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Abstract. This paper uses sample data to study the problem of comparing populations on finite-dimensional
parallelizable Riemannian manifolds and more general trivial vector bundles. Utilizing triviality,
our framework represents populations as mixtures of Gaussians on vector bundles and estimates
the population parameters using a mode-based clustering algorithm. We derive a Wasserstein-type
metric between Gaussian mixtures, adapted to the manifold geometry, in order to compare estimated
distributions. Our contributions include an identifiability result for Gaussian mixtures on manifold
domains and a convenient characterization of optimal couplings of Gaussian mixtures under the
derived metric. We demonstrate these tools on some example domains, including the preshape
space of planar closed curves, with applications to the shape space of triangles and populations of
nanoparticles. In the nanoparticle application, we consider a sequence of populations of particle
shapes arising from a manufacturing process and utilize the Wasserstein-type distance to perform
change-point detection.
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1. Introduction. Modern statistical analysis increasingly involves data objects that are
nonlinear and non-Euclidean. A prominent example is directional data [28], where data nat-
urally lie on a unit sphere. Another example is shape analysis, where one is interested in
analyzing shapes of imaged objects. Although several approaches have been developed for
shape analysis (see [17, 25, 34, 36, 45, 2] and others), they all agree in that the represen-
tation spaces of shapes is nonlinear. Examples of nonlinear data domains are also present
in covariance analysis [16, 46], functional data analysis [36], and graphical data [22, 10, 20].
Analysis of non-Euclidean data requires statistical tools adapted to the differential geometries
of the underlying representation spaces. These tools include statistical modeling, parame-
ter estimation, and inferences. Our paper is focused on a specific subproblem in this broad
field, i.e., comparing probability distributions on certain nonlinear domains. Precisely, we
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1434 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

will model the probability distributions as mixtures of Gaussians, adapted to nonlinear do-
mains of interest, and compare them using a novel variant of the Wasserstein distance. These
choices---mixtures of Gaussian models and Wasserstein metric---are driven by convenience and
applicability. Gaussian mixtures [12, 39] provide a general yet parametric option for capturing
population variability, and Wasserstein metrics have become a canonical choice for comparing
distributions in a variety of contexts [40, 33].

We develop a general framework for domains that are trivial vector bundles. A vector
bundle is a set of isomorphic vector spaces indexed by points on a smooth manifold [31];
a vector bundle is called trivial if this structure can be realized as a product of a smooth
manifold with a vector space. The tangent bundle of a parallelizable manifold is an example
of a trivial vector bundle. Examples of parallelizable manifolds include punctured spheres,
spaces of symmetric positive definite matrices, Lie groups, and several commonly used shape
spaces.

Distributions on vector bundles provide a natural setting for combining results from the
optimal transport [12, 27] and shape analysis [17, 36] literature. The two main goals of this
paper are to develop a general theory for comparing certain distributions on trivial vector
bundles (section 3) and to apply this theory to study shape populations arising from im-
ages captured in a nanomanufacturing process (section 4). The main challenges in deriving a
framework for comparing probability distributions on vector bundles include (1) the nonlin-
earity of underlying domains and the specification of convenient probability distributions for
such domains, (2) efficient estimation of these distributions from data, and (3) comparisons of
estimated distributions using proper metrics between distributions. We outline these choices
next:

1. Forms of probability distributions: Our first task is to define a probability dis-
tribution on a trivial bundle. While nonparametric approaches, often based on kernel
methods [23], have gained prominence due to their generality and broad applicability,
they require large sample sizes to capture the population variability effectively. In
contrast, parametric families, such as mixtures of Gaussians, are robust under small
sample sizes and have been covered extensively in the past literature. As mentioned
earlier, our situation is complicated due to the nonlinearity of targeted domains. While
some parametric families have advanced from Euclidean to nonlinear domains, the
choice is relatively limited. Some adaptations of Gaussians to nonlinear and compact
domains include truncated Gaussians, von Mises distributions, and wrapped Gauss-
ian distributions [28]. This paper represents the underlying distribution as a mixture
of Gaussians defined appropriately for vector bundles. The primary motivation for
choosing Gaussian mixtures is their generality, simplicity, and interpretability of the
resulting Wasserstein distance.

2. Estimating probability distributions: The next issue is efficiently estimating
Gaussian mixtures from given data. Depending on the chosen space and the Rie-
mannian metric, several papers have studied the estimation of basic summary statistics
from the data, such as means and covariances. However, the literature on estimat-
ing parameters of mixtures of Gaussians on nonlinear domains is relatively limited.
The main issue is computational. The expectation maximization (EM) algorithm is
an established approach for estimating Gaussian mixtures on vector spaces but is
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1435

expensive and prone to local solutions. Furthermore, its applications to nonlinear do-
mains are costlier due to the iterative nature of mean computation [35, 8]. Some papers
have adapted EM algorithms for truncated Gaussians and von Mises distributions to
nonlinear spaces (see [21]). We will apply a recent method that performs clustering
on manifold data by finding modes of the underlying distribution [14]. We shall treat
these modes as estimates of Gaussian means and further estimate covariances within
individual clusters. The procedure for estimating cluster memberships, means, and
covariances for general metric spaces is provided in [13, 14].

3. Metrics between probability distributions: The final issue is defining a met-
ric for comparing and quantifying differences between chosen distributions in vector
bundles. While there are several choices for this metric, the Wasserstein metric has
become popular for several reasons. When available, it provides an interpretable so-
lution for comparing probability distributions. It is also robust to misspecifications
in distributions due to estimation errors. Finally, it leads to a closed-form expression
for comparing certain parametric families, in particular, Gaussians. In this paper,
we will utilize a Wasserstein-type metric previously developed for Euclidean domains
[12]. (These are called Wasserstein type because the couplings---joint distributions
for minimizing cost function---are restricted to be mixtures of Gaussians rather than
all distributions.) Specifically, we will derive this metric for comparing mixtures of
Gaussians on trivial vector bundles.
A key idea that helps us define distances between Gaussians on trivial vector bundles
is that any trivialization leads to a consistent choice of basis for each of the tangent
spaces of the manifold---i.e., it provides a global frame. Fixing consistent coordinates
allows us to apply, in a coherent manner, closed-form expressions for distances between
Gaussians on different tangent spaces. Later on, we give examples of simple families
of trivializations which are natural from a data analysis persepective.

We will demonstrate these ideas using both simulated and real-world data sets. In the
simulated study, we will generate samples from mixtures of Gaussians on the (punctured) unit
sphere S2 and demonstrate procedures for parameter estimation and population comparisons.
We will also consider an example where the shape space of planar triangles [24, 7] is identified
with S2, so that one can compare shape populations of triangles. In the real-data study, we
investigate transmission electron microscopy videos of particles in nanomanufacturing pro-
cesses where each image frame contains hundreds of particles that differ in shape, size, and
placement. We focus on the shapes of their contours and treat shapes in a frame as random
samples from underlying shape populations. We model these shape populations as mixtures of
Gaussians on the shape space of planar, closed contours. As mentioned above, we use a mode
estimation procedure to infer the parameters of mixtures from the observed shape data for
each frame separately. The goal is to track and compare temporal evolutions of these shape
distributions and to quantify their changes over time. For instance, we use this quantification
to detect change points in the nanomanufacturing process.
The salient contributions of this paper are as follows:

1. It extends the notion of Gaussians and mixtures of Gaussians to trivial vector bundles
and uses them for statistical modeling and analysis. Examples of such domains in-
clude punctured spheres, tori, matrix Lie groups, spaces of symmetric positive definite
matrices, shape spaces, and other domains useful in statistical analysis.
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1436 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

2. It derives a convenient expression for comparing mixtures of Gaussians using a
Wasserstein-type metric. This development provides useful insights into choices made
for problem domains, probability models, and metrics for comparing populations.

3. It applies these tools to comparisons of populations of planar contour shapes and for
finding change points in the temporal evolution of shape populations.

The paper proceeds as follows. In section 2, we cover the background information necessary
to introduce the Wasserstein-type distance for Gaussian mixtures on Rn. In section 3, we
present our proposed framework for extending this Wasserstein-type distance to mixtures of
Gaussians on vector bundles. In section 4, we present our experimental results involving real
and simulated data. Section 5 concludes the paper with some observations.

2. Background on Wasserstein distances. This section introduces some background ma-
terial and existing results to lay the groundwork for our approach. Specifically, we focus on the
Gaussian mixtures on Euclidean spaces and the expressions for Wasserstein distances between
such mixtures.

2.1. Classical Wasserstein distance. We begin with necessary background material on
classical distances between probability distributions, called Wasserstein distances, on a general
metric space.

Wasserstein distances for metric spaces. Let (\scrX , d) be a metric space.

Definition 2.1. For p \geq 1, the Wasserstein space \scrP p(\scrX ) is the set of probability measures
on \scrX with finite pth moment; i.e., for every x0 \in \scrX , the integral

\int 
\scrX d(x0, x)

pd\mu (x) is finite.
The p-Wasserstein distance W\scrX 

p between probability measures \mu 0, \mu 1 \in \scrP p(\scrX ) is given by

W\scrX 
p (\mu 0, \mu 1) :=

\biggl( 
inf

\gamma \in \Pi (\mu 0,\mu 1)

\int 
\scrX \times \scrX 

d(x, y)pd\gamma (x, y)

\biggr) 1

p

,(2.1)

where \Pi (\mu 0, \mu 1) is the set of couplings of \mu 0 and \mu 1, that is, the set of joint probability measures
\gamma on \scrX \times \scrX that have marginal distributions \mu 0 and \mu 1. A joint measure \gamma that achieves the
infimum of (2.1) is called an optimal coupling.

The field of optimal transport studies properties of the Wasserstein distance and related
constructions; see, for example, [33, 1, 40] for overviews of the well-developed theory of op-
timal transport. In particular, the Wasserstein distance is a metric on \scrP p(\scrX ), under mild
assumptions on \scrX (e.g., \scrX is a Polish space).

Finitely supported measures. From an applications-oriented perspective, it is most common
to consider the Wasserstein distance between finitely supported distributions. In this setting,
calculating the Wasserstein distance comes down to solving a constrained linear program.
Indeed, for i= 0,1, let

\mu i =\Sigma Ki

k=1\alpha 
k
i \delta xk

i
, \Sigma Ki

k=1\alpha 
k
i = 1, where \alpha k

i > 0 \forall i, k

are probability measures supported on points xki \in \scrX . By an abuse of notation, we consider \mu i
as a (column) vector \mu i = [\alpha 1

i , . . . , \alpha 
Ki

k ]T \in RKi . Then the space of couplings can be identified
with a set of matrices,

\Pi (\mu 0, \mu 1) = \{ \pi \in RK0\times K1 : \pi T1= \mu 0,1
T\pi = \mu T1 \} ,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1437

where 1 represents the column vector of all ones, whose size is inferred by context. When
considering a coupling \pi as a matrix, we write its (i, j)-entry as \pi ij . Then the Wasserstein
p-distance is given by

W\scrX 
p (\mu 0, \mu 1)

p = min
\pi \in \Pi (\mu 0,\mu 1)

\Sigma K0,K1

i,j=1 \pi ijd(x
i
0, x

j
1)

p = min
\pi \in \Pi (\mu 0,\mu 1)

\langle D,\pi \rangle F ,

where \langle \cdot , \cdot \rangle F is the Frobenius inner product on RK0\times K1 and D \in RK0\times K1 is the matrix with
the (i, j)-entry given by d(xi0, x

j
1)

p. This shows that the objective of the Wasserstein distance
computation is a linear function, and it is not hard to see that the constraint set \Pi (\mu 0, \mu 1) is
a convex polytope in RK0\times K1 .

Gaussian distributions on Rd. In general, calculating Wasserstein distances between con-
tinuous distributions is impossible due to the infinite-dimensional nature of the associated
optimization problem. However, in the case of Gaussian distributions, there is a simple closed-
form equation for the Wasserstein distance in terms of the parameters of the distributions.
We use Nd(m,\Sigma ) to denote the Gaussian distribution on Rd with mean m\in Rd and covariance
\Sigma \in Sym+

d , where Sym+
d \subset Rd\times d denotes the set of symmetric positive semidefinite matrices.

When considering Rd as a metric space, we always use the standard Euclidean metric. The
following result is classical.

Proposition 2.2 (see [15, 19, 30]). Given two Gaussian distributions on Rd, \eta i =Nd(mi,\Sigma i),
i\in \{ 0,1\} , the squared 2-Wasserstein distance between \mu 0 and \mu 1 is given by

WRd

2 (\eta 0, \eta 1)
2 = \| m0  - m1\| 2 + tr

\biggl( 
\Sigma 0 +\Sigma 1  - 2

\Bigl( 
\Sigma 

1

2

0\Sigma 1\Sigma 
1

2

0

\Bigr) 1

2

\biggr) 
,(2.2)

where tr denotes the matrix trace. Moreover, an optimal coupling is given by a Gaussian
measure on Rd \times Rd. If m0 = m1 = 0 \in Rd, then the optimal coupling will be a zero-mean
Gaussian.

Let Gd := \{ Nd(m,\Sigma ) :m\in Rd,\Sigma \in Sym+
d \} denote the set of Gaussian measures on Rd. The

above implies that (Gd,W2) is a metric space whose metric is explicitly computable (here, we
use W2 =W2| Gd\times Gd

by abuse of notation). Due to this computational convenience, we focus
on the p= 2 version of the Wasserstein distance for the rest of the paper.

2.2. Gaussian mixture measures on Rd. The closed formula (2.2) for the Wasserstein
distance between Gaussians suggests that we consider a richer set of measures consisting of
collections of Gaussians, given more precisely as follows.

Definition 2.3. A measure \mu on Rd is a Gaussian mixture measure (or just Gaussian
mixture) if it can be written as

\mu =\Sigma K
k=1wk\eta k, where \eta k =Nd(mk,\Sigma k) and \Sigma K

k=1wk = 1, wk>0, \forall k.(2.3)

A Gaussian mixture \mu can also be considered as a discrete probability measure on Gd. We
use \mu \ast to distinguish this representation and write

\mu \ast =\Sigma K
k=1wk\delta \eta k

, where \eta k \in Gd and \Sigma K
k=1wk = 1, wk>0, \forall k.

We use GMd to denote the collection of all Gaussian mixtures on Rd.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1438 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

An important property of Gaussian mixtures is that they are identifiable in a certain
precise sense, meaning that the representation given in (2.3) is essentially unique. Let us
now explain this more precisely. The representation (2.3) is not strictly unique, as one could,
for example, rearrange the terms or replace a term wk\eta k by (wk/2)\eta k + (wk/2)\eta k without
changing the resulting measure. If a Gaussian mixture \mu is written in the form (2.3) such
that all Gaussians \eta k are pairwise distinct, we say that the representation is in minimal form.
We have the following classical result from [44] (see also [12, Proposition 2]), which we record
here for later use.

Proposition 2.4 (see [44]). Let \mu be a Gaussian mixture, with minimal form representations

K\sum 
k=1

wk\eta k and

K\prime \sum 
k=1

w\prime 
k\eta 

\prime 
k.

Then K = K \prime , and there exists a permutation \sigma of \{ 1, . . . ,K\} such that wk = w\prime 
\sigma (k) and

\eta k = \eta \prime \sigma (k) for all k.

The two perspectives on Gaussian mixture measures described in Definition 2.3 lead to
two candidate metrics on GMd. On one hand, one could compute the Wasserstein distance
WRd

2 (\mu 0, \mu 1) between \mu 0, \mu 1 \in GMd. On the other hand, one could compute the Wasserstein
distance in the metric space of discrete measures on Gd, which reads as

WGd

2 (\mu \ast 0, \mu 
\ast 
1)

2 = min
\pi \in \Pi (w0,w1)

\Sigma k,l\pi klW
Rd

2 (\eta k0 , \eta 
\ell 
1)

2,(2.4)

where \mu i =
\sum 

kw
k
i \eta 

k
i and wi = (wk

i )k for i \in \{ 0,1\} . This latter notion of distance between
Gaussian mixtures was first studied in [9].

In general, WRd

2 (\mu 0, \mu 1) and W
Gd

2 (\mu \ast 0, \mu 
\ast 
1) are not equal. It turns out that this discrepancy

can be reconciled by adding an extra constraint to the feasible set in the Wasserstein distance
optimization problem. The following was first introduced in [12].

Definition 2.5 (see [12]). Given \mu i \in GMd, i \in \{ 0,1\} , the mixture Wasserstein distance is
given by

MWRd

2 (\mu 0, \mu 1)
2 := inf

\pi \in \Pi (\mu 0,\mu 1)\cap GM2d

\int 
Rd\times Rd

\| x - y\| 2 d\pi (x, y).

It is shown in [12, Proposition 4] that the alteration of the Wasserstein distance given in
Definition 2.5 agrees with the distance between Gaussian mixtures used in (2.4). We record
this result here.

Theorem 2.6 (see [12]). For \mu i \in GMd, i\in \{ 0,1\} , we have MWRd

2 (\mu 0, \mu 1) =WGd

2 (\mu \ast 0, \mu 
\ast 
1).

3. Distances between Gaussian mixtures on vector bundles. The main contribution of
this paper is to generalize the Wasserstein-type distance MWRd

2 to Gaussian mixtures defined
on trivial vector bundles. We first introduce some preliminary ideas. Proofs of all results are
deferred to Appendix A.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1439

3.1. Preliminaries on Gaussian mixtures on vector bundles.
Gaussian measures on inner product spaces. Let (V, \langle \cdot , \cdot \rangle V ) be a finite-dimensional inner

product space. We wish to consider Gaussian measures on V . These could, of course, be
defined by choosing an isometry to Rd and transferring the standard definition. It will be
convenient for later computations to have a more coordinate-free description of Gaussian
measures on V . We develop this point of view here.

Definition 3.1. A Borel measure \mu on V is called Gaussian if, for every linear functional
f : V \rightarrow R, the pushforward f\#\mu is a Gaussian measure (in the standard sense) on R.

Definition 3.1 is used in [5, Definition 1.2.1] to characterize Gaussian measures on Euclid-
ean spaces. Indeed, it is straightforward to show that any Gaussian Nd(m,\Sigma ) on Rd (in the
sense of the previous section) has this pushforward property. Using this definition for more
general inner product spaces allows us to easily relate Gaussian measures to their Euclidean
counterparts.

Proposition 3.2. A Borel measure \mu on (V, \langle \cdot , \cdot \rangle V ), where dim(V ) = d, is Gaussian if and
only if there is a Gaussian measure \nu on Rd and a linear isometry g : Rd \rightarrow V such that
\mu = g\#\nu .

Given a Gaussian \nu =Nd(m,\Sigma ) on Rd and a linear isometry g :Rd \rightarrow V , let \mu = g\#\nu . We
define the mean and covariance of \mu to be g(m) and g\Sigma g - 1, respectively. Here, we consider
\Sigma as an operator Rd \rightarrow Rd. We first show that these quantities do not depend on the choice
of \nu or g.

Proposition 3.3. Let \nu = Nd(m,\Sigma ) and \nu \prime = Nd(m
\prime ,\Sigma \prime ) be Gaussians on Rd, and let g

and g\prime be linear isometries from Rd to V such that g\#\nu = g\prime \#\nu 
\prime . Then g(m) = g\prime (m\prime ) and

g\Sigma g - 1 = g\prime \Sigma \prime (g\prime ) - 1.

As a corollary, we get that the following is a valid definition.

Definition 3.4. Let (V, \langle \cdot , \cdot \rangle V ) be an inner product space, g : Rd \rightarrow V be a linear isometry,
and \nu = Nd(m,\Sigma ) \in Gd. The mean of the Gaussian measure g\#\nu on V is g(m), and the
covariance operator is g\Sigma g - 1.

Gaussian mixtures on vector bundles. Let\scrM be a Riemannian manifold. When dealing with
data valued in such a manifold, it is common to linearize the analysis by choosing a basepoint
m\in \scrM and pulling the data back to the tangent space Tm\scrM via the Riemannian log map; for
example, this is a standard technique in statistical shape analysis [35, 36, 4] and computational
optimal transport [42, 10]. From a modeling perspective, it is often useful to fit a distribution
to the linearized data, resulting in a probability distribution on Tm\scrM . One can consider the
resulting distribution as a highly singular probability measure on the tangent bundle T\scrM 
in the sense that it is only supported on the fiber Tm\scrM \subset T\scrM . This is the perspective
taken in [36, 27], where the authors consider Gaussian distributions on tangent spaces as
models for ``wrapped Gaussians"" on the underlying manifold (this terminology originates in
the directional statistics literature---see [11, 28]). Observe that the well-definededness of this
framework depends on technicalities such as the domain of the log map---this hints at the
utility of considering parallelizable manifolds, as we do in the following.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1440 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

In this paper, we propose a data model which linearizes subsets of the data at vari-
ous strategically chosen basepoints, m1, . . . ,mK \in \scrM . Fitting (weighted) distributions on
each Tmk

\scrM leads to a more general singular measure on T\scrM whose support is contained
in \cup kTmk

\scrM \subset T\scrM . Arguably, the simplest such model involves fitting zero-mean Gaussian
distributions in each tangent space.

We now formalize the concepts described above. It will be convenient to work, more
generally, in the setting of vector bundles. Let p : \scrE \rightarrow \scrM be a rank-d vector bundle over a
smooth manifold \scrM ; in what follows, we typically denote the vector bundle as \scrE \rightarrow \scrM , with
the understanding that there is an underlying projection map that has been supressed from
the notation. We denote the fiber over m \in \scrM as \scrE m \approx Rd. Let \langle \cdot , \cdot \rangle = \{ \langle \cdot , \cdot \rangle m\} m\in M be a
smoothly varying family of inner products on the fibers \scrE m.

Definition 3.5. A Borel measure \eta on the vector bundle \scrE is called a Gaussian measure if it
is a mean-zero Gaussian measure on the inner product space (\scrE m, \langle \cdot , \cdot \rangle m) for some m\in \scrM (see
Definition 3.4). If the covariance operator of \eta is \Sigma , we write \eta = N\scrE (m,\Sigma ). The collection
of Gaussian measures on \scrE is denoted G(\scrE ).

A Borel measure \mu on \scrE is called a Gaussian mixture measure (or just Gaussian mixture)
if it can be written as \mu = \Sigma K

k=1wk\eta k, where each \eta k = N\scrE (mk,\Sigma k) for some mk \in \scrM and
where \Sigma K

k=1wk = 1. We denote the collection of all Gaussian mixtures on \scrE as GM(\scrE ).
As an important example, consider a product bundle \scrE =\scrM \times Rd, where \scrE m = \{ m\} \times Rd \approx 

Rd is endowed with the standard inner product. Then a Gaussian mixture on \scrE is simply a
collection of mean-zero Gaussians indexed by a finite collection of points \{ m1, . . . ,mK\} in \scrM .
In particular, the following result is immediate.

Proposition 3.6. We have Gd \approx G(Rd \times Rd) and GMd \approx GM(Rd \times Rd) as sets. To make
this more precise, let \eta = Nd(m,\Sigma ) be a Gaussian measure on Rd, and let \eta denote the
measure when considered as a Gaussian measure on the trivial bundle \scrE = Rd \times Rd, that is,
\eta = N\scrE (m,\Sigma ). The map \eta \mapsto \rightarrow \eta induces a bijective correspondence between Gaussian mixture
measures GMd on Rd (in the sense of Definition 2.3) and Gaussian mixture measures GM(\scrE )
on \scrE (in the sense of Definition 3.5). Explicitly, the bijection maps \mu \in GMd, written in
minimal form as

\sum 
kwk\eta k, to

\sum 
kwk\eta k \in GM(\scrE ).

We now extend the discussion of identifiability of Gaussian mixture measures (see Proposi-
tion 2.4) to the setting of vector bundles. In analogy with the Euclidean setting, if a Gaussian
mixture measure \mu on \scrE is written as \mu =

\sum 
kwk\eta k, we say that the representation is in

minimal form if the measures \eta k are pairwise distinct.

Proposition 3.7. Let \mu \in GM(\scrE ) be a Gaussian mixture on a vector bundle \scrE with minimal
form representations

K\sum 
k=1

wk\eta k and

K\prime \sum 
k=1

w\prime 
k\eta 

\prime 
k.

Then K = K \prime , and there exists a permutation \sigma of \{ 1, . . . ,K\} such that wk = w\prime 
\sigma (k) and

\eta k = \eta \prime \sigma (k) for all k.

We also have the following immediate corollary, which will be useful later on.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1441

Corollary 3.8. Let \mu \in GM(\scrE ) with not necessarily minimal form representations
\sum K

j=1wj\eta j

and
\sum K\prime 

k=1w
\prime 
k\eta 

\prime 
k. Then for every j \in \{ 1, . . . ,K\} , there exists k \in \{ 1, . . . ,K \prime \} such that \eta \prime k = \eta j.

Remark 3.9. We emphasize that the context of the identifiability in Proposition 3.7 is
specifically for Gaussian mixtures on vector bundles, as defined in our formalism. In applica-
tions, it is natural that the mixtures in question arise from (empirical) distributions defined
over the manifold itself, which are lifted to distributions on an appropriate vector bundle
(typically the tangent bundle)---see the discussion in the introduction as well as the numerical
experiments in section 4. Our identifiability result applies to the lifted data rather than to
the manifold distributions. The question of identifiability of Gaussian mixtures defined on
the manifold is much more subtle, particularly for manifolds with finite injectivity radii. Its
amenability to a clean mathematical framework was a main motivation for our vector bun-
dle formalism, but the extent to which our identifiability result is valid for distributions over
manifolds remains an interesting direction of future research.

Gaussian mixtures on trivial bundles. From now on, we restrict our attention to the especially
simple case of trivial vector bundles; we recall the definition here. Vector bundles \scrE \rightarrow \scrM 
and \scrE \prime \rightarrow \scrM over the same base space are called isomorphic if there exists a diffeomorphism
\varphi : \scrE \rightarrow \scrE \prime such that the diagram

E E

M

ϕ

commutes (i.e., such that the two possible maps from \scrE to \scrM agree), where the diagonal
arrows are vector bundle projections, and such that the induced maps on fibers \varphi m := \varphi | \scrE m

are linear isomorphisms \scrE m \rightarrow \scrE \prime 
m for each m\in \scrM . The map \varphi is called a bundle isomorphism.

If \scrE and \scrE \prime are both endowed with smoothly varying inner products and each \varphi m is an isometry
of inner product spaces, then we say that \varphi is a bundle isometry. We now consider rank-d
vector bundles \scrE \rightarrow \scrM , which are isomorphic to the product bundle \scrM \times Rd; such bundles are
called trivial. In this case, an isomorphism \varphi : \scrE \rightarrow \scrM \times Rd is called a trivialization of \scrE . We
will use the following basic result, which says that we can assume without loss of generality
that trivializations are bundle isometries with respect to the standard structure on \scrM \times Rd.
Some examples of trivializations are later provided in section 3.3.

Proposition 3.10. If \scrE \rightarrow \scrM is a rank-d trivial bundle endowed with a smoothly varying
inner product \{ \langle \cdot , \cdot \rangle m\} m\in \scrM , we can choose a trivialization which is a bundle isometry with
respect to the standard inner product on Rd \approx \{ m\} \times Rd.

We justify our interest in the class of trivial vector bundles by the following remarks,
elaborating on the discussion in the introduction.

Remark 3.11.
1. From an applications-oriented perspective, we are especially interested in parallelizable

Riemannian manifolds, that is, the case where \scrM is a Riemannian manifold and the
trivial vector bundle \scrE is the tangent bundle T\scrM . For example, any orientable three-
dimensional manifold is parallelizable [3], as is any Lie group [26].
Although we frequently work with manifolds \scrM which are not parallelizable (e.g.,
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1442 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

spheres Sn with n \not \in \{ 0,1,3,7\} ---see [6]), it is typically the case in realistic data analysis

applications that manifold-valued data lie in a subset \widetilde \scrM \subset \scrM which is parallelizable,
so that we may assume parallelizability without loss of generality. In the setting of the
sphere M = Sn, any proper open subset \widetilde \scrM \subset M is parallelizable---indeed, a proper
open subset must miss a point p \in \scrM ; \widetilde \scrM = \scrM \setminus \{ p\} is parallelizable, and any open
submanifold of a parallelizable manifold is also parallelizable.
Thus, it frequently suffices to consider trivial vector bundles when focused on appli-
cations.

2. In [27], a Wasserstein distance is defined between Gaussian measures on the tangent
bundle T\scrM \rightarrow \scrM of a Riemannian manifold \scrM . This is done with respect to an
extended metric (i.e., a metric-like function which is allowed to take the value \infty ) on
T\scrM , which is a true (finite) metric only in the case that \scrM has empty cut locus.
This implies that \scrM is diffeomorphic to Euclidean space and, in particular, that T\scrM 
is a trivial vector bundle. Our setting is therefore a generalization in a formal sense,
as it includes tangent bundles where the base manifold can have nontrivial topology
(e.g., S1). In practice, the present setting and that of [27] are equivalent in the case
of Gaussian measures on tangent bundles, but we further generalize to the novel case
of Gaussian mixtures.

3. As shown in Proposition 3.6, Gaussian mixtures on Rd (in the classical sense) corre-
spond to Gaussian mixtures on the trivial vector bundle Rd\times Rd. The setting of trivial
bundles is therefore a natural generalization of the classical setting.

The next result shows that the property of a measure being a Gaussian mixture is well-
defined on bundle isometry classes.

Proposition 3.12. Let \scrE ,\scrE \prime \rightarrow \scrM be vector bundles endowed with inner products. If \varphi :
\scrE \rightarrow \scrE \prime is a bundle isometry, then a measure \mu on \scrE is a Gaussian mixture if and only if its
pushforward \varphi \#\mu is a Gaussian mixture on \scrE \prime .

Explicitly, if \mu =
\sum K

k=1wk\eta k with \eta k = N\scrE (mk,\Sigma k), then \varphi \#\mu =
\sum K

k=1wk\varphi \#\eta k, where
\varphi \#\eta k =N\scrE \prime (mk,\varphi mk

\Sigma k\varphi 
 - 1
mk

).

3.2. Distances between Gaussian mixtures on trivial bundles. We now extend Theo-
rem 2.6 to the setting of Gaussian mixtures on trivial vector bundles.

Distance between Gaussians on trivial bundles. Next, we characterize distances between
Gaussian measures on a trivial bundle with respect to a family of metrics. In the following,
suppose that we have some fixed metric d\scrM on our base manifold \scrM (e.g., geodesic distance
with respect to a Riemannian metric).

For a product bundle \scrM \times Rd \rightarrow \scrM , let d\scrM \times Rd : (\scrM \times Rd) \times (\scrM \times Rd) \rightarrow R be the
\ell 2-product metric with respect to d\scrM and Euclidean distance, that is,

d\scrM \times Rd((m0, v0), (m1, v1))
2 = d\scrM (m0,m1)

2 + \| v0  - v1\| 2.

Let W\scrM \times Rd

2 denote the associated 2-Wasserstein distance. We will use the following function,
which is clearly a smooth bijection.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1443

Definition 3.13. The coordinate permutation map is

\sigma : (\scrM \times \scrM )\times (Rd \times Rd)\rightarrow (\scrM \times Rd)\times (\scrM \times Rd)

((p0, p1), (v0, v1)) \mapsto \rightarrow ((p0, v0), (p1, v1)).

Lemma 3.14. Let \eta i =N\scrM \times Rd(mi,\Sigma i) be Gaussian measures on the product bundle \scrM \times Rd

for i\in \{ 0,1\} . Then

W\scrM \times Rd

2 (\eta 0, \eta 1)
2 = d\scrM (m0,m1)

2 + tr

\biggl( 
\Sigma 0 +\Sigma 1  - 2

\Bigl( 
\Sigma 

1

2

0\Sigma 1\Sigma 
1

2

0

\Bigr) 1

2

\biggr) 
.

Moreover, there is an optimal coupling of the form \sigma \#\pi for some \pi \in G((\scrM \times \scrM )\times (Rd\times Rd)),
where \sigma is the coordinate permutation map.

This result extends to the setting of a general trivial bundle (not just a product bundle)
\scrE \rightarrow \scrM . Let \varphi : \scrE \rightarrow \scrM \times Rd be a trivialization, and define a metric d\varphi on \scrE as the pullback
of the product metric, that is,

d\varphi (q0, q1) := \varphi \ast d\scrM \times Rd(q0, q1) = d\scrM \times Rd(\varphi (q0),\varphi (q1)).

Let W\varphi 
2 denote the Wasserstein distance associated to this metric.

Proposition 3.15. Let \scrE \rightarrow \scrM be a trivial bundle with \varphi and W\varphi 
2 as above, and let \eta i =

N\scrE (mi,\Sigma i) for i\in \{ 0,1\} . Then

W\varphi 
2 (\eta 0, \eta 1)

2 = d\scrM (m0,m1)
2 + tr

\biggl( 
\Sigma 0 +\Sigma 1  - 2

\Bigl( 
\Sigma 

1

2

0\Phi 
 - 1
m0,m1

\Sigma 1\Phi m0,m1
\Sigma 

1

2

0

\Bigr) 1

2

\biggr) 
,

where

\Phi m0,m1
:=\varphi  - 1

m1
\circ \varphi m0

: \scrE m0
\rightarrow \scrE m1

.

Distance between Gaussian mixtures on trivial bundles. Finally, we extend the results above
to the setting of Gaussian mixture measures on trivial bundles.

We begin with the product bundle \scrM \times Rd, with metric d\scrM \times Rd and associated Wasserstein

metric W\scrM \times Rd

2 defined as above. Let \mu i =
\sum Ki

k=1w
k
i \eta 

k
i , i\in \{ 0,1\} be elements of GM(\scrM \times Rd).

As in the classical setting of Gaussian mixtures on Rd, we can consider alternative metrics on

the space of Gaussian mixtures. First, let W
G(\scrM \times Rd)
2 (\mu \ast 0, \mu 

\ast 
1) denote the Wasserstein distances

between the measures when they are considered as discrete distributions on the space of
Gaussians G(\scrM \times Rd); as in the Euclidean setting, we write

\mu \ast i =

Ki\sum 
k=1

wk
i \delta \eta k

i
\in \scrP 2(G(\scrM \times Rd)).

Second, consider the mixture Wasserstein distance

MW\scrM \times Rd

2 (\mu 0, \mu 1)
2

:= inf
\pi \in \Pi (\mu 0,\mu 1)\cap GM\sigma (\scrM \times Rd)

\int 
(\scrM \times Rd)\times (\scrM \times Rd)

d\scrM \times Rd((p0, v0), (p1, v1))
2d\pi ((p0, v0), (p1, v1)),
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1444 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

where

GM\sigma (\scrM \times Rd) := \{ \pi = \sigma \#\pi | \pi \in GM((\scrM \times \scrM )\times (Rd \times Rd))\} \subset \scrP 2((\scrM \times Rd)\times (\scrM \times Rd)),

with \sigma denoting the coordinate permutation map from Definition 3.13.
We have the following generalization of Theorem 2.6 (Theorem 2.6 is recovered by setting

\scrM =Rd and d\scrM to be Euclidean distance), whose proof follows similar ideas as the proof in
[12].

Lemma 3.16. Let \mu 0, \mu 1 \in GM(\scrM \times Rd), with \mu i =
\sum Ki

k=1w
k
i \eta 

k
i and \eta ki =N\scrM \times Rd(mk

i ,\Sigma 
k
i ).

Then

MW\scrM \times Rd

2 (\mu 0, \mu 1) =W
G(\scrM \times Rd)
2 (\mu \ast 0, \mu 

\ast 
1).

Now consider an arbitrary trivial vector bundle \scrE \rightarrow \scrM . For a trivialization \varphi : \scrE \rightarrow \scrM \times 
Rd, define the associated mixture Wasserstein distance between Gaussian mixtures \mu 0, \mu 1 \in 
GM(\scrE ) as

MW\varphi 
2 (\mu 0, \mu 1)

2 := inf
\pi \in \Pi (\mu 0,\mu 1)\cap GM\varphi 

\sigma (\scrE )

\int 
\scrE \times \scrE 

d\scrE (w0,w1)
2d\pi (w0,w1),(3.1)

where

GM\varphi 
\sigma (\scrE ) := \{ (\varphi  - 1 \circ \sigma )\#\pi | \pi \in GM((\scrM \times \scrM )\times (Rd \times Rd))\} .

Theorem 3.17. With the notation above, MW\varphi 
2 (\mu 0, \mu 1) = W

G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1), where G(\scrE ) is

considered as a metric space with (the restriction of) the Wasserstein distance W\varphi 
2 .

We immediately obtain the following corollary from Theorems 2.6 and 3.17 together with
Proposition 3.6.

Corollary 3.18. The mixture Wasserstein distanceMW\varphi 
2 defines a metric on GM(\scrE ). When

\scrE = Rd \times Rd and the trivialization \varphi is the identity map, MW\varphi 
2 agrees with the mixture

Wasserstein distance MWRd

2 of [12].

Next, we bound the mixture Wasserstein distance in terms of the (unconstrained) Wasser-
stein distance. This is an extension of [12, Proposition 6], but we give a different proof which
yields a tighter upper bound.

Proposition 3.19. Let \scrE \rightarrow \scrM be a trivial vector bundle with trivialization \varphi , and let
\mu 0, \mu 1 \in GM(\scrE ) with \mu i =

\sum Ki

k=1w
k
i \eta 

k
i , \eta 

k
i =N\scrE (m

k
i ,\Sigma 

k
i ), presented in minimal form. Then

W\varphi 
2 (\mu 0, \mu 1)\leq MW\varphi 

2 (\mu 0, \mu 1)\leq W\varphi 
2 (\mu 0, \mu 1) +

\sum 
i=0,1

\Biggl( 
Ki\sum 
k=1

wk
i tr(\Sigma 

k
i )

\Biggr) 1/2

.

Summary of the mixture Wasserstein distance. For the convenience of the reader, we summa-
rize the notation and constructions of the previous subsections here. The mixture Wasserstein

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1445

distance for a trivial vector bundle \scrE \rightarrow \scrM with trivialization \varphi : \scrE \rightarrow \scrM \times Rd,MW\varphi 
2 , between

Gaussian mixtures

\mu i =

Ki\sum 
k=1

wk
i \eta 

k
i \in GM(\scrE ), \eta ki =N\scrE (m

k
i ,\Sigma 

k
i ), i\in \{ 0,1\} ,

can be expressed as

MW\varphi 
2 (\mu 0, \mu 1)

2 = min
\omega \in \Pi (\mu 0,\mu 1)

\sum 
k,\ell 

\omega k\ell W
\varphi 
2 (\eta 

k
0 , \eta 

\ell 
1)

2,(3.2)

where

W\varphi 
2 (N\scrE (m0,\Sigma 0),N\scrE (m1,\Sigma 1))

2

=
\sum 
k,\ell 

d\scrM (m0,m1)
2 + tr

\biggl( 
\Sigma 0 +\Sigma 1  - 2

\Bigl( 
\Sigma 

1

2

0\Phi 
 - 1
m0,m1

\Sigma 1\Phi m0,m1
\Sigma 

1

2

0

\Bigr) 1

2

\biggr) 
and

\Phi m0,m1
=\varphi  - 1

m1
\circ \varphi m0

: \scrE m0
\rightarrow \scrE m1

.

3.3. Choosing trivializations. In this subsection, we address the question of how to choose
an appropriate trivialization to fit into the pipeline described in the preceding subsection. We
focus on the case that the vector bundle is of the form T\scrM \rightarrow \scrM , where \scrM is a parallelizable
Riemannian manifold. We will make the simplifying assumption that the manifold is endowed
with a distinguished point p \in \scrM and a distinguished isometry Pm : Tp\scrM \rightarrow Tm\scrM for every
point m \in \scrM such that Pp is the identity map and such that the isometries vary smoothly
in m.

Example 3.20. We now provide some examples of where the data described above might
arise:

1. In the numerical experiments in the following section, the underlying manifold \scrM 
is a punctured sphere---that is, a sphere Sn with a point removed. In this case, the
distinguished point p is taken to be antipodal to the removed point. For every m\in \scrM ,
there is a unique geodesic joining p to m, and the isometry Pm : Tp\scrM \rightarrow Tm\scrM is given
by parallel transporting along the geodesic. In practice, one begins with a Gaussian
mixture on the sphere Sn and chooses a distinguished point p \in Sn, say, by always
taking the north pole or by choosing a Fr\'echet mean of the basepoints of the Gaussians.
Generically, the antipodal point  - p will not be a basepoint of any Gaussian in the
mixture, so that we can restrict our analysis to the setting of the punctured sphere
\scrM = Sn \setminus \{  - p\} .

2. More generally, if there is some point p\in \scrM such that there is a unique geodesic to any
other point m \in \scrM , then the parallel transport approach described above defines the
desired collection of isometries. This is the setting used in [27] for comparing wrapped
Gaussians.

3. If\scrM is a Lie group with a left- (or right)-invariant Riemannian metric, then the natural
choice of basepoint is the identity e\in \scrM , and the isometry Pm is the derivative of the
left (or right) multiplication map.
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1446 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

Given p \in \scrM and \{ Pm\} m\in \scrM as above, we define a bundle isometry T\scrM \rightarrow \scrM \times Rd as
follows. Choosing any orthonormal basis F = (f1, . . . , fd) for Tp\scrM , one can extend this to a
global frame for \scrM p by defining F (m) = \{ fj(m) = Pm(fj), j = 1, . . . , d\} . Let \varphi p,F : T\scrM \rightarrow 
\scrM \times Rd be defined by

\varphi p,F (v) =
\Bigl( 
m, (\langle v, fj(m)\rangle m)dj=1

\Bigr) 
for v \in Tm\scrM .

We now observe that, while this construction depends on choices of p, \{ Pm\} m\in \scrM and

F , the induced distance MW\varphi p,F

2 is actually invariant under the choice of F . Since p and
\{ Pm\} m\in \scrM arise naturally in several examples of interest (Example 3.20), the following result
shows that the mixture Wasserstein distance is a natural tool in practice.

Proposition 3.21. With the notation defined above, the mixture Wasserstein distance

MW\varphi p,F

2 does not depend on the choice of orthonormal basis F . That is, for any orthonormal

bases F = (f1, . . . , fd) and G= (g1, . . . , gd) for Tp\scrM , we have MW\varphi p,F

2 (\mu 0, \mu 1) =MW\varphi p,G

2 (\mu 0,
\mu 1) for any Gaussian mixtures \mu 0, \mu 1.

Remark 3.22. The result and its proof show that, in the situation described in this subsec-

tion, the part of W
G(\scrE )
2 that involves comparing Gaussians on \scrE can be computed by moving

each Gaussian to the basepoint; that is, \eta =N\scrE (m,\Sigma ) can be replaced with (P - 1
m )\#\eta . Inde-

pendence of choice of frame in constructing the trivialization then just amounts to the fact
that the Wasserstein distance on a Euclidean space is invariant under isometries.

4. Experimental studies. In this section, we demonstrate applications of the proposed
Wasserstein-type distances on some nonlinear domains. We first introduce a general setup
and present procedures for estimating Gaussian mixture parameters from sample data. Then
we move to examples involving simulated data on a unit sphere and the Kendall shape space
of planar triangles. Finally, we present an application on real data in the preshape space of
planar closed shapes. We note that the Python package Geomstats (see [32]) was used for
geometric computations in these experiments.

4.1. Basic experimental setup. Let \scrM be a d-dimensional parallelizable Riemannian
manifold. One can use the following procedure to define a global frame on \scrM : (1) choose a
reference point p\in \scrM , (2) randomly generate d linearly independent tangent vectors in Tp\scrM ,
and (3) calculate a principal component analysis of those vectors, and take the principal
directions as an orthonormal basis F . Given a reference point p and a reference frame F , we
calculate an element of the global frame F (m) by parallel transporting the tangent vectors in
F to Tm(\scrM ) along the unique geodesic from p to m in \scrM .

The next issue is the estimation of Gaussian mixture parameters from given samples on
\scrM . As mentioned earlier, there exist computational solutions for estimating mean, covari-
ance, and weight parameters (see, for example, [21]) for mixture components, but they can
become costly, especially on nonlinear domains. Computing a Gaussian mean on manifolds is
already an iterative procedure, and when combined with an outer loop over mixture compo-
nents, it becomes prohibitive. Instead of EM-type solutions, we make use of clustering-based
approaches, such as Riemannian K-means (see [32]) and K-modes kernel mixtures cluster-
ing (see [14]). Note that the Riemannian K-means can be computationally expensive, and
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1447

we restrict its use to low-dimensional examples. For estimation on high-dimensional shape
manifolds, we utilize the K-mode clustering method.

Riemannian K-means is an extension of the well-known K-means algorithm to nonlinear
manifolds. Given a data set X = \{ xi \in \scrM , i = 1, . . . , n\} , the K-means algorithm returns a
cluster index \scrI = \{ \ell i \in (1, . . . ,K), i = 1, . . . , n\} representing the cluster assignments for each
xi. In order to obtain estimates for Gaussian mixture parameters, we treat the clusters found
by K-means as samples from Gaussian mixture components. Let \^mk denote the Fr\'echet mean
[18] for the sample points in cluster k, and let nk denote the number of sample points in
cluster k. We estimate the weight for component k as \^wk = nk/n and calculate the tangent
space covariance in the coordinates of the global frame F (m) = \{ fj(m), j = 1, . . . ,d\} as \^\Sigma k =

1
nk - 1V

tV , where Vj,i = \langle exp - 1
\^mk(xi), fj( \^m

k)\rangle , where exp - 1 is the inverse exponential map on

\scrM . Our estimate of the Gaussian mixture is then \^\mu =\Sigma K
k=1 \^w

k\^\eta k, where \^\eta k =N\scrE ( \^m
k, \^\Sigma k).

In the second approach for estimating model parameters, we use a K-modal kernel-mixture
clustering algorithm presented in [14, 13]. This metric-based nonparametric procedure takes in
the matrix of pairwise distances between all data points and uses it to cluster individual points
around estimated modes. Modes are significant local maxima of the underlying probability
distribution and are computed as the points with the most neighbors. An important strength
of this approach is that neighborhoods are determined automatically from the data, avoiding
the need for any manual selection of hyperparameters. The output of this procedure are (1)
cluster labels for most of the input points, (2) points that are modes of each cluster, and (3)
outliers that do not belong to any cluster. We treat each cluster as a mixture component,
with its mode as the estimated mean \^mk. Furthermore, we compute a covariance matrix \^\Sigma k

in the tangent space of this estimated mean with respect to the global frame. These steps are
the same as in the previous item and result in a Gaussian mixture \^\mu .

Given estimates of Gaussian mixtures \^\mu i =
\sum Ki

k=1 \^wk
i \^\eta 

k
i , i= 0,1, parameterized with respect

to a global frame (p,F ), we calculate the Wasserstein-type distance between them by using
linear programming to solve

MW
\varphi p,F

2 (\^\mu 0, \^\mu 1)
2 = min

w\in \Pi ( \^w0, \^w1)

K0,K1\sum 
k,\ell 

wk\ell W
\varphi 
2 (\^\eta 

k
0 , \^\eta 

\ell 
1)

2.(4.1)

In the following, we take specific examples of \scrM and demonstrate some applications of MW2.

4.2. Simulated data on punctured 2-sphere. As the first example, we consider the do-
main S2 and simulate several Gaussian mixtures on S2 to demonstrate the MW metric. In
this experiment, we select either p = [0,0,1]T or  - p = [0,0, - 1]T as a reference point, and
we set F = [[ - 1,0,0]T , [0, - 1,0]T ] \in R3\times 2 as a reference frame---we then assume that Gauss-
ian mixtures have no component in the tangent space of  - p (resp., in the tangent space of
p). Figure 1 (left) shows the reference frame transported to several points on the S2. The
right side shows a similar plot when the reference point is [0,0, - 1] instead, illustrating the
dependence of the global frame on the basepoint.

To generate sample data X from a Gaussian with mean m \in S2 and an associated co-
variance \Sigma , we use the following steps. Recall that the global frame at m is given by
F (m). We generate a set V = \{ vi \sim N(0,\Sigma ),\Sigma \in Sym+

d , i = 1, . . . ,N\} . Then we compute
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1448 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

Global Frame at Sample Points

Figure 1. Examples of two reference frames transported to a select number of points on the punctured
sphere, providing a consistent coordinate system over the entire manifold. Left: global frames transported from
reference pointx [0,0,1]. Right: global frames transported from reference point [0,0, - 1].

Identifying Gaussian Mixture Parameters with Respect to Global frame

Figure 2. Steps for estimating Gaussian mixture parameters with respect to a global frame on a punctured
S2. Left: sphere with sample data. Middle: sample data colored by K-means cluster assignment. Right: global
frame transported to Fr\'echet means of clusters.

Xi = expm((\langle vi, fj(m)\rangle m)dj=1) to obtain samples from this Gaussian. Further, to generate
samples from a Gaussian mixture, we just generate samples from individual Gaussians with
frequencies proportional to their weights. Given a set of points \{ Xi \in S2\} , represented in
terms of their extrinsic coordinates \{ Xi \in R3\} , one can fit a Gaussian mixture model to those
points using the Riemannian K-means approach described above. Figure 2 illustrates this
process for a chosen global frame. The left panel shows samples from a Gaussian mixture
with two components, the middle panel shows a data clustering using colors, and the right

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1449

Example 1 Example 2

Figure 3. Examples of Wasserstein-type distances between Gaussian mixtures on the tangent bundle of a
punctured S2 computed using two different global frames. Color denotes a Gaussian mixture; plot titles show
calculated distances. Example 1: samples from two Gaussian mixtures with different means, covariances, and
weights. Example 2: samples from two Gaussian mixtures with the same means and covariances but different
weights.

panel shows a global frame at p transported to the Fr\'echet means of the clusters. We use
these global frames to express the tangent-space covariance of the data in each cluster, as
discussed in section 4.1. The relative weights of the components \{ wk\} are estimated using the
relative frequencies. Letting \^\eta k = N\scrE ( \^m

k, \^\Sigma k), the resulting Gaussian mixture is denoted by
\^\mu =\Sigma K

k=1 \^w
k\^\eta k.

Given two such estimated Gaussian mixtures \^\mu i, i = 0,1, parameterized with respect to
a global frame (p,F ), we calculate the Wasserstein-type distance between them using linear
programming to solve (4.1). Figure 3 shows several examples of evaluations of the Wasserstein
distance between Gaussian mixtures estimated from the same sets of data but with different
global frames. In particular, the two examples use the reference points [0, 0,1]T and [0,0, - 1]T ,
respectively. The titles of the plots contain the Wasserstein-type distance calculated with
respect to the global frame, and color represents a Gaussian mixture. Example 1 shows a
case where the Gaussian mixtures differ significantly in terms of means, covariances, and
weights. Consequently, the Wasserstein-type distance between them is large: 0.6098. If we
use a different reference point p, the distance can potentially change, as illustrated by the
second panel, where we obtain a value of 0.6071. In example 2, the two Gaussian mixtures
are relatively similar: They have the same means and covariances and differ only in weights.
In this case, changing the reference point results in a small change in distance.

4.3. Comparing shape populations of triangles. In this paper, we are interested in shape
spaces of objects as the domains for imposing and comparing probability distributions. In
other words, we want to compare shape populations, modeled as Gaussian mixtures, using
Wasserstein-type distances. Recall that shape is a geometric property that is invariant to
rotation, translation, and scaling. Before we consider shapes of planar contours, we ana-
lyze a simpler case analyzing shapes of planar triangles. The shape space of planar triangles
is denoted by the quotient space S3/SO(2), which can be further identified with S2 [24].
Hence, our analysis of triangle shapes is performed on a (punctured) S2. The steps of the
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1450 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

computation---establishing a global frame, estimating Gaussian mixture parameters, and cal-
culating Wasserstein-type distances between Gaussian mixtures---are similar to the previous
subsection.

Now we provide details for the S2 representation of planar triangles. Let \{ xi \in R2, i =
1,2,3\} be the set of all planar triangles. We identify xi with elements zi \in C such that
zi = (xi,1 + jxi,2), j =

\surd 
 - 1. After we remove rigid translations and global scaling, we

obtain the set \scrP T = \{ z \in C3| 13
\sum 3

i=1 zi = 0,\| z\| = 1\} . \scrP T is referred to as the preshape
space because we have not yet removed rigid rotations. The shape space of two-dimensional
triangles is thus \scrS T = \{ [z] = \{ ej\varphi z| \varphi \in S1, z \in \scrP T \} \} . An element [z] \in \scrS T corresponds to a
unique triangular shape, with the parameter \varphi denoting its rotation with respect to a chosen
coordinate system. Any [z]\in \scrS T can be isometrically mapped to a point on S2 using the Hopf
fibration presented in Appendix B.2. We use this mapping to estimate mixture parameters
and compute Wasserstein-type distances between Gaussian mixtures in \scrS T .

Similar to the previous section, we arbitrarily select a reference point p \in \scrS T , use the
Hopf fibration to map it to \~p \in S2, and generate an arbitrary basis F for the tangent space
T\~pS2. One such global frame is shown in the left panel of Figure 4, along with the triangular
representations of the reference point and the tangent vectors in the reference frame, shown in
the middle and left panels of Figure 4, respectively. Next, we generate random samples from
Gaussian mixtures on S2 using the procedure outlined before. Given sample data and a global
frame for S2, we use the Riemannian K-means algorithm described in section 4.1 to estimate
Gaussian mixture parameters from the sample data. Plots of the sample data, colored by
cluster assignment, are presented in the first and third plots of Figure 5. The accompanying
panels show these colored points as planar triangles to visualize clustered shapes. Given
parameter estimates, we can calculate the Wasserstein-type distance using (4.1).

Figure 6 presents some examples of comparing populations of planar triangles using our
Wasserstein metric. The plot titles on the top state the Wasserstein-type distance calculated
with respect to the chosen global frames, and the point colors (red versus blue) label the
Gaussian mixtures. The two right panels display the triangle shapes of these points in these

Figure 4. A reference point and a reference frame for Kendall shape space of two-dimensional triangles.
Left: representation of a global frame under the Hopf map on S2. Middle: triangular representation of the
reference point. Right: triangular representations of tangent vectors in the reference frame.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1451

Figure 5. Samples from two Gaussian mixtures defined on the tangent bundle of \scrS T , colored by cluster
assignment. The triangles in panel 2 (resp., 4) correspond to the points on the sphere in panel 1 (resp., 3).

Figure 6. Comparison of Wasserstein-type distances between Gaussian mixtures on \scrS T , estimated with the
same procedure from the same data, using two different global frames. Top left: Gaussian mixtures with dif-
ferent means, covariances, and weights. Bottom left: Gaussian mixtures with the same means and covariances
but different weights. Top right: triangular representations of sample points from Gaussian mixtures for the
experiment in the top row (left corresponds to blue, right corresponds to red); Bottom right: triangular repre-
sentations of sample points from Gaussian mixtures for the experiment in the bottom row (left corresponds to
blue, right corresponds to red).

Gaussian mixtures. The top rows present an example where the Gaussian mixtures differ
significantly in terms of means, covariances, and weights, while the example in the bottom
row has two Gaussian mixtures that are relatively similar: They have the same means and
covariances and differ only in weights. In the first case, the Wasserstein-type distances are
relatively large and relatively stable with respect to choice of global frame. The distances are
naturally smaller in the second example.
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1452 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

4.4. Comparing shape populations of nanoparticles. In this section, we focus on cap-
turing, quantifying, and comparing shapes of silver nanoparticles observed in industrial man-
ufacturing. Silver nanoparticles are produced through a solution phase process, leveraging
the radiochemistry of electron beam--induced nanoparticle growth (additional information is
available in the paper [43]). Over the course of the synthesis, the shapes of these nanoparticles
evolve due to chemical reactions, such as atomic addition to particles and particle merging.
This solution phase process is captured using in situ transmission electron microscopy over
a span of 62 seconds, with images taken at a rate of one image per second. Each image,
on average, displays around 100 silver nanoparticles. The outlines of these nanoparticles are
extracted using segmentation methodology presented in [41]. Each image in the video is pre-
processed (including a step which involves removing particles below a certain size threshold)
and segmented, returning a set of planar closed curves denoting the outlines of the individual
nanoparticles in that frame. The left panel of Figure 7 shows some examples of extracted
contours in imaged frames from the data set.

In nanomanufacturing, the shapes of nanoparticles are indicators of the material prop-
erties. One hypothesis is that constituent nanoparticle shapes can control the resulting ma-
terial's physical properties. Thus, a vital tool is to model and quantify the particle shape
populations associated with individual images and compare them across images. In any im-
age, we treat extracted closed curves as samples from a probability distribution on a shape
space, with each curve's location, orientation, and scale treated as nuisance variables. A brief
introduction to the shape space \scrS c = S(2T - 1)/SO(2) is presented in Appendix B.1. Here, each
contour is represented by an array q\in R2\times T made up of equispaced points on the square-root
velocity function curve of the contour. The appendix also defines a shape metric ds and the
computation of sample statistics (mean and covariance) of a set of shapes under ds. A set
of shapes rotationally aligned to their mean can be treated as points on the preshape space,
the unit sphere S(2T - 1). On this unit sphere, we take the reference point p= [1,0, . . . ,0]\dagger and
select F = [[0,1,0, . . . ,0]\dagger , . . . , [0,0, . . . ,0,1]\dagger ] (where \dagger denotes the transpose) in order to define
the global frame (p,F ). We estimate and compare shape distributions with respect to this
global frame.

Figure 7. K-modes clustering. Left: particles in image at t= 38 before clustering. Middle: pairwise shape
distance matrix for all particles that image, sorted by clusters. Right: particles in image at t = 38 colored
according to their cluster assignment.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1453

Estimating Gaussian mixture parameters. Our approach is to model the distribution of
shapes in a given video image as a mixture of Gaussians on the preshape space S(2T - 1). There
are several steps that make up this approach.

Given a set of particle contours extracted from a video image, the first step is to cluster
them according to their shapes. Figure 7 shows the process of applying the mode-based
clustering process discussed in section 4.1. The left panel shows the video image corresponding
to time 38 in the data set, prior to clustering. The middle panel shows the within-frame
pairwise shape distance matrix, sorted by clusters. Green denotes smaller distances, and
yellow denotes larger distances. One can see that more than half of the particles fall into the
largest cluster. The algorithm automatically selects three clusters and labels the remaining
particles as outliers. The right panel shows these particles colored according to their assigned
clusters, in blue, orange, and green. The outliers are drawn in black.

Given a clustering of the shapes in video image t, we compute the shape mean mk
t and

tangent space covariance \Sigma k
t of shapes in cluster k, as described in Appendix B.1, and estimate

the Gaussian component corresponding to cluster k as \mu kt = N\scrE (m
k
t ,\Sigma 

k
t ). Letting nkt be the

number of shapes in cluster k and setting nt =
\sum 

k n
k
t , we estimate component weights as

wk
t = nk

t

nt
. Thus, for each video image, indexed by time t, we obtain a Gaussian mixture

\mu t =\Sigma Kt

k=1w
k
tN\scrE (m

k
t ,\Sigma 

k
t ).

We then calculate the pairwise Wasserstein-type distances between distributions associated
with all images in the video using (4.1). The resulting 62 \times 62 distance matrix is presented
in the leftmost panel of Figure 8. The computational cost associated with this experiment is
O(Rn2) +O(R2K3), where R= 62 is the number of images, n is the approximate number of
shapes per image, and K = 3 is the number of clusters. The first term corresponds to the cost
all pairwise distances between all shapes within images and the second to the cost of finding
optimal couplings across images.

Change-point detection in time series of shape populations. Inspection of the Wasserstein-
type distance matrix suggests that the shape distributions in the latter part of the process

Figure 8. Left: pairwise Wasserstein-type distance matrix between time-indexed populations, \mu t. Middle:
two-dimensional multidimensional scaling (MDS) plot based on the Wasserstein-type distance matrix, colored
by the relationship of t to the estimated change point. Right: sums of rows of the distance matrix plotted versus
t, with the change point marked by a black line.
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1454 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

appear to be closer to each other than to those in the earlier part. In order to test this
statistically, we use the E-divisive procedure for change point detection [29]. This method
is particularly well suited to our situation, as it only depends on distances between popula-
tions, requires minimal assumptions, and provides a straightforward method for testing the
hypothesis of no additional change points.

The E-divisive algorithm is an iterative procedure where candidate change points are
selected as the time point which maximizes the two-sample energy statistic [38] produced by
splitting the data at that time point, and the statistical significance of the candidate change
point is inferred on the basis of a permutation test based on the same two-sample energy
statistic. The algorithm has several hyperparameters: (1) \rho , the number of permutations; (2)
p0, the p-value for each permutation test; (3) \alpha \in (0,2), the power of distance in the test
statistics; and (4) min size, the minimum segment length to be considered for bisection. We
applied the E-divisive algorithm to our Wasserstein-type distance matrix, with parameters
p0 = 0.0125, \rho = 499, min size = 12, and \alpha = 1. The algorithm found one statistically
significant change point at time point t = 19, with a p-value of 0.002. The next candidate
change point occurs at time point t = 37 but is rejected with a p-value of 0.034, thereby
terminating the algorithm. These findings lead us to reject the hypothesis of no change points
and provide support for the original observation that the distributions of shapes in the latter
part of the manufacturing process differ from those in the earlier part.

Modeling shape dynamics. In addition to testing if a change point exists, it may also be
desirable to describe how the distributions change over time. The optimal transport plans
between shape distributions associated with successive video images provide a natural way
to quantify the transitions, and the preshape representation of the means combined with
the mixture assumption can make the transport plans simple to interpret. Recall that, for
Gaussian mixtures \mu t =\Sigma Kt

k=1w
k
tN\scrE (m

k
t ,\Sigma 

k
t ) and \mu t+1 =\Sigma 

Kt+1

\ell =1 w
\ell 
t+1N\scrE (m

\ell 
t+1,\Sigma 

\ell 
t+1) associated

with images at times t and t+ 1, the optimal transport plan is given by

\pi = arg min
w\in \Pi (w0,w1)

Kt,Kt+1\sum 
k,\ell 

wk\ell W
\varphi 
2 (\mu 

k
t , \mu 

\ell 
t+1)

2.

For example, in the left panel of Figure 9, we see the optimal transport plan \pi between
shape distributions of associated with video images at times t= 3 and t= 4. The mean shapes
for the source distribution (frame 3) are drawn on the left column and mean shapes for the
target distribution (frame 4) along the top. The weights for the Gaussian mixture components
are written above their corresponding mean shape. The optimal transport plan is presented
in the rows/columns of the plot. This matrix shows how much mass is transported from each
component in the source distribution to each component in the target distribution.

These transition matrices can be used to analyze the dynamics of nanoparticle shapes
during the manufacturing process. For example, the mass in the cluster with the most circular
mean in image t = 3 (with weight 0.608) ends up being split between two clusters in the
transition to image at t= 4. On the other hand, the mass in the cluster with the most circular
mean at t= 37 (with weight 0.673) is all transported to a single cluster at t= 38, which also
gains most of the mass from another component as well. This dynamic seems to hold for
the process in general; transport plans between consecutive frames show a tendency toward
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1455

Figure 9. Visual representation of interframe population transport plans. The means of Gaussian mixture
components are displayed in the margins. Numbers above mean shapes correspond to the estimated weight for
that component; the array of numbers in the center of plot are the transport plans; they represent the amount
of mass transported between the corresponding marginal components.

distributions with more mass being centered around more circular shapes, especially in the
later part of the process.

5. Conclusion and discussion. This paper develops a framework for representing and
comparing populations (probability distributions) on certain nonlinear domains. The do-
mains of interest are trivial vector bundles, with a focus on (finite-dimensional) parallelizable
Riemannian manifolds. The populations are represented by mixtures of Gaussians on tangent
bundles of these manifolds, and the populations are compared using a convenient expression
for a Wasserstein-type distance. This distance is called Wasserstein type because the search
for optimal couplings is restricted to joint mixtures of Gaussians. The paper demonstrates
this framework for several examples involving simulated and real data. It uses simulated pop-
ulations on a unit sphere S2 to explain how one can compare distributions. The process also
involves steps for modeling populations using mixtures of Gaussians and estimating mixture
parameters using clustering methods.

An important application of this framework is in comparing populations of shapes using
image data. This paper uses videos of nanoparticles during a manufacturing process to pur-
sue this application. One associates particles in an imaged frame as samples from a shape
population and compares different image frames using the Wasserstein-type metric between
associated shape populations. It further develops a procedure for detecting a change point in
the temporal evolution of a shape population during manufacturing.

In the future, we would like to adapt this framework for solving shape regression problems.
In these problems, the shape populations of objects serve as response variables with some
Euclidean input variable influencing the outcomes. The goal is to develop statistical models
capturing the relationships between input variables and output shape populations.
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Appendix A. Proofs of theoretical results.

A.1. Proof of Proposition 3.2.

Proof. First, assume that \mu is Gaussian, let h : V \rightarrow Rd be an arbitrary linear isometry, and
set \nu = h\#\mu . Then for any linear functional f :Rd \rightarrow R, we have f\#\nu = f\#(h\#\mu ) = (f \circ h)\#\mu ,
and f \circ h : V \rightarrow R is a linear functional. It follows that f\#\nu is Gaussian on R, so that \nu must
be Gaussian on Rd. Setting g= h - 1, we have that \mu = g\#\nu .
Conversely, suppose that \mu = g\#\nu for a Gaussian \nu on Rd. Then for any linear functional
f : V \rightarrow R, we have that f\#\mu = f\#g\#\nu = (f \circ g)\#\nu is a Gaussian on R. It follows that \mu is
Gaussian on V .

A.2. Proof of Proposition 3.3.

Proof. We will show that the quantities \~m := g(m) and \widetilde \Sigma := g - 1\Sigma g are intrinsic to the
measure \mu := g\#\nu = g\prime \#\nu 

\prime , from which the claims will follow. We have\int 
V
v d\mu (v) =

\int 
V
v d(g\#\nu )(v) =

\int 
Rd

g(w) d\nu (w) = g

\biggl( \int 
Rd

w d\nu (w)

\biggr) 
= g(m),

where the second equality is the change-of-variables formula and third follows by the assump-
tion that g is an isometry. Next, we have\int 

V
\langle u,x - \~m\rangle V \langle v,x - \~m\rangle V d\mu (x) =

\int 
Rd

\langle g(s), g(y) - g(m)\rangle V \langle g(t), g(y) - g(m)\rangle V d\nu (y)(A.1)

=

\int 
Rd

\langle s, y - m\rangle \langle t, y  - m\rangle d\nu (y)(A.2)

= \langle \Sigma s, t\rangle (A.3)

= \langle g - 1\widetilde \Sigma gg - 1u, g - 1v\rangle = \langle \widetilde \Sigma u, v\rangle V .
(A.1) is the change-of-variables formula with s := g - 1(u) and t := g - 1(v), (A.2) uses the fact
that g is a linear isometry, (A.3) is [5, Corollary 1.2.3], and the remaining equalities follow
by definition and the fact that g - 1 is an isometry. These identities give the desired intrinsic
characterizations.

A.3. Proof of Proposition 3.7.

Proof. Because \mu is a Gaussian mixture measure, its support is of the form \cup J
j \scrE mj

for
some pairwise distinct points mj \in \scrM . Fix m=mj , and consider the restriction of \mu | \scrE m

of \mu 
to \scrE m. There are some subcollections \{ \eta ki

\} Ii=1 and \{ \eta \prime ki
\} I\prime 

i=1 of measures which are Gaussians

on \scrE m. Let us assume without loss of generality that (\scrE m, \langle \cdot , \cdot \rangle m) = (Rd, \langle \cdot , \cdot \rangle ) (the latter
endowed with the standard inner product)---the two inner product spaces are isometric, so
this assumption can be made without loss of generality, allowing us to suppress the isometry
from the notation. Then the measures

I\sum 
i=1

\biggl( 
wki

\mu (\scrE m)

\biggr) 
\eta ki

and

I\prime \sum 
i=1

\biggl( 
w\prime 
ki

\mu (\scrE m)

\biggr) 
\eta \prime ki

are representations of the Gaussian mixture measure 1
\mu (\scrE m)\mu | \scrE m

on Rd which are in minimal

form. It follows from Proposition 2.4 that I = I \prime and that the wki
and \eta ki

agree with the w\prime 
ki
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1457

and \eta \prime ki
up to a permutation of \{ 1, . . . , I\} . Running the same argument on each mj completes

the proof.

A.4. Proof of Proposition 3.10.

Proof. First, observe that any smooth inner product on \scrM \times Rd is bundle isometric to
the standard one. Indeed, this is achieved by choosing a smoothly- varying orthonormal basis
(with respect to the arbitrary inner product) for each fiber \{ m\} \times Rd and then defining the
bundle isomorphism by sending this to the standard orthonormal basis. Now, for an arbitrary
trivialization \varphi : \scrE \rightarrow \scrM \times Rd, define an inner product on \scrM \times Rd by pulling back each \langle \cdot , \cdot \rangle m
via \varphi  - 1. Choose a bundle isometry \psi : \scrM \times Rd \rightarrow \scrM \times Rd sending this pullback family of
inner products to the standard one. Then \psi \circ \varphi : \scrE \rightarrow \scrM \times Rd is a bundle isometry.

A.5. Proof of Proposition 3.12.

Proof. We have

\varphi \#\mu =
\sum 
k

wk\varphi \#\eta k

by the linearity of pushforwards. Moreover, each \varphi \#\eta k is a Gaussian on \scrE \prime with mean mk.
Indeed, since \varphi is a bundle isometry, it must be that \varphi \#\eta k is supported on \scrE mk

. Also, for any
linear functional f : \scrE \prime 

mk
\rightarrow R, we have

f\#(\varphi \#\eta k) = (f \circ \varphi mk
)\#\eta k,

and f \circ \varphi mk
is a linear functional on \scrE mk

, so the result must be a Gaussian on R. It remains to
derive the formula for the covariance operator of the pushforward. Choose a linear isometry
g : Rd \rightarrow \scrE mk

and a covariance operator \widetilde \Sigma \in Sym+
d such that \Sigma = g\widetilde \Sigma g - 1 (see Proposition 3.3

and Definition 3.4). Then \varphi mk
\circ g : Rd \rightarrow \scrE \prime 

\varphi (mk)
is a linear isometry taking the covariance

operator \widetilde \Sigma to

(\varphi mk
\circ g)\widetilde \Sigma (\varphi mk

\circ g) - 1 =\varphi mk
\Sigma \varphi  - 1

mk
.

The converse follows by the same argument, using \varphi  - 1 in place of \varphi .

A.6. Proof of Proposition 3.15.

Proof. By Proposition 3.12, \varphi \#\eta i is a Gaussian on the product bundle \scrM \times Rd, specifically,

\varphi \#\eta i =N\scrM \times Rd(mi,\varphi mi
\Sigma \varphi  - 1

mi
).

By definition of d\varphi , \varphi is an isometry of metric spaces and so induces an isometry at the level
of Wasserstein spaces through the pushforward map, that is,

W\varphi 
2 (\eta 0, \eta 1) =W\scrM \times Rd

2 (\varphi \#\eta 0,\varphi \#\eta 1).
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1458 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

Applying Lemma 3.14, we have

W\varphi 
2 (\eta 0, \eta 1) =W\scrM \times Rd

2 (\varphi \#\eta 0,\varphi \#\eta 1)

= d\scrM (m0,m1)
2

+ tr(\varphi m0
\Sigma 0\varphi 

 - 1
m0

)

+ tr

\biggl( 
\varphi m1

\Sigma 1\varphi 
 - 1
m1

 - 2
\Bigl( \bigl( 
\varphi m0

\Sigma 0\varphi 
 - 1
m0

\bigr) 1

2 \varphi m1
\Sigma 1\varphi 

 - 1
m1

\bigl( 
\varphi m0

\Sigma 0\varphi 
 - 1
m0

\bigr) 1

2

\Bigr) 1

2

\biggr) 
= d\scrM (m0,m1)

2 + tr(\Sigma 0 +\Sigma 1  - 2(\Sigma 
1

2

0\Phi 
 - 1
m0,m1

\Sigma 1\Phi m0,m1
\Sigma 

1

2

0 )
1

2 ),

where the last equality follows by linearity and cyclic permutation invariance of trace, together
with the fact that the square root of a symmetric positive definite matrix is invariant under
change of basis, in the sense that (\varphi \Sigma \varphi  - 1)

1

2 =\varphi \Sigma 
1

2\varphi  - 1.

A.7. Proof of Lemma 3.14.

Proof. Any coupling \pi \in \Pi (\eta 0, \eta 1) must be supported on the product of the supports of
the \eta i, that is,

supp(\pi )\subset (\{ m0\} \times Rd)\times (\{ m1\} \times Rd)\approx Rd \times Rd.

We then have

W\scrM \times Rd

2 (\eta 0, \eta 1)
2 = inf

\pi \in \Pi (\eta 0,\eta 1)

\int 
(\scrM \times Rd)\times (\scrM \times Rd)

d\scrM \times Rd((p0, v0), (p1, v1))
2d\pi ((p0, v0), (p1, v1))

= inf
\pi \in \Pi (\eta 0,\eta 1)

\int 
(\{ m0\} \times Rd)\times (\{ m1\} \times Rd)

d\scrM (m0,m1)
2

+

\int 
(\{ m0\} \times Rd)\times (\{ m1\} \times Rd)

\| v0  - v1\| 2d\pi ((m0, v0), (m1, v1))

= d\scrM (m0,m1)
2(A.4)

+ inf
\pi \in \Pi (\eta 0,\eta 1)

\int 
(\{ m0\} \times Rd)\times (\{ m1\} \times Rd)

\| v0  - v1\| 2d\pi ((m0, v0), (m1, v1)).

Now consider the bijection

\rho : (\{ m0\} \times Rd)\times (\{ m1\} \times Rd)\rightarrow Rd \times Rd

((m0, v0), (m1, v1)) \mapsto \rightarrow (v0, v1).

We claim that this induces a correspondence:

\rho \# : \Pi (\eta 0, \eta 1)\rightarrow \Pi (Nd(0,\Sigma 0),Nd(0,\Sigma 1)).

Indeed, for \pi \in \Pi (\eta 0, \eta 1) and any measurable subset A\subset Rd, we have

\rho \#\pi (A\times Rd) = \pi (\rho  - 1(A\times Rd)) = \pi ((\{ m0\} \times A)\times \{ m1\} \times Rd) = \eta 0(\{ m0\} \times A) =Nd(0,\Sigma 0)(A),
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1459

and the computation for the other marginal is similar. Combining this observation with the
change-of-variables formula yields

inf
\pi \in \Pi (\eta 0,\eta 1)

\int 
(\{ m0\} \times Rd)\times (\{ m1\} \times Rd)

\| v0  - v1\| 2d\pi ((m0, v0), (m1, v1))

= inf
\pi \in \Pi (\eta 0,\eta 1)

\int 
Rd\times Rd

\| v0  - v1\| 2d(\rho \#\pi )(v0, v1)

= inf
\xi \in \Pi (Nd(0,\Sigma 0),Nd(0,\Sigma 1))

\int 
Rd\times Rd

\| v0  - v1\| 2d\xi (v0, v1).

Thus, the second term of (A.4) is equivalent to computing the Wasserstein distance be-
tween mean-zero Gaussians in Rd, so Proposition 2.2 implies that the claimed formula for
W\scrM \times Rd

2 (\eta 0, \eta 1) holds. Moreover, the proposition tells us that there is an optimal coupling
\xi which is a Gaussian on Rd \times Rd with mean zero. The pushforward (\rho  - 1)\#\xi \in \Pi (\eta 0, \eta 1) is
an optimal coupling for the original Wasserstein distance. To prove the last statement of the
proposition, first consider the measurable map

\tau :Rd \times Rd \rightarrow (\scrM \times \scrM )\times (Rd \times Rd)

(v0, v1) \mapsto \rightarrow ((m0,m1), (v0, v1)).

It is easy to see that \tau \# takes zero-mean Gaussians on Rd \times Rd to Gaussians on the product
bundle (\scrM \times \scrM )\times (Rd \times Rd), explicitly,

\tau \#N2d(0,\Sigma )=N(\scrM \times \scrM )\times (Rd\times Rd)((m0,m1),\Sigma ).

Next, observe that \rho  - 1 = \sigma \circ \tau , so it follows that the optimal coupling (\rho  - 1)\#\xi can be expressed
as \sigma \#\pi , where \pi := \tau \#\xi \in G((\scrM \times \scrM )\times (Rd \times Rd)).

A.8. Proof of Lemma 3.16.

Proof. For notational convenience, let \scrE =\scrM \times Rd and \scrF = (\scrM \times \scrM )\times (Rd\times Rd) for the

rest of the proof. Let \omega \in \Pi (\mu \ast 0, \mu 
\ast 
1) be an optimal coupling for W

G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1), so that

W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1)

2 =
\sum 
k,\ell 

\omega k\ell W
\scrE 
2 (\eta 

k
0 , \eta 

\ell 
1)

2.

For each pair of indices (k, \ell ), choose an optimal coupling \pi k\ell \in \Pi (\eta k0 , \eta 
\ell 
1) for the Wasserstein

distance W \scrE 
2 (\eta 

k
0 , \eta 

\ell 
1), and set \pi =

\sum 
k,\ell \omega k\ell \pi 

k\ell (the superscript notation \pi k\ell is intended to
distinguish from the notation \pi k\ell , which we used for an entry in a matrix). Then \pi \in \Pi (\mu 0, \mu 1).
We also claim that \pi \in GM\sigma (\scrE ). Indeed, from Lemma 3.14, each \pi k\ell is of the form \sigma \#\pi 

k\ell for
some \pi k\ell \in G(\scrF ), and therefore \pi = \sigma \#\pi , where \pi :=

\sum 
k,\ell \omega k\ell \pi 

k\ell \in GM(\scrF ). Moreover,\int 
\scrE \times \scrE 

d\scrE ((p0, v0), (p1, v1))
2d\pi ((p0, v0), (p1, v1))

=
\sum 
k,\ell 

\omega k\ell 

\int 
\scrE \times \scrE 

d\scrE ((p0, v0), (p1, v1))
2d\pi k\ell ((p0, v0), (p1, v1))

=
\sum 
k,\ell 

\omega k\ell W
\scrE 
2 (\eta 

k
0 , \eta 

\ell 
1)

2 =W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1)

2.
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1460 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

Since \pi is not necessarily optimal for the mixture Wasserstein distance, it follows that MW \scrE 
2

(\mu 0, \mu 1)\leq W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1).

To see the reverse inequality, suppose that \pi is an arbitrary coupling in the feasible set for
MW \scrE 

2 (\mu 0, \mu 1). Let \pi = \sigma \#\pi for some \pi \in GM(\scrF ) of the form \pi =
\sum K

j=1\omega j\pi 
j , where the \omega j

are positive real numbers satisfying
\sum 

j \omega j = 1 and where each \pi j is a Gaussian on the vector

bundle \scrF . Therefore, \pi =
\sum K

j=1\omega j\pi 
j , where \pi j := \sigma \#\pi 

j . Let \rho i : \scrE \times \scrE \rightarrow \scrE be a coordinate
projection onto the left, for i= 0, or right, for i= 1, component. The marginal condition on
\pi implies that

K0\sum 
k=1

wk
0\eta 

k
0 = \mu 0 = (\rho 0)\#\pi =

K\sum 
j=1

\omega j(\rho 0)\#\pi 
j .

Corollary 3.8 then tells us that for each j, there is some k such that (\rho 0)\#\pi 
j = \eta k0 . Moreover,

it must be that (\rho 1)\#\pi 
j = \eta \ell 1 for some \ell by the second marginal condition on \pi . Putting

these observations together and reindexing with double indices, for convenience, we write
\pi =

\sum 
k,\ell \omega k\ell \pi 

k\ell , where the marginals of \pi k\ell are \eta k0 and \eta \ell 1, respectively. It follows that
\omega := (\omega k\ell )k,\ell defines a coupling of \mu \ast 0 and \mu \ast 1, so a computation very similar to the one in
the previous paragraph shows that the value of the mixture Wasserstein distance objective

on the coupling \pi is bounded below by W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1). Since \pi was an arbitrary element of

\Pi (\mu 0, \mu 1)\cap GM\sigma (\scrE ), this completes the proof.

A.9. Proof of Theorem 3.17.

Proof. We claim that

MW\varphi 
2 (\mu 0, \mu 1) =MW\scrM \times Rd

2 (\varphi \#\mu 0,\varphi \#\mu 1).

Indeed, for any \pi \in GM((\scrM \times \scrM )\times (Rd \times Rd)), the equality\int 
(\scrM \times Rd)\times (\scrM \times Rd)

d\scrM \times Rd((p0, v0), (p1, v1))
2d(\sigma \#\pi )((p0, v0), (p1, v1))

=

\int 
\scrE \times \scrE 

d\varphi (w0,w1)
2d((\varphi  - 1 \circ \sigma )\#\pi )(w0,w1)

holds by the change-of-variables formula, the definition of d\varphi , and the functoriality of push-
forwards. Minimizing over couplings (of \varphi \#\mu 0 and \varphi \#\mu 1) of the form \sigma \#\pi on the left-hand

side recovers MW\scrM \times Rd

2 (\mu 0, \mu 1), and this is equivalent to minimizing over couplings (of \mu 0
and \mu 1) of the form (\varphi  - 1 \circ \sigma )\#\pi on the right-hand side, which recovers MW\varphi 

2 (\mu 0, \mu 1).
Next, we show that

W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1) =W

G(\scrM \times Rd)
2 ((\varphi \#\mu 0)

\ast , (\varphi \#\mu 1)
\ast ).

Observe that

\varphi \#\mu i =
\sum 
k

wk
i \varphi \#\eta 

k
i \Rightarrow (\varphi \#\mu i)

\ast =
\sum 
k

wk
i \delta \varphi \#\eta k

i
.
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WASSERSTEIN-TYPE METRIC FOR GMMS ON VECTOR BUNDLES 1461

It follows that \Pi (\mu \ast 0, \mu 
\ast 
1) =\Pi ((\varphi \#\mu 0)

\ast , (\varphi \#\mu 1)
\ast ) (considered as elements of RK1\times K2). For any

coupling \omega , the fact that \varphi \# is an isometry from W \scrE 
2 to W\scrM \times Rd

2 implies that\sum 
k,\ell 

\omega k\ell W
\varphi 
2 (\eta 

k
0 , \eta 

\ell 
1)

2 =
\sum 
k,\ell 

\omega k\ell W
\scrM \times Rd

2 (\varphi \#\eta 
k
0 ,\varphi \#\eta 

\ell 
1)

2,

and this proves the claim.
Now the result follows from Lemma 3.16:

W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1) =W

G(\scrM \times Rd)
2 ((\varphi \#\mu 0)

\ast , (\varphi \#\mu 1)
\ast ) =MW\scrM \times Rd

2 (\varphi \#\mu 0,\varphi \#\mu 1)

=MW\varphi 
2 (\mu 0, \mu 1).

A.10. Proof of Proposition 3.19.

Proof. Throughout the proof, we assume without loss of generality that \scrE =\scrM \times Rd and
that \varphi is the identity map. The inequality on the left is trivial by the definition of MW\varphi 

2 ,
(3.1). To see the inequality on the right, let \~\mu i =

\sum Ki

k=1w
k
i \delta mk

i
; that is, \~\mu i is a sum of Dirac

measures located at the means of the Gaussian mixture \mu i---each Dirac \delta mk
i
is considered as a

measure on \scrE mk
i
given by a degenerate Gaussian whose covariance operator is identically zero.

By Corollary 3.18, we are able to apply the triangle inequality to deduce

MW\varphi 
2 (\mu 0, \mu 1)\leq MW\varphi 

2 (\mu 0, \~\mu 0) +MW\varphi 
2 (\~\mu 0, \~\mu 1) +MW\varphi 

2 (\~\mu 1, \mu 1).

The first term satisfies

MW\varphi 
2 (\mu 0, \~\mu 0)

2 = min
\omega \in \Pi (w0,w1)

\sum 
k,\ell 

\omega k\ell W
\varphi 
2 (\eta 

k
0 , \delta m\ell 

1
)2

= min
\omega \in \Pi (w0,w1)

\sum 
k,\ell 

\omega k\ell 

\Bigl( 
d\scrM (mk

0,m
\ell 
1)

2 + tr(\Sigma k
0)
\Bigr) 

= min
\omega \in \Pi (w0,w1)

\sum 
k,\ell 

\omega k\ell d\scrM (mk
0,m

\ell 
1)

2 +
\sum 
k

wk
0tr(\Sigma 

k
0)

=
\sum 
k

wk
0tr(\Sigma 

k
0),

where the last line follows because the first term is made zero by taking \omega to be the diagonal
coupling. Likewise, MW\varphi 

2 (\~\mu 1, \mu 1)
2 =

\sum 
kw

k
1tr(\Sigma 

k
1), so that

MW\varphi 
2 (\mu 0, \mu 1)\leq MW\varphi 

2 (\~\mu 0, \~\mu 1) +
\sum 
i=0,1

\Biggl( 
Ki\sum 
k=1

wk
i tr(\Sigma 

k
i )

\Biggr) 1/2

.

We claim thatMW\varphi 
2 (\~\mu 0, \~\mu 1)\leq W\varphi 

2 (\mu 0, \mu 1), and this will complete the proof. First, observe
that

MW\varphi 
2 (\~\mu 0, \~\mu 1)

2 = min
\omega \in \Pi (w0,w1)

\sum 
k,\ell 

\omega k\ell W
\varphi 
2 (\delta mk

0
, \delta m\ell 

1
)2

= min
\omega \in \Pi (w0,w1)

\sum 
k,\ell 

\omega k\ell d\scrM (mk
0,m

\ell 
1)

2 =W\varphi 
2 (\~\mu 0, \~\mu 1)

2.
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1462 WILSON, NEEDHAM, PARK, KUNDU, AND SRIVASTAVA

Next, we show that W\varphi 
2 (\~\mu 0, \~\mu 1) \leq W\varphi 

2 (\mu 0, \mu 1). Let \pi \in \Pi (\mu 0, \mu 1) be an arbitrary coupling.
Define a coupling \omega \in \Pi (w0,w1) by

\omega k\ell = \pi (\scrE mk
0
\times \scrE m\ell 

1
).

This is indeed a coupling,\sum 
\ell 

\omega k\ell =
\sum 
\ell 

\pi (\scrE mk
0
\times \scrE m\ell 

1
) = \pi (\scrE mk

0
\times \scrE ) =wk

0 ,

and the other marginal condition follows similarly. The cost of this coupling with respect to
the W\varphi 

2 -distance from \~\mu 0 to \~\mu 1 satisfies\sum 
k,\ell 

\omega k\ell d\scrM (mk
0,m

\ell 
1)

2 =
\sum 
k,\ell 

d\scrM (mk
0,m

\ell 
1)

2\pi (\scrE mk
0
\times \scrE m\ell 

1
)

=
\sum 
k,\ell 

d\scrM (mk
0,m

\ell 
1)

2

\int 
((mk

0 ,v0),(m\ell 
1,v1))\in \scrE mk

0
\times \scrE m\ell 

1

\pi (d(mk
0, v0)\times d(m\ell 

1, v1))

=

\int 
((m0,v0),(m1,v1))\in \scrE \times \scrE 

d\scrM (m0,m1)
2\pi (d(m0, v0)\times d(m1, v1))

\leq 
\int 
((m0,v0),(m1,v1))\in \scrE \times \scrE 

d\varphi (m0,m1)
2\pi (d(m0, v0)\times d(m1, v1)),

and the last quantity is the cost of the coupling \pi with respect to the W\varphi 
2 -distance between

\mu 0 and \mu 1. Since this construction and bound hold for any choice of \pi , this shows that
W\varphi 

2 (\~\mu 0, \~\mu 1)\leq W\varphi 
2 (\mu 0, \mu 1), and the proof is complete.

A.11. Proof of Proposition 3.21.

Proof. By Theorem 3.17, MW\varphi p,F

2 (\mu 0, \mu 1) =W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1), where for \mu i =

\sum Ki

k=1w
k
i \eta 

k
i ,

W
G(\scrE )
2 (\mu \ast 0, \mu 

\ast 
1)

2 = min
\pi \in \Pi (w0,w1)

\Sigma k,l\pi klW
\varphi p,F

2 (\eta k0 , \eta 
\ell 
1)

2.

By Proposition 3.15, for \eta j =N\scrE (mj ,\Sigma j),

W\varphi p,F

2 (\eta 0, \eta 1) = d\scrM (m0,m1)
2 + tr

\biggl( 
\Sigma 0 +\Sigma 1  - 2

\Bigl( 
\Sigma 

1

2

0

\bigl( 
\Phi p,F
m0,m1

\bigr)  - 1
\Sigma 1\Phi 

p,F
m0,m1

\Sigma 
1

2

0

\Bigr) 1

2

\biggr) 
,

with \Phi p,F
m0,m1 = (\varphi p,F

m1 )
 - 1 \circ \varphi p,F

m0 : \scrE m0
\rightarrow \scrE m1

. We claim that

(\varphi p,F
m1

) - 1 \circ \varphi p,F
m0

= Pm1
\circ P - 1

m0
;

since the map on the right-hand side does not depend on F , the result follows. The claim is
verified by a direct calculation: For v \in Tm0

\scrM , write v=
\sum 

j vjfj(m0). Then

Pm1
\circ P - 1

m0
(v) = Pm1

\left(  \sum 
j

vjfj

\right)  =
\sum 
j

vjfj(m1)

and

(\varphi p,F
m1

) - 1 \circ \varphi p,F
m0

(v) = (\varphi p,F
m1

) - 1((vj)j) =
\sum 
j

vjfj(m1).
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Appendix B. Details of experimental setups.

B.1. Brief introduction to the shape space of planar contours. Here, we describe a math-
ematical representation of shape of closed, planar contours as elements of a finite-dimensional
unit sphere. Let \scrA \scrC 0 denote the set of all absolutely continuous curves of the type \beta : S1 \rightarrow R2

such that \beta (t) = 0 for some t \in S1. An element \beta \in \scrA \scrC 0 represents a parameterized planar,
closed curve passing through the origin. We are interested in quantifying the shape of \beta in
a manner that is invariant to its rotation, translation, scale, and reparameterization. Taking
an elastic approach to shape analysis of curves [36, 37], we represent \beta using its square-root

velocity function (SRVF) q(t) =
\.\beta (t)\surd 
| \.\beta (t)| 

. The mapping \beta \mapsto \rightarrow q is a bijection from \scrA \scrC 0 to

L2(S1,R2). Representing a curve \beta by its SRVF q removes the effect of its translations. Fur-
ther, we rescale \beta to have unit length, so that \| q\| 2 = length(\beta ) = 1. The set of all scaled
SRVFs forms a unit Hilbert sphere S\infty \subset L2. To remove reparametrizations, we select a rep-
resentative shape (this can be same as the reference point p on the manifold \scrM needed to
build a global frame). We reparameterize this representative curve to be arc-length and then
register, through reparameterization, all individual curves (in a given data set) to this curve.
Now we have removed translation, scaling, and reparameterization.

Next, we consider a discretized representation of curves as follows. We sample an SRVF
q using T uniformly spaced sample points \{ ti \in S1, i = 1, . . . , T\} and denote the samples by
an array q \in R2\times T , where qi = q(ti). To ensure unit scale, we rescale the array q to have
Frobenious norm one, and thus we have q \in S2T - 1. To remove rotation, we use Procrustes
alignment in a pairwise fashion as follows. Define the action of SO(2) on S2T - 1 as (O,q) =Oq,
and form equivalence classes [q] = \{ Oq| O \in SO(2)\} . The shape space of discrete contours,
\scrS c, is the set of all equivalence classes and denoted by the quotient space S2T - 1/SO(2).
Given any two curves \beta 1, \beta 2 \in \scrA \scrC 0 and their corresponding discrete SRVFs q1,q2 \in S2T - 1,
O\ast = argminO\in SO(2)\| q1  - Oq2\| 2.

The shape metric is then given by ds([q1], [q2]) = cos - 1(\langle q1,O
\ast q2\rangle ). Similarly, given a

number of contours \beta 1, \beta 2, . . . , \beta n, one can compute the sample mean of their shapes [q1], [q2],
. . . , [qn] according to

[ \^m] = argmin
[q]\in \scrS 

n\sum 
i=1

ds([q], [qi])
2 .

An iterative algorithm for finding the minimizer is presented in several places, including [37].
In this paper, we use a mode-based procedure [14, 13] to reach estimates of mean shape more
efficiently. Once we have computed the sample mean, we can rotationally align individual
curves to the mean and express them in a preferred orientation according to

q\ast 
i =O\ast 

i qi, where O\ast = argmin
O\in SO(2)

\| \^m - Oqi\| 2 .

These aligned shapes can be treated as elements of S2T - 1 for the purpose of statistical mod-
eling and comparisons. Furthermore, we can compute the shooting vectors v\ast 

i = exp - 1
\^m (q\ast 

i ) \in 
T\^\mu n

(S2T - 1) (on the unit sphere) and define a covariance matrix \^\Sigma = 1
n - 1

\sum n
i=1 viv

T
i \in 
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R(2T - 1)\times (2T - 1). This gives us a way to represent contour shapes as elements of a finite-
dimensional unit sphere and to define their sample statistics, such as means and covariance.
One can use these statistics to impose a Gaussian model \eta =N\scrE (m,\Sigma ) on S2T - 1.

B.2. Mapping between \bfscrS \bfitT and S2. A planar triangle is represented by a matrix x\in R3\times 2

or a complex vector z \in C3. Let the ith element of z be zi = xi,1+jxi,2. The bijective mappings
between the Kendall shape space of triangles \scrS T and S2 (using Hopf fibration) are as follows.
The forward map from \scrS T to S2 is given by

(x1,1, . . . , x3,2) \mapsto \rightarrow 
\biggl( 
\theta = cos - 1

\Bigl( y3
r

\Bigr) 
, \varphi = tan - 1(

y2
y1

)

\biggr) 
, where

y1 = 2(x1,2x2,2 + x1,1x2,1), y2 = 2(x2,1x2,2  - x1,1x1,3), y3 = 1 - 2(x21,2 + x22,1),

and r=
\sqrt{} 
y21 + y22 + y23. The backward map from (\varphi ,\theta )\in S2 to \scrS T is given by

x1,1 = cos

\biggl( 
\psi +\varphi 

2

\biggr) 
sin(\theta /2), x1,2 = sin

\biggl( 
\psi +\varphi 

2

\biggr) 
sin(\theta /2), x2,1 = cos

\biggl( 
\psi  - \varphi 

2

\biggr) 
cos(\theta /2),

x2,2 = sin

\biggl( 
\psi  - \varphi 

2

\biggr) 
cos(\theta /2), x3,1 = - (x1,1 + x2,1), x3,2 = - (x1,2 + x2,2),

where \theta \in [0, \pi ], \varphi \in [0, \pi ], and \psi \in [0,2\pi ]. The angle \psi here is arbitrary and controls the
rotation of the resulting triangle.
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