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1. Introduction

We consider the stochastic conservation law

∂tu= ∂x
[
κ(u)∂xu−H(u)+V(t,x)

]
for t ∈ R+, x ∈ R. (1.1)

Here, κ(u) is a Hölder continuous nonlinear diffusivity bounded from above and below,
H(u) is a sub-quadratic, super-linear Hamiltonian, and V(t,x) is a random, space-stationary
noise that is smooth in space and ‘kick-type’ in time. We defer the precise assumptions on κ,
H, and V to assumptions 1, 2 and 3, respectively, in section 2.2 below.

The stochastic Burgers equation is an important special case of (1.1), corresponding to
constant κ and H(u) = u2/2. Ergodic properties of this equation on the whole line and with
various forms of the random noise V(t,x) have been studied in several previous works [3, 5,
6, 13, 14]. The inviscid case κ≡ 0 on the line was studied earlier in [1, 2]. We refer to the
survey [4] for a review of the rich literature, especially on the torus, and for many interesting
perspectives on this problem. A key result is that the stochastic Burgers equation admits a
unique global ergodic spacetime-stationary solution for every mean a ∈ R ([6, theorem 3.1]
and [13, theorem 1.2]). In the present paper, motivated by some problems posed in [4], we
partially extend this claim to more general choices of κ(u) and H(u). The main result is that
under appropriate assumptions on κ, H, and V, there is an unbounded set of means for which
an ergodic spacetime-stationary solution of (1.1) exists. Moreover, each mean admits at most
one ergodic spacetime-stationary law.

Most approaches to the stochastic Burgers equation interpret it in terms of directed poly-
mers using the Cole–Hopf transform, which is specific to the Burgers case. In [4, section
3], the authors propose using a generalization of directed polymers to analyse more general
Hamiltonians. However, to the best of our knowledge, this direction has yet to bear fruit except
for some results in [16] in the compact setting. In the present paper we use, instead, themethods
of [13], which are PDE-based and less strongly tied to the exact algebraic form of the stochastic
Burgers equation. We note that several previous works have tackled general Hamiltonians on
the torus using PDE methods; see [7–11]. The problem on the line is quite different, mostly
due to the lack of the Poincaré inequality; the main challenge in the present setting is the
noncompactness of the domain.

The choice of kick-type V(t,x) is motivated by relative simplicity of exposition. Because
we are interested in the long-time/stationary behaviour of (1.1), we do not expect the precise
form of V(t,x) to be important from a physical perspective. However, if κ is non-constant, there
do seem to be technical challenges involved in extending our results to white in time V(t,x),
which is the setting considered in [13].

We note that our results here are weaker than those in [13] for the stochastic Burgers
equation. We do not show the existence of an invariant measure for every mean but only for
means in a non-explicit unbounded set, and we do not prove any stability or convergence
result. Previous proofs of these results for the stochastic Burgers equation rely on the shear-
invariance of the stochastic Burgers equation; see [4, p. R93] for discussion. In particular, the
shear-invariance yields the exact form of the so-called shape function. There is no shear invari-
ance when the Hamiltonian is non-quadratic or when the diffusivity is non-constant. Similar
problems in the discrete setting lacking shear-invariance were studied in [18, 19]. There, spe-
cial noise distributions yield an exactly-integrable structure that determines the shape function,
compensating for the lack of shear-invariance. In addition, [18, 19] proved various results about
analogues of invariant measures conditional on certain understanding of the shape function.

We now set up the main result of this paper. Because the law of the ‘kick’ noise V
is 1-periodic in time, we can view the evolution as a discrete time-homogeneous Markov
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process. For the state space, we use a weighted function space X defined in section 2.1.
Let P(X ) denote the space of Borel probability measures on the Polish space X . Given a
measure ν ∈ P(X ) and k ∈ Z⩾0, define Q∗

kν := Lawu(k−, ·), where u solves (1.1) with ini-
tial condition u(0−, ·)∼ ν that is independent of the noise V. Then (Qk)

∞
k=0 forms a discrete

time-homogeneous Markov semigroup.
We next define space- and time-invariant measures. Let PR(X ) denote the set of meas-

ures ν ∈ P(X ) that are invariant under the translation action of R on X . Similarly, define

P(X ) =
{
ν ∈ P(X ) | Q∗

1ν = ν
}
.

Note that, by the semigroup property, Q∗
kν = ν for all k ∈ Z⩾0 and all ν ∈ P(X ). Also, let

PR(X ) := PR(X )∩P(X ).

Finally, let P
e
R(X ) denote the set of extremal measures in PR. That is, the set of measures in

PR(X ) that cannot bewritten as nontrivial convex combinations of other elements ofPR(X ).
By a standard result of ergodic theory, these are precisely the ergodic measures of the Markov
semigroup. We define and discuss ergodicity in section 2.3.

With this notation, we can summarise the main result.

Theorem 1.1. There exist infinitely many ν ∈ P
e
R(X ) such that if v∼ ν, then EH(v)<∞ and

E(∂xv)2 <∞. Moreover, for each a ∈ R there is at most one such measure with Ev= a.

Remark 1.2. This theorem follows from somewhat stronger results stated in section 2.4 below.
In particular, it is a consequence of theorem 2.2 and corollary 2.6.

We state our precise assumptions and results in section 2. In section 3, we establish a well-
posedness theory for (1.1) in weighted spaces. We construct invariant measures in section 4
and prove uniqueness in section 5.

2. Setting and main results

In this section, we clarify the setting of the problem, impose precise hypotheses on the terms
of the PDE (1.1), and state the main results.

2.1. Function spaces

We study solutions in weighted function spaces similar to those in [13]. A weight is a positive
function w : R→ R>0. Given such weight w, we let Cw denote the Banach space of continuous
functions f : R→ R such that the norm

‖ f‖Cw := sup
x∈R

| f(x)|
w(x)

is finite. Given α ∈ (0,1), we also define

‖ f‖Cα
w
:= ‖ f‖Cw + sup

0<|x−y|⩽1

| f(x)− f(y)|
w(x)|x− y|α .

We often use the weights pℓ(x) = 〈x〉ℓ, where 〈x〉=
√
4+ x2 and ` > 0. For each m⩾ 0, we

define the Fréchet space

Xm :=
⋂

ℓ>m

Cpℓ
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equipped with the Fréchet topology generated by the norms of {Cpℓ}ℓ>m. Throughout the
paper, we distinguish the weighted spaceX := X 2

2+q
, where q ∈ (1,2] is defined in assumption

2 below. We also sometimes use weighted Lp spaces for p ∈ (1,∞), defined by the norms

‖ f‖Lpw =
(
ˆ

R

( | f(x)|
w(x)

)p

dx

)1/p

.

2.2. Assumptions

We now state our assumptions on κ, H, and V.

Assumption 1 (Regarding κ).

(i) There exists κ0 ∈ (0,1] such that
κ0 ⩽ κ(u)⩽ κ−1

0 for all u ∈ R. (2.1)
(ii) There exist ακ ∈ (1/2,1) and βκ ∈ (0,1) such that ‖κ‖Cακ <∞ and κ ∈ C1,βκ

loc .
(iii) There exists Cκ <+∞ such that

|κ ′(u)|⩽ Cκ(1+ |u|) for all u ∈ R. (2.2)

Assumption 2 (Regarding H).

(i) The Hamiltonian H is in C1,αH
loc for some αH ∈ (0,1).

(ii) There exist constants λ, c1, c2, CH > 0 and q ∈ (1,2] such that

c1|u|q− c−1
1 ⩽ H(u)⩽ λκ0u

2 + c2 for all u ∈ R (2.3)

and

|H ′(u)|⩽ CH(1+ |u|)q/2 for all u ∈ R. (2.4)

Throughout the paper, we will work on a probability space (Ω,F ,P). We assume that it is
large enough for all of the random variables that we define.

Assumption 3 (Regarding V). The random distribution V can be written as

V(t,x) =
∑

s∈Z

Vs(x)δ(t− s),

where (Vs)s∈Z is an iid family of space-translation-invariant random functions onR satisfying
the following properties:

1. For each s ∈ Z, we have ∂xVs ∈ X0 almost surely.
2. We have E[Vs(x)2]<∞ and E[(∂xVs(x))2]<∞.
3. If we define

Vs( j) = inf
x∈[j, j+1]

Vs(x), (2.5)

then

Ee−λVs( j) <∞, (2.6)

with λ as in assumption 2.

We note that (by, e.g. the Fernique and Borell–TIS inequalities) smooth, rapidly decorrel-
ating Gaussian random fields satisfy assumption 3.
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2.3. Invariant measures

Let Ψs be the time-s map of the unforced dynamics

∂tu= ∂x
[
κ(u)∂xu−H(u)

]
. (2.7)

That is, if u solves (2.7) with u(0,x) = v(x), then

Ψs(v)(x) := u(s,x) for s⩾ 0, x ∈ R. (2.8)

In section 3 below, we show that Ψs is a continuous function from X to itself for each s⩾ 0.
Given s⩾ t⩾ 0, if u satisfies the stochastic PDE (1.1) with u(t−,x) = v(x), we define

Φt,s(v)(x) = u(s−,x).
Note that Φ satisfies the co-cycle property: Φt,t = id and Φs,r ◦Φt,s =Φt,r. Also, if k ∈ Z⩾0

and s ∈ (0,1],

Φt,k+s(v) = Ψs
(
Φt,k(v)+ ∂xVk

)
.

We also extend Ψs to act entry-wise on the product space X N:

Ψs(v1, . . . ,vN) := (Ψs(v1), . . . ,Ψs(vN)).

Similarly, we let

Φt,s(v1, . . . ,vN) := (Φt,s(v1), . . . ,Φt,s(vN)).

We emphasise that the initial conditions (v1, . . . ,vN) evolve subject to the same realization of
the noise process in the latter notation.

In the introduction, we framed the system in discrete time. However, we frequently rely
on continuous-time methods to control our solutions. We therefore augment our state space
to obtain a continuous time-homogeneous Markov process, by keeping track of the time since
the last kick. Given t ∈ R, let t denote its fractional part, i.e. the image of t under the quotient
map R→ R/Z. Set

AN = X N× (R/Z),

and, given bounded measurable F : AN → R and t⩾ 0, define a bounded measurable map

PtF : AN → R

by

(PtF)(v1, . . . ,vN,θ) = EF
(
Φθ,θ+t(v1), . . . ,Φθ,θ+t(vN), θ+ t

)
.

Then (Pt)t⩾0 forms a time-homogeneous Markov semigroup. We define its dual action
on P(AN) by

P∗
t µ= Law

(
Φθ,θ+t(v1), . . . ,Φθ,θ+t(vN),θ+ t

)
(2.9)

for µ ∈ P(AN) and (v1, . . . ,vN,θ)∼ µ.
Next, letG be the groupR or LZ for some L> 0.We letPG(AN) denote the set of measures

inP(AN) that are invariant under the action ofG onAN by translation.We likewise letP(AN)
denote the set of measures µ ∈ P(AN) such thatP∗

t µ= µ for all t⩾ 0. We observe that if µ ∈
P(AN), then the marginal of µ on R/Z is translation-invariant, and hence uniform. Finally,
we again define

PG(AN) = PG(AN)∩P(AN) (2.10)

and we let P
e
G(AN) denote the set of extremal elements of PG(AN).
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Remark 2.1. As noted in the introduction, extremality is equivalent to the notion of ergodi-
city. We say that a measure µ ∈ PG(AN) is ergodic if the following holds. If A⊂AN is a G-
invariant Borel set such that Pt1A = 1A µ-a.s. for all t⩾ 0, then µ(A) = 0 or µ(A) = 1. The
equivalence of extremality and ergodicity is a ubiquitous feature of ergodic theory. However,
our setting falls outside traditional treatments of the subject because it involves both space
and time actions. To handle our system, we first convert the Markov semigroup to a determ-
inistic dynamical system following the approach of [17, section 4]. Then the equivalence of
extremality and ergodicity follows from theorem 3.1 in [20], which treats general group actions
on measure spaces.

In a certain sense, time-invariant measures on AN are equivalent to those on X N. To see
this, define a map Σ: P(AN)→ P(X N) by Σ(µ) := Law(Φθ,1(v)) for (v,θ)∼ µ. We claim
thatΣ preserves time invariance. Indeed, the iid nature of the kicks V and the cocycle property
implies:

Q∗
1Σ(µ) = Law(Φ1,2 ◦Φθ,1(v)) = Law(Φθ,2(v)) = Law(Φθ+1,2 ◦Φθ,θ+1(v)). (2.11)

Now if µ ∈ P(AN), we have

Law(v,θ) = µ= P∗
1 µ= Law(Φθ,θ+1(v),θ+ 1) = Law(Φθ,θ+1(v),θ).

Thus (2.11) yields

Q∗
1Σ(µ) = Law(Φθ+1,2 ◦Φθ,θ+1(v)) = Law(Φθ+1,2(v)) = Law(Φθ,1(v)) = Σ(µ),

and Σ(µ) ∈ P(X N) as claimed.
Next, we define a mapΞ : P(X N)→ P(AN) as follows. Given v∼ ν ∈ P(X N), take ϑ∼

Uniform(R/Z) independent of all else, and let Ξ(ν) := Law(Φ0,ϑ(v),ϑ). Then we can easily
check that Σ ◦Ξ =Q∗

1 and, abusing notation, (Ξ ◦Σ)(µ) = Law(P∗
ϑµ). Therefore, Σ and Ξ

are inverses on the time-invariant measures P(AN) and P(X N). Moreover, these maps com-
mute with spatial translation and convex combination, so they define bijections PG(AN)↔
PG(X N) and P

e
G(AN)↔ P

e
G(X N) as well.

2.4. Main results

We can now precisely state the main theorems. First, (1.1) admits infinitely many invariant
measures.

Theorem 2.2. There is a constant C<+∞ depending only on the constant κ0 in assumption
1, the constants λ,c1,c2 in assumption 2, and the law of V, such that the following holds. Let
the group G be R or LZ for some L> 0 and let X∼ Uniform(R/G). For each a⩾ 0, there
exists µa,G ∈ P

e
G(A1) such that if (v,θ)∼ µa,G, then

EH(v(X)), E(∂xv(X))
2 <∞

and

−〈a〉
2

⩽ Ev(X)− a⩽ C〈a〉 1
q−1 . (2.12)

Remark 2.3. Let

A :=
{
Ev(X) ∈ R | Law(v,θ) ∈ P

e
G(A1)and EH(v(X)), E(∂xv(X))

2 <∞
}
.

If Ia denotes the interval in (2.12) centered on a, then theorem 2.2 ensures that A ∩ Ia 6= ∅.
Since Ia1 ∩ Ia2 = ∅ when a2 � a1, we see that A ∩R+ is infinite. In particular, P

e
G(A1) is
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infinite and unbounded. Moreover, by replacing u with −u, we also obtain infinitely many
negative means.

We observe, however, that it is possible to satisfy theorem 2.2 with a rather sparse set of
means. For instance, the set

A =
{
±exp

(
cn(q− 1)−n

)
| n ∈ N

}

is compatible with (2.12) provided c> 0 is sufficiently small.

Remark 2.4. In light of the bijectionΣ: P(A1)→ P(X ) defined above, theorem 2.2 implies
the existence portion of theorem 1.1.

The next result says that invariant ensembles of solutions evolving under the same noise
can be invariantly coupled and are necessarily ordered.

Theorem 2.5. Fix Ni ∈ N for each i ∈ {1,2}. Let the group G be R or LZ for some L> 0
and let X∼ Uniform(R/G). Given µi ∈ P

e
G(ANi), let (vi,θi)∼ µi with vi = (vi;1, . . . ,vi;Ni)

for i ∈ {1,2}. Suppose
EH(vi;j(X)), E(∂xvi;j(X))

2 <∞ for all i ∈ {1,2}, j ∈ {1, . . . ,Ni}.
Then there exists µ ∈ P

e
G(AN1+N2) such that if ((v1,v2),θ)∼ µ, then

Law(vi,θ) = µi for each i ∈ {1,2} (2.13)

and for each j1 ∈ {1, . . . ,N1} and j2 ∈ {1, . . . ,N2}, there is a deterministic χj1,j2 ∈ {0,±1}
such that almost surely

sgn
(
v1;j1(x)− v2;j2(x)

)
= χj1,j2 for all x ∈ R. (2.14)

This ordering implies uniqueness for suitably bounded invariant extremal measures.

Corollary 2.6. Fix N ∈ N. Let G be R or LZ for some L> 0 and let X∼ Uniform(R/G). Then
for each a ∈ R

N, there exists at most oneµ ∈ P
e
G(AN) such that if (v,θ)∼ µ, we haveEv(X) =

a and

EH(vi(X)), E(∂xvi(X))
2 <∞ for each i ∈ {1, . . . ,N}.

Remark 2.7. Taking N= 1 and G= R, corollary 2.6 implies the uniqueness in theorem 1.1.

3. Well-posedness theory

In this section, we study the well-posedness of the unforced problem in weighted spaces that
permit growth at infinity, which places it outside traditional theory. While [13] established
well-posedness for the Burgers equation in weighted spaces, the nonlinear diffusivity κ(u)
presents new difficulties, as we cannot rely on the theory of mild solutions (Duhamel’s for-
mula).

Theorem 3.1. Fix m ∈ (0,1). For each s⩾ 0, the map Ψs defined in (2.8) is a continuous
function from Xm to itself.

This implies that the random dynamical system is Feller.

Corollary 3.2. Fix m ∈ (0,1). For any s< t, the map Φs,t : Xm →Xm is continuous with prob-
ability 1. Also, the semigroup (Pt)t⩾0 defined in (2.9) has the Feller property.

The proof of theorem 3.1 proceeds as follows. First, we study the PDE on a torus of length L,
and prove well-posedness for the periodised problem. Next, we obtain weighted L∞-estimates
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for the periodised problem that are uniform in L. We can then take L→+∞ and obtain a
solution in Xm. Finally, we prove the continuity of Ψs using weighted L1-stability.

3.1. Global-in-time well-posedness of the periodised problem

We first prove well-posedness on the torusTL := R/LZ for L> 0. Consider the unforced prob-
lem (2.7) on TL:

∂tu= ∂x
[
κ(u)∂xu−H(u)

]
, u(0,x) = u0(x) for x ∈ TL. (3.1)

To state the well-posedness result, we use the notation

Qr(t,x) = (t− r2, t)×B(x,r) (3.2)

for t⩾ r2 > 0 and x ∈ TL.

Proposition 3.3. There exist α ∈ (0,1) and CQ : R+ → R+ such that the following holds. For

every u0 ∈ C(TL), (3.1) admits a unique strong solution u that is C2,α
loc in space and C1,α/2

loc in
time. Moreover, for every parabolic cylinder Q2r(t,x)⊂ R+ ×TL, we have

‖u‖Cα(Qr(t,x)) ⩽ CQ(r)‖u‖L∞(Q2r(t,x))

(
1+ ‖u‖L∞(Q2r(t,x))

)
. (3.3)

This proposition will follow from lemmas 3.4, 3.5 and 3.7 and proposition 3.8 below. We
first construct a solution to a regularised version of (3.1). We then remove the regularization
and show that the limit is a weak solution to (3.1). A De Giorgi-type estimate allows us to
upgrade regularity and show that the weak solution is actually strong. We show uniqueness of
the solution using L1-contraction.

3.1.1. The regularised problem. Let φ ∈ C∞
c (R) be a nonnegative bump function with

ˆ

R

φ = 1.

Given ` > 0, define φℓ(x) := `−1φ(`−1x) andSℓ(u) := φℓ ∗ u, and consider the following reg-
ularised version of (3.1):

∂tu
ℓ = ∂x

[
κ
(
Sℓ(u

ℓ)
)
∂xu

ℓ −H(uℓ)
]
, uℓ(0,x) = u0(x) for x ∈ TL. (3.4)

Lemma 3.4. For each `,T> 0, (3.4) admits a unique weak solution in

B := L2(0,T;H2(TL))∩ L∞(0,T;H1(TL))

Proof. Fix `,T> 0. Let u0,ℓ(t,x) := u0(x) and, for n⩾ 0, let un+1,ℓ solve the linear problem

∂tu
n+1,ℓ = ∂x

[
κ
(
Sℓ(u

n,ℓ)
)
∂xu

n+1,ℓ
]
−H ′(un,ℓ)∂xu

n+1,ℓ, un+1,ℓ(0,x) = u0(x). (3.5)

The solution to (3.5) exists and is unique by standard theory. The maximum principle
implies that

‖un,ℓ(t, ·)‖L∞(TL) ⩽ ‖u0‖L∞(TL) for all n⩾ 0. (3.6)

Differentiating (3.5), multiplying by ∂xun+1,ℓ, and integrating over TL yields

1
2
d
dt
‖∂xun+1,ℓ‖2L2 +κ0‖∂2xun+1,ℓ‖2L2

⩽−
ˆ

TL

(∂2xu
n+1,ℓ)κ ′(Sℓ(u

n,ℓ))Sℓ(∂xu
n,ℓ)∂xu

n+1,ℓ +

ˆ

TL

H ′(un,ℓ)(∂xu
n+1,ℓ)(∂2xu

n+1,ℓ)

⩽ C(T, `)
ˆ

TL

|∂2xun+1,ℓ||∂xun+1,ℓ|. (3.7)
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In the last step, we used (2.2) and (3.6) as well as the bound

|Sℓ(∂xu
n,ℓ)|⩽ C(`)‖un,l‖L∞ ⩽ C(`)

that follows from (3.6). We see from (3.7) that

d
dt
‖∂xun+1,ℓ‖2L2 +κ0‖∂2xun+1,ℓ‖2L2 ⩽ C(T, `)‖∂xun+1,ℓ‖2L2 .

Therefore, we have

‖un+1,ℓ‖L∞(0,T;H1(TL)) + ‖un+1,ℓ‖L2(0,T;H2(TL)) ⩽ C(T, `). (3.8)

Moreover, it follows from (3.5) and (3.8) that

‖∂tun+1,ℓ‖L2((0,T)×TL) ⩽ C(T, `).

By the Aubin–Lions lemma, as n→∞, un,ℓ converges along a subsequence strongly in
both L2(0,T;C1,α) and C((0,T);Cα) for every α ∈ (0,1/2). We replace (un,ℓ)n⩾0 by this sub-
sequence and let uℓ denote the limit. Then in particular, un,ℓ → uℓ uniformly on [0,T]×TL.
Because κ and H ′ are continuous, we know that

κ(Sℓ(u
n,ℓ))→ κ(Sℓ(u

ℓ)) and H′(un,ℓ)→ H′(uℓ)

uniformly. It follows that the right side of (3.5) converges to ∂x(κ(Sℓ(uℓ))∂xuℓ)− ∂x(H(uℓ))
weakly in L2

(
(0,T)×TL

)
, and hence strongly in L2(0,T;H−1(TL)). Therefore uℓ is a weak

solution of (3.4).
Now suppose there are two solutions uℓ and vℓ of (3.4) in B. Both uℓ and vℓ are sufficiently

regular to serve as test functions, so we can write

1
2
d
dt
‖uℓ − vℓ‖2L2 +

ˆ

TL

κ(Sℓ(u
ℓ))|∂x(uℓ − vℓ)|2

=−
ˆ

TL

[
κ(Sℓ(u

ℓ))−κ(Sℓ(v
ℓ))
]
(∂xv

ℓ)∂x(u
ℓ − vℓ)+

ˆ

TL

[
H(uℓ)−H(vℓ)

]
∂x(u

ℓ − vℓ).

Using (2.2) and (2.4), we find

d
dt
‖uℓ − vℓ‖2L2 +κ0‖uℓ − vℓ‖2H1 ⩽ C

(
‖∂xvℓ‖2L∞ + 1

)
‖uℓ − vℓ‖2L2 .

Since vℓ ∈ L2(0,T;H2)⊂ L2(0,T;C1,1/2), Grönwall’s inequality implies that uℓ = vℓ.

3.1.2. Removing the regularization. We now construct a weak solution u to (3.1) by passing
to the limit `→ 0.

Lemma 3.5. For each T> 0, (3.1) admits a weak solution in

B̃ := L2(0,T;H1(TL))∩ L∞([0,T]×TL).

Proof. Fix T > 0. We first note that (3.6) is uniform in n, so

‖uℓ‖L∞([0,T]×TL) ⩽ ‖u0‖L∞(TL) (3.9)
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for each ` > 0. We cannot pass to the limit `→∞ in the estimate (3.8) directly, because the
right side depends on `. We therefore develop an H1 estimate. Multiplying (3.4) by uℓ and
integrating by parts over TL, uniform ellipticity (2.1) yields

1
2
d
dt
‖uℓ‖2L2(TL) +κ0‖∂xuℓ‖2L2(TL) ⩽ 0.

It follows that

‖uℓ‖L∞(0,T;L2(TL)) + ‖uℓ‖L2(0,T;H1(TL)) ⩽ κ
−1/2
0 ‖u0‖L2(TL).

We conclude that (uℓ)ℓ>0 and (∂tuℓ)ℓ>0 are uniformly bounded in B̃ and L2(0,T;H−1(TL)),
respectively. By the Banach–Alaoglu theorem and the Aubin–Lions lemma, as `→ 0, uℓ con-
verges along a subsequence weak-∗ in L2(0,T;H1(TL)) and strongly in L2(0,T;Cα) for every
α ∈ (0,1/2). Again, replace (uℓ)ℓ>0 by this subsequence and let u denote the limit.

We now show that the limit u is a weak solution to (3.1). Going back to (3.4), multiplying
this equation by a test function ϕ ∈ C∞([0,T)×TL) and integrating, we obtain

−
ˆ

TL

ϕ(0,x)u0(0,x)dx−
ˆ

[0,T]×TL

(∂tϕ)u
ℓ dxdt

=−
ˆ

[0,T]×TL

(∂xϕ)κ(Sℓ(u
ℓ))∂xu

ℓ dxdt+
ˆ

[0,T]×TL

(∂xϕ)H(u
ℓ)dxdt. (3.10)

Combining the uniform bound (3.9) with the assumptions (2.2) and (2.4), we see that

|κ(Sℓ(u
ℓ))−κ(Sℓ(u))|⩽ C(‖u0‖L∞)|Sℓ(u

ℓ)−Sℓ(u)|,
|H(uℓ)−H(u)|⩽ C(‖u0‖L∞)|uℓ − u|.

(3.11)

In particular, strong convergence of uℓ → u in L2(0,T;Cα) implies
ˆ

[0,T]×TL

(∂tϕ)u
ℓ dxdt→

ˆ

[0,T]×TL

(∂tϕ)udxdt,

ˆ

[0,T]×TL

(∂xϕ)H(u
ℓ)dxdt→

ˆ

∂xϕH(u)dxdt

as `→ 0.
For the diffusive term in (3.10), we write

ˆ

[0,T]×TL

(∂xφ)
[

κ(Sℓ(u
ℓ))∂xu

ℓ
−κ(u)∂xu

]

dxdt=
ˆ

(∂xφ)
[

κ(Sℓ(u
ℓ))−κ(Sℓ(u))

]

∂xu
ℓ dxdt

+

ˆ

(∂xφ)
[

κ(Sℓ(u))−κ(u)
]

∂xu
ℓ dxdt+

ˆ

(∂xφ)κ(u)∂x(u
ℓ
− u)dxdt.

(3.12)

We control the first term on the right side using (3.11):
ˆ

[0,T]×TL

|∂xϕ|
∣∣κ(Sℓ(u

ℓ))−κ(Sℓ(u))
∣∣ |∂xuℓ|dxdt⩽ C‖Sℓ(u

ℓ − u)‖L2t,x‖∂xu
ℓ‖L2t,x

⩽ C‖uℓ − u‖L2t,x‖∂xu
ℓ‖L2t,x → 0

because uℓ is bounded in L2(0,T;H1(TL)). For the second term on the right side of (3.12), we
have
ˆ

[0,T]×TL

∣∣(∂xϕ)
[
κ(Sℓ(u))−κ(u)

]
∂xu

ℓ
∣∣ dxdt⩽ C‖Sℓ(u)− u‖L2t,x‖∂xu

ℓ‖L2t,x → 0,
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becauseSℓ is an approximation of the identity. Finally, the third term in (3.12) converges to 0
by the weak-∗ convergence in L2(0,T;H1(TL)). Thus u is a weak solution of (3.1).

3.1.3. Regularity of the solution. Next, we employ a bootstrap argument to show that u is
in fact a classical solution to (3.1). We use a De Giorgi-type result, which follows from [15,
theorem 6.28]. To state it, we recall the parabolic cylinders Qr introduced in (3.2).

Proposition 3.6. Fix (t0,x0) ∈ R×R
d, r> 0, and measurable bounded functions A and f on

Q2r(t0,x0). Suppose λ⩽ A⩽ Λ for some 0< λ⩽ Λ. Then there exist α ∈ (0,1), that depends
on λ and Λ, and C<+∞ that depends, in addition, on r, such that any weak solution u of the
parabolic equation

∂tu= ∂x(A∂xu)+ ∂x f in Q2r(t0,x0)

satisfies

‖u‖Cα(Qr(t0,x0)) ⩽ C
(
‖u‖L∞(Q2r(t0,x0)) + ‖ f‖L∞(Q2r(t0,x0))

)
.

With this, we can show that weak solutions of (3.1) are classical.

Lemma 3.7. There exists α ∈ (0,1) such that the following holds. For each T> 0, every weak

solution u of (3.1) in B̃ is C2,α
loc in space and C1,α/2

loc in time, and thus classical. If u0 ∈ C(TL),
then u is continuous. Moreover, there exists CQ : R+ → R+ such that for every parabolic cyl-
inder Q2r ⊂ (0,T)×TL, we have

‖u‖Cα(Qr) ⩽ CQ(r)‖u‖L∞(Q2r)

(
1+ ‖u‖L∞(Q2r)

)
. (3.13)

Proof. Wewill apply proposition 3.6 to (3.1) withA= κ(u) and f =−H(u). Let (t0,x0) denote
the ‘center’ of theparabolic cylinders Qr and Q2r. We are free to replace f by f − f(t0,x0).
Then (2.3) and (2.4) yield

‖ f‖L∞(Q2r) ⩽ ‖u‖L∞(Q2r)

(
1+ ‖u‖L∞(Q2r)

)
.

By a trivial modification of proposition 3.6 to differently-sized cylinders,

‖u‖Cα(Q5r/3) ⩽ C(r)‖u‖L∞(Q2r)

(
1+ ‖u‖L∞(Q2r)

)
,

which implies (3.13).
By (2.2) and (2.4), H(u) and κ(u) are also α-Hölder. Next, let θ be a smooth cutoff such

that θ|Q4r/3
≡ 1 and θ|Qc

5r/3
≡ 0. Applying theorem 6.48 in [15] to ũ := θu, we can check

that u ∈ C1,α(Q4r/3). Following [15], we here use a parabolic notion of regularity that imparts
half-regularity in time. That is, u ∈ C1,α(Q4r/3)means u is C1,α in space and C(1+α)/2 in time.
Again, it follows that H(u) and κ(u) are C1,α. Applying [15, theorem 6.48] with a cutoff
between Qr and Q4r/3, we see that u is in fact C2,α on Qr. That is, u is C2,α in space and
C1,α/2 in time. In particular, u is a classical solution of (3.1). Standard boundary regularity
now implies that u is continuous if u0 ∈ C(TL).

3.1.4. Uniqueness of the solution. To complete the proof of proposition 3.3, we must prove
uniqueness for the periodised problem (3.1). To do so, we use L1-contraction of the conserva-
tion law. We recall the space B̃ = L2tH

1
x ∩ L∞t,x from lemma 3.5.

Proposition 3.8. For each T> 0, let u,v ∈ B̃ be weak solutions of (2.7) on TL. Then

‖u(t, ·)− v(t, ·)‖L1(TL) ⩽ ‖u(0, ·)− v(0, ·)‖L1(TL) for all t ∈ [0,T].
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Proof. We first define the increasing function

K(s) =
ˆ s

0
κ(r)dr. (3.14)

Then, we can write (2.7) as

∂tu= ∂2x [K(u)]− ∂x[H(u)],

which gives

∂t(u− v) = ∂2x [K(u)−K(v)]− ∂x[H(u)−H(v)]. (3.15)

Let F(x) := |x|. We introduce a family of smooth convex approximations {Fε}ε>0 ∈ C2(R)
such that

lim
ε→0

‖Fε −F‖Cb(R) = 0 (3.16)

and

Fε(x) = F(x), for |x|⩾ 1. (3.17)

As in lemma 3.4 of [13], we assume that there exists a constantC> 0 such that for all ε ∈ (0,1],
the approximation Fε satisfies the following properties for all x ∈ R:

Fε(x)⩽ C(|x|+ ε),

|xF ′
ε(x)|⩽ CFε(x),

|F ′
ε(x)|⩽ C,

|x|F ′ ′
ε (x)⩽ C1[−ε,ε](x).

(3.18)

Finally, we assume that F ′
ε(w)→ sgn(w) pointwise as ε→ 0, under the convention sgn(0) = 0.

It not difficult to verify the existence of such a family {Fε}ε>0.
Define w :=K(u)−K(v) and

A :=max
{
‖u‖∞,‖v‖∞

}
<∞.

We multiply (3.15) by F ′
ε(w) and integrate in space:

ˆ

TL

∂t(u− v)F ′
ε(w) =−

ˆ

TL

F ′ ′
ε (w)(∂xw)

2 +

ˆ

TL

F ′ ′
ε (w)(∂xw)[H(u)−H(v)]. (3.19)

To bound the second term in the right side above, we note that (2.4) yields

|H(u)−H(v)|⩽ C(A)|u− v|. (3.20)

Here and below, we denote by C(A) various constants that depend on A and may vary from
line to line. By (2.1),

|w|=
∣∣∣∣
ˆ u

v
κ(s)ds

∣∣∣∣⩾ κ0|u− v|.

By (3.20), we find

|H(u)−H(v)|⩽ C(A)|w|.
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Now the second term on the right side of (3.19) can be estimated using the last assumption
in (3.18):

ˆ

TL

F′′
ε (w)(∂xw)[H(u)−H(v)]⩽

1
2

ˆ

TL

F′′
ε (w)(∂xw)

2 +C(A)
ˆ

TL

F′′
ε (w)w

2

⩽
1
2

ˆ

TL

F′′
ε (w)(∂xw)

2 +C(A)
ˆ

TL

|w|1|w|⩽ε

⩽
1
2

ˆ

TL

F′′
ε (w)(∂xw)

2 +C(A,L)ε.

Using this estimate in (3.19), we find
ˆ

TL

∂t(u− v)F ′
ε(w)+

1
2

ˆ

TL

F ′ ′
ε (w)(∂xw)

2
⩽ C(A,L)ε. (3.21)

The function K(u) is strictly increasing, so sgn(w) = sgn(u− v) and F ′
ε(w)→ sgn(u− v)

as ε→ 0. Also, lemma 3.7 implies that ∂t(u− v) is bounded when t> 0. Taking ε→ 0 in (3.21),
the bounded convergence theorem implies

ˆ

TL

∂t(u− v)sgn(u− v)⩽ 0. (3.22)

Now fix 0< t1 ⩽ t2 ⩽ T. By lemma 3.7, u is continuous in spacetime. Noting that

d
dt

ˆ

TL

Fε(u− v) =
ˆ

TL

F ′
ε(u− v)∂t(u− v), (3.23)

we therefore have
ˆ

TL

Fε(u− v)
∣∣∣
t=t2

t=t1
=

ˆ

[t1,t2]×TL

F ′
ε(u− v)∂t(u− v). (3.24)

Again, lemma 3.7 and the bounded convergence theorem allow us to take ε→ 0 in (3.24):
ˆ

TL

|u(t2, ·)− v(t2, ·)|=
ˆ

TL

|u(t1, ·)− v(t1, ·)|+
ˆ

[t1,t2]×TL

∂t(u− v)sgn(u− v).

Taking t1 → 0, (3.22) and the spacetime continuity of u imply the lemma.

This completes the proof of proposition 3.3.

3.2. The solution on the whole line

We now send the size of the torus in the periodised problem to infinity. Given L> 0, let χ[L] ∈
C∞
c (R) be a bump function such that 0⩽ χ[L] ⩽ 1 and

χ[L](x) = 1 when |x|⩽ L/2,

χ[L](x) = 0 when |x|⩾ (L+ 1)/2.

We assume that the family {χ[L]}L⩾1(x) is uniformly smooth, meaning there exist con-
stants Ck ∈ R+ for k ∈ N such that

‖χ[L]‖Ck(R) ⩽ Ck for each k ∈ N

and

|∂xχ[L]|2 ⩽ C1χ
[L].
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Given v : R→ R, we define its L-periodization v[L] by

v[L](x) :=
∑

j∈Z

χ[L](x− jL)v(x− jL).

In particular, if v ∈ Cpℓ then v[L] ∈ C(TL).
Now fix ` ∈ (0,1) and an initial condition u0 ∈ Cpℓ . Let u[L] denote the solution of (3.1)

with initial condition u[L]0 , the L-periodisation of u0. Our first step is to prove a uniform bound
on the periodised solutions in weighted spaces. The following proposition is similar to [13,
proposition. 2.10].

Proposition 3.9. Fix L⩾ 1, 0< ` < ` ′ < 1, and A ∈ R+ and suppose that ‖u[L]0 ‖Cpℓ
⩽ A. Then

there exists C ∈ R+ depending only on `, ` ′, and A such that

sup
t∈[0,1]

‖u[L](t, ·)‖Cp
ℓ ′

⩽ C. (3.25)

Proof. As in the proof of [13, proposition. 2.10], we start by defining a time-dependent weight
a. FixK⩾ A+ 1, to be chosen later. Define `1 = (`+ ` ′)/2 ∈ (`,` ′), ε= ` ′ − `1 = (` ′ − `)/2,
and

a(t,x) = K−1
(
〈x〉2 +K2/(1−ℓ′)

)−(ℓ1+εt)/2
.

The function z= au[L] satisfies the inequality ‖z(0, ·)‖L∞(R) ⩽ 1 and the differential equation

∂tz= z∂t(loga)+κ(u[L])
[
∂2x z− z

(
∂2x (loga)− (∂x(loga))

2
)
− 2(∂xz)(∂x(loga))

]

+
κ ′(u[L])

a
(∂xz− ∂x(loga)z)

2 −H ′(u[L])∂xz+H ′(u[L])∂x(loga)z.
(3.26)

Next, suppose ‖z‖C([0,1]×R) > 2. By proposition 3.3, z is continuous. Since
‖z(0, ·)‖L∞(R) ⩽ 1 and z(t,x) vanishes as x→±∞, there exists a first time t∗ ∈ (0,1) and a
position x∗ ∈ R such that

|z(t∗,x∗)|= 2= max
[0,t∗]×R

|z|.

Let us assume without loss of generality that

z(t∗,x∗) = 2, (3.27)

so that

∂tz(t∗,x∗)⩾ 0, ∂xz(t∗,x∗) = 0, and ∂2x z(t∗,x∗)⩽ 0. (3.28)

We can easily check that

0⩽ a(t,x)⩽ 1, |∂x(loga)|⩽ 1,

∣∣∣∣
∂x(loga)

a

∣∣∣∣⩽ 1, |∂2x loga|⩽ 3, (3.29)

and

∂t(loga) =−ε
2
log
(
〈x〉2 +K2/(1−ℓ ′)

)
⩽ 0. (3.30)

We control the last term in (3.26) using (2.4) and (3.29):

|H ′(u[L])z||∂x(loga)|⩽ C(1+ |u[L]|)|az| |∂x(loga)||a| ⩽ C(1+ |z|2). (3.31)
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We evaluate (3.26) at (t∗,x∗) and use the bounds (2.1), (2.2), (3.27)–(3.29), and (3.31):

0⩽ 2∂t(loga)|(t∗,x∗) +C1,

with a constant C1 that does not depend on K. Using (3.30), this becomes

0⩽−ε log
(
〈x∗〉2 +K2/(1−ℓ′)

)
+C1.

If we choose K large enough, independent of L, the right side becomes negative—a contradic-
tion. We conclude that if K is sufficiently large, then ‖z‖C([0,1]×R) ⩽ 2. That is,

|u[L](t,x)|⩽ 2K
(
〈x〉2 +K2/(1−ℓ′)

)(ℓ1+εt)/2
⩽ 2K

(
〈x〉2 +K2/(1−ℓ′)

)ℓ′/2

for (t,x) ∈ [0,1]×R. Hence

‖u[L](t, ·)‖Cp
ℓ′
⩽ C(K, `′) for all t ∈ [0,1],

as desired.

By proposition 3.9, the regularity bound (3.3), and [13, proposition B.2], the
sequence {u[L]}L⩾1 is precompact in the topology of C(0,T;Cpℓ ′

) for any ` ′ > `. Diagonalising,
there exists a subsequential limit u in C(0,T;Xℓ). It is straightforward to check that the limit
solves (2.7) on the whole line and satisfies the weighted L∞-bound (3.25) in proposition 3.9.
That is,

sup
t∈[0,1]

‖u(t, ·)‖Cp
ℓ ′

(R) ⩽ C(‖u0‖Cpℓ (R)
). (3.32)

To complete the proof of theorem 3.1, wemust show uniqueness and continuity with respect
to the initial condition. We first prove stability in a weighted L1 space on the whole line. Given
` ∈ (0,1), define

ζ(x) = e2
1−ℓ−⟨x⟩1−ℓ

The following is an analogue of lemma 3.5 of [13].

Proposition 3.10. Let ` ∈ (0,1) and T ∈ R+. Let u,v ∈ L∞(0,T;Cpℓ(R)) solve (2.7) with ini-
tial data in Cpℓ(R). Let

K :=max
{
‖u‖L∞(0,T;Cpℓ (R))

, ‖v‖L∞(0,T;Cpℓ (R))

}
. (3.33)

Then there exists C ∈ R+ depending on `,κ0, and CH from (2.4) such that for all t ∈ [0,T],
ˆ

R

|u(t,x)− v(t,x)|ζ(x)dx⩽ eC(K+1)t
ˆ

R

|u(0,x)− v(0,x)|ζ(x)dx. (3.34)

Proof. We follow the proof of lemma 3.5 of [13]. Throughout, let C denote a positive constant
depending only on `,κ0,CH. We allow C to change from line to line.

First note that

pℓ|∂xζ|+ |∂2x ζ|⩽ Cζ. (3.35)

Recall the function K(u) defined in (3.14). We define η = u− v, w :=K(u)−K(v), and

ξ =
u− v
w

ˆ 1

0
H′(λu+(1−λ)v)dλ=

´ 1
0 H

′(λu+(1−λ)v)dλ
´ 1
0 κ(λu+(1−λ)v)dλ

.
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Using (2.7), we can write an evolution equation for η as

∂tη = ∂2xw− ∂x(ξw). (3.36)

Note that (2.1), (2.4) and (3.33) imply

‖ξ‖Cpℓ
⩽ C(1+ ‖u‖Cpℓ

+ ‖v‖Cpℓ
)⩽ C(K+ 1). (3.37)

We approximate F(x) = |x| by convex functions Fε as in (3.16)–(3.18). Multiplying (3.36)
by F ′

ε(w)ζ and integrating by parts in space, we find
ˆ

R

(∂tη)F
′
ε(w)ζ =

ˆ

R

[
F′
ε(w)∂

2
xw−F′

ε(w)∂x(ξw)
]
ζ

=

ˆ

R

[
∂x(F

′
ε(w)∂xw)−F′′

ε (w)(∂xw)
2 − ∂x(F

′
ε(w)ξw)+F′′

ε (w)ξw∂xw
]
ζ

=

ˆ

R

[
∂2x (Fε(w))− ∂x(F

′
ε(w)ξw)−F′′

ε (w)(∂xw)
2 +F′′

ε (w)ξw∂xw
]
ζ

=

ˆ

R

[Fε(w)∂
2
x ζ +F′

ε(w)ξw∂xζ −F′′
ε (w)((∂xw)

2 − ξw∂xw)ζ].

Young’s inequality tells us that (∂xw)2 − ξw∂xw⩾
1
2 (∂xw)

2 − 1
2ξ

2w2 ⩾− 1
2ξ

2w2, so since
F ′ ′
ε ⩾ 0 we obtain

ˆ

R

(∂tη)F
′
ε(w)ζ ⩽

ˆ

R

[
Fε(w)∂

2
x ζ +F ′

ε(w)ξw∂xζ +
1
2
F ′ ′
ε (w)ξ

2w2ζ

]
. (3.38)

We successively bound the terms on the right side of (3.38). For the first term, note that (2.1),
(3.18), and the definition of K imply that

|Fε(w)|⩽ C(|w|+ ε) = C(|K(u)−K(v)|+ ε)⩽ C(|η|+ ε). (3.39)

Hence (3.35) yields
ˆ

R

|Fε(w)∂
2
x ζ|⩽ C

ˆ

R

Fε(w)ζ ⩽ C
ˆ

R

(|η|+ ε)ζ. (3.40)

To control the second term in (3.38), we use (3.18), (3.35) and (3.39):
ˆ

R

|F ′
ε(w)wξ ∂xζ|⩽ C

ˆ

R

Fε(w)|ξ|
ζ

pℓ
⩽ C‖ξ ‖Cpℓ (R)

ˆ

R

(|η|+ ε)ζ. (3.41)

Finally, the last term on the right side of (3.38) is bounded using the last inequality in (3.18):
ˆ

R

|F ′ ′
ε (w)ξ

2w2ζ|⩽ Cε‖ξ ‖2Cpℓ (R)
‖p2ℓζ‖L1(R). (3.42)

Using (3.40)–(3.42) in (3.38), we have
ˆ

R

(∂tη)F
′
ε(w)ζ ⩽ C(1+ ‖ξ ‖Cpℓ

)

ˆ

R

(|η|+ ε)ζ +Cε‖ξ ‖2Cpℓ
‖p2ℓζ‖L1 .

Using (3.37) and ζ,p2ℓζ ∈ L1(R), this becomes
ˆ

R

(∂tη)F
′
ε(w)ζ ⩽ C(K+ 1)

ˆ

R

|η|ζ +C(K+ 1)ε.
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We now take ε→ 0 as in the proof of proposition 3.8. Since sgnw= sgnη, we find

d
dt

ˆ

R

|η|ζ =
ˆ

R

(∂tη)sgn(η)ζ ⩽ C(K+ 1)
ˆ

R

|η|ζ. (3.43)

Standard parabolic boundary estimates imply that u and v are continuous. Since pℓ � ζ−1 at
infinity, the uniform bound (3.33) implies that the map t 7→

´

R
|η(t, ·)|ζ is continuous on [0,T].

Hence (3.34) follows from (3.43) and Grönwall’s inequality.

Taking u(0, ·) = v(0, ·) in the previous proposition, we obtain uniqueness for (2.7).

Corollary 3.11. Fix m ∈ (0,1) and T> 0. Then (2.7) admits a unique solution in C(0,T;Xm)
for each initial condition in Xm.

3.3. Continuity of the solution map

We can now prove the main theorem of this section.

Proof of theorem 3.1. Fix m ∈ (0,1) and s> 0 and consider a sequence of initial condi-
tions (u0,n)n∈N in Xm such that

u0,n → u0 in Xm as n→∞ (3.44)

for some u0 ∈ Xm. Let vn := Ψs(u0,n) and v := Ψs(u0), and fix ` ∈ (m,1). We will show
that vn → v in Cpℓ(R) as n→∞. Since ` ∈ (m,1) is arbitrary, this will imply that vn → v in
Xm, as desired.

Take m< ` ′ ′ < ` ′ < `. By (3.44), the sequence (un,0) is uniformly bounded in Cpℓ ′ ′
(R).

Hence (3.32) implies that (vn) is uniformly bounded in Cpℓ ′
(R). By proposition B.1 of [13],

it suffices to show that vn → v locally uniformly in R. That is, locally uniform convergence
implies that vn → v in Cpℓ .

Fix compact K,K ′ ⊂ R such that K⊂ intK ′. We know (vn) is uniformly bounded on K ′.
Moreover, by the interior regularity (3.3), the sequence (vn) is uniformly bounded in Cα(K).
Hence the sequence is equicontinuous on K. On the other hand, proposition 3.10 implies that
vn → v in L1(K). Equicontinuity allows us to upgrade this convergence to L∞(K). Therefore
vn → v locally uniformly, and the proof is complete.

3.4. The Hamilton–Jacobi equation

The relationship between conservation laws and Hamilton–Jacobi equations is well-known: a
solution to a conservation law is the derivative of a solution to a Hamilton–Jacobi equation.
In the present weighted-space setting, we have established the well-posedness theory first for
stochastic conservation laws.We now extend the theory to the corresponding Hamilton–Jacobi
equation.

Proposition 3.12. Let u be a solution to (1.1). Fix a smooth, compactly-supported function ζ
such that

´

R
ζ(z)dz= 1, and define

h(t,x) =
ˆ

R

ζ(z)
ˆ x

z
u(t,y)dydz+

ˆ t

0

ˆ

R

ζ(z)[κ(u(s,z))∂xu(s,z)−H(u(s,z))]dzds. (3.45)

Then

u= ∂xh (3.46)
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and h solves the Hamilton–Jacobi equation

∂th= κ(u(t,x))∂2xh(t,x)−H(∂xh(t,x))+V(t,x). (3.47)

Proof. The property (3.46) is clear by differentiating (3.45) in x. Differentiating (3.45) in time
and applying (1.1), we obtain

∂th(t,x) =
ˆ

R

ζ(z) [κ(u(t,y))∂xu(t,y)−H(u(t,y))+V(t,y)]
∣∣∣
y=x

y=z
dz

+

ˆ

R

ζ(z)[κ(u(t,z))∂xu(t,z)−H(u(t,z))]dz

= κ(t,x)∂xu(t,x)−H(u(t,x))+V(t,x).

In the final identity, we have used
´

R
ζ(z)dz= 1. Recalling (3.46), we obtain (3.47).

4. Existence of spacetime-stationary solutions

In this section, we prove the existence of spacetime-stationary solutions to (1.1). More pre-
cisely, we show that the set PG(A1) defined in (2.10) is nonempty. We first need some estim-
ates on the solutions, obtained in sections 4.1 and 4.2. We prove the main result of this section
in section 4.3.

4.1. Derivative bound

We begin with an L2 bound on the derivative of the solution.

Lemma 4.1. Let u solve (1.1) with constant initial condition u(0−, ·)≡ a ∈ R. Then for all
t ∈ [1,∞) and x ∈ R, we have

1
t

ˆ t

0
E(∂xu(s,x))

2 ds⩽
a2

2κ0t
+

1
κ0

E[∂xV0(0)]
2. (4.1)

Proof. We prove the following by induction on k: for all k ∈ Z⩾0, θ ∈ (0,1], and x ∈ R,

E[u((k+ θ)−,x)]2 ⩽−2κ0

ˆ k+θ

0
E[∂xu(t,x)]

2 dt+ a2 +(k+ 1)E[∂xV0(0)]
2. (4.2)

We begin with the base case k= 0. Because V0 is stationary, and hence ∂xV0 is stationary
and mean-zero, we have

E[u(0+,x)]2 = E[a+ ∂xV0(x)]
2 = a2 +E[∂xV0(0)]

2 for all x ∈ R. (4.3)

On the time interval (0,θ), the solution u satisfies the unforced equation (2.7). Let J(u) denote
an antiderivative of uH ′(u). By the chain rule, we have

1
2
∂t
(
u2
)
= u∂x

(
κ(u)∂xu−H(u)

)
=−κ(u)(∂xu)2 + ∂x [uκ(u)∂xu− J(u)] .

We now fix L ∈ R+ and integrate over (0,θ)× [0,L]:

1
2

ˆ L

0
u2 dx

∣∣∣∣∣

t=θ−

t=0+

+

ˆ

(0,θ)×[0,L]
κ(u)(∂xu)

2 dxdt=
ˆ θ

0
[uκ(u)∂xu− J(u)]dt

∣∣∣∣∣

x=L

x=0

.
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By (4.3), the negative part of the left side is absolutely integrable. Thus by space-
stationarity and lemma D.1 in [13], the right side is absolutely integrable and has mean zero.
Using (4.3), (2.1), and space-stationarity, we find

E[u(θ−,x)]2 ⩽−2κ0

ˆ θ

0
E[∂xu(t,x)]

2 dt+ a2 +E[∂xV0(0)]
2

for all x ∈ R. This confirms the claim (4.2) for k= 0.
Now suppose that (4.2) holds for some k⩾ 0. We now show it for k+ 1. Given θ ∈ (0,1],

by an argument identical to that in the base case, we have

1
2

ˆ L

0
u2 dx

∣∣∣∣∣

t=(k+1+θ)−

t=(k+1)+

+

ˆ

(k+1,k+1+θ)×[0,L]
κ(u)(∂xu)

2 dxdt

=

ˆ k+1+θ

k+1
[uκ(u)∂xu− J(u)]dt

∣∣∣∣∣

x=L

x=0

.

(4.4)

Recall that Vk+1 is independent of u((k+ 1)−, ·). Using stationarity and the inductive hypo-
thesis (4.2) with θ= 1, we therefore obtain

E[u((k+ 1)+,x)]2 = E[u((k+ 1)−,x)]2 +E[∂xVk+1(x)]
2

⩽−2κ0

ˆ

(0,k+1)
E[∂xu(t,x)]

2 dt+ a2 +(k+ 2)E[∂xV0(0)]
2 <∞

for all x ∈ R. It follows that the negative part of the left side of (4.4) is absolutely integrable.
Again, space-stationarity and [13, lemma D.1] imply that the right side is absolutely integrable
and has mean zero. Taking expectation in (4.4) and rearranging, space-stationarity and (2.1)
yield (4.2) for k+ 1. By induction, (4.2) holds for all k ∈ Z⩾0. Now fix t ∈ [1,∞) and x ∈ R.
Taking k := dte− 1 and θ := t− k, we can rearrange (4.2) to obtain (4.1).

4.2. Solution bound

In this section, we fix a ∈ R and assume that u solves (1.1) with initial condition u(0−, ·)≡ a.
Our goal is to prove the following proposition.

Proposition 4.2. There exists a constant C<+∞ depending only on κ0,λ,c2, and the law of
V such that for all t⩾ 1 and x ∈ R, we have

1
t

ˆ t

0
Eu(s,x)ds= a (4.5)

and

1
t

ˆ t

0
EH(u(s,x))ds⩽ C〈a〉2.

Corollary 4.3. With q as in assumption 2, there exists a constant C<∞, depending only on
κ0,c1,c2,λ and the law of V, such that for all t⩾ 1 and x ∈ R, we have

1
t

ˆ t

0
E|u(s,x)− a|q ds⩽ C〈a〉2.
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Proof. Hölder’s inequality and (2.3) imply that

|s− a|q ⩽ 2q−1
(
|s|q+ |a|q

)
⩽ 2q−1

(
c−1
1 (H(s)+ c−1

1 )+ |a|q
)

for all s ∈ R. Thus proposition 4.2 implies that

1
t

ˆ t

0
E|u(s,x)− a|q ds⩽ C〈a〉2

for some C<∞ depending on κ0,c1,c2,λ, and the law of V.

The approach to the proof of proposition 4.2 is similar to that used in [12, 13], based on
the Cole–Hopf transform. There is an extra step, however. The Cole–Hopf transform cannot
be applied directly, so a comparison argument is needed.

We will first consider the case a= 0. Let g be the solution to the Hamilton–Jacobi equation

∂tg= κ(∂xg)∂
2
xg−H(∂xg)+V, g(0−, ·) = 0, (4.6)

constructed in proposition 3.12, so that u= ∂xg. Let also λ,c2 be as in (2.3) and let h solve

∂th= κ(∂xh)[∂
2
xh−λ(∂xh)

2] +V− c2, h(0−, ·) = 0. (4.7)

We have the following comparison.

Lemma 4.4. For all t> 0 and x ∈ R, we have

h(t,x)⩽ g(t,x). (4.8)

Proof. By (2.1) and (2.3), we know that

H(u)⩽ λκ(u)u2 + c2.

Moreover, at a spatial maximum of h− g, we have ∂xh= ∂xg= u and ∂2x (h− g)≤ 0.
Subtracting (4.6) from (4.7), we therefore have

∂t(h− g) = κ(u)[∂2x (h− g)−λu2]− c2 +H(u)≤ 0

at a maximum of h− g. Since h(0, ·)− g(0, ·) = 0, (4.8) follows.

This comparison is useful because h admits a Cole–Hopf transformation.

Lemma 4.5. The field

φ= e−λh (4.9)

solves the sequence of Cauchy problems

∂tφ = κ

(
−∂xφ
λφ

)
∂2xφ+λc2φ, t ∈ R+ \N, x ∈ R; (4.10)

φ(k+,x) = e−λVk(x)φ(k−,x), k ∈ Z⩾0, x ∈ R; (4.11)

φ(0−)≡ 1.

Proof. The PDE (4.10) comes from the classical Cole–Hopf transform; indeed, (4.9) implies

∂xφ=−λφ∂xh, ∂xh=−∂xφ
λφ

, ∂2xφ= λ2φ(∂xh)
2 −λφ∂2xh
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at non-integer times. Hence (4.7) yields

∂tφ =−λφ∂th=−λφ
[
κ(∂xh)[∂

2
xh−λ(∂xh)

2]− c2
]
= κ

(
−∂xφ
λφ

)
∂2xφ+λc2φ,

as claimed. The multiplicative jump (4.11) at integer times is immediate from (4.7) and the
definition of V.

The next lemma gives an upper bound on the growth of a solution to (4.10) in the determ-
inistic case.

Lemma 4.6. There is a constant C<+∞ depending only on κ0,λ, and c2, such that the
following holds. Let φ solve the deterministic PDE (4.10) with

0⩽ φ(0,x)⩽ KeKx
α

(4.12)

for some K> 0, α< 2, and all x ∈ R. For each j ∈ Z, define

φj = sup
y∈[j,j+1]

φ(0,y).

Then for any t ∈ [0,1], we have

φ(t,x)⩽ C
∑

j∈Z

φje
−C−1(x−j−1/2)2 . (4.13)

Proof. By replacing φ with e−λc2tφ, we can assume that c2 = 0. Let a= κ20/2 and b= κ0/4,
and define

ψ(t,x) = t−a exp

(
−bx2

t

)
.

Then

∂tψ(t,x) =
(
− a+ bx2t−1

)
t−a−1 exp

(
− bt−1x2

)

and

∂2xψ(t,x) =
(
− 2b+ 4b2x2t−1

)
t−a−1 exp

(
− bt−1x2

)
.

Thus if κ ∈ [κ0,κ
−1
0 ], t> 0, and x ∈ R, we have

(∂t−κ∂2x )ψ(t,x) =
[
(2κb− a)+ b(1− 4bκ)x2t−1

]
t−a−1 exp

(
− bt−1x2

)

=
[
κ0(κ−κ0)/2+ b(1−κ0κ)x

2t−1
]
t−a−1 exp

(
− bt−1x2

)
⩾ 0

(4.14)

since κ−κ0 ⩾ 0 and 1−κ0κ⩾ 0.
Let us now set

B= inf
x∈[−1/2,1/2]

ψ(1,x)> 0,

and, for a given j ∈ Z, define

ψj(t,x) = φjB
−1ψ

(
t+ 1,x− (j+ 1/2)

)

and

φ(t,x) =
∑

j∈Z

ψj(t,x).
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The sum is finite because (4.12) implies that

φj ⩽ K′eK
′jα

for some K ′ ∈ R+. By (4.14) and linearity, φ is a supersolution to (4.10). Moreover, by con-
struction we have φ(0, ·)⩾ φ(0, ·). By (4.12), the unique solution φ of (4.10) that grows
slower than an inverse Gaussian at spatial infinity satisfies the comparison principle. Thus,
for all (t,x) ∈ (0,1]×R we have

φ(t,x)⩽ φ(t,x) =
1
B

∑

j∈Z

φjψ
(
t+ 1,x− (j+ 1/2)

)
⩽

1
B

∑

j∈Z

φje
−b(x−j−1/2)2/2.

Now (4.13) follows.

Next, we obtain an upper bound on the expectation of the super-solution provided by
Lemmas 4.4 and 4.5.

Lemma 4.7. There is a constant C<∞, depending only on κ0,λ,c2, and the law of V, such
that if φ solves (4.10) and (4.11) with φ(0−, ·) = 1, then for all t⩾ 0 and x ∈ R we have

Eφ(t−,x)⩽ eC(t+1). (4.15)

Proof. The proof relies on lemma 4.6 and induction. Recall the definition (2.5) of Vs(x) from
assumption 3. Define

C1 = Ee−λVs( j), (4.16)

which is finite by (2.6) of assumption 3. For j ∈ Z, define

Φj(t) = sup
x∈[j,j+1]

φ(t,x).

As our inductive hypothesis, we assume that (for a constant C not depending on t)

sup
j∈Z

EΦj(t)⩽ eC(t+1) (4.17)

and that, with probability 1, there is some K<∞ and α< 2 (possibly depending on t) such
that

0⩽ φ(t−,x)⩽ KeKx
α

for all x ∈ R. (4.18)

This is certainly true at t= 0; we assume it is true for t and try to prove it for t+ 1. By (4.16)
and (4.17), we have

sup
j∈R

EΦj(t+)⩽ C1e
C(t+1), (4.19)

and by the assumption (in assumption 3) that ∂xVt ∈ X0 almost surely, we see that (4.18) con-
tinues to hold (with possibly new values of K and α) when t− is replaced by t+. Therefore,
the hypotheses of lemma 4.6 apply, so by (4.13), we see that (4.18) continues to hold with t−
replaced by (t+ 1)−, and using (4.19) and taking expectations in (4.13), we see that

sup
j∈R

EΦj((t+ 1)−)⩽ C2e
C(t+1)

⩽ eC(t+2)

for a new constant C2, with the last inequality as long as C⩾ logC2. This completes the induc-
tion and thus the proof.
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Proof of proposition 4.2. To reduce to the case a= 0, let us define

ũ(t,x) := u(t,x+ 2λκ0at)− a and Ṽ(t,x) := V(t,x+ 2λat)

as well as κ̃(s) := κ(s+ a) and

H̃(s) := H(s+ a)− 2λκ0as−λκ0a
2 − c2. (4.20)

By space-stationarity and the independence of V at different times, we know that Ṽ
law
= V. The

function ũ satisfies

∂tũ= ∂x
[
κ̃(ũ)∂xũ− H̃(ũ)+ Ṽ

]
, ũ(0−, ·) = 0. (4.21)

We can use proposition 3.12 to construct a solution g̃ to the Hamilton–Jacobi equation

∂tg̃= κ̃(∂xg̃)∂
2
x g̃− H̃(∂xg̃)+ Ṽ, g̃(0−, ·) = 0,

such that ∂xg̃= ũ. Note that (2.3) and (4.20) imply that H̃(s)⩽ λκ0s2. Thus, if h solves (4.7)
with c2 = 0, lemma 4.4 yields g̃⩾ h. Drawing on lemma 4.7, we find that

−C
λ
(t+ 1)

(4.15)
⩽ − 1

λ
logEφ(t−,x)

⩽
1
λ
E(− logφ(t−,x)) (4.9)

= Eh(t−,x)
(4.8)
⩽ Eg̃(t−,x),

(4.22)

for all t> 0 and x ∈ R. We use (4.6) to write

g̃(t−,x) =
ˆ t

0
(∂tg̃)(s,x)ds+ Ṽ0(x)

=

ˆ t

0
[κ̃(ũ(s,x))∂xũ(s,x)− H̃(ũ(s,x))]ds+

⌈t⌉−1∑

s=0

Ṽs(x).

Here, we have used the notation Ṽs(x) := Vs(s+ 2λas). This can be re-written as

ˆ t

0
∂x[K̃(ũ(s,x))]ds= g̃(t−,x)+

ˆ t

0
H̃(ũ(s,x))ds−

⌈t⌉−1∑

s=0

Ṽs(x)

for all t> 0 and x ∈ R. Here, we have set

K̃(s) :=
ˆ s

0
κ̃(r)dr.

Integrating over (0,L) in space for some L> 0, we find

ˆ t

0
K̃(ũ(s,x))

∣∣∣
x=L

x=0
ds=

ˆ L

0

[
g̃(t−,x)+

ˆ t

0
H̃(ũ(s,x))ds−

⌈t⌉−1∑

s=0

Ṽs(x)
]
dx. (4.23)

By (2.3) and (4.22), the negative part of the right side is absolutely integrable overΩ. Hence
the same is true of the left side. By [13, lemma D.1] and spatial stationarity, the left side
is absolutely integrable over Ω and has zero expectation. Taking expectation in (4.23) and
rearranging, spatial stationarity allows us to remove the spatial integral:

E

ˆ t

0
H̃(ũ(s,x))ds=−Eg̃(t−,x)+

⌈t⌉−1∑

s=0

EṼs(x),

4575



Nonlinearity 36 (2023) 4553 T D Drivas et al

for all t> 0 and x ∈ R. Note that (2.3) and Fubini–Tonelli allow us to exchange the expectation
and integral on the left side. Using (4.22) and the stationarity of the family V, we find

ˆ t

0
EH̃(ũ(s,x))ds⩽

C
λ
(t+ 1)+ dteEV0(0).

Therefore, we have

1
t

ˆ t

0
EH̃(ũ)⩽ C (4.24)

for all t⩾ 1 and some constant C<+∞ depending only on κ0,λ,c1,c2, and the law of V.
To verify (4.5), we integrate (4.21) in spacetime. Given L> 0 and t> 0, we have

ˆ

[0,L]
ũ(t−,x)dx=



ˆ t

0
(κ̃(ũ)∂xũ− H̃(ũ))ds+

⌈t⌉−1∑

s=0

Ṽs



∣∣∣∣∣

x=L

x=0

. (4.25)

Now, (2.3) and (4.20) imply that H̃(s)� |s| when |s| � 1. Thus (4.24) implies that ũ(t−,x)
has a first moment for all x ∈ R and almost every t> 0. Thus for almost every t> 0, we can
apply [13, lemma D.1] to (4.25) to conclude that

Eũ(t−,x) = 0. (4.26)

This implies (4.5).
We can now controlH(u). Combining (4.20), (4.24) and (4.26) and using space-stationarity,

we find

1
t

ˆ t

0
EH(u)ds=

1
t

ˆ t

0
E
[
H̃(ũ)+ 2λκ0aũ+λκ0a

2 + c2
]
ds⩽ C〈a〉2

for all t⩾ 1. This completes the proof of proposition 4.2.

4.3. Existence of spacetime-stationary solutions

We are now ready to prove theorem 2.2.

Proof of theorem 2.2. Fix a ∈ R and let u solve (1.1) with initial condition u(0−, ·)≡ a. Let

µt = Law(u(t))⊗ δt,

where δt is a delta mass at t ∈ R/Z. Then µt is a probability measure onA1. Given t⩾ 1, define

µt =
1
t

ˆ t

0
µs ds.

We claim that (µt)t⩾1 is tight with respect to the topology ofX 2
2+q

× (R/Z). To see this, take

(v,θ)∼ µt for fixed t⩾ 1. By lemmas 4.1, 4.2, and corollary 4.3, there is a constant C<+∞
depending on κ0,c1,c2,λ, and the law of V but independent of t such that

EH(v(x)), E|v(x)− a|q ⩽ C〈a〉2 and E|∂xv(x)|2 ⩽ C for all x ∈ R. (4.27)
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In the remainder of the proof, we allow C to change from line to line provided it continues
to depend only on κ0,c1,c2,λ, and the law of V. Fix α≥ 1 and β ∈ (0,1) to be chosen later.
Given j ∈ Z, let cj = sgn( j)〈j〉α. We have

‖v‖Cpβ
= sup

j∈Z

sup
x∈[cj,cj+1]

|v(x)|
〈x〉β ⩽ sup

j∈Z

|v(cj)|
〈cj〉β

+ sup
j∈Z

´ cj+1

cj
|∂xv(x)|dx
〈cj〉β

.

Note that (4.27) yields

E

(
sup
j∈Z

|v(cj)|
〈cj〉β

)q

⩽
∑

j∈Z

E|v(cj)|q
〈cj〉βq

⩽ C〈a〉2
∑

j∈Z

〈j〉−αβq,

which is finite provided

β >
1
αq
. (4.28)

Similarly, (4.27) implies

E

(
sup
j∈Z

´ cj+1

cj
|∂xv(x)|dx
〈cj〉β

)2

⩽
∑

j∈Z

E

(
´ cj+1

cj
|∂xv(x)|dx

)2

〈cj〉2β

⩽
∑

j∈Z

(cj+1 − cj)
´ cj+1

cj
E|∂xv(x)|2 dx

〈cj〉2β
⩽ C

∑

j∈Z

(cj+1 − cj)2

〈cj〉2β

⩽ C
∑

j∈Z

〈j〉2[α−1−αβ],

which is finite when 2[α− 1−αβ]<−1, that is,

β > 1− 1/(2α). (4.29)

Taking α= 1/2+ 1/q, we see that if β > 2/(2+ q), then both (4.28) and (4.29) hold, so that

E‖v‖qCpβ
⩽ C〈a〉2. (4.30)

For instance, we can take β = 5/6.
The next step is to control the Hölder regularity of v. Given γ ∈ (0,1/2], we have

E

(
sup

|x−y|≤1
x ̸=y

|v(x)− v(y)|
〈x〉β |x− y|γ

)2

⩽
∑

j∈Z

E

(
sup

x,y∈[j−1,j+1] x ̸=y

|v(x)− v(y)|2
〈x〉2β |x− y|2γ

)

⩽ 2
∑

j∈Z

〈j〉−2β
ˆ j+1

j−1
E|∂xv(x)|2 dx⩽ C

∑

j∈Z

〈j〉−2β .

The last sum is finite since β > 1/2. In light of (4.30), and since 1< q⩽ 2, we see that

E‖v‖q
Cγ
pβ

⩽ C〈a〉2. (4.31)

As β > 2/(2+ q) and γ > 0, proposition B.2 of [13] ensures that the embedding

Cγ
pβ ↪→X 2

2+q
= X
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is compact. Therefore (4.31) and the compactness of R/Z imply that the sequence (µt)t⩾0

of measures on A1 = X × (R/Z) is tight. By Prokhorov’s theorem, there exists a weak sub-
sequential limit µ of (µt)t⩾1 as t→∞. Using the Feller property from corollary 3.2, a standard
Krylov–Bogoliubov argument shows that µ is invariant for the semigroup (Pt)t⩾0. Also, µ is
certainly invariant under spatial translations, so µ ∈ PR(A1). If (v, θ)∼ µ, then, by (4.27),
we have

EH(v), E|v− a|q ⩽ C〈a〉2 and E|∂xv|2 ⩽ C, (4.32)

where we implicitly evaluate v at some x ∈ R. Moreover, the uniform integrability implicit
in (4.27) yields

Ev= a. (4.33)

We now write µ as a convex combination of extremal measures. Fix G= R or LZ for
some L> 0 and let X∼ Uniform(R/G). Because µ is R-invariant, it is also G-invariant.
In [20, theorem 4.4], it is shown that µ̄ corresponds to a probability measure m(dµ) supported
on P

e
G(A1) such that

µ(A) =
ˆ

P
e
G(A1)

µ(A)m(dµ) (4.34)

for each Borel set A⊂A1. Strictly speaking, [20] only treats deterministic dynamical systems.
However, as noted in remark 2.1, we can convert our Markov semigroup to a deterministic
dynamical system following [17, section 4].

Now if (v[µ],θ[µ])∼ µ for each µ ∈ P
e
G(A1), then (4.32) and (4.34) imply that m is sup-

ported on measures µ such that

EH(v[µ](X)), E|v[µ](X)− a|q, E|∂xv[µ](X)|2 <∞. (4.35)

In particular, m is supported on measures with well-defined first moments. By the Hölder
inequality, (4.32) and (4.34) yield
ˆ

P
e
G(A1)

|Ev[µ](X)− a|qm(dµ)⩽
ˆ

P
e
G(A1)

E|v[µ](X)− a|qm(dµ)⩽ C〈a〉2. (4.36)

Also, we can write (4.33) as
ˆ

P
e
G(A1)

Ev[µ](X)m(dµ) = a. (4.37)

If µ∼ m, let ξ := E[v[µ](X) | µ]− a. Then (4.36) and (4.37) become

E|ξ|q ⩽ C〈a〉2 (4.38)

and

Eξ = 0. (4.39)

Let m := Lawξ, and suppose

suppm∩ [−〈a〉/2,A] = ∅
for some A⩾ 〈a〉/2. Then we can use (4.39) to write

0=
ˆ

R

ξ m(dx) =−
ˆ −⟨a⟩/2

−∞

|ξ|m(dx)+
ˆ ∞

A
|ξ|m(dx).
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Therefore, we have
ˆ ∞

A
|ξ|m(dx) =

1
2
E|ξ|⩾ 〈a〉

2
.

Using (4.38), this implies:

〈a〉
2

⩽

ˆ ∞

A
ξ m(dx)⩽ A1−q

ˆ ∞

A
ξqm(dx)⩽ A1−q

E|ξ|q ⩽ CA1−q〈a〉2.

Rearranging, we find

A⩽
1
2
C̄〈a〉 1

q−1 ,

with some C̄ depending only on κ0,λ,c1,c2, and LawV. It follows that

m
([

− 〈a〉
2
, C̄〈a〉1/(q−1)

])
> 0.

In light of the definition of ξ and (4.35), there exists µa,G ∈ P
e
G(A1) such that

EH(v[µa,G](X)), E|∂xv[µa,G](X)|2 <∞
and

−〈a〉/2⩽ Ev[µa,G](X)− a⩽ C̄〈a〉 1
q−1 .

This completes the proof of theorem 2.2.

5. Stochastic ordering of the invariant measures

In this section we prove theorem 2.5. First, we show that a coupling satisfying (2.13) exists.

Proposition 5.1. Suppose thatµi ∈ PG(ANi)with i ∈ {1,2} satisfy the hypotheses of theorem
2.5. Then there exists µ ∈ PG(AN1+N2) satisfying (2.13).

Remark 5.2. Note that in this part of the proof of theorem 2.5, we do not assume that µi is
extremal.

Proof. Because each µi is invariant under the semigroup {Pt}t⩾0, their marginals on R/Z are
uniform for each i ∈ {1,2}, and are, therefore, identical. It follows that there exists a coupling
µ0 ∈ PG(AN1+N2) such that if

(
(v1;1, . . . ,v1;N1 ,v2;1, . . . ,v2;N2),θ

)
∼ µ0,

then

Law
(
(vi;1, . . . ,vi;Ni),θ

)
= µi for each i ∈ {1,2}.

Deploying the Krylov–Bogoliubov-type argument in the proof of [13, proposition 4.3], there
is a sequence of times Tk ↗∞ such that the limit

µ= lim
k→∞

1
Tk

ˆ Tk

0
P∗
t µ0 dt

exists and is an element of PG(AN1+N2). Moreover, the invariance of µi implies that µ
satisfies (2.13).

Next, we show that the components of a time-invariant solution are ordered.
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Proposition 5.3. Let the group G be R or LZ for some L> 0 and let X∼ Uniform(R/G).
Suppose that µ ∈ PG(AN) and (v1, . . . ,vN,θ)∼ µ satisfy

EH(vi(X)), E(∂xvi(X))
2 <∞ for all i ∈ {1, . . . ,N}. (5.1)

Then for each i, j ∈ {1, . . . ,N}, sgn
(
vi(x)− vj(x)

)
is almost surely a random constant inde-

pendent of x ∈ R.

Proof. It suffices to consider the case N= 2. The statement and proof are similar to those
of [13, proposition 3.9]. Let (v1,v2,θ)∼ µ be independent of the noise V. For each i ∈ {1,2},
let ui solve (1.1) with initial condition ui(θ−) = vi at time θ. Since θ is uniformly distributed
in R/Z, we can restrict to the full-measure event θ 6= 0.

Let F(x) = |x| and let {Fε}ε∈(0,1] be a family of functions as in [13, lemma 3.4]: each Fε

is convex and there is a constant C so that

Fε(ξ)⩽ C(|ξ|+ ε), |ξF ′
ε(ξ)|⩽ CFε(ξ), |F ′

ε(ξ)|⩽ C, |ξ|F ′ ′
ε (ξ)⩽ C1[−ε,ε](ξ). (5.2)

Moreover, we can assume that Fε is independent of ε outside [−1,1]. By (1.1) and the chain
rule, the difference η = u1 − u2 satisfies

∂tFε(η) = F ′ε(η)∂x [κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)] (5.3)

at non-integer times.
Let L̂= L if G= LZ for L> 0 and L̂= 1 if G= R, and integrate (5.3) over (θ,1)× [0, L̂].

Integrating by parts in space, we find:

ˆ L̂

0
Fε(η)dx

∣∣∣
t=1−

t=θ
=

ˆ 1

θ

Fε(η) [κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)]dt
∣∣∣
x=L̂

x=0

−
ˆ 1

θ

ˆ L̂

0
F ′ ′
ε (η)∂xη [κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)] dxdt.

(5.4)

Next, we write

κ(u1)∂xu1 −κ(u2)∂xu2 = κ(u1)∂xη+ [κ(u1)−κ(u2)]∂xu2. (5.5)

Recall that assumption 1 states that κ is uniformly ακ-Hölder regular for some ακ ∈ (1/2,1).
Using this regularity, (5.2), and Young’s inequality, we find
∣∣F ′ ′

ε (η)∂xη[κ(u1)−κ(u2)]∂xu2
∣∣⩽ ‖κ‖CακF ′ ′

ε (η)|∂xη||η|ακ |∂xu2|

⩽
κ0
4
F ′ ′
ε (η)|∂xη|2 +

‖κ‖2Cακ

κ0
F ′ ′
ε (η)|η|2ακ |∂xu2|2

⩽
κ0
4
F ′ ′
ε (η)|∂xη|2 + ‖κ‖2Cακκ

−1
0 ε2ακ−1|∂xu2|2.

(5.6)

Similarly, (2.4), (5.2), and Young’s inequality imply
∣∣F ′ ′

ε (η)∂xη[H(u1)−H(u2)]
∣∣⩽ CF ′ ′

ε (η)|∂xη||η|(|u1|+ 1)q/2

⩽
κ0
4
F ′ ′
ε (η)|∂xη|2 +C2κ−1

0 ε(|u1|+ 1)q.
(5.7)

Combining (5.5)–(5.7) and using (2.1) we obtain

−F ′ ′
ε (η)∂xη

[
κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)

]

⩽−κ0
2
F ′ ′
ε (η)|∂xη|2 +Cε2ακ−1|∂xu2|2 +Cε(|u1|+ 1)q,

(5.8)
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where we allow C to change from line to line. Now (5.1) and (2.3) imply that

E

ˆ 1

θ

ˆ L̂

0

(
|∂xu2|2 +(|u1|+ 1)q

)
dx dt<∞. (5.9)

Thus, we have

E

(
−
ˆ 1

θ

ˆ L̂

0
F ′ ′
ε (η)∂xη

[
κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)

]
dxdt

)

+

⩽ Cε2ακ−1
E

ˆ 1

θ

ˆ L̂

0

[
|∂xu2|2 +(|u1|+ 1)q

]
dxdt<∞.

(5.10)

On the other hand, G-invariance and time stationarity imply that

ˆ L̂

0
Fε(η)dx

∣∣∣
t=1−

t=θ
−
ˆ 1

θ

Fε(η) [κ(u1)∂xu1 −κ(u2)∂xu2 −H(u1)+H(u2)]dt
∣∣∣
x=L̂

x=0
(5.11)

can be written as the difference of two identically distributed random variables.
Therefore, (5.4), (5.10), and [13, lemma D.1] imply that the expression in (5.11) is abso-
lutely integrable and has zero expectation. Taking expectation in (5.4), (5.8) and (5.9) yields

E

ˆ 1

θ

ˆ L̂

0
F ′ ′
ε (η)|∂xη|2 dxdt⩽ Cε2ακ−1. (5.12)

We now take ε→ 0. Let ζ ∈ C∞
c (R) be nonnegative with

ˆ

R

ζdx= 1,

and let ζ̃ := ζ ∗ 1[0,L̂]. Mimicking the proof of [13, proposition 3.7], we can use (5.12), G-
invariance, and the coarea formula to show that

ˆ 1

θ

∑

y∈η(t, ·)−1(0)

|∂xη(t,y)|ζ̃(y)dt=
1
2
lim
ε→0

E

ˆ 1

θ

ˆ L̂

0
F′′
ε (η(t,x))|∂xη(t,x)|2 dxdt= 0

almost surely. If we translate ζ (and thus ζ̃) along R, we see that with probability 1, we have
∂xη(t, ·) = 0 wherever η(t, ·) = 0 for almost every t ∈ [θ,1). Proposition 3.3 and [15, the-
orem 4.8] imply that ∂xη is continuous in spacetime. Following the proof of [13, lemma 3.10],
we can show that with probability 1, we have ∂xη = 0 wherever η= 0 in (θ,1)×R. The proof
of [13, proposition 3.9] shows that this contradicts the parabolic Hopf lemma unless sgnη is
a random constant independent of (t,x) ∈ (θ,1)×R. The comparison principle implies that
then sgnη is almost surely a random constant independent of (t,x) ∈ (θ,∞)×R. By time sta-

tionarity, we also have η(θ+ 1, ·) law
= η(θ, ·). The proposition follows.

Next, we apply this proposition to extremal solutions.

Corollary 5.4. Let µ and (v,θ)∼ µ satisfy the hypotheses of proposition 5.3. Suppose
Law(vi,θ) ∈ P

e
G(A1) for every i ∈ {1, . . . ,N}. Then, if a := Ev(X), with probability 1 we have

sgn
(
vi(x)− vj(x)

)
= sgn(ai − aj)

for all x ∈ R and every i, j ∈ {1, . . . ,N}.
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Proof. Again, it suffices to consider the case N= 2. Our argument follows the proof of [13,
proposition 6.1]. By proposition 5.3, with probability 1 the random variable

χ := sgn(v1(x)− v2(x))

does not depend on x ∈ R. Given b ∈ {0,±1} and i ∈ {1,2}, define

µi,b := Law((vi,θ) | χ = b)

if P(χ = b)> 0. Otherwise, let µi,b := Law(vi,θ). By the comparison principle, µi,b is time-
invariant. Moreover, it isG-invariant because µ and b areG-invariant. Therefore, we know that
µi,b ∈ PG(AN). Now, we can write Law(vi,θ) as the convex combination

Law(vi,θ) =
∑

b∈{0,±1}

P(χ = b)µi,b.

Since Law(vi,θ) is extremal, we have µi,b = Law(vi,θ) for all b ∈ {0,±1}. Therefore, if X∼
Uniform(R/G) is independent of all else and P(χ = b)> 0, we have

E [v1(X)− v2(X) | χ = b] = E [v1(X) | χ = b]−E [v2(X) | χ = b]

= Ev1(X)−Ev2(X) = a1 − a2.

Because χ does not depend on x, this implies that

b= E[sgn
(
v1(X)− v2(X)

)
| χ = b] = sgn

(
E [v1(X)− v2(X) | χ = b]

)
= sgn(a1 − a2).

Therefore P(χ 6= sgn(a1 − a2)) = 0, as desired.

Proof of theorem 2.5. Let G be R or LZ for some L> 0. For each i ∈ {1,2}, fix Ni ∈ N, let
N := N1 +N2, and take µi ∈ P

e
G(ANi). Assume that (vi;1, . . . ,vi;Ni ,θi)∼ µi satisfies (5.1). By

proposition 5.1, there exists a coupling µ ∈ PG(AN) of µ1 and µ2 in the sense of (2.13). Using
proposition 5.3, we will show that µ is extremal, i.e. that µ ∈ P

e
G(AN).

Suppose there exist µ(0),µ(1) ∈ PG(AN) and γ ∈ (0,1) such that

µ= γµ(0) +(1− γ)µ(1).

Then, if (v,θ)∼ µ and (v(ℓ),θ(ℓ))∼ µ(ℓ) for ` ∈ {0,1}, (2.13) and (5.1) imply that

EH(v(ℓ)i;j (X)), E(∂xv
(ℓ)
i;j (X))

2
⩽max{γ−1,(1− γ)−1}max{EH(vi;j(X)),E(∂xvi;j(X))2}<∞

for all i ∈ {1,2} and j ∈ {1, . . . ,Ni}. That is, µ(0) and µ(1) satisfy the hypotheses of proposition
5.1. Thus there exists µ̂ ∈ PG(A2N) such that if ((v(0),v(1)),θ)∼ µ̂, then

Law(v(ℓ),θ) = µ(ℓ) for each ` ∈ {0,1}.

Fix i ∈ {1,2} and j ∈ {1, . . . ,Ni}. We claim that the marginal µi;j := Law(vi;j,θ) of µi is
extremal. If it were a nontrivial convex combination of measures in PG(A1), we could use
proposition 5.1 to couple those measures to the remaining components of µi and thus write µi
as a nontrivial convex combination. It follows that

v(ℓ)i;j ∼ µi;j ∈ P
e
G(A1),

for each ` ∈ {0,1}. By corollary 5.4, we have v(0)i;j = v(1)i;j almost surely. Since this holds for all

i, j, we have v(0) = v(1) almost surely. In particular, µ(0) = µ(1). Therefore, µ is extremal.
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Finally, the extremality of the marginals Law(vi;j,θ) and corollary 5.4 imply (2.14).

Now, corollary 2.6 follows from theorem 2.5.

Proof of corollary 2.6. Take N, G, and X as in the statement of corollary 2.6. Fix a ∈ R
N, and

suppose there are two measures µ1,µ2 ∈ P
e
G(AN) with (vi,θi) = (vi;1, . . . ,vi;N,θi)∼ µi such

that Evi(X) = a and

EH
(
vi;j(X)

)
, E
(
∂xvi;j(X)

)2
<∞ for each i ∈ {1,2}, j ∈ {1, . . . ,N}.

By theorem 2.5, there exists a coupling P
e
G(A2N) satisfying (2.13) and (2.14). In particular,

0= sgn
(
Ev1;j(X)−Ev2;j(X)

)
= χ1;j,2;j for every j ∈ {1, . . . ,N}.

So v1 = v2 almost surely, and µ1 = µ2.
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