this occurs, the bee uses its hind legs to collect pollen grains
gjected at the beak’s terminus onto its abdomen (Videol). A typical bite and sonication last 2-
4 seconds leaving an indentation (bite mark) on the galea lobe (Fig. S1). The self-consistency
of all buzzing and collection behaviors suggests that a bees’ choice of biting sites does not

reflect random selection.
Why do bees bite at this location?

The biting point of a bumblebee marks where vibration transfers to the flower. Therefore,
we applied computational modelling (Finite Element Analysis, FEA) to study how biting
locations affect the bee-flower vibration system. We crafted a shell-structured Pedicularis

flower model (Fig. 3D), incorporating a straight beak, an oblate tube, and an ellipsoidal galea
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(details in SI). To make the model match a nature flower, the geometric characters were
determined by anatomical studies with Mirco-XCT and measurements based upon fresh
flowers (Fig. 3A-C). Material properties (density and Young’s modulus) were based on
experimental findings. Prior to simulations, the flower model's natural frequencies and mode
shapes were scrutinized to prevent resonance induced by the 300 Hz bumblebee floral buzzing
frequency (Fig. S2). Validation occurred through lab vibration experiments on P. integrifolia
flowers, mirroring our geometric model (Fig. S3). The FEA model's excitation direction

aligned with bumblebee visitors' vibration direction.

We conducted two distinct FEA analyses, investigating the impact of various factors on
floral vibration. The initial examination focused on the influence of different excitation points
on anther vibration, while the subsequent analysis explored the effects of bumblebee size on
floral vibration. In the first phase, our findings revealed that applying excitation at point 7,
situated on the base of the galea's beak near the anther cluster, led to maximum anther
amplitude (refer to Fig. 4B). Consequently, we identified point 7 as the optimal excitation point
for our flower model. This conclusion was corroborated by a laboratory vibration experiment
on fresh flowers, demonstrating heightened beak movement amplitude when excited at this
location. Remarkably, this optimal excitation point on the geometric flower model aligned with
biting indentation marks observed on louseworts at field sites left by bumblebees. In the second
FEA treatment, we explored the impact of different bumblebee sizes on the floral vibration
system. Loading a bee's mass onto the system resulted in alterations to natural frequencies and
vibration modes. Notably, when a bee matched the flower's beak length and bit the optimal
location on the galea, it induced the most significant beak and anther vibration displacement,
even with identical vibration frequency and amplitude (refer to Fig. 4CDE). Given the positive
correlation between pollen release and amplitude (29, 30), our results suggest that a bee biting
at the optimal excitation point should receive more pollen compared to bees with varying body
lengths. Therefore, according to FEA outcomes, a bee's selection of the optimal biting point
can be interpreted as the most efficient and economical behavior to maximize pollen release

and subsequent harvest.

What are the consequences of a flower’s optimal biting location?
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To detect whether the optimal biting location effects interactions between bumblebees and
louseworts in situ we collected and identified 179 individuals representing 9 bumblebee species
found foraging on all 8 Pedicularis species (see the frequency of interactions in Fig.5). Three
bee body traits and 6 floral traits were measured (Fig. S4&5). Their mean values are listed in
Table S1. At the species-level, fourth-corner analysis of trait matching indicated a marginally
significant matching (p < 0.05) occurring between the inner- and outer- linear length of the
galea beak with bee body length and the ITD of each bumblebee species. At the individual
level, firstly we compared the frequency distribution of the ratios of each flower traits to bee’s
body length. Overall, only the distribution of trait-pairs relating to beak present bell-shaped
curve, suggesting that rather than flower tube length and lip width, bumblebee interacts with
flower species mainly influenced by the traits of flower beak (Fig.6). Despite the four traits of
beak are self-correlation, the results show that the distribution of ratio between in-linear beak
length to bee body length has highest density and sharper peak. This suggests the distance
between biting point to beak opening end effected interactions frequency between bee and
flower more strongly. The ratio of this trait pair distributes bias less 1.0, indicating bumblebee
prefers to visit the flower with beak length shorter to its own body length. Secondly, we found
evidence of a significantly positive relationship between bumblebee body length and the length
of the galea beak (GLMM: F = 6.3501, p < 0.01), suggesting trait-matching between flowers

and their bee visitor individuals.

This matching of bee body length to beak linear length at the individual level suggests that
the optimal biting location affects interactions between bumblebees and louseworts under field
conditions. The beak’s linear length is the distance from the base of the galea (optimal
excitation location) to the beak’s terminus. This corresponds to the distance from the bee’s
mandibles (biting structures) to its abdomen. In the field, bumblebees attempt to collect pollen
released from the terminal opening of any Pedicularis beak on their abdomens. Therefore, if
pollen settles on a bee’s body where it cannot groom itself (so-called “safe sites”), or if grains
are discharged into the air missing the bee’s body, then pollen collection efficiency must
decrease (37). When a bee applies its mandibles to this optimal area, while holding its body
simultaneously to gather the pollen discharged from the beak’s terminus, its body length

becomes a constraint on its ability to receive harvested Pedicularis pollen just as its’ proboscis
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length constrains its consumption of nectar from elongated floral tubes and spurs in other
angiosperm lineages (32). Therefore, by combining the results of computational model
analyses, such trait matching can also be interpreted as another consequence of foraging
economics and bee decisions. Our study provides evidence that the excitation point plays a
major role in buzzing behavior, potentially by mediating size-dependent constraints between
bees and buzz-pollinated flowers (/6, /7), in which bee size is related directly to the deposition

of pollen on specific parts of a forager’s body.
The contribution of buzz pollination to floral constancy

Lousewort species are generally sympatric, co-blooming and share the same bumblebee
species pollinator (27). Our observations and bee collections also showed that co-blooming
Pedicularis species shared the same bumblebee species (Table S1). However, hybridization is
relatively rare in this genus although species swarms occur throughout the Northern
Hemisphere (23, 24), Identification of prezygotic isolating mechanisms in Pedicularis remain
incomplete (25). Previous authorities suggested that pollinator floral constancy is the key pre-
pollination barrier in Pedicularis (33, 34). How this mode of floral constancy evolved in the
predominantly bumblebee pollinated lineages of Pedicularis is unclear as bumblebees are
generally broad (polylectic) pollen foragers (35). A recent study found a few bumblebee
species' flower preferences were sometimes modulated by the relative floral abundance of co-
flowering and pollen-rewarding Pedicularis (36). However, how individual bumblebees’ floral

constancy evolved in these louseworts remains unknown.

Our results reveal more about issues concerning likely isolating mechanisms. As the
optimal excitation location forces a bumblebee to choose one Pedicularis species based on its
own matching body size, we argue that buzz pollination may facilitate floral constancy by
functioning as an isolating mechanism among co-blooming members congeners. During a
foraging bout, individual bumblebee workers, rarely foraged on more than one Pedicularis
species, lowering the possibility of interspecific crosses by carrying heterospecific pollen loads.
Flower constancy is affected by a combination of floral and pollinator traits (37-39).
Bumblebee workers produced in the same nest vary greatly in physical parameters (e.g., body

length, thorax width, proboscis length) over one season (40). The body lengths of bumblebee
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workers from the same colony restricts their choice of Pedicularis pollen hosts based on the
best excitation point and beak variation among flowers of co-blooming species. In turn,
individual bumblebees belonging to different species but with similar body lengths can
pollinate the same Pedicularis species. This kind of morphological matching should promote

pollinator niche partitioning (47), while reducing heterospecific pollen deposition.

Learning how to forage for pollen represents a substantial time investment for individual
foragers (42) and buzz pollination represents a complex skill. During field observations, we
saw that the pollen foraging of some bumblebees on flowers showed less skill than others.
Therefore, with multiple Pedicularis species, each forager must learn where to bite to find the
best excitation point. Although naive bumblebee workers of B. terrestris and B. impatiens
know instinctively how to sonicate during their first or second visits, they make numerous
attempts at fine-tuning their buzz frequencies and amplitude to achieve optimal pollen
collection on Solanum rostratum (43). That compels an experienced bee to visit flowers it has
learned to manipulate (44). The economic decision on which flowers to forage facilitates
patterns of floral constancy (45, 46) and may explain why pollen-foraging bumblebees are

more constant to buzz-pollinated flowers compared to sympatric, nectar-secreting flowers (47).
Floral diversification within the same, specialized pollination mechanism

Our findings contribute to understanding a key problem in flower evolution. How does
floral diversification evolve in congeneric plant species dependent upon the same pollinators?
Our study supports the idea that changes in floral presentation in a buzz-pollinated lineage
allow sympatric species to exploit broad variations in bee sizes and behaviors (4). The pattern
we observed occurs on bees’ size at the individual level rather than at the species level. In view
of the role of buzz pollination to floral constancy, diversification of flower morphology among
Pedicularis species may be a mechanism employed in a much broader mode of ethological
isolation at the individual level. Although reproductive isolation between the beakless (nectar
secreting) and beaked flowers is predicted to occur by mechanical isolation alone (4§),
bumblebee visitors still showed a strong floral constancy when these two floral forms are
sympatric and co-flowering (33, 34). Therefore, ethological isolation remains the main mode

of interspecific isolation among Pedicularis species regardless of floral forms. Although
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louseworts are pollinated exclusively by the local Bombus guild, the galea form of a lousewort
flower partitions bumblebee behavior into buzzing if the flower has a beak, or nectar foraging
if the flower is beakless. In addition, variation in floral morphology among louseworts with
beaks partitions bumblebees foraging according to their body sizes, buzzing skills, and learning

abilities.

The role of the excitation point within interactions between bees and plants with true

poricidal anthers

Matches between the corolla size of flowers and their pollinator’s body sizes occur in some
of the more common buzz-pollinated plants with poricidal anthers (/6). We wondered if the
excitation point also acts as a selective mechanism driving size-dependent correlations between
highly modified and poricidal anthers and their bee visitors? In our FEA simulations and lab
experiments, we found that vibration applied at the optimal biting site can excite the maximum
back and forth amplitude displacements of the whole flower, especially the open ends of its
beak. This indicates that the excitation point is important for the vibration response of poricidal
flowers, if we regard the beak of a Pedicularis flower as comparable to one tubular poricidal
anther. Research on poricidal anthers shows that the location and magnitude of bee mass
loading onto these organs changes the natural frequencies and vibrational modes (/9). Shifts
in the location of the biting point causes changes to the center of bee mass on poricidal flower
structures, influencing the vibrational response of an anther during bee sonication. Therefore,
the excitation point likely plays a role in mediating size-dependent correlations between bees

and the beaked galea of certain Pedicularis species.

Flowers with poricidal anthers show morphological diversity in staminal architecture
(fused or free), filament length, and the presence or absence of filamentous appendages or
exaggerated sculpturing of the stamen’s epidermis (2). All these modifications likely influence
vibration transmission and pollen release under buzzing (11, 49, 50). It is reasonable to presume
that flowers with different structures possess relevant excitation points and/or areas associated
with maximum vibration transmission and response. Applying computational model analysis
on other buzz-pollinated angiosperms will help us understand how excitation points may affect

those similar vibration systems.
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Benefits and limitations of computer-based models to buzz-pollination vibration analyses

Finite element analysis (FEA) is a reliable and tested computational model. This method
has been used to resolve many biomechanical issues, especially those involving functional
morphology (51, 52). With this tool, we suggest the crucial role of an optimal excitation point
of the vibration system of bee-pollination in Pedicularis. This, however, does not fully explain
the vibratile pollen-release mechanism. Beaks in Pedicularis and poricidal anthers in other,
unrelated species vary in length, shape, curvature, ornamentation, degrees of twisting and in
other morphological/physical factors. The functions of such modifications remain largely
unknown. Applying FEA studies to relevant geometric models is advantageous when

investigating how these modifications may influence floral vibration dynamics.

As the objective of any foraging bee applying vibration is to harvest pollen, the pollen
release process is important to understand how the pollinator’s behavior, is influenced by
numerous floral traits, (5, /7, 50, 53). Unfortunately, our FEA results alone cannot be applied
to the motion of pollen as the behavior mode of these grains during vibration. For this, we need
different methods to study the movement of pollen grains under vibration. Previous models
presented the anther as a tall rectangular box with an opening hole (53). Reinterpretation is
required as we now understand that the poricidal anther of Solanum-type flowers (2) since the
beak of Pedicularis flowers are more like hollow cylinders. The movement of pollen grains is
also more similar to particle motion within a vibrating tube (54, 55). Indeed, numerical
simulations based upon the discrete element method (DEM) have since been applied
successfully to the study of particles (e.g. powders) moving along a vibrating tube (56).
Numerical simulation could also be a powerful computational modeling method for studying

pollen ejection during buzz pollination.

By combining multiple disciplines, our study is the first to implicate the role, and
importance, of the floral excitation point in buzz pollination. This provides a new insight for
our understanding of size-dependent matches between differently sized bees and flowers. Due
to the optimal excitation point, modification of floral traits in one lineage of buzz-pollinated
plants encourages exploitation of pollinators of different sizes at the individual level but not at

the species level. Such trait matching may further contribute to ethological isolation while
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lessening competition among co-blooming buzz-pollinated species dependent upon the same

pollinator guild of bumblebees. As buzz pollination is a very specialized plant-pollinator

mechanism, our study indicates that the role of individual foragers may be crucial contributors

to floral diversification. It may provide further insight about how we interpret the evolution

and maintenance of relatively narrow and specialized patterns of mutualistic interactions

among flowering plants and their bee pollinators.
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Figures

Figure 1. Flower forms of Pedicularis. A. Flower organography with beaked galea showing the
receptive stigma protruding from the galea’s beak (drawn by Xu, YQ); B. Flower forms of bilabiate
species (galea lacks a beak); C. Variation in floral forms of beaked species (Flora Yunnanica. tomus-16,
2005); D. flowers of eight species used in this in this study, bar = 10mm. a. Pedicular oxycarpa; b. P.
cephalantha; c. P. longiflora; d. P. milliana; e. P. rhinanthoides; f. P. axillaris; g. P. integrifolia; h. P.

gruina.
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Figure 2. Foraging positions and biting points of bumblebees during buzzing seven Pedicularis

species. (A to G) B. festivus on P. cephalantha; B. nobilis on P. integrifolia; B. friseanus on P. gruina;
B. friseanus on P. oxycarpa; B. festivus on P. rhinanthoides; B. friseanus on P. longiflora; B. ladakhensis
on P. milliana; H1&2. Flowers of P. rhinanthoides shows galea structure and anther cluster. Arrows

indicate the locations of the biting points.
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0mm

Fig. 3. Morphology of real beaked Pediculairs flower and geometric model flower. A, B&C Micro XCT
images of Pediculari integriflolia as example showing the translucence view, back side view, and cross
section and close-up of anther cluster. D. Geometric model for FEA. Specifically, the shell thickness was
0.1mm, the beak was a 10 mm long and 0.8 mm wide tube, the galea’s shell was 4.9x2.1x3.2 mm, the

anther ellipsoid was 2.8x1.8x2.8 mm and the flower’s oblate tube is oblate in shape 1.2x2.5 mm.
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Figure 4. The effects of biting points on the bee-flower vibration system of beaked Pedicularis. A

The computational model of a beaked Pedicularis flower. Arrows show the excitation points’ location
and direction. Bar = 2mm. B The maximum amplitude of the anther ellipsoid in the z direction of each
point under excitation. (C to E). Vibration response via FEA for Pedicularis flowers with bees of
different sizes (C. Small, D. Medium, E. Large) under the same forcing vibration function. A and o
show the excitation point and center mass respectively. C-1 to E-lare the responses of the respective

flower with C-2 to E-2 as the responses of the respective anther ellipsoid.
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Figure 5. The bee individual length (mm) distributions of each visiting bumblebee species and
their interaction frequencies with each Pedicularis species. From top to bottom, bumblebee species

are ranked by mean body length and Pedicularis species are ranked by mean beak in-linear length.
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Figure 6. Distribution of trait ratios between flower traits of Pedicularis species to body length of
visiting bumblebee individuals fitted by kernel density estimation method. TubeL: flower tube
length, LipW: low lip width, BoLL: out linear length of flower beak, BoCL: out curve length of flower
beak, BiLL: in linear length of flower beak, BiCL: in- curve length of flower beak. Polygon shows the

matching trait pair.



