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Predictive Policing:

A Mathematical Primer
Joseph Johnson, Theo McKenzie, and Tian An Wong

The opinions expressed here are not necessarily those of the Notices or the AMS.

1. Introduction

What is predictive policing? The RAND Corporation,
for example, defines predictive policing as “the appli-
cation of analytical techniques—particularly quantitative
techniques—to identify likely targets for police interven-
tion and prevent crime or solve past crimes by making sta-
tistical predictions.” This brief survey serves as a math-
ematical supplement to recent discussions of predictive
policing such in [20] and various investigative reports, and
perhaps most importantly the boycott by several thousand
mathematicians of collaboration with the police, appear-
ing in the Notices of the AMS [3].' The foundations of pre-
dictive policing are highly mathematical, while modern
usages also heavily incorporate machine learning to opti-
mize models.

There are many surveys and explanations of predictive
policing from various points of view, such as surveillance
technology, algorithmic fairness, and criminal justice, but
few specifically address its mathematical aspects. The pur-
pose of this article is to present a selective overview of
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the mathematics underlying the model used by the com-
pany PredPol, followed by critiques and further develop-
ments of the model. We focus on PredPol as it is a well-
known method of predictive policing and the methodol-
ogy is arguably less oblique than other predictive policing
algorithms that rely more heavily on black-boxed machine
learning algorithms.

PredPol is often singled out in discussions surround-
ing predictive policing, in part because it is arguably the
progenitor of the field, although it is far from the only
player in the game. According to investigative reports,
PredPol was the most widely used predictive policing com-
pany/software in the US as of 2019, having contracts in
states including Utah, Washington, and California (includ-
ing the University of California, Berkeley).The company
was born out of a collaboration with the LAPD, the FBI,
and UCLA in the early 2010s. In 2023, PredPol, which was
rebranded as Geolitica, was effectively bought by Sound-
Thinking, previously known as ShotSpotter. The same
company also acquired HunchLab in 2018, another pre-
dictive policing software company. This growing consol-
idation shows that predictive policing remains a relevant
method in modern policing, and deserves the attention of
the mathematical community. Indeed, a recent Wired re-
port called the acquisition of Geolitica its “latest step in
becoming the Google of crime fighting.”

2. Summary of the Basic PredPol Model

We begin by discussing two early models: the epidemic
type aftershock (ETAS) model that the PredPol patent is
built on (US Patent No. 8,949,164), and the reaction-
diffusion model that ETAS in turn draws upon. Reaction-
diffusion is modeled using partial differential equations,
with original applications to the physical sciences. The
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ETAS model, on the other hand, is a popular statisti-
cal model for earthquake occurrence. PredPol is thus
based on equations that are used to model earthquake oc-
currences and chemical reactions which produce certain
“hotspots,” and where adding “hotspot policing” can be
viewed as an inhibitor to the process. From a statistical
point of view, the introduction of police to given hotspots
is then viewed as applying “treatments” or interventions
which are meant to reduce crime. Such models are also
referred to as spatiotemporal models.
2.1. The reaction-diffusion model. We review the mathe-
matics underlying [21, 22]. Reaction-diffusion models are
typically used to describe chemical reactions, in which acti-
vators and inhibitors move, mix, and interact. In [22], the
model describes houses and burglars, while [21] describes
“motivated offenders,” targets or victims as activators, and
law enforcement as inhibitors. Their reaction-diffusion
system involves “mobile criminal offenders” within a
square environment with periodic boundary conditions.
(See Section 4.1 for a discussion on the biases implicit in
the language of crime.)
2.1.1. Discrete model. In the discrete model, houses are
placed on a lattice in the plane with constant spacing €.
Within the plane s = (x,y), the score in question A(t)
is interpreted either as the attractiveness of a house to a
burglar, or the risk of victimization, “representing general
environmental cues about the feasibility of committing a
successful crime and/or specific knowledge offenders pos-
sess about target or victim vulnerability in the area.” The
risk is given by

Ay(t) = A7 + By(D),

where A? is a fixed value and B(t) is a dynamic value that
models the idea that if a site has been attacked, it has a
higher risk of being revictimized shortly after the first inci-
dent. The first approximation is

By(t + 6¢) = By(t)(1 — wdt) + OE,(L), (1)

where w sets a time scale over which repeat victimizations
are most likely to occur, and 9 is a multiplier of Eg(¢),
the number of burglary events that occurred at site s since
time t. The authors then modify this model to account
for “near-repeat victimization, and the broken windows
effect,” by allowing the quantity By(t) to spread spatially
to its neighbors. Equation (1) is replaced with

By(t + 6t) = [Bs(t) + %ﬁABs(t)] (1 — w8t) + OE,(t),

where A is the discrete Laplacian, whereby

AB(t) = — (Z By (t) — zB (t))

s/ ~s
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Here z is the number of sites s’ neighboring s, and 0 < 7 <
1 measures the significance of neighborhood effects. Com-
puter simulations are then run to show that the model pro-
duces certain dynamic and stationary “hotspots.”

The “criminal agent” is modeled as either committing a

crime at site s or moving to a neighboring location based
on a biased random walk so that site s* is visited with prob-
ability
A
s’~sA (t)
The probability of occurrence for each burglar located at
site s between times ¢ and t+8t given by p,(t) = 1—e~As()0t
in accordance with a standard Poisson process in which
the expected number of events during the time interval of
length &t is A4(t)dt. In the discrete model, burglars are
removed after committing a crime, and regenerated at each
lattice site at a constant rate I'. We write Eg(t) = ny(t) p,(t),
where ng(t) is the number of criminals at the site s at time
t.

2.1.2. Continuous model.
the difference quotient,
By(t + 8t) — B(1)
ot
and take the limit as ¢ and &t approach 0 to arrive at the

differential equation®

qs— s (t) = Z

From the discrete model we form

0B _nD_,
I V“B — wB + eDpA. (2)
Here we have denoted
_e _n(®
D= 5’ 6—65t5 p(S,t)— €2 )
where p is the density of criminal agents, and
dp p
B =2V [Vo-2va]-pa+y, (3)

where offenders exit the system at the rate pA and are rein-
troduced at the constant rate y = I'/¢2. The PDE for p is
obtained by a difference quotient for ny(t), using the equa-
tion

Ny (t)(l — Dy (t))

+T6t,
Ty (0)

ny(t +6t) = A; Y,
s'~s

where
Ty() = Y, Ap(D),
s ~s'

which simply means that any agents that are present at s
after one time step must have either arrived from a neigh-
boring site after having not committed a crime there, or
have been generated at s at rate I'. The coupled differential
equations (2) and (3) thus describe the continuous model.

2This is essentially the patented algorithm displayed in https://www
.predpol.com/technology/.
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In [21] the authors study these coupled PDEs to show
that crime risk will form dense, well-spaced hotspots
when the diffusion of risk by individual crimes is spatially
broad enough. Police suppression is modeled by instanta-
neously setting the crime rate pAy(t) = 0 at the locations
of current crime hotspots and maintaining this suppres-
sion for a fixed time period. The authors then claim that
subcritical crime hotspots may be permanently eradicated
with police suppression.

2.2. Epidemic-type aftershock (ETAS). This section cov-
ers the mathematics underlying [14], which is the basis
for the PredPol patent (US Patent No. 8,949,164). The
authors treat the dynamic occurrence of crime as a con-
tinuous time, discrete space epidemic-type aftershock se-
quence point process. In seismology, point processes are
used by considering a “parent earthquake” and subsequent
background events or aftershocks. The ETAS model esti-
mates long-term and short-term hotspots and systemati-
cally estimates the relative contribution to risk of each via
an expectation-maximization (EM) algorithm.

The ETAS model can be intuitively understood as a
branching process: first-generation events occur accord-
ing to a Poisson process with constant rate y, then events
(from all generations) each give birth to N direct offspring
events, where N is a Poisson random variable with param-
eter 0. As events occur, the rate of crime increases locally
in space, leading to a contagious sequence of “aftershock”
crimes that eventually dies out on its own or is interrupted
by police intervention.

In this model, policing areas are discretized into square
boxes. The probabilistic rate of events in box n at time ¢ is
defined to be

() =pp+ Y, Bwe=(t=th), (4)

th <t

where t, are the times of events in box 7 in the history of
the process. The background rate u is a (nonparametric
histogram) estimate of a stationary Poisson process.

The expectation, or E-step in the EM algorithm, sets

i
p;l] _ Gwe‘w(ff—tn) p{q _ #n.
An(th) An(th)

where Bwe™®! is called the triggering kernel that models

“near-repeat” or “contagion” effects in crime data. Here
p;j is the probability that event j is the offspring of event i
and p{l is the probability that event j was generated by the
Poisson process.

Aucust 2024

COMMUNICATION

The maximization, or M-step, sets

Zn Zl<] p;{

)DL W Y-

where T is the length of the time window of observation.

2.3. Field trials and case studies. The authors of the
model undergirding the PredPol patent conducted a ran-
domized controlled field trial to test the effectiveness of
their model [14]. In their experiment, hotspots were gen-
erated daily by the ETAS model and a crime analyst. These
hotspots were randomly assigned to foot patrols who then
decided independently how to patrol the area as long as
they remained within the prescribed area. The study was
split across three LAPD divisions where each division stud-
ied effects for approximately six to eight months.

The authors compared how well their model predicted
crime events against the predictions of crime analysts us-
ing standard methodologies of generating hotspot maps.
Their ETAS model generated hotspots that successfully pre-
dicted crimes at a higher rate—ranging from 1.4 to 2.2
times better—than the hotspots generated by a crime an-
alyst. They estimated a 7.4% decrease in crime (4.3 fewer
crimes reported per week) at mean patrol levels when
hotspots from their ETAS model were used compared to
no patrol at all. When police used hotspots created by the
crime analysts there was only a 3.5% decrease (2.0 fewer
crimes per week) compared to no patrol at all. This cor-
responds to a decrease in crime that is 2.1 times larger in
magnitude when comparing standard practice to the ETAS
model, in line with the 1.4-2.2 times improvement in the
prediction rate when comparing the analyst and the ETAS
model.

Given this information, researchers asked whether this
algorithm was susceptible to bias. Brantingham and
Mohler, in collaboration with Valasik, expanded upon
their previous work and analyzed the results of their field
trial to see if the use of predictive policing results in arrest
bias [4]. They compared the arrest data of police on patrol
in algorithm-based hotspots to the arrest data of police on
patrol in hotspots allocated by the crime analysts. After
performing Cochran-Mantel-Haenszel and Woolf tests on
their data, the authors found that the difference in arrest
percentage with respect to ethnic group (i.e., Black, Latino,
White) between the crime analyst hotspots and the ETAS
generated hotspots was not statistically significant.

Although differences were not deemed statistically sig-
nificant, they are worthy of further examination. There was
a multiplicative increase of 1.8 in arrests in Foothill LAPD
division on days where algorithms were used, but a 4.5
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increase in arrests for Blacks compared to a 1.6 and 1.9
multiplicative increase in arrests for Latinos and Whites re-
spectively. There was a 2.0 multiplicative increase in ar-
rests on algorithm days in the Southwest division, but no
increase in arrests for Whites compared to a 2.2 and a 1.8
increase in arrests for Blacks and Latinos respectively. The
population distributions in the regions studied could have
led to the statistical tests considering the differences ob-
served in arrest rates as insignificant. For example, there
were few arrests of Blacks in Foothill and few arrests of
Whites in Southwest.

Furthermore, Brantingham, Mohler, and Valasik do not
check if the arrest data is already biased. This would lead
to their predictive policing model replicating the existing
bias in policing and not removing the bias.

There have been many instances where the police were
found to implement practices that would bias arrest data.
For example, former New York City detective Stephen An-
derson testified that he along with other police officers
planted drugs on innocent civilians in order to boost their
arrest numbers [13]. Sometimes even basic recording er-
rors lead to a significant change in crime statistics, for ex-
ample, a Los Angeles Times investigation found that from
2005 to 2012 the LAPD incorrectly classified 14,000 seri-
ous assaults as minor offenses [17].

It has been demonstrated that several predictive polic-
ing instruments (including PredPol) have been imple-
mented in several jurisdictions where and when the po-
lice in that jurisdiction were either under government in-
vestigation into illegal policing practices or agreed to a fed-
eral settlement in response to illegal policing practices [19].
For example, police in Maricopa County have been found
to conduct racially biased stops, searches, and arrests from
2007 to 2011 and from 2014 to 2017.

Of course, alterations to the algorithm have been the-
orized. Mohler included a fairness condition in order to
control for bias due to group affiliation. An example of the
impact of such a condition is given by Akpinar, De-Arteaga,
and Chouldechova [1]. In their work they attempt to quan-
tify and test the influence of crime reporting rates on pre-
dictive policing. A natural bias of PredPol is that it can only
create hotspots based on crimes that are reported. Crime
reporting rates are known to depend on factors such as age,
gender, race, and socioeconomic class. Therefore the au-
thors attempted to see how crime reporting rates would af-
fect PredPol hotspots in Bogota, where district-wide crime
reporting rates are given.

By running various hotspot-creating models, the au-
thors find that districts that report crime at higher rates will
receive a number of hotspots disproportionately high com-
pared to the amount of crime in the district, and districts
that report crime at lower rates receive a disproportionately
low number of hotspots.
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Moreover, considering Bogota records crime reporting
rates on a district-wide level, normalizing by crime report-
ing rates creates skewed data within districts, as all cells
in a given district are normalized by the same factor rather
than on a cell-wide basis. Therefore, they hypothesize that
the only way to remove such bias is if we had cell-specific
crime-reporting data.

3. Mathematical Critiques of Predictive Policing

There have been critiques of the use of predictive policing
both from a social and a mathematical perspective. We
focus on the mathematical critiques first, then turn to the
broader social critiques, as academics frequently miss the
social and political consequences of the topics studied.

3.1. Statistical bias using a synthetic population. The
most notable quantitative study of the PredPol system is
the study of Lum and Isaac [12], which simulates a syn-
thetic population in Oakland, CA, based upon census data
and applies a model based on data from the 2011 National
Survey on Drug Use and Health (NSDUH) in order to pre-
dict an individual’s probability of drug use within the past
month based on their demographic characteristics. The re-
sulting data set acts as a replacement for the “ground truth”
of drug crime use data, giving estimates of illicit drug use
from a noncriminal justice, population-based data source.
Compared with police records, the authors find that drug
crimes known to police are not a representative sample of
all drug crimes.

Applying their reconstruction of the PredPol algorithm
as outlined above, the authors conclude that rather than
correcting for the apparent biases in the police data, the
model reinforces these biases, suggesting that predictive
policing of drug crimes results in increasingly dispropor-
tionate policing of historically overpoliced communities.
In particular, this is despite PredPol’s claim that they use
“only three data points in making predictions: past type
of crime, place of crime and time of crime. It uses no per-
sonal information about individuals or groups of individ-
uals, eliminating any personal liberties and profiling con-
cerns.

3.2. Runaway feedback loops via a generalized Pélya
urn model. These concerns can be given a mathematical
framework. Ensign et al. [6] used a generalized Pélya urn
model to model a predictive policing algorithm. In their
model, they assumed that police patrolled two areas A and
B at a rate based on their prior beliefs—this is represented
by initial ratio of balls in the urn. When the crime rates
in the two areas were equal, the rate at which police were
sent to a specific area does not converge to the actual rate
of crime, rather the probability that police were sent to an
area was a beta distribution dependent on the initial be-
liefs of the police. This means the police do not actually
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learn the crime rates are the same in each area. When the
crime rates were not equal, the probability that the police
visited the area with the higher crime rate asymptotically
approached one (hence, the police will eventually ignore
the area with a lower crime rate).

This is a general problem of what is called traditional
batch-mode machine learning, and the theory of urns is
a common framework in reinforcement learning. In the
generalized Pélya urn model, an urn contains balls of two
colors, say red and black. At each time step, a ball is drawn,
and based on its color a number of balls are replaced. If
red, we add a red and b black balls; and if black we add
c red and d black balls. This is represented by the re-

. fa b .
placement matrix (c d) , where the standard case is when

a=d=1andc = b = 0. As a toy model for predictive
policing, A and B are two policing blocks, and the goal is
to distribute police officers according to the proportion of
crime in each area. Let d4 be the rate at which police in A
discover crimes, r4 the rate at which crimes are reported in
A, and wy, w, the respective weights such that wy +w, =1
and wyd4 + w,r4 represents the total rate of incident data
from A.

For the rest of the section we make the following as-
sumptions:

1. (Predictive model) The officer decides where to go
next with probability based on current statistics. This
means that the model uses some form of statistical in-
formation to make predictions on crime.

2. (Context) The only information retained about a
crime is a count.

3. (Truth in crime data) If an officer goes to a location A
with an underlying ground truth crime rate of 1,4, the
officer discovers crime at a rate of d4 = 14. Reported
incidents are also reported at a rate that matches the
underlying ground truth crime rate, i.e., ry = 44.

4. (Discovery only) Incident data is only collected by an
officer’s presence in a neighborhood, i.e, wy =1 and
w, =0.

3.2.1. Uniform crime. First assume that crime rate is uni-
form, so 1 = 1, = 1. In this case, sending police to area
A or B is given by drawing a red or black ball. We then sam-
ple a Bernoulli A distribution. If 1, we simulate one step of
the standard Pélya urn, and if 0, we simply replace the ball
that was drawn. In this case, the probability of drawing a
red ball has a limiting distribution equal to the beta dis-
tribution with parameters (a, 8) = (n4, ng) where (ny, ng)
are the number of red balls and black balls initially in the
urn (c.f. [18]). Recall that the beta distribution is the distri-
bution on [0, 1] given by probability distribution function

T(a)I'(B)

tarp s A
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where T'(x) is the usual gamma function. This means that
as the number of draws increases, the probability of visit-
ing A or B does not necessarily converge to 1/2. Rather,
this probability remains dependent on the initial data.

3.2.2. Nonuniform crime. Now we drop the uniformity as-
sumption. The urn is now modelled by the stochastic ad-

Xa

- . 0 N
dition matrix ( ) , where X4, Xp are Bernoulli vari-

0 X
ables with parameter 14, 1p, respectively. Let ng), ng) be
the number of red and black balls respectively at time t.
The probability of adding any ball to the urn is given by

) ()
A A
P(adding a ball) = Mo Aa + N AB

k]

D+ )
while the probability of adding a red ball conditioned on
adding any ball, is given by

P(adding a red ball) ng)/l A
P(adding a ball) nOa, + 12,

: (7)

and similarly for a black ball. In particular, this is the

same as the deterministic P6lya urn in which an i-colored

ball is sampled, replaced, and then A; more balls of the

sam/le color are added. Thus the stochastic matrix reduces
A

to 0 Ag

loop for this toy model.

.The authors then deduce a runaway feedback

Proposition 3.1 ([6, Lemma 4]). The asymptotic probability
of sampling a red ball is 1 if A4, > Ag and 0 if A4 < Ap.

This tells us that as long as A has a ground truth crime
rate that is even slightly higher than that of B, the update
process will lead to police being eventually completely
sent to A.

3.2.3. Incorporating feedback. In order to learn the crime
rate, the Polya urn should contain balls in proportion to
the relative probability of crime occurrence. The following
update rule guarantees that the urn proportion will con-
verge to the ratio of replacement (i.e., crime) rates. Con-
sider the probabilities 1, and Az now conditioned on a
ball of the respective color having been sampled. This
makes the probability of adding a red ball equal to

”,Slt)/lA
D )

rather than 4, and the expected fraction of red balls being
added to the urn after one step of the process equal to (7)

instead of 14/(14 + Ap).
We introduce the following change: instead of always
adding the new balls, we first sample another ball from the
urn, and only add the new balls if the colors are different.
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This makes the probability of adding a red or black ball
(t)/l I’lg) (t)/lB (t)

or
n(t) + n(t) n(t) + n( ) n( )y n(t) n(t) + n( )

respectively, where we see that the probabilities
are proportional to 44,4 up to the common factor

(t) (t)/( X) + n(t))z. This is an example of rejection sam-
phng, where sampled values are dropped according to
some probability scheme to affect the statistic collected.
Another related scheme is importance sampling, where
balls are weighted inversely proportional to the rate at

which police are sent.

3.2.4. Reported incidents. It is also possible to remove As-
sumption (4), so that w,; and w, can take on different val-
ues. That is, we allow both discovered and reported inci-
dents to be used as input to the urn model, as is more typ-
ically the case in predictive policing systems. In this case,
the total weight of incidents from A would be wyd 4 +w,ry
if A were visited and w,r, otherwise. This yields the fol-
lowing urn replacement matrix

(wddA + w,ry

Wyrp
W, Ty wydpg +w,rg)’

It is then possible to study the limiting fraction of balls in
the urn and account for feedback again, which we refer to
[6, §3.4-3.5] for details.

Crucially, the study [6] retains Assumption (3), namely,
that reported and discovered incident rates track the true
crime rates, an assumption that is empirically false in gen-
eral.

Remark 3.2 (Application to proactive policing). In recent
work it was shown by Kinsman and Wong [9] that the
above framework of [6] is flexible enough such that the
runaway feedback loops can be shown to occur for proac-
tive policing in general — not just predictive policing re-
liant on algorithms or mathematical models. That is, as
long as policing resources are allocated to detect crime ac-
cording to historical crime incident data for a collection
of regions, it is likely that feedback loops will occur. See
Section 3.4 also for a broader discussion.

3.3. A fairness penalty for PredPol. In response to crit-
icism of PredPol, Mohler et al. introduced a fairness
penalty for the original model. As a variation on [14],
following [15], we can adjust our model by now setting
1 = exp(a- z,) where a is a vector of coefficients, and z,, is
the vector of populations of different groups in grid space
n. The parameters of 1,, in (4) can be estimated by maxi-
mizing the log-likelihood function

N T
Law,0) = Yloghy ) - 3 [ d,0dt  (8)
i=1

neG vo
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where n; is the grid cell of event i and the integral is taken
over the window of observation [0, T]. The Hawkes inten-
sity process 4,, is used in practice by ranking all grid cells
n at a given time ¢ and then directing police patrols to the
top k grid cells, called hotspots. We will denote the set of
grid cells comprising the top k hotspots at time ¢ as K;. We
will refer to 4,, as neutral if it is estimated by maximizing
(8).

Let m = 1, ..., M be an indexing set for the number
of subgroups (e.g., racial groups) surveyed, and let z}}* be
the population count of racial group m in grid cell n. As-
suming that each of the grid cells in K; receives the same
number of patrols, then the number of patrols a particular
racial group receives, per individual of that group per day,
is .

Zt=1 ZneKt ZZI

T Z neG Zgl '

The time interval over which hotspots are defined can be
taken to be days, so that ¢ is a discrete sum over days. We
then define a measure of fairness by comparing the patrol
statistics p,, between pairs of groups

F(Cl, w, e) = Z (pm - pm’)z’

m>m’

Pm =

so that when F = 0, each group m receives the same num-
ber of patrols per individual.

We then add F to the log-likelihood (8) as a fairness
penalty and maximize with respect to a, w, 6 the loss func-
tion L(a,w,0) — yF, where y € R is a penalty parameter
that controls the balance between accuracy and fairness in
the point process model. Note that this loss function is
not everywhere differentiable due to potential changes in
the k hotspots K;.

3.4. Impact of machine learning. One point not yet
addressed is the influence of machine learning in mod-
ern predictive policing algorithms. For example, Fitz-
patrick, Gorr, and Williamson compare the ability to pre-
dict crime in Pittsburgh of a perceptron-based model ver-
sus a nonperceptron predictive policing model, and show
that perceptron-based models lead to a greater entropy
in hotspot locations [8]. Nevertheless, these models still
have 43.6% of all hotspots remain hotspots for at least 75%
of the study period, and these seem to be less predictive
than other, nonperceptron models.

In this study, researchers found a significant decrease
in serious violent crime at both temporary and chronic
hotspots with predictive policing. Moreover, rather than
crime displacement, they found a weak spillover effect of
crime prevention in adjacent areas. However, this study
predicated on the adoption of nonaggressive tactics by
police, and arrests for commonly overpoliced crimes did
not increase. Moreover, these conclusions are based on a
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relatively small scale, with a reduction of 24 crimes over a

12 month period. It should also be noted that any results

will be specific to the social context of the city and police

department implementing policy.

The problem of guaranteeing fairness of algorithms is
a highly active research area. See [2] for a survey of the
implications of fairness in machine learning on predictive
policing.

To give an idea of the fundamental algorithmic issue of
fairness, we consider the work of Kleinberg, Mullainathan,
and Raghavan [10]. Within a population, each individual
is assigned a feature vector . Our goal is to classify indi-
viduals into positive and negative classes; therefore define
Do to be the fraction of people with classification o that are
positive. To each population with a given set of characters
o, we assign a distribution of scores X, so we say X, is the
fraction of people in p, assigned to bin b, with associated
score Up,.

The authors propose three goals of a fair algorithm be-
tween two groups, group 1 and group 2.

1. For each group and bin b, the fraction of people as-
signed to the positive class should be v,. Namely,
within each bin, the group should not affect classifi-
cation.

2. The average score v, of people in the positive class
should not depend on group.

3. The average score of people in positive class should
not change per group.

The authors show that any classification that satisfies all

three of these conditions is in some way trivial.

Theorem 3.3. Any assignment satisfying conditions (1), (2),
(3), has either

1. Perfect prediction: for each feature vector o, p, €
{o,1}.

2. Equal base rates: The average does not depend on the

group.

Therefore for any nontrivial scenario, the classification
could be classified as biased. Moreover, this theorem is ro-
bust in the sense that if approximate versions of the three
fairness criteria are satisfied, then the selection must be ap-
proximately close to perfect prediction or equal base rates.
Therefore, “any assignment of risk scores can in principle
be subject to natural criticism on the grounds of bias.” To
give an idea of the proof, we follow the authors’ proof
sketch.

Sketch of proof. By assumption (1), for any fixed bin b, the
total score given to those in group t in b is equal to the
number of people in group ¢ in b in the positive class. Sum-
ming over all bins gives that the sum of scores of people
in group ¢t is equal to the number of people in the positive
class in group ¢. Call this number y;.
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Define x to be the average score of someone in the neg-
ative class, and y the average score of someone in the pos-
itive class. By assumption (2) and (3), x and y do not
depend on the group. Because the total score is y;, if there
are N total individuals, then we must have

(N = pe)x + ey = fy.

This is a linear equation in x, y that always has a solution
at (0,1). This corresponds to perfect prediction. If there
is another solution, then u; cannot depend on ¢, and we
must have equal base rates, and x, y can be arbitrary. O

This gives a strong suggestion that any nontrivial as-
signment of people to individual scores must be, in some
sense, unfair. Liu et al. gave another example of this,
considering a theoretical model based on banks assigning
credit to potential loan applicants (such a model also is
relevant to, for example, college admissions) [11]. They
assign average score y; to group j and check the change
in the average score A(u;) under three different scenarios,
and check whether group scores increase or decrease.

1.  Maximum Utility: The bank makes no attempt at fair-
ness and instead only tries to maximize the utility of
giving out loans to people who would give them back
and limiting giving loans that will not be repaid.

2. Democratic Parity: The bank attempts to optimize
utility under the condition that the same fraction of
loans are accepted from group A and group B.

3. Equal Opportunity: The bank optimizes utility under
the condition that across groups, the probability of
success if selected does not depend on the group.

The authors show that in their model, there is no guarantee
that adding a fairness condition will help a disadvantaged
group. A summary of their various theorems is as follows.

Theorem 3.4. There are population proportions for which for

an underrepresented group j, A(,ijpemparity ) > A(,u}”a"m”)

and A(,ququt) > A(M}\/IaxUtil)'

Therefore these fairness criteria promote the typical
score associated with group j at a faster rate than an al-
gorithm that is not conditioned for fairness. However, the
opposite is also possible.

Theorem 3.5. There are population proportions for which for
an underrepresented group j, A(/x})empamy ) < A(M}VI”U”I)

and A(,Ltfqom) < A(M}\/IaxUtil)'

Namely, the condition of fairness unintentionally
harms the underrepresented group j. This is analyzed by
creating a linear program with the given conditions, then
optimizing utility by taking the derivative across parame-
ters.
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These results suggest that although the promise of bet-
ter and stronger algorithms is appealing, there are general
issues with any algorithm that assigns individuals scores
based on available data. These potential pitfalls in creating
a fair algorithm have been considered real world reviews
of machine learning algorithms, such as concerning racial
bias in medical diagnoses [16].

4. Social Critiques of Predictive Policing

In this section, we bring forth questions from a social
prespective about the theoretical understanding of crime
that predictive policing embodies and the use of police to
deal with crime within the predicted hotspots. There is an
extensive literature, both academic and nonacademic, re-
garding the social critiques and impacts of predictive polic-
ing that only focusing on mathematical models do not cap-
ture. We mention only several aspects below, deferring to
social scientists and theorists for these critiques, and en-
courage the reader to explore the question more deeply
and broadly on their own.

4.1. On the notion of crime. Social scientists and com-
munity advocates have long argued that the notion of
“crime” is itself a political matter (e.g., [5]). To label a spe-
cific act as a crime assumes a particular understanding of
the social contract, whereby certain crimes are policed and
others are not. Following this line of critique, The New
Inquiry published a tool called White Collar Crime Risk
Zones® predicting where financial crimes will happen in
the US, trained on incidents of financial malfeasance. As
the authors note, “unlike typical predictive policing apps
which criminalize poverty, White Collar Crime Risk Zones
criminalizes wealth.” As argued by Proposition 3.1, due
to the focus of predictive policing on crime data that is
skewed towards communities of color in poor neighbor-
hoods, the biases that we have discussed above in predic-
tion will lead to overpolicing in those areas.

4.2. Policing as a response to prediction. Researchers
argue that predicting crimes—or rather, particular unde-
sirable incidents or activities—is not problematic in and
of itself, but rather it is the policing response, known as
hotspot policing, or informally as cops on dots, that is
problematic and what actually leads to overpolicing (see,
for example references cited in Section 4.1 of [2]).

4.3. The broader surveillance complex. Perhaps most
importantly, predictive policing is only a single aspect of
a much larger phenomenon at the intersection of policing
and surveillance. Predictive policing is only a small part
of a large network of surveillance systems such as gunshot
detectors, automated license plate readers, facial recogni-
tion systems, geofencing, and CCIV cameras, as well as pre-

3https ://whitecollar.thenewinquiry.com/
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dictive systems such as risk terrain modeling, recidivism
risk scores, and pretrial detention risk assessments [7]. As
such, in order to holistically assess the relevance and im-
pact of predictive policing, it is necessary to consider it in
the context of this broader system, which will take us be-
yond simple mathematical models. Indeed, thinking at
this systemic level will require collaboration with social sci-
entists, lawyers, and activists who are familiar with crime
and the effects of policing on communities to inform our
modeling decision.

5. Conclusion

Predictive policing comes from an interesting mathemat-
ical background. However, analyzing the mathematical
framework shows fundamental theoretical and empirical
issues that have yet to be properly addressed (principally
expressed in Section 3). Moreover, there are mathemati-
cal results that caution against any algorithmic model that
inputs a set of features and outputs a risk score (see Theo-
rem 3.3). Furthermore, possibility/impossibility theorems
such as the latter suggest that broad theoretical work on al-
gorithmic fairness can have major implications for the ap-
plication of such prediction systems, which have immense
impact in society.

Persistent questions surround the practice of predictive
policing: If it replicates the same outcomes as conven-
tional police methods, should it also replicate the biases
inherent in those methods? Why do marked disparities
persist in patrolled areas between predictive policing and
traditional approaches? Should our response to predicted
crime prioritize alternatives like health responders or fi-
nancial relief over police intervention?

While the mathematics and scientific communities as-
pire to maintain neutrality, the reality is that we intro-
duce our own biases through the fundamental assump-
tions of the models we create (Proposition 3.1). We must
be acutely aware of the potential applications of our math-
ematical innovations. It is not surprising when after math-
ematical research is handed over to law enforcement, it is
then used to further oppress those already victimized by
police violence.

We believe that our awareness of the broader societal
context should inform the ethical standards guiding our
decisions of which projects we choose to undertake. We
hope that this examination of predictive policing prompts
a reflection on the projects that the mathematical and sci-
entific broadly opt to pursue.
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