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1. Introduction

We consider the stochastic conservation law
O = O [k(u)du — H(u) + V(t,x)] forte Ry, x€R. (1.1)

Here, x(u) is a Holder continuous nonlinear diffusivity bounded from above and below,
H(u) is a sub-quadratic, super-linear Hamiltonian, and V(¢,x) is a random, space-stationary
noise that is smooth in space and ‘kick-type’ in time. We defer the precise assumptions on &,
H, and V to assumptions 1, 2 and 3, respectively, in section 2.2 below.

The stochastic Burgers equation is an important special case of (1.1), corresponding to
constant x and H(u) = u* /2. Ergodic properties of this equation on the whole line and with
various forms of the random noise V(¢,x) have been studied in several previous works [3, 5,
6, 13, 14]. The inviscid case k = 0 on the line was studied earlier in [1, 2]. We refer to the
survey [4] for a review of the rich literature, especially on the torus, and for many interesting
perspectives on this problem. A key result is that the stochastic Burgers equation admits a
unique global ergodic spacetime-stationary solution for every mean a € R ([6, theorem 3.1]
and [13, theorem 1.2]). In the present paper, motivated by some problems posed in [4], we
partially extend this claim to more general choices of x(u) and H(«). The main result is that
under appropriate assumptions on x, H, and V, there is an unbounded set of means for which
an ergodic spacetime-stationary solution of (1.1) exists. Moreover, each mean admits at most
one ergodic spacetime-stationary law.

Most approaches to the stochastic Burgers equation interpret it in terms of directed poly-
mers using the Cole—Hopf transform, which is specific to the Burgers case. In [4, section
3], the authors propose using a generalization of directed polymers to analyse more general
Hamiltonians. However, to the best of our knowledge, this direction has yet to bear fruit except
for some results in [16] in the compact setting. In the present paper we use, instead, the methods
of [13], which are PDE-based and less strongly tied to the exact algebraic form of the stochastic
Burgers equation. We note that several previous works have tackled general Hamiltonians on
the torus using PDE methods; see [7-11]. The problem on the line is quite different, mostly
due to the lack of the Poincaré inequality; the main challenge in the present setting is the
noncompactness of the domain.

The choice of kick-type V(¢,x) is motivated by relative simplicity of exposition. Because
we are interested in the long-time/stationary behaviour of (1.1), we do not expect the precise
form of V(,x) to be important from a physical perspective. However, if  is non-constant, there
do seem to be technical challenges involved in extending our results to white in time V(z,x),
which is the setting considered in [13].

We note that our results here are weaker than those in [13] for the stochastic Burgers
equation. We do not show the existence of an invariant measure for every mean but only for
means in a non-explicit unbounded set, and we do not prove any stability or convergence
result. Previous proofs of these results for the stochastic Burgers equation rely on the shear-
invariance of the stochastic Burgers equation; see [4, p. R93] for discussion. In particular, the
shear-invariance yields the exact form of the so-called shape function. There is no shear invari-
ance when the Hamiltonian is non-quadratic or when the diffusivity is non-constant. Similar
problems in the discrete setting lacking shear-invariance were studied in [18, 19]. There, spe-
cial noise distributions yield an exactly-integrable structure that determines the shape function,
compensating for the lack of shear-invariance. In addition, [18, 19] proved various results about
analogues of invariant measures conditional on certain understanding of the shape function.

We now set up the main result of this paper. Because the law of the ‘kick’ noise V
is 1-periodic in time, we can view the evolution as a discrete time-homogeneous Markov
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process. For the state space, we use a weighted function space X defined in section 2.1.
Let Z(X) denote the space of Borel probability measures on the Polish space X. Given a
measure v € Z(X) and k € Z>, define Qv := Lawu(k—, - ), where u solves (1.1) with ini-
tial condition u(0—, - ) ~ v that is independent of the noise V. Then (Qy)s2,, forms a discrete
time-homogeneous Markov semigroup.

We next define space- and time-invariant measures. Let &g (X) denote the set of meas-
ures v € & (X) that are invariant under the translation action of R on X'. Similarly, define

P2(X)={ve 2(X)|Qiv=r}.
Note that, by the semigroup property, Qi v = v for all k € Zxo and all v € Z(X). Also, let
Pr(X) = Pr(X)NP(X).

Finally, let ?};(X ) denote the set of extremal measures in 2. That is, the set of measures in
PR (X) that cannot be written as nontrivial convex combinations of other elements of g (X).
By a standard result of ergodic theory, these are precisely the ergodic measures of the Markov
semigroup. We define and discuss ergodicity in section 2.3.

With this notation, we can summarise the main result.

Theorem 1.1. There exist infinitely many v € Py (X) such that if v ~ v, then EH(v) < oo and
E(d,v)* < 0o. Moreover, for each a € R there is at most one such measure with Ev = a.

Remark 1.2. This theorem follows from somewhat stronger results stated in section 2.4 below.
In particular, it is a consequence of theorem 2.2 and corollary 2.6.

We state our precise assumptions and results in section 2. In section 3, we establish a well-
posedness theory for (1.1) in weighted spaces. We construct invariant measures in section 4
and prove uniqueness in section 5.

2. Setting and main results

In this section, we clarify the setting of the problem, impose precise hypotheses on the terms
of the PDE (1.1), and state the main results.

2.1. Function spaces

We study solutions in weighted function spaces similar to those in [13]. A weight is a positive
function w: R — R+ (. Given such weight w, we let C,, denote the Banach space of continuous
functions f: R — R such that the norm

—C)]
”f“Cw'_'§2£ w(x)

is finite. Given « € (0, 1), we also define

s MM

0<r—y|<1 W) —y[*

I/

cg = I

We often use the weights py(x) = (x)*, where (x) = v/4 +x2 and ¢ > 0. For each m > 0, we
define the Fréchet space

X,y = ﬂ Cp,

>m
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equipped with the Fréchet topology generated by the norms of {C,, }¢~,. Throughout the
paper, we distinguish the weighted space X := X 2 where ¢ € (1,2] is defined in assumption
q

2 below. We also sometimes use weighted L? spaces for p € (1,00), defined by the norms
P 1/p
=(LG@) )
r \ W(x)

We now state our assumptions on x, H, and V.

1f

2.2. Assumptions

Assumption 1 (Regarding «).

(i) There exists kg € (0, 1] such that
ko < Kk(u) < /{51 forall u € R. 2.1
(ii) There exist «,; € (1/2,1) and B, € (0, 1) such that || k||car < 00 and k € CILOL’B
(>iii) There exists C,, < +oc such that
|k' ()] < C(1+|u|) forallueR. (2.2)

Assumption 2 (Regarding H).

(i) The Hamiltonian H is in Cllo’co‘ " for some ay € (0,1).
(ii) There exist constants A, c1, ¢z, Cy > 0 and ¢ € (1,2] such that

crlul? — eyt < H(u) < Argu* + ¢, forallu € R (2.3)
and
\H' ()] < Cy(1+ |u|)¥/?  forall u € R. (2.4)

Throughout the paper, we will work on a probability space (€2, F,[P). We assume that it is
large enough for all of the random variables that we define.

Assumption 3 (Regarding V). The random distribution V can be written as
V(t,x) = sz(x)é(t —s),
SEZ

where (V;)sez is an iid family of space-translation-invariant random functions on R satisfying
the following properties:

1. For each s € Z, we have 0,V € X} almost surely.
2. We have E[V,(x)?] < co and E[(9,V,(x))?] < cc.
3. If we define

Vv(]) = inf Vr(x)v (2.5)
x€lj,j+1]
then
Ee *V:0) < o0, (2.6)

with A as in assumption 2.

We note that (by, e.g. the Fernique and Borell-TIS inequalities) smooth, rapidly decorrel-
ating Gaussian random fields satisfy assumption 3.

4556



Nonlinearity 36 (2023) 4553 T D Drivas et al

2.3. Invariant measures

Let ¥ be the time-s map of the unforced dynamics

O = Oy [k (u)du — H(u)]. 2.7
That is, if u solves (2.7) with u(0,x) = v(x), then
U (v)(x) :=u(s,x) fors>0,xeR. (2.8)

In section 3 below, we show that W, is a continuous function from X to itself for each s > 0.
Given s > 1 > 0, if u satisfies the stochastic PDE (1.1) with u(r—,x) = v(x), we define

P15 (v) (x) = u(s— ).

Note that ® satisfies the co-cycle property: ®,; =id and &, ,0 P, = &, ,. Also, if k € Z3
and s € (0,1],

‘13;71(_;,_3(11) = \Il.&‘ (@tvk(v) + aka) .
We also extend ¥ to act entry-wise on the product space X'V:
Us(viyeoovn) = (Ts(v1),y. .., Us(vy)).
Similarly, we let
O (viy..vn) = (Drs(vi)s ..., Prs(vw)).
We emphasise that the initial conditions (vy,...,vy) evolve subject to the same realization of
the noise process in the latter notation.
In the introduction, we framed the system in discrete time. However, we frequently rely
on continuous-time methods to control our solutions. We therefore augment our state space
to obtain a continuous time-homogeneous Markov process, by keeping track of the time since
the last kick. Given ¢ € R, let 7 denote its fractional part, i.e. the image of ¢ under the quotient
map R — R/Z. Set
Ay =&V x (R/7Z),

and, given bounded measurable F: Ay — R and 7 > 0, define a bounded measurable map
PtF: AN —R

by
(PtF)(W yens ,VN,Q) = EF(@979+t(V1 ), ey (139,(.)4_;(\11\/),9 + t).

Then (P,);>o forms a time-homogeneous Markov semigroup. We define its dual action
on Z(Ay) by

P p="Law (g ,04:(v1), ..., Po04(vn),0 +1) (2.9)

for p € Z(Ay) and (vy,...,vn,0) ~ p.

Next, let G be the group R or LZ for some L > 0. We let ¢ (Ay) denote the set of measures
in 2 (Ay) that are invariant under the action of G on Ay by translation. We likewise let 2 (Ay)
denote the set of measures € 2 (Ay) such that P = i for all # > 0. We observe that if i €
P(Ay), then the marginal of 1 on R/Z is translation-invariant, and hence uniform. Finally,
we again define

P(Ay) = P6(Ay) N P(Ay) (2.10)

and we let Z7(Ay) denote the set of extremal elements of Z2¢(Ay).
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Remark 2.1. As noted in the introduction, extremality is equivalent to the notion of ergodi-
city. We say that a measure ;1 € Z(Ay) is ergodic if the following holds. If A C Ay is a G-
invariant Borel set such that P14 = 14 p-a.s. for all 7 > 0, then p(A) =0 or u(A) = 1. The
equivalence of extremality and ergodicity is a ubiquitous feature of ergodic theory. However,
our setting falls outside traditional treatments of the subject because it involves both space
and time actions. To handle our system, we first convert the Markov semigroup to a determ-
inistic dynamical system following the approach of [17, section 4]. Then the equivalence of
extremality and ergodicity follows from theorem 3.1 in [20], which treats general group actions
on measure spaces.

In a certain sense, time-invariant measures on Ay are equivalent to those on X, To see
this, define a map ¥: 2(Ay) — 2(XN) by X(u) := Law(®g,1(v)) for (v,0) ~ u. We claim
that - preserves time invariance. Indeed, the iid nature of the kicks V and the cocycle property
implies:

QTZ(M) = Law(<I>172 @) @9,1 (V)) = Law(<I>972(v)) = Law(<I>g+172 o (1)979_;,_1 (V)) (21 1)

Now if i € Z(Ay), we have
Law(v,0) = u=P;u =Law(Pg g4+1(v),0 + 1) = Law(Pp 9+1(v),0).

Thus (2.11) yields
QI8 (u) =Law(Po412 0 Po,9+1(V)) = Law(Por12(v)) = Law(Pp,1(v)) = E(p),

and X(p) € Z(XN) as claimed.

Next, we defineamap = : Z2(xN) — P2 (Ay) as follows. Givenv ~ v € 2(XV), take ¥ ~
Uniform(R/Z) independent of all else, and let (/) := Law(® (v),?). Then we can easily
check that ¥ o 2 = QF and, abusing notation, (= o X)(u) = Law(P}u). Therefore, ¥ and =
are inverses on the time-invariant measures 2 (Ay) and Z(X"). Moreover, these maps com-
mute with spatial translation and convex combination, so they define bijections & (Ay)
De(XN) and P (Ay) < P (XN) as well.

2.4. Main results

We can now precisely state the main theorems. First, (1.1) admits infinitely many invariant
measures.

Theorem 2.2. There is a constant C < 400 depending only on the constant k¢ in assumption
1, the constants \,c1,cy in assumption 2, and the law of V, such that the following holds. Let
the group G be R or LZ for some L> 0 and let X ~ Uniform(R/G). For each a > 0, there

exists flq,G € @ec(fh) such that if (v,0) ~ piq 6, then
EH(v(X)), E(0,v(X))* < oo
and
—%gﬂ«:v(x)—agawﬁ. (2.12)
Remark 2.3. Let
o = {Ev(X) € R | Law(v,0) € Z5(A;)and EH(v(X)), E(dw(X))? < oo}.

If I, denotes the interval in (2.12) centered on a, then theorem 2.2 ensures that .7 N1, # ).
. .. . . —€ .
Since 1,, N1,, = ) when a; > a;, we see that &7 NR is infinite. In particular, & ;(A4,) is
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infinite and unbounded. Moreover, by replacing # with —u, we also obtain infinitely many
negative means.

We observe, however, that it is possible to satisfy theorem 2.2 with a rather sparse set of
means. For instance, the set

o ={xexp(cn(g—1)"") |neN}
is compatible with (2.12) provided ¢ > 0 is sufficiently small.

Remark 2.4. In light of the bijection X2: Z(A;) — (X defined above, theorem 2.2 implies
the existence portion of theorem 1.1.

The next result says that invariant ensembles of solutions evolving under the same noise
can be invariantly coupled and are necessarily ordered.

Theorem 2.5. Fix N; € N for each i € {1,2}. Let the group G be R or LZ for some L> 0
and let X ~ Uniform(R/G). Given p; € P¢(Ay,), let (vi,0;) ~ p; with v; = (i1, ..., vin,)
fori € {1,2}. Suppose

EH(vij(X)), E(0wij(X))* < oo forallie {1,2},j € {l,...,N;}.
Then there exists j € ?E:G(.ANl 1N, ) such that if ((v1,v2),0) ~ u, then
Law(v;,0) = p; foreachie {1,2} (2.13)

and for each j; € {1,...,N\} and j, € {1,...,N,}, there is a deterministic x;, j, € {0,£1}
such that almost surely

sgn (vl;,-l (x) —vay, (x)) =Xjj, forallxeR. (2.14)
This ordering implies uniqueness for suitably bounded invariant extremal measures.

Corollary 2.6. Fix N € N. Let G be R or LZ for some L > 0 and let X ~ Uniform(R/G). Then

foreacha € RY, there exists at most one ju € P ¢(Ay) such that if (v,0) ~ 1, we have Ev(X) =
aand

EH(vi(X)), E(0vi(X))* < oo foreachi € {1,...,N}.
Remark 2.7. Taking N =1 and G =R, corollary 2.6 implies the uniqueness in theorem 1.1.

3. Well-posedness theory

In this section, we study the well-posedness of the unforced problem in weighted spaces that
permit growth at infinity, which places it outside traditional theory. While [13] established
well-posedness for the Burgers equation in weighted spaces, the nonlinear diffusivity (u)
presents new difficulties, as we cannot rely on the theory of mild solutions (Duhamel’s for-
mula).

Theorem 3.1. Fix m € (0,1). For each s >0, the map U, defined in (2.8) is a continuous
function from X, to itself.

This implies that the random dynamical system is Feller.

Corollary 3.2. Fixm € (0,1). For any s <t, the map ®,,: X, — X, is continuous with prob-
ability 1. Also, the semigroup (P;);>o defined in (2.9) has the Feller property.

The proof of theorem 3.1 proceeds as follows. First, we study the PDE on a torus of length L,
and prove well-posedness for the periodised problem. Next, we obtain weighted L°°-estimates
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for the periodised problem that are uniform in L. We can then take L — +o0o0 and obtain a
solution in X,,. Finally, we prove the continuity of W, using weighted L'-stability.

3.1. Global-in-time well-posedness of the periodised problem

We first prove well-posedness on the torus T, := R/LZ for L > 0. Consider the unforced prob-
lem (2.7) on Ty:

O = O [Kk(u)du— H(u)], u(0,x) =ug(x) forxeT,. 3.1
To state the well-posedness result, we use the notation
Q,(t,x) = (t—1*,1) x B(x,r) (3.2)

forr>r*>0andx e T;.

Proposition 3.3. There exist o € (0,1) and Co: Ry — Ry such that the following holds. For

every ug € C(Ty), (3.1) admits a unique strong solution u that is Clzoco‘ in space and C]]O’ca/2 in
time. Moreover, for every parabolic cylinder Q,,(t,x) C Ry x Ty, we have

lullco (0, (1x)) < Co(P[ull oo (0a (1)) (1 + utll oo (s (16)) ) - (3.3)

This proposition will follow from lemmas 3.4, 3.5 and 3.7 and proposition 3.8 below. We
first construct a solution to a regularised version of (3.1). We then remove the regularization
and show that the limit is a weak solution to (3.1). A De Giorgi-type estimate allows us to
upgrade regularity and show that the weak solution is actually strong. We show uniqueness of
the solution using L'-contraction.

3.1.1. The regularised problem.  Let ¢ € C2°(R) be a nonnegative bump function with

/quzl.

Given £ > 0, define ¢y (x) := £~ '¢(¢~'x) and &,(u) := ¢y * u, and consider the following reg-
ularised version of (3.1):

O’ = 0,[r(Se(u’)) 0’ —HW")], u*(0,x) =up(x) forxeTy. 3.4
Lemma 3.4. For each {,T > 0, (3.4) admits a unique weak solution in

B:=L*(0,T;H*(T.)) N L>(0,T; H' (Ty))
Proof. Fix £,T > 0. Let u®*(t,x) := uo(x) and, for n > 0, let u"*+!+* solve the linear problem
QT = 0, [k (S (™)) O ) — H' ()0, w0, x) = up(x). (3.5)

The solution to (3.5) exists and is unique by standard theory. The maximum principle
implies that

™t Y= x,) < ol i,y Forall n>o0. G0

n+1,0

Differentiating (3.5), multiplying by O,u , and integrating over T}, yields

1 d n n .
S 0 2 0
g_/ (afun—&-lj)n/(6£(un,f))Gz(axun,é)axun—kl,é+ H/(umé)(axun—i-l,é)(afun—i-l,f)
TL TL
<C(T,0) [ |Pu"+b4| 0. (3.7)
TL
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In the last step, we used (2.2) and (3.6) as well as the bound

[S¢(due™*)] < C(£) !

|1 < C(0)

that follows from (3.6). We see from (3.7) that

d
al\axu"“’zlliz + rol| 05T < C(T,0)]| 0 7o
Therefore, we have
6" oo 0,750 (1)) + 10 20,1302 (7)) < C(T ). (3.8)

Moreover, it follows from (3.5) and (3.8) that

||ar”n+l’l||L2((0,T)><TL) < C(T,0).

By the Aubin-Lions lemma, as n — oo, u™’ converges along a subsequence strongly in

both L2(0,T;C"*) and C((0,T);C?) for every a € (0,1/2). We replace (u"*),>¢ by this sub-
sequence and let u* denote the limit. Then in particular, #™* — u* uniformly on [0,7] x Ty.
Because « and H' are continuous, we know that

#(Sp(u™) = Kk(Sp(ut)) and H'(u™*) — H'(u*)

uniformly. It follows that the right side of (3.5) converges to 9, (k (S, (u’))0u’) — 0. (H(u"))
weakly in L?((0,7) x Ty), and hence strongly in L*(0,7;H~'(Ty)). Therefore u’ is a weak
solution of (3.4).

Now suppose there are two solutions * and v’ of (3.4) in B. Both u‘ and v* are sufficiently
regular to serve as test functions, so we can write

1d
Sl =B [ @it =P
Ty,

= [ [0 — RSN @00t )+ [ [HG) ~ HOO o ),
TL TL
Using (2.2) and (2.4), we find
d
=1 + mollu” = s < C(I0" e + 1) " = v

Since v! € L2(0,T;H*) C L*(0,T;C"'/?), Gronwall’s inequality implies that u* = v*. O

3.1.2. Removing the regularization. ~ We now construct a weak solution u to (3.1) by passing
to the limit ¢ — 0.

Lemma 3.5. For each T >0, (3.1) admits a weak solution in
B:=L*0,T;H'(T.)) NL>([0,T] x T,).

Proof. Fix T > 0. We first note that (3.6) is uniform in 7, so

([l oo 0,11 x1) < Mato oo () (3.9
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for each ¢ > 0. We cannot pass to the limit £ — oo in the estimate (3.8) directly, because the
right side depends on ¢. We therefore develop an H' estimate. Multiplying (3.4) by u‘ and
integrating by parts over Ty, uniform ellipticity (2.1) yields
1d
2dt
It follows that

[ 12 n,) + ol O (|2 ¢,y <O

—1/2
]| 200 0.2y + 1 20 msam oy < g ol 2y

We conclude that (uf) =g and (9u’)¢~ are uniformly bounded in B and L2(0,T: H~'(T.)),
respectively. By the Banach—Alaoglu theorem and the Aubin-Lions lemma, as ¢ — 0, u* con-
verges along a subsequence weak-* in L?(0,T; H'(T;)) and strongly in L2(0, T;C%) for every
a € (0,1/2). Again, replace (u*),~0 by this subsequence and let u denote the limit.

We now show that the limit u is a weak solution to (3.1). Going back to (3.4), multiplying
this equation by a test function ¢ € C°°([0,7) x T.) and integrating, we obtain

—/TLQD(O,x)uo(O,x)dx—/ (O p)u’ dxdt

[0,7] T},

= 7/ (3x<p)fi(65(ue))5xuedxdt+/ (Ox0 ) H(u") dxdt. (3.10)
[0,7T]x Ty,

[O,T] x Ty,

Combining the uniform bound (3.9) with the assumptions (2.2) and (2.4), we see that
k(S0 (u)) = £(Se(u))] < C(|luo|l)|Se(u”) — Se(u)],

@3.11)
[H(u") — H(u)| < C([Juo|| oo )" — ul.

In particular, strong convergence of u* — u in L*>(0,T;C®) implies

/ (Orp)u’ dxdt — (Oyp)udxdr,
[0,7]xTy [0,7]x Ty

/[OT] : (8x<p)H(ué)dxdt—>/waH(u)dxdt
XA

as £ — 0.
For the diffusive term in (3.10), we write

/ (0xp) [K(Ge () Duu” — ri(u)Octt] dxdt = / (Ocp) [K(Ge (")) — k(G (u))] O’ dxdt
(0.1 T (3.12)

+ / (0cp) [K(Se (1)) — r(u)] Octt” dxdrt + / (Ox ) k(1) O (u” — ) dxdr.
We control the first term on the right side using (3.11):

/[0 - |0cp| [5(S (")) — w(Se(u))| [0’ | dxdr < CI|S(u” —u) |z |10’ |2,
T X Ty ’

Dt |

‘
< Cllu —”HL,{X z,—0

because u is bounded in L(0, T; H' (T} )). For the second term on the right side of (3.12), we
have

/[o Sy (D00 [1(S(u)) — r(u)] Do’ | et < C|S(u) —ul| 2,

axueHLIZ’C — O,
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because G is an approximation of the identity. Finally, the third term in (3.12) converges to 0
by the weak-* convergence in L*(0,T; H'(Ty)). Thus u is a weak solution of (3.1). O

3.1.3. Regularity of the solution. ~ Next, we employ a bootstrap argument to show that u is
in fact a classical solution to (3.1). We use a De Giorgi-type result, which follows from [15,
theorem 6.28]. To state it, we recall the parabolic cylinders Q, introduced in (3.2).

Proposition 3.6. Fix (t,xy) € R x R, r> 0, and measurable bounded functions A and f on
02,(t0,x0). Suppose A < A < A for some 0 < A < A. Then there exist « € (0, 1), that depends
on \and A, and C < 4oc that depends, in addition, on r, such that any weak solution u of the
parabolic equation

8;14 = é)x(Aaxu) =+ 8xf n Qz,(lm)(())
satisfies
lullca (o o,10)) < € ([[ull 20 (03 (1,20)) + 1l (@5 10,30)) -
With this, we can show that weak solutions of (3.1) are classical.

Lemma 3.7. There exists o € (0,1) such that the following holds. For each T > 0, every weak
solution u of (3.1) in B is CIZOCO‘ in space and Cllo’ca/2 in time, and thus classical. If ug € C(T}),
then u is continuous. Moreover, there exists Co: Ry — R such that for every parabolic cyl-

inder Qp, C (0,T) x Ty, we have

lellca (o, < Colr)llulle(guy (1 + lletll=(gs)) - (3.13)
Proof. We will apply proposition 3.6 to (3.1) with A = x(u) and f = —H(u). Let (19, xo) denote
the ‘center’ of theparabolic cylinders Q, and Q,,. We are free to replace f by f — f(,X0)-
Then (2.3) and (2.4) yield

1l () < Metllzoe oy (1 et 0s)) -

By a trivial modification of proposition 3.6 to differently-sized cylinders,

leellee (s, /) < C(r)llullos (o) (1 + Il 0s))

which implies (3.13).
By (2.2) and (2.4), H(u) and x(u) are also a-Holder. Next, let 6 be a smooth cutoff such
that 9|Q4’_/3 =1 and ¢ 0, = 0. Applying theorem 6.48 in [15] to & := fu, we can check

that u € C1(Qy, /3). Following [15], we here use a parabolic notion of regularity that imparts

half-regularity in time. Thatis, u € C'**(Q4,/3) means u is ' in space and C(1*®)/2 in time.
Again, it follows that H(u) and x(u) are C!**. Applying [15, theorem 6.48] with a cutoff
between Q, and Qu,/3, we see that u is in fact C>* on Q,. That is, u is C** in space and

C'/2 in time. In particular, u is a classical solution of (3.1). Standard boundary regularity
now implies that u is continuous if uy € C(Ty). O

3.1.4. Uniqueness of the solution.  To complete the proof of proposition 3.3, we must prove
uniqueness for the periodised problem (3.1). To do so, we use L'-contraction of the conserva-
tion law. We recall the space B = L7H} N L, from lemma 3.5.

Proposition 3.8. For each T> 0, let u,v € B be weak solutions of (2.7) on Ty. Then
”u(tv ) - V(t, ')HL‘(TL) < HM(O, ) _V(Oa ')HLI(TL) fOV allt € [07 T]
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Proof. We first define the increasing function

K(s)= /0 k(r)dr. (3.14)
Then, we can write (2.7) as

Ou = 0K (u)] — 0:[H(u)),
which gives

Oi(u—v) = K (u) — K(v)] — O:[H(u) — H)]. (3.15)

Let F(x) := |x|. We introduce a family of smooth convex approximations {F. }.~¢ € C*(R)
such that

tim [, — Fley) =0 (3.16)
and
F.(x) =F(x), for|x| >1. (3.17)

Asinlemma 3.4 of [13], we assume that there exists a constant C > 0 such that forall € € (0, 1],
the approximation F. satisfies the following properties for all x € R:

Fo(x) < C(1] +e),
IXF! ()] < CF2(x),

Fl(0)] < C, G-18)
WIFZ(x) < Cli_e g (x).

Finally, we assume that F’ (w) — sgn(w) pointwise as € — 0, under the convention sgn(0) = 0.
It not difficult to verify the existence of such a family {F. }.~o.
Define w := K(u) — K(v) and

A= IIlaX{”uHocn ”V”DO} < o0.

We multiply (3.15) by F(w) and integrate in space:

O(u—v)FL(w) = _/11‘ F!'(w)(0w)? +/11‘ FL'(w)(0w)[H(u) — H(v)]. (3.19)

Ty

To bound the second term in the right side above, we note that (2.4) yields
[H(u) — H(v)| < C(A) e —v]. (3.20)

Here and below, we denote by C(A) various constants that depend on A and may vary from

line to line. By (2.1),
/ k(s)ds

[H(u) = H(v)| < C(A)|w].

lw| = > Kolu—v|.

By (3.20), we find
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Now the second term on the right side of (3.19) can be estimated using the last assumption
in (3.18):

| e @umiae < 5 [ P @2 ca) [ oo

TL
1
<3 [ Fro)@?+ cla) [ it
TL TL
gl/FW)@W)+QADa
2 )n,
Using this estimate in (3.19), we find
8,(u—v)Fé(w)+%/ F!'(w)(0,w)* < C(A,L)e. (3.21)
TL TL

The function K(u) is strictly increasing, so sgn(w) = sgn(u —v) and F.(w) — sgn(u —v)
ase — 0. Also, lemma 3.7 implies that 9,(u — v) is bounded when ¢ > 0. Taking ¢ — 0in (3.21),
the bounded convergence theorem implies

at(u—v) sgn(u —v) <O0. (3.22)
Now fix 0 < #; <, <T. By lemma 3.7, u is continuous in spacetime. Noting that
/ F.(u / Fl(u—v)0,(u—v), (3.23)
T,

we therefore have

/TLFE(”V)

Again, lemma 3.7 and the bounded convergence theorem allow us to take € — 0 in (3.24):

u(ta, ) — v, |—/|uu, s [ A senu ).
T, [f1,02] X T,

=1

1=t

:/ FL(u—v)0,(u—v). (3.24)
[[] fz]XTL

Taking #; — 0, (3.22) and the spacetime continuity of ¥ imply the lemma. 0

This completes the proof of proposition 3.3.

3.2. The solution on the whole line

We now send the size of the torus in the periodised problem to infinity. Given L > 0, let !X €
C>°(R) be a bump function such that 0 < x!* < 1 and

xH(x)=1 when |x| <L/2,
YH(x)=0 when |x| > (L+1)/2.

We assume that the family {x!“};>;(x) is uniformly smooth, meaning there exist con-
stants Cy € R for k € N such that

||X[]||Ck(R) C; foreachkeN
and

102 < X,
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Given v: R — R, we define its L-periodization v[X by

VH (x) = Z X (x — jL)v(x — jL).
Jez
In particular, if v € Cp, then vi!l € C(Ty).

Now fix £ € (0,1) and an initial condition uy € Cp,. Let ul! denote the solution of (3.1)
with initial condition u([)L] , the L-periodisation of ug. Our first step is to prove a uniform bound
on the periodised solutions in weighted spaces. The following proposition is similar to [13,
proposition. 2.10].

Proposition3.9. FixL > 1,0 < ¢ < /¢’ < 1,and A € R, and suppose that Hu([)L] le,, < A. Then
there exists C € Ry depending only on ¢, {’, and A such that
sup [|ul(z, )|, , < C. (3.25)
1€[0,1] ¢
Proof. As in the proof of [13, proposition. 2.10], we start by defining a time-dependent weight
a.Fix K > A+ 1, to be chosen later. Define £} = ({+£')/2 € (£,0'),e=0"— 4, = ("= 1) /2,
and
W —(liten /2
altx) =K~ (2 4+ £/O-0) T

The function z = au! satisfies the inequality ||z(0, - )|/ (r) < I and the differential equation

9z = z0,(loga) + w(ut) [02z — z (92 (loga) — (9 (loga))?) — 2(8:z) (D:(loga))]

'] (3.26)
F) Dz — 0u(loga)e) — B ()duz + H' (a0, (loga)z.

+

a

Next, suppose ||z[lc(jo,ijxr) >2. By proposition 3.3, z is continuous. Since
[12(0, -)|| e (r) < 1 and z(#,x) vanishes as x — Fo0, there exists a first time 7, € (0,1) and a
position x, € R such that

|2(t,x0)| =2 = [offl?iR'Z"

Let us assume without loss of generality that

2(te,x4) =2, 3.27)
so that

0zt x:) 20, Oyz(te,x) =0, and  0?z(ts,x.) <O. (3.28)

We can easily check that

1
0<a(tn) <1, [300ga) <1, 208Dy o210ga <3, (329)
a
and
_ € 2 2/(1—£")
O(loga) = 2log ()" +K <0. (3.30)
We control the last term in (3.26) using (2.4) and (3.29):
O, (1
)zl ontoga)] < 1+ el 202 < ez, an
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We evaluate (3.26) at (.,x.) and use the bounds (2.1), (2.2), (3.27)—(3.29), and (3.31):
0 < 29,(loga)

(te) T C1,

with a constant C that does not depend on K. Using (3.30), this becomes
0< —¢log (<x*>2 +K2/“*“) +C.

If we choose K large enough, independent of L, the right side becomes negative—a contradic-
tion. We conclude that if K is sufficiently large, then ||z||¢(jo,1]x®) < 2. That is,

) (1+e1) /2

/ ’ é//z
P (1,%)] < 2K(<x>2 + K/ (1=0) < zz<(<x>2 4K/t >)

for (£,x) € [0,1] x R. Hence
w2, e, < C(K,¢) forallze[0,1],
as desired. O

By proposition 3.9, the regularity bound (3.3), and [13, proposition B.2], the
sequence {ult}; > is precompact in the topology of C(0, T;C,,, ) forany ¢’ > {. Diagonalising,
there exists a subsequential limit u in C(0,T; Xy). It is straightforward to check that the limit
solves (2.7) on the whole line and satisfies the weighted L>°-bound (3.25) in proposition 3.9.
That is,

sup [u(z, -)

¢, ® < Cllluollc,, ®))- (3.32)
t€[0,1]

To complete the proof of theorem 3.1, we must show uniqueness and continuity with respect
to the initial condition. We first prove stability in a weighted L' space on the whole line. Given
£ € (0,1), define

C(x) _ e21—57<x>1—e
The following is an analogue of lemma 3.5 of [13].

Proposition 3.10. Ler{ € (0,1) and T € R,.. Let u,v € L>(0,T;C,, (R)) solve (2.7) with ini-
tial data in Cy, (R). Let

K := max { [l 0,7:c,, ®))s [Vll= 0,75y, (]R))} : (3.33)
Then there exists C € R depending on {, ko, and Cy from (2.4) such that for all t € [0,T],

/ 1(t,) — v(1,)[C (x) dx < eCEFD! / (0,) —v(0.x)[C()dx.  (334)
R R

Proof. We follow the proof of lemma 3.5 of [13]. Throughout, let C denote a positive constant
depending only on ¢, kg, Cy. We allow C to change from line to line.
First note that

PelOxC| +107¢] < CC. (3.35)
Recall the function KC(«) defined in (3.14). We define n = u — v, w := K(u) — K(v), and

Jo H O+ (1= A)v)dA

°= TRt (1= Avydx

_ 1
! V/ H (u+ (1 - M\v)dr =
w Jo
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Using (2.7), we can write an evolution equation for 7 as

om = Pw — 0 (Ew). (3.36)
Note that (2.1), (2.4) and (3.33) imply

l€lle,, < C(1+ lulle, +Ivle,,) < CCK+1). (3:37)

We approximate F(x) = |x| by convex functions F. as in (3.16)—(3.18). Multiplying (3.36)
by F.(w)( and integrating by parts in space, we find

/ (D) FL(w)C = / [FL ()02 — FL(w)2,(EW)]C

R R
- / [0.(FL(w)00w) — F(w)(Bw)? — u(FL(w)EW) + F (w)Ewdw]C
- / [02(F-(w)) — B(F. (w)w) — F" (w)(@ow)® + F" (w)E wdow] ¢
- / [F2(w)2C + FL(w)EwdLE — F(w)((0w)® — Ewdw)C].

Young’s inequality tells us that (,w)* — Ewduw > 1 (9,w)* — 1Ew* > —1€%w?, so since

F!’ > 0 we obtain

[@mrioncs [ Fooics omenc grrmentd. o
R R

We successively bound the terms on the right side of (3.38). For the first term, note that (2.1),
(3.18), and the definition of K imply that

[Fe(w)| < C(w| +¢) = C(IK(u) = K(v)| +¢) < C(|n| + ). (3.39)
Hence (3.35) yields

/ |F-(w)05¢| < C/ F.(w)¢ < C/ (In] +e)¢. (3.40)
R R R
To control the second term in (3.38), we use (3.18), (3.35) and (3.39):
[1Ftmeod < [ EomldS < Clele, e [(nl+ac @4
R R Pe ) R
Finally, the last term on the right side of (3.38) is bounded using the last inequality in (3.18):
[ 1P 00 < el o oo 342
Using (3.40)—(3.42) in (3.38), we have
[ omrnc<ct+iele,) [ Gal+ac+celelR, Inicla.
Using (3.37) and ¢, p3¢ € L'(R), this becomes
[@mrimic< etk [ o+ e e
R R
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We now take € — 0 as in the proof of proposition 3.8. Since sgnw = sgnn, we find
d
& [l = [ @nysentnic < e+ 1) [ Jalc (3.43)
R R R

Standard parabolic boundary estimates imply that u and v are continuous. Since p; < ¢! at
infinity, the uniform bound (3.33) implies that the map ¢ +— [ |1)(z, - )|¢ is continuous on [0, 7].
Hence (3.34) follows from (3.43) and Gronwall’s inequality. O

Taking u(0, -) = v(0, -) in the previous proposition, we obtain uniqueness for (2.7).

Corollary 3.11. Fix m € (0,1) and T> 0. Then (2.7) admits a unique solution in C(0,T; X,,)
for each initial condition in X,,.

3.3. Continuity of the solution map

We can now prove the main theorem of this section.

Proof of theorem 3.1. Fix m € (0,1) and s >0 and consider a sequence of initial condi-
tions (ug »)nen in A, such that

Ugn — g in X, asn — oo (3.44)

for some uy € &, Let v, := Wy(up,) and v:= Ws(up), and fix £ € (m,1). We will show
that v, — v in C,, (R) as n — oo. Since £ € (m, 1) is arbitrary, this will imply that v, — v in
X, as desired.

Take m < £'" < " < (. By (3.44), the sequence (u,) is uniformly bounded in Cp,,, (R).
Hence (3.32) implies that (v,) is uniformly bounded in C,,, (R). By proposition B.1 of [13],
it suffices to show that v, — v locally uniformly in R. That is, locally uniform convergence
implies that v, — vin C,,.

Fix compact K, K’ C R such that K C intK’. We know (v,) is uniformly bounded on K’.
Moreover, by the interior regularity (3.3), the sequence (v,,) is uniformly bounded in C*(K).
Hence the sequence is equicontinuous on K. On the other hand, proposition 3.10 implies that
v, — v in L' (K). Equicontinuity allows us to upgrade this convergence to L>°(K). Therefore
v, — v locally uniformly, and the proof is complete. O

3.4. The Hamilton-Jacobi equation

The relationship between conservation laws and Hamilton—Jacobi equations is well-known: a
solution to a conservation law is the derivative of a solution to a Hamilton—Jacobi equation.
In the present weighted-space setting, we have established the well-posedness theory first for
stochastic conservation laws. We now extend the theory to the corresponding Hamilton—Jacobi
equation.

Proposition 3.12. Let u be a solution to (1.1). Fix a smooth, compactly-supported function
such that [, ((z)dz =1, and define

h(t.x) = / (@) / “u(ty)dydz+ / / (@) [(u(s,2)) (s, 2) — H(u(s, )] deds.  (3.45)
Then
u=0h (3.46)
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and h solves the Hamilton—Jacobi equation
O = k(u(t,x))0?h(t,x) — H(0:h(t,x)) + V(t,x). (3.47)

Proof. The property (3.46) is clear by differentiating (3.45) in x. Differentiating (3.45) in time
and applying (1.1), we obtain

0h(t.0) = | G2 rlult.3)uar.y) = Hulry) + Vel | de
/ € o(u(r,2))n(t,2) — H(u(1,2))] dz
= k(t,x)0u(t,x) — H(u(t,x)) + V(t,x).

In the final identity, we have used fR )dz = 1. Recalling (3.46), we obtain (3.47). O

4. Existence of spacetime-stationary solutions

In this section, we prove the existence of spacetime-stationary solutions to (1.1). More pre-
cisely, we show that the set 22 (A;) defined in (2.10) is nonempty. We first need some estim-
ates on the solutions, obtained in sections 4.1 and 4.2. We prove the main result of this section
in section 4.3.

4.1. Derivative bound
We begin with an L? bound on the derivative of the solution.

Lemma 4.1. Let u solve (1.1) with constant initial condition u(0—, -) = a € R. Then for all
t€[l,00) and x € R, we have

1 [ 1
;/0 E(uua(s,x))ds < %+ L E[0Vo(0)2. @.1)

Proof. We prove the following by induction on k: for all k € Z>, 8 € (0,1], and x € R,

k+0
Efu((k+0)— x> < —2r0 /0 E[0yu(t,x)[2di + a® + (k+ 1E[BVo(0)]2. “2)

We begin with the base case k =0. Because V| is stationary, and hence 9,V is stationary
and mean-zero, we have

E[u(0+,x)]* = Ela + 9,Vo(x)]* = a* + E[0,Vo(0))* forall x € R. (4.3)

On the time interval (0, 0), the solution u satisfies the unforced equation (2.7). Let J(u) denote
an antiderivative of uH’(u). By the chain rule, we have

é@,(uz) = u0y (rk(u)Ou — H(u)) = —r(u) (Oxu)* + Oy [ur(u)Ouu — J ()] .

We now fix L € R and integrate over (0,6) x [0, L]:

1 [t
,/Mde
2 Jo

t=0— x=L

0
k() (Ou)? dxdt = ur(u)owu —J(u
*/@@XM () (Do) ddt /0[ ()0 — J(a0)]

=0+ x=0
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By (4.3), the negative part of the left side is absolutely integrable. Thus by space-
stationarity and lemma D.1 in [13], the right side is absolutely integrable and has mean zero.
Using (4.3), (2.1), and space-stationarity, we find

0
E[u(d—,x)]* < —2&0/0 E[0u(t,x)]*dt +a* +E[0,Vo(0)]?

for all x € R. This confirms the claim (4.2) for k=0.
Now suppose that (4.2) holds for some k > 0. We now show it for k+ 1. Given 0 € (0, 1],
by an argument identical to that in the base case, we have

L 1=(k+1+6)—
5/ u? dx —|—/ r(u) (Oeut)? dxdt
0 _ (kt+1,k+146) % [0,L]
t=(k+1)+
k146 =L @9
:/ [ur(u)Osu — J(u)] dt
k1 —o

Recall that V4 is independent of u((k+ 1)—, -). Using stationarity and the inductive hypo-
thesis (4.2) with 8 = 1, we therefore obtain

Elu((k+1)+,0)]” = E[u((k+1)—,x)]> + E[0:Viy1 (x)]?
< —2ky / E[0uu(t,x)2di + @ + (k+ 2)E[DVo(0)]2 < 0o
(0,k+1)

for all x € R. It follows that the negative part of the left side of (4.4) is absolutely integrable.
Again, space-stationarity and [13, lemma D.1] imply that the right side is absolutely integrable
and has mean zero. Taking expectation in (4.4) and rearranging, space-stationarity and (2.1)
yield (4.2) for k + 1. By induction, (4.2) holds for all k € Zx¢. Now fix ¢ € [1,00) and x € R.
Taking k := [f| — 1 and 6 := r — k, we can rearrange (4.2) to obtain (4.1).

O

4.2. Solution bound

In this section, we fix a € R and assume that u solves (1.1) with initial condition u(0—, -) = a.

Our goal is to prove the following proposition.

Proposition 4.2. There exists a constant C < 400 depending only on ko, A, ¢, and the law of
V such that for all t > 1 and x € R, we have

1 t
;/ Eu(s,x)ds =a (4.5)
0
and
1

L /0 EH(u(s,x))ds < Cla)?.

Corollary 4.3. With g as in assumption 2, there exists a constant C < oo, depending only on
Ko,C1,C2, A and the law of V, such that for all t > 1 and x € R, we have

1 t
;/ E|u(s,x) —a|?ds < Cla)*.
0

4571



Nonlinearity 36 (2023) 4553 T D Drivas et al

Proof. Holder’s inequality and (2.3) imply that
s —al? <277 (|sl? +[al?) <297 (e (H(s) +e7") + [al?)
for all s € R. Thus proposition 4.2 implies that

l t
?/ Elu(s,x) —al?ds < Cla)?
0

for some C < oo depending on kg, ¢y, ¢z, A, and the law of V.

O

The approach to the proof of proposition 4.2 is similar to that used in [12, 13], based on
the Cole—Hopf transform. There is an extra step, however. The Cole—Hopf transform cannot

be applied directly, so a comparison argument is needed.

We will first consider the case a = 0. Let g be the solution to the Hamilton—Jacobi equation

Oig = k(0:8)0;g —H(:g) +V, g(0—,-)=0,

(4.6)

constructed in proposition 3.12, so that u = d,g. Let also A, ¢, be as in (2.3) and let & solve

Oh = k(0:h)[02h — N(0:h)* ]+ V —ca,  h(0—,-) =0.
We have the following comparison.
Lemma 4.4. Forallt>0and x € R, we have

h(t,x) < g(t,x).
Proof. By (2.1) and (2.3), we know that

H(u) < Me(u)u® + .

A7)

4.8)

Moreover, at a spatial maximum of i —g, we have d,h=0,g =u and 9*(h—g) <0.

Subtracting (4.6) from (4.7), we therefore have
Oi(h—g) = k()07 (h— g) = \u’] — c2 + H(u) <0
at a maximum of & — g. Since A(0, -) — g(0, -) = 0, (4.8) follows.

This comparison is useful because /4 admits a Cole—Hopf transformation.
Lemma 4.5. The field
¢ _ e—)\h

solves the sequence of Cauchy problems

8;¢:H<—%;b>a§¢+AC2¢, tER_A,_\N,XER;
dlk4,x) = e MVeWp(k—,x), k€ Zsp,xER;
p(0—)=1.

(4.9)

(4.10)

@.11)

Proof. The PDE (4.10) comes from the classical Cole-Hopf transform; indeed, (4.9) implies

KX

axd) = _)\(ﬁaxha Och = /\¢ )

26 = N¢(9:h)> — Apd2h
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at non-integer times. Hence (4.7) yields
[oRY
Ag

as claimed. The multiplicative jump (4.11) at integer times is immediate from (4.7) and the
definition of V.

O = —Apdh = —\¢ [K(0:h)[0Fh — A(0:h)*] — 2] = & (— > D*p+ \er,

O

The next lemma gives an upper bound on the growth of a solution to (4.10) in the determ-
inistic case.

Lemma 4.6. There is a constant C < 400 depending only on kg, \, and c;, such that the
following holds. Let ¢ solve the deterministic PDE (4.10) with

0 < ¢(0,x) < Ke®” (4.12)
for some K >0, a < 2, and all x € R. For each j € Z, define

¢j = Ssup ¢(O,y)
yeljj+1]

Then for any t € [0, 1], we have

o(1,x) SCY =€ a1/, (4.13)
JEZ

Proof. By replacing ¢ with e =, we can assume that c; = 0. Let a = x3/2 and b = k¢ /4,

and define
b 2
P(t,x) =1 “exp <—j) .
Then
Op(t,x) = (—a+bxt ") lexp (— b~ 'x?)
and

Ip(t,x) = (—2b+4b°%t ")t exp (— bt~ ).
Thus if k € [no,nal], t>0, and x € R, we have
(8, — KOP)Y(t,x) = [(2kb — a) + b(1 — 4bk)x*t |t Texp (— bt~ 'x?) @14
= [Ko(k — ko) /2+b(1 — kor) Xt |t exp (— bt~ 'x*) >0 '

since Kk — kg = 0and 1 — kor > 0.
Let us now set

B= inf 1,x) >0,
xe[—llr}2,l/2]w( %)

and, for a given j € Z, define
Yi(t,x) = ;B ' Y(t+ 1,x— (j+1/2))

and

5(2‘,)6) = ij(t,x).

JEZ
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The sum is finite because (4.12) implies that

¢] < K/eK/ja

for some K’ € R. By (4.14) and linearity, ¢ is a supersolution to (4.10). Moreover, by con-
struction we have ¢(0, ) > ¢(0, -). By (4.12), the unique solution ¢ of (4.10) that grows
slower than an inverse Gaussian at spatial infinity satisfies the comparison principle. Thus,
for all (z,x) € (0,1] x R we have

— 1 . 1 (i 2
o(t,x) < o(t,x) = EZ(bjw(t—i— Lx—(+ 1/2)) < EZ(éje blx=j=1/2)"/2
JEZ JEZ
Now (4.13) follows. ]

Next, we obtain an upper bound on the expectation of the super-solution provided by
Lemmas 4.4 and 4.5.

Lemma 4.7. There is a constant C < oo, depending only on 1, \,ca, and the law of 'V, such
that if ¢ solves (4.10) and (4.11) with $(0—, -) = 1, then for all t > 0 and x € R we have

E¢(t—,x) < eCU+h, (4.15)

Proof. The proof relies on lemma 4.6 and induction. Recall the definition (2.5) of V,(x) from
assumption 3. Define

Ci = Ee V:0), (4.16)
which is finite by (2.6) of assumption 3. For j € Z, define

&)= swp (1)
x€[jj+1]

As our inductive hypothesis, we assume that (for a constant C not depending on 7)

sup E®; (1) < e+ (4.17)
JEZL

and that, with probability 1, there is some K < oo and v < 2 (possibly depending on ¢) such
that

0< p(1—,x) <K forallxeR. (4.18)

This is certainly true at = 0; we assume it is true for 7 and try to prove it for 4 1. By (4.16)
and (4.17), we have

sup E®;(t4) < C1eCUth), (4.19)
JjER

and by the assumption (in assumption 3) that 9,V, € X; almost surely, we see that (4.18) con-
tinues to hold (with possibly new values of K and o)) when 7— is replaced by 74-. Therefore,
the hypotheses of lemma 4.6 apply, so by (4.13), we see that (4.18) continues to hold with ¢—
replaced by (#+ 1)—, and using (4.19) and taking expectations in (4.13), we see that

sup EP;((1+1)—) < CreUH) < e
JER

for a new constant C;, with the last inequality as long as C > log C,. This completes the induc-
tion and thus the proof. O
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Proof of proposition 4.2. To reduce to the case a =0, let us define

i(t,x) == u(t,x + 2 roat) —a and V(t,x) := V(t,x + 2)ar)
as well as &(s) := k(s +a) and

H(s) := H(s + a) — 2\koas — \koa® — ¢;. (4.20)

By space-stationarity and the independence of V at different times, we know that V'™ V. The
function u satisfies

Ot = 0, [ ()0t — H(it) + V],  a(0—,-) =0. (4.21)
We can use proposition 3.12 to construct a solution g to the Hamilton—Jacobi equation

08 = F(0:2)078 —H(0:8) +V, &(0-,)=0,

such that 9,g = ii. Note that (2.3) and (4.20) imply that I:I(s) < Akos?. Thus, if & solves (4.7)
with ¢; = 0, lemma 4.4 yields g > h. Drawing on lemma 4.7, we find that

C (4.15) 1
— 1) <~ logEo(i—.x)
4.22)
1 (4.9) (48)
SXE(—10g¢(t—,x)) = E’h(l_7x) < Eg(t_’x)’

for all >0 and x € R. We use (4.6) to write

B(—x) = / (042)(5.x)ds + Vo )

_ /O (R (s,x))Dui(5,x) — l(a(s, )] ds + 5 V()
s=0

Here, we have used the notation V(x) := V(s + 2)as). This can be re-written as

(-1

/8 ) ds =g(t—,x /H (s, x) ds—ZV

for all 7 > 0 and x € R. Here, we have set

Integrating over (0, L) in space for some L > 0, we find
[r]—1

/0 (s, ) st: /O " [g(z—,x)+ /0 F(i(s,x)) ds — ; Vs(x)]dx. 4.23)

By (2.3) and (4.22), the negative part of the right side is absolutely integrable over 2. Hence
the same is true of the left side. By [13, lemma D.1] and spatial stationarity, the left side
is absolutely integrable over €2 and has zero expectation. Taking expectation in (4.23) and
rearranging, spatial stationarity allows us to remove the spatial integral:

[r]—1
/ H(ii =—Eg(t—,x) + Z EV,(x),

s=0
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for all > 0 and x € R. Note that (2.3) and Fubini—Tonelli allow us to exchange the expectation
and integral on the left side. Using (4.22) and the stationarity of the family V, we find

/OZIEIEI(ﬁ(s,x))ds < g(z+ 1) + [1]EV,(0).

Therefore, we have

% / EH(i1) < C (4.24)
0

for all # > 1 and some constant C < 4-oc depending only on kg, A, ¢, ¢z, and the law of V.
To verify (4.5), we integrate (4.21) in spacetime. Given L >0 and 7 > 0, we have

-1 ] pet

/[0 il )= [ @0 i@ as+ >l wss)

x=0

Now, (2.3) and (4.20) imply that H(s) > |s| when |s| > 1. Thus (4.24) implies that i(—,x)
has a first moment for all x € R and almost every ¢ > 0. Thus for almost every ¢ > 0, we can
apply [13, lemma D.1] to (4.25) to conclude that

Ei(r—,x) =0. (4.26)

This implies (4.5).
We can now control H(u). Combining (4.20), (4.24) and (4.26) and using space-stationarity,
we find

1/ | R
" / EH (u)ds = " / E [H(&t) + 2Akoait + Asoa® + ] ds < Cla)*
0 0

for all > 1. This completes the proof of proposition 4.2.

4.3. Existence of spacetime-stationary solutions

We are now ready to prove theorem 2.2.
Proof of theorem 2.2. Fix a € R and let u solve (1.1) with initial condition u(0—, -) = a. Let
pu = Law (u(1)) © 6,

where 07 is a delta mass at 7 € R /Z. Then g, is a probability measure on .A;. Given 7 > 1, define

1 t
= */ s ds.
tJo

We claim that (7, ), is tight with respect to the topology of X 2 % (R/Z). To see this, take
q

(v,0) ~ T, for fixed r > 1. By lemmas 4.1, 4.2, and corollary 4.3, there is a constant C < 400
depending on kg, cy,cz, A, and the law of V but independent of ¢ such that

EH(v(x)), E[v(x) —al? < C{a)* and E|9v(x)]* < C forall x € R. (4.27)
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In the remainder of the proof, we allow C to change from line to line provided it continues
to depend only on kg, cy,c2, A, and the law of V. Fix a > 1 and 8 € (0, 1) to be chosen later.
Given j € Z, let ¢; = sgn(j)(j)*. We have

Cjt1
v(x)| v(c;)| Jo T 10w (x)| dx
[vlle,, =sup sup < sup + sup i .
" fGer[cj,cH]] <x>6 JEZ <cj> <CJ>B

Note that (4.27) yields

(30} <5 2 <oy o

JGZ § =/

which is finite provided

B> qu (4.28)

Similarly, (4.27) implies

PO ST g
<y (¢j+1 =) [o Elow(x) > dx <cY (cit1—¢)?
\Jez (c))*f - = e
<Cy (ylemt=esl
JEL

which is finite when 2[ae — 1 — o8] < —1, that is,
B8>1-1/2a). (4.29)
Taking o = 1/2+ 1/g, we see that if 5 > 2/(2 + g), then both (4.28) and (4.29) hold, so that

E[v]ig,, < Cla)?. (4.30)

For instance, we can take § = 5/6.
The next step is to control the Holder regularity of v. Given v € (0, 1/2], we have

2
_ _ 2
o wp KOO s b o)
[x—y|<1 <x> |x—y|V jez x,yE[j—14+1] x#y <x> |x_y| g

Xy
<230 [ Eowpa< Y6

JEZ J JEZ
The last sum is finite since 8 > 1/2. In light of (4.30), and since 1 < ¢ < 2, we see that
E[v]|4, <C{a)*. (4.31)
Ps

As > 2/(2+ q) and y > 0, proposition B.2 of [13] ensures that the embedding
C[?ﬁ — Xﬁzq =X
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is compact. Therefore (4.31) and the compactness of R/Z imply that the sequence (i, );>0
of measures on A; = X x (R/Z) is tight. By Prokhorov’s theorem, there exists a weak sub-
sequential limit 7 of (f7,),;>1 as t — oo. Using the Feller property from corollary 3.2, a standard
Krylov—Bogoliubov argument shows that 7 is invariant for the semigroup (P;);>o. Also, [ is
certainly invariant under spatial translations, so i € Zg(A;). If (v,0) ~ [, then, by (4.27),
we have

EH(v),E[v —al? < Cla)> and E[0y|* <C, (4.32)

where we implicitly evaluate v at some x € R. Moreover, the uniform integrability implicit
in (4.27) yields

Ev = a. (4.33)

We now write 7t as a convex combination of extremal measures. Fix G =R or LZ for
some L>0 and let X ~ Uniform(R/G). Because [z is R-invariant, it is also G-invariant.
In [20, theorem 4.4], it is shown that i corresponds to a probability measure m(dy) supported

—€
on & ;(Ai) such that

p)= [ uaymida) 434
P (A1)

for each Borel set A C A;. Strictly speaking, [20] only treats deterministic dynamical systems.
However, as noted in remark 2.1, we can convert our Markov semigroup to a deterministic
dynamical system following [17, section 4].

Now if (v[u],0]u]) ~ p for each y € P (A, ), then (4.32) and (4.34) imply that m is sup-
ported on measures p such that

EH(v[u](X))., Elv[u] (X) — al’, EJow[u] (X)]> < oo. (4.35)

In particular, m is supported on measures with well-defined first moments. By the Holder
inequality, (4.32) and (4.34) yield

/92041) [Ev[u](X) —al|"m(dp) < /92(A1> Ev[u](X) — alm(dp) < Cla)®. (4.36)
Also, we can write (4.33) as
L BlComdn =a “37)
If i ~m,let & := E[v[u](X) | u] — a. Then (4.36) and (4.37) become
E[¢]? < C(a)? (4.38)
and
E¢ =0. (4.39)

Let m := Law¢, and suppose
suppm N [—(a)/2,A] = ()
for some A > (a)/2. Then we can use (4.39) to write
—(@)/2 00
0= [em@) == [ " leimian+ [ lemia).
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Therefore, we have

| teimian = o1 > 5.

Using (4.38), this implies:

€><Amsmww<Al?Amﬁmuw<Alwww<cvqmﬁ

Rearranging, we find

1_
A< Cla)TT,

with some C depending only on g, \,¢1,¢2, and Law V. It follows that
m([- %,CW/@—UD >0,

In light of the definition of £ and (4.35), there exists i, ¢ € WZ(A]) such that
EH(v[ta,6](X)), B|0xv[p1a,6](X)]* < o0

and
—(@)/2 < Bvlpia ] (X) —a < Cla)aT,

This completes the proof of theorem 2.2. O

5. Stochastic ordering of the invariant measures

In this section we prove theorem 2.5. First, we show that a coupling satisfying (2.13) exists.

Proposition 5.1. Suppose that j1; € P(Ay,) withi € {1,2} satisfy the hypotheses of theorem
2.5. Then there exists |1 € P G(An,+n,) satisfying (2.13).

Remark 5.2. Note that in this part of the proof of theorem 2.5, we do not assume that y; is
extremal.

Proof. Because each y; is invariant under the semigroup {7, } >0, their marginals on R /Z are
uniform for each i € {1,2}, and are, therefore, identical. It follows that there exists a coupling
to € Z6(An,+n,) such that if

((v1;17'"7V1;N15V2;17~"7V2;N2)79) ~ o,
then
Law ((vi;1,...,vin,),0) = p;  foreachi € {1,2}.

Deploying the Krylov—Bogoliubov-type argument in the proof of [13, proposition 4.3], there
is a sequence of times T * oo such that the limit

1 [h
p= lim — Pt*,uo dt

k—oo 1k Jo

exists and is an element of Z;(Ay,+n,). Moreover, the invariance of g, implies that p
satisfies (2.13). O

Next, we show that the components of a time-invariant solution are ordered.

4579



Nonlinearity 36 (2023) 4553 T D Drivas et al

Proposition 5.3. Let the group G be R or LZ for some L >0 and let X ~ Uniform(R/G).
Suppose that i € P(Ay) and (vy,...,vy,0) ~ u satisfy

EH(v(X)), E(0vi(X))? < oo foralli € {1,...,N}. (5.1
Then for each i,j € {1,...,N}, sgn (v;(x) —v;(x)) is almost surely a random constant inde-
pendent of x € R.

Proof. It suffices to consider the case N =2. The statement and proof are similar to those
of [13, proposition 3.9]. Let (vq,v,,0) ~ u be independent of the noise V. For each i € {1,2},
let u; solve (1.1) with initial condition u;(f—) = v; at time 6. Since 6 is uniformly distributed
in R/Z, we can restrict to the full-measure event 6 # 0.

Let F(x) = |x| and let {F.}.¢(o,1 be a family of functions as in [13, lemma 3.4]: each F.
is convex and there is a constant C so that

Fe(§) < C(€l+¢), [EFLEI<CF(E), [FUOISC, [IFI () <Clicq(8).  (52)

Moreover, we can assume that F. is independent of ¢ outside [—1, 1]. By (1.1) and the chain
rule, the difference 1 = u; — u, satisfies

OF(n) = F1:(n)0x [k(u1)Osuy — K(up)Octty — H(uy) + H(up)) (5.3)

at non-integer times.
Let L=Lif G=LZfor L>0and L=1if G =R, and integrate (5.3) over (6,1) x [0,L].
Integrating by parts in space, we find:

L t=1— 1 x=L
/ Fe(n)dx = / Fo(n) [k(u1)Ocuy — K(u2) Ot — H(uy) + H(up)) dt
0 =0 0 x=0
i 54
_ /9 /0 F! ()0 [ (1) Osttr — o(u2)Ostts — H(ur) + H(uz)) ddr.
Next, we write
K(u1)Oxtty — k(u2)Oxtty = K(up)0n + [k(u1) — K(u2)]Octa. (5.5

Recall that assumption 1 states that « is uniformly «,-Holder regular for some o, € (1/2,1).
Using this regularity, (5.2), and Young’s inequality, we find

\FL' (m)0nlr(ur) — #(u2))0uz| < ||Killeen FL () |Oupl 1]~ Orte |

Ko [15]13an o
< F )10l + TiFé’(n)lnlz *|Oyuta|? (5.6)

fo
T4
Similarly, (2.4), (5.2), and Young’s inequality imply

FL' ()0l + ||A][Gan g '€~ O]

|FL (m)0sn[H(ur) — H(ua)]| < CFL' ()0l In] (Jur] + 1)/

< %Fg”(n)lé’ml2 + Criy e(Jug |+ 1), G-
Combining (5.5)—(5.7) and using (2.1) we obtain
— FL ()0 [#(ur) st — k() Otz — H(uy) + H(u)
< = Z2FL ()0 + €27 |0n? 4 Ce(fu |+ 1)7, >8)
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where we allow C to change from line to line. Now (5.1) and (2.3) imply that

1 /L
E/ / (|02 |* + (Jur | + 1)7) dx dt < <. (5.9)
o Jo

Thus, we have

_/ / FL' ()0 [k(ur)Ocur — k(u2)Oyur — H(uy ) + H(uz)] dxdt)
0 Jo +

L (5.10)
< CEZO"FI]E/ / [[0t2]* + (|| 4 1)7] dxdt < c.
6 Jo
On the other hand, G-invariance and time stationarity imply that
L =1— 1 x=L
/ F.(n)dx - —/ Fe(n) [k(uy) 0y — K(up)Oyuy — H(uy) + H(up)] dt . (5.11)
0 = %] x=

can be written as the difference of two identically distributed random variables.
Therefore, (5.4), (5.10), and [13, lemma D.1] imply that the expression in (5.11) is abso-
lutely integrable and has zero expectation. Taking expectation in (5.4), (5.8) and (5.9) yields

1 L
IE// F!'(n)|0m|* dxdt < Ce**=~ 1, (5.12)
6 Jo

We now take ¢ — 0. Let ( € C°(IR) be nonnegative with

/R(dx: 1,

and let 5:: (% 1[0 i Mimicking the proof of [13, proposition 3.7], we can use (5.12), G-
invariance, and the coarea formula to show that

/ Z 106 )1E) flm(l)E//F” £.2))|0ury (1) |2 dxdt =
yen(t,-)~1(0) 2e

almost surely. If we translate ¢ (and thus 9 along R, we see that with probability 1, we have
Om(t, -) = 0 wherever n(t, -) = 0 for almost every ¢ € [f,1). Proposition 3.3 and [15, the-
orem 4.8] imply that 9,7 is continuous in spacetime. Following the proof of [13, lemma 3.10],
we can show that with probability 1, we have 9,7 = 0 wherever =01n (6,1) x R. The proof
of [13, proposition 3.9] shows that this contradicts the parabolic Hopf lemma unless sgn is
a random constant independent of (¢,x) € (8,1) x R. The comparison principle implies that
then sgn is almost surely a random constant independent of (#,x) € (6,00) x R. By time sta-

tionarity, we also have (6 + 1, -) = 1(6, ). The proposition follows. O

Next, we apply this proposition to extremal solutions.

Corollary 5.4. Let p and (v,0) ~ u satisfy the hypotheses of proposition 5.3. Suppose
Law(v;,0) € Pg(A,) foreveryi € {1,...,N}. Then, ifa := Ev(X), with probability I we have

sgn (vi(x) —vj(x)) = sgn(a; — a;)
forallx e R and everyi,j € {1,...,N}.
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Proof. Again, it suffices to consider the case N =2. Our argument follows the proof of [13,
proposition 6.1]. By proposition 5.3, with probability 1 the random variable

X = sgn(vi(x) —va(x))
does not depend on x € R. Given b € {0,£1} and i € {1,2}, define
wip:=Law((v;,0) | x =b)

if P(x = b) > 0. Otherwise, let y;;, := Law(v;,6). By the comparison principle, y; j, is time-
invarianit. Moreover, it is G-invariant because p and b are G-invariant. Therefore, we know that
wip € P (Ay). Now, we can write Law(v;,0) as the convex combination

Law(v;,0) = Z P(x = b)pip-
be{0,£1}

Since Law(v;, ) is extremal, we have y; , = Law(v;,0) for all b € {0,+1}. Therefore, if X ~
Uniform(R/G) is independent of all else and P(y = b) > 0, we have

EWi(X) =va(X) | x =b] =EWi(X) [ x =b] —E(X) | x =0]
=Evi(X) —Ewn(X) =a; — az.
Because y does not depend on x, this implies that
b=E[sgn (vi(X) —v2(X)) | x =b] =sgn (E[vi(X) —v2(X) | x =0b]) =sgn(a; — ay).
Therefore P(x # sgn(a; — az)) = 0, as desired. O

Proof of theorem 2.5. Let G be R or LZ for some L > 0. For each i € {1,2}, fix N; € N, let
N := Nj + N, and take p; € ﬁec(.ANi). Assume that (vi.1,...,vi,, 0;) ~ p; satisfies (5.1). By
proposition 5.1, there exists a coupling it € ¢ (Ay) of i1 and py in the sense of (2.13). Using
proposition 5.3, we will show that y is extremal, i.e. that p € ?Z(AN).

Suppose there exist 1(?), (1) € P (Ay) and v € (0, 1) such that

p=yp® + (1 =y)uth.
Then, if (v,0) ~ pand (v(9),0®)) ~ u® for £ € {0,1}, (2.13) and (5.1) imply that
EH(v};) (X)), E@w(;) (X)) < max{y~", (1 =)'} max{EH(vi; (X)), E(9hiy(X))’} < 00

foralli € {1,2}andj € {1,...,N;}. Thatis, 19 and (V) satisfy the hypotheses of proposition
5.1. Thus there exists fi € P(Aay) such that if ((v(0,v(1).0) ~ i, then

Law(v(¥,0) = 49  foreach £ € {0,1}.

Fix i € {1,2} and j € {1,...,N;}. We claim that the marginal f1;;; := Law(v;;,0) of p; is
extremal. If it were a nontrivial convex combination of measures in #;(A,), we could use
proposition 5.1 to couple those measures to the remaining components of y; and thus write y;
as a nontrivial convex combination. It follows that

vl ~ iy € Po(A),

for each ¢ € {0, 1}. By corollary 5.4, we have vg;) = vl(;}) almost surely. Since this holds for all

i,j, we have v(9) = v(1) almost surely. In particular, ;1(%) = ;(1). Therefore, j is extremal.
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Finally, the extremality of the marginals Law(v;;;,¢) and corollary 5.4 imply (2.14).
O

Now, corollary 2.6 follows from theorem 2.5.

Proof of corollary 2.6. Take N, G, and X as in the statement of corollary 2.6. Fix a € RY, and
ad '

suppose there are two measures i, tp € X (An) with (v;,0;) = (vi1,. .., vy, 8i) ~ p; such

that Ev;(X) = a and

EH (viy(X)), E(0evi(X))* < oo foreachi € {1,2},j € {1,...,N}.
By theorem 2.5, there exists a coupling @Z(.AZN) satisfying (2.13) and (2.14). In particular,
0 = sgn (Evi;j(X) —Evoy(X)) = x1y,0; Tforeveryj € {1,...,N}.

So v; = v, almost surely, and p; = pp. O
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