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Abstract
This paper begins a new approach to the r -trace formula, without removing the nontempered
contribution to the spectral side. We first establish an invariant trace formula whose discrete
spectral terms are weighted by automorphic L-functions. This involves extending the results
of Finis, Lapid, and Müller on the continuity of the coarse expansion of Arthur’s noninvari-
ant trace formula to the refined expansion, and then to the invariant trace formula, while
incorporating the use of basic functions at unramified places.

Résumé
Cet article propose une nouvelle approche de la formule de r -trace, sans supprimer la contribu-
tion non-tempérée au côté spectral. Nous établissons d’abord une formule de trace invariante
dont les termes spectraux discrets sont pondérés par des fonctions-L automorphes. Cela
implique d’étendre les résultats de Finis, Lapid et Müller sur la continuité du développement
grossier de la formule de trace non-invariante d’Arthur au développement raffiné, puis à la
formule de trace invariante, tout en utilisant les fonctions de base à des places non-ramifiés.
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T. A. Wong

1 Introduction

1.1 Motivation

TheArthur-Selberg trace formula is one of themajor tools in the theory of automorphic forms
and harmonic analysis. Given a reductive group G over a number field F , there is a linear
form J on C∞

c (G(AF )1) with parallel spectral and geometric expansions which constitute
the trace formula. The monumental work of Arthur established the stabilization of the trace
formula, which in turn has led to the endoscopic classification of automorphic representations
of various classical groups. In order to do so, one first makes the trace formula invariant,
expressing J as a linear combination of invariant distributions on G; its stabilization in turn
depends crucially upon the Fundamental Lemma. To gain deeper knowledge of Langlands’
principle of functoriality, and in particular beyond the endoscopic cases, it is important to
establish further refinements of the trace formula. Langlands’ original investigation [24]
analyzed a limiting form of the trace formula, whereby the spectral terms would be weighted
by the order of the poles of the relevant L-functions (or their residues) at s = 1. In order
for the limit to exist, it was understood that the contribution of nontempered automorphic
representations to the trace formula would first have to be removed by some means. In
[19] it was suggested that a Poisson summation formula be applied to the elliptic terms on
the geometric side of the trace formula, where the dual sum would be used to cancel the
nontempered contribution.

To date, this method has only beenmade to work in the setting of GL2(Q) and the standard
representation [1], and even there requiring additional methods from analytic number theory
that appear to be prohibitive in higher rank [20]. Moreover, as Arthur has shown in [14],
even if we take for granted the generalization of [1] to general G, it remains unclear how one
should match the terms in the dual sum to the contribution of nontempered terms, let alone
how the limiting form of the trace formula might be studied. In hindsight, in attempting to
lay out a path beyond endoscopy, Langlands had uncovered numerous problems that have
to be solved, each one difficult in its own right [24]. It is perhaps because of these difficul-
ties that other new directions have unfolded in the last decade under the banner of ‘Beyond
Endoscopy,’ divergent from Langlands’ vision of using the Arthur-Selberg trace formula;
these exciting new directions make points of contact with other important problems in the
theory of automorphic forms and raise interesting questions in arithmetic geometry. That
being said, in this paper we shall stay within the ambit of the aforementioned works, intro-
ducing a new approach while still falling in line with Arthur’s interpretation of Langlands’
proposal [13].

InArthur’s formulation, two further refinements should follow the stabilization of the trace
formula. The first refinement, now called the r -trace formula, comes in the form of a trace
formula whose spectral terms are weighted by factors related to the poles of automorphic
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A weighted invariant trace formula

L-functions L(s, π, r). Implicit in this is an extension of the trace formula to a class of
noncompactly supported test functions that we denote by C ◦(G(A)1), where A = AF ,
defined in (2.2) and preceding. This latter extension was established by Finis, Lapid, and
Müller [16–18] for the coarse expansion of the noninvariant form J , as a distribution on the
group G(A)1,

J ( ḟ ) =
∑

χ∈X
Jχ ( ḟ ) =

∑

o∈O
Jo( ḟ ), ḟ ∈ C ◦(G(A)1).

Among such test functions is a distinguished family of functions, now referred to as basic
functions, which can be used to weight the cuspidal spectral terms with the associated auto-
morphic L-functions. As the r -trace formula should be weighted by coefficients that are
nonzero if and only if L(s, π, r) has a pole at s = 1 (such as the residue), we can view the
incorporation of the basic function as a step towards the r -trace formula. We note that up
until now, basic functions have been little studied in the context of the Arthur-Selberg trace
formula. While the geometry of basic functions have been the subject of intense study, the
behaviour of their orbital integrals is less understood. Of course, the coarse expansion of
J ( ḟ ) is only the beginning of the story; the objective of this paper is to arrive at an invariant
trace formula that incorporates the use of the basic function, and also to lay the groundwork
for its stabilization in [31].

Crucially, our approach does not presume the need to remove the nontempered contribu-
tion to the trace formula, which was the core difficulty encountered in previous attempts to
carry out Langlands’ proposal with the Arthur-Selberg trace formula. With this modest but
significant change in strategy, rather than having to remove the nontempered contribution and
then take a limiting form of the trace formula, we are able to take an unconditional step for-
ward by obtaining expansions for the trace formula involving automorphic L-functions. We
give this intermediate distribution the uninspired name of aweighted trace formula. This will
lead us to the problem of obtaining themeromorphic continuation of the resulting distribution
to the point s = 1. Note that even L-functions of nontempered automorphic representations
are expected to have meromorphic continuation, so a priori this is not an obstacle as it was in
the limit of trace formulas. The latter method required that all the relevant L-functions have
analytic continuation to the right-half plane Re(s) > 1, so the nontempered contribution had
to be removed first. Incidentally, this was the original motivation for considering relative
trace formulas instead, but that perspective leads us down a significantly different path.

Recall that our goal is to establish an r -trace formula. The results of this paper together
with the sequel [31] represent progress in that direction. Taken together, we shall have in
our hands a stable distribution that incorporates the data of the basic function, and therefore
automorphic L-functions, from which point the task is to prove meromorphic continuation.
With that, the residual distribution at s = 1 will be an r -stable trace formula. One benefit of
these unconditional steps forward is that they place us on solid ground, and gradually yield
insight into how this continuation might be obtained. Indeed, it seems at the moment that we
shall find certain overlap with recent work of Hoffmann on prehomogenous vector spaces
and Ngô on Hankel transforms, both in the context of the geometric side of the trace formula.
The situation there might not yet be clear, but more and new tools appear to be available
there, which were not in earlier works. As Arthur’s pioneering work on the trace formula
has taught us, we can expect the path towards the r -trace formula and its later refinement,
the primitive trace formula, to be a long and arduous one. The attendant problems will not
be solved in a single work, but piece by piece. It is with this long view of the old road to
functoriality that we undertake this task.
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1.2 Main results

In this paper, we make use of basic functions to establish a weighted invariant trace formula,
whose cuspidal spectral terms are weighted by automorphic L-functions. Fixing a central
induced torus Z of G with an automorphic character ζ of Z(F)\Z(A), we let V be a large
finite set of valuations of F outside of which G and ζ are unramified. Let GV = G(FV ) =∏

v∈V G(Fv) and GV = G(AV ) = ∏′
v /∈V G(Fv), where the latter is the usual restricted

direct product. The main technical difficulty that we encounter is that Arthur’s stabilization
of the trace formula is valid only for test functions of the form

ḟ = f × uV

as in (2.6), where f is a ζ−1-equivariant function in C∞
c (G(FV )) and uV is the unit element

of the ζ−1-equivariant Hecke algebraH (G, V , ζ ) of G(AV ) as in (2.1). In order to properly
weight the trace formula, we require instead test functions of the form

f rs = f × bV

where f is a ζ−1-equivariant function in C ◦(G(FV )) as defined in Sect. 2.1, and bV is the
basic function which, as we recall in Sect. 2, does not have compact support. It depends on
an irreducible complex finite-dimensional representation r of the L-group LG of G, and a
complex number s with Re(s) large enough, which we shall assume to be fixed throughout
this paper. Note that for our applications, f can in fact taken to be compactly-supported.

In any case, we have to take the coarse expansion of the noninvariant linear form J as
our starting point, and begin the process of refinement there. More precisely, we shall first
establish a refined expansion for the noninvariant linear form J applied to f rs , namely, for
Re(s) large enough, we have

J ( f rs ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aMr ,s(π)JM (π, f )dπ

=
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )JM (γ, f )

which, taking bV to be fixed, we may view as a linear form on C ◦(G, V , ζ ). The local distri-
butions JM (π, f ) and JM (γ, f ) occurring on either side are the usual weighted characters
and weighted orbital integrals appearing in Arthur’s trace formula. The global coefficients
aMr ,s(π) and aMr ,s(γ ), on the other hand, are nowweighted forms of the coefficients aM (π) and
aM (γ ) that occur in the usual trace formula, where most importantly the spectral coefficient
aMr ,s(π) now carries the data of the unramified automorphic L-function LV (s, π, r). Part of
the refined spectral expansion was already obtained in [18], so the bulk of the work falls on
refining the geometric expansion. To do so, we revisit Arthur’s original arguments, modifying
themwhere the support of the test function f rs is relevant. As in Arthur’s work, the core argu-
ment relies on a study of the unipotent distributions, where the data of the basic function is
abstractly incorporated into the geometric coefficient aMr ,s(γ ) by an invariance argument. And
as with the case of aM (γ ), our new coefficients aMr ,s(γ ) are also only explicit for semisimple
γ . The explicit determination of these coefficients for general γ , we note, is the goal of a
recent program of Hoffmann that relates them to zeta functions of prehomogeneous vector
spaces. We shall return to this point in a later paper.

Having established the refined expansion of J ( f rs ), we then proceed to make this form
invariant. Let C ◦(G, V , ζ ) be the space of ζ−1-equivariant functions in C ◦(G(FV )) (see
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Sect. 2.1 for the precise definition). The main result of this paper is an invariant trace formula
that is valid for the test functions f × bV , which we refer to here as the weighted invariant
trace formula.

Theorem 1 Let s ∈ C with Re(s) large enough. The linear form

I rs ( f ) = I ( f rs ), f ∈ C ◦(G, V , ζ )

has the parallel expansions

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aMr ,s(π)IM (π, f )dπ (1.1)

=
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )IM (γ, f ).

The required identity will follow from the geometric and spectral expansions established in
Theorems 4.6 and 5.2, respectively. They are deduced inductively from the fine expansion
of J ( f rs ) above in a rather straightforward manner. To prove the theorem, we first extend the
results of [16–18] to the invariant linear form I , applied to the simpler test functions f ×uV .
This will take us part of the way in refining the coarse geometric expansion of J ( ḟ ). That is,
we have the following (stated as Theorem 3.5).

Theorem 2 The invariant linear form I onH (G, V , ζ ) extends to a continuous linear form
on C ◦(G, V , ζ ). It has the spectral and geometric expansions given by

I ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (π)IM (π, f )dπ

=
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )IM (γ, f ).

The rest of the proof of Theorem 1, which is the most difficult part, rests on transforming the
global coefficients. The key difference here is that the global coefficients are now replaced
with the new coefficients that depend on the basic function b, while the local distributions
remain unchanged. In place of the unit element uV , we are forced to work with the basic
function bV , a nontrivial and noncompactly supported function, at almost all places, thus
complicating the necessary arguments. The core of the analysis of the geometric side lies
in the unipotent contribution, where we apply a variation of Arthur’s linear independence
argument, whereby the dependence on bV is subsumed into the global geometric coefficient
aMr ,s(γ ), leaving the usual weighted orbital integrals of f at the finite places V . In particular,
just as the automorphic L-function is a global object, we see that the role of the basic function
in the trace formula is also global in nature, despite the fact that recent studies have focused
on the local theory.

1.3 Outline

We conclude this introduction with a brief outline of the contents of the paper. In Sect. 2, we
introduce the necessary definitions and notation, and recall the properties of basic functions
that we shall require. In Sect. 3 we prove the continuity of the trace formula for both the
refined noninvariant trace formula and the invariant trace formula for ḟ = f × uV , which is
a straightforward exercise in the definitions. Then in Sects. 4 and 5 we undertake the more
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serious work of establishing the geometric and spectral expansions of I rs ( f ) respectively in
(1.1) using the function f rs = f × bV , obtaining the new weighted global coefficients on
each side, proving Theorem 1.

2 Basic notions

2.1 Definitions

Let G be a connected reductive group over a field F of characteristic zero. We denote by
L (M) to be the collection of Levi subgroups ofG containingM ,L 0(M) the subset of proper
Levi subgroups inL (M), andP(M) the collection of parabolic subgroups of G containing
M . Let F be a global field, and V a finite set of places of F . We have the real vector space
aM = Hom(X(M)F , R), and the set

aM,V = {HM (m) : m ∈ M(FV )}
is a subgroup of aM , and FV = ∏

v∈V Fv . It is equal to aM if V contains an archimedean
place, and is a lattice in aM otherwise. The additive character group a∗

M,V = a∗
M\a∨

M,V equals
a∗
M in the first case, and is a compact quotient of a∗

M in the second. Let AM be the maximal
split torus of a Levi subgroup M of G. We then identify the Weyl group of (G, AM ) with the
quotient of the normaliser of M by M , thus

WG(M) = NormG(M)/M .

If M0 is a minimal Levi subgroup of G, which we shall assume to be fixed, and denoteL =
L (M0),P = P(M0),L

0 = L 0(M0), and WG
0 = WG(M0). Also write P0 = M0N0 for

the minimal parabolic subgroup containing M0.
Let Z be a central induced torus of G over F . We define the pair (Z , ζ ) where ζ is a

character of Z(F) if F is local, and an automorphic character of Z(A) if F is global. Given
a finite set of places V , we write G(Fv) = G(FV ) and write ζV for the restriction of ζ to
the subgroup Z(FV ) = Z(FV ) of Z(A). We then write G(FV )Z = G(FV )Z for the set of
x ∈ G(FV ) such that HG(x) lies in the image of the canonical map from aZ to aG . We shall
assume that V contains the places over which G and ζ are ramified.

The stable trace formula requires that we work in fact with G a K -group as defined in
[10, §2]. Over Fv nonarchimedean, it is again a connected reductive group, but over Fv

archimedean, it can be a finite union of connected reductive groups. Thus

G =
∐

α

Gα α ∈ π0(G)

is a variety whose connected components Gα are reductive groups over F , equipped with an
equivalence class of frames

(ψ, u) = {(ψαβ, uαβ) : α, β ∈ π0(G)}
satisfying natural compatibility conditions. Here ψαβ : Gα → Gβ in an isomorphism over
F̄ , and uαβ is a locally constant function from � = Gal(F̄/F) to the simply connected
cover Gα,sc of the derived group of Gα . Any connected reductive group is a component of
an K -group that is unique up to weak isomorphism. It comes with a local product structure

G(FV ) =
∏

v∈V

∐

αv∈π0(G(Fv))

Gαv (Fv).
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The introduction of K -groups is to steamline certain aspects of endoscopy over archimedean
local fields, and the definitions for connected groups will extend to K -groups in a natural
way. For example, a central induced torus Z of a K -group G will have central embeddings
Z

∼→ Zα ⊂ Z(Gα) for each α, and ζ determines a character ζα for each α. We shall call a
K -group G quasisplit if it has a connected component that is quasisplit over F .

Let C (G(AF )1) be the space of Harish-Chandra Schwartz functions on G(A)1, and
C (G(AF )Z , ζ ) the ζ−1-equivariant functions onG(A)Z , meaning that f (zx) = ζ−1(z) f (x)
for all z ∈ Z(A) [22, §9]. We write C (G, V , ζ ) = C (G(FV )Z , ζV ) for the space of
ζ−1-equivariant Schwartz functions on G(FV )Z , which contains the ζ−1-equivariant Hecke
algebra

H (G, V , ζ ) = H (G(FV )Z , ζV ) (2.1)

defined with respect to a choice of maximal compact subgroup K∞ of G(FV∞), where
V∞ denotes the archimedean places in V . If F is a local field, we write C (G(Fv), ζv) and
H (G(Fv), ζv) for the corresponding spaces. There are natural decompositions

C (G(Fv), ζv) =
⊕

αv∈π0(G(Fv))

C (Gαv (Fv), ζαv )

and

C (G(FV ), ζV ) =
⊗

v∈V
C (G(Fv), ζv),

and similarly for the Hecke algebra. We will also denote by IC (G(FV )Z , ζV ) and
SC (G(FV )Z , ζV ) the spaces of orbital integrals and stable orbital integrals of functions
in C (G(FV )Z , ζV ) respectively.

We also recall the space of functions constructed in [18, §3] extending the usual space of
test functions C∞

c (G(AF )1) = C∞
c (G(A)1). For any compact open subgroup K of G(A f )

the space G(A)1/K is a differentiable manifold. Any element X ∈ U(g1), the universal
enveloping algebra of the Lie algebra g1 of G(R)1 = G(R) ∩ G(A)1 defines a left-invariant
differentiable operator f ∗ X on G(A)1/K . Let C ◦(G(AF ), K ) be the space of smooth,
right-K -invariant functions on G(A)1 which belong to L1(G(A)1) together with all their
derivatives. It is a Fréchet space under the family of seminorms

|| f ∗ X ||L1(G(A)1), X ∈ U(g1).

For any nonnegative integer k, we define the norms

|| f ||G,k =
∑

i

||Xi ∗ f ||L1(G(A)1),

where Xi ranges over a fixed basis of U(g)≤k with respect to the standard filtration. Denote
by C ◦(G(AF )1) the union of C ◦(G(AF ), K ) as K varies over open compact subgroups of
G(A f )

1, and endow C ◦(G(AF )1) with the inductive limit topology.
As with the Hecke algebra, we shall also define the corresponding spaces C ◦(G(AF )Z , ζ )

and C ◦(G, V , ζ ) obtained from the spaces of ζ−1-equivariant functions on G(A)Z and
G(FV )Z respectively, in a manner parallel to C ◦(G(AF )1). The resulting spaces are natural
subspaces of the Schwartz spacesC (G(AF )1),C (G(AF )Z , ζ ), andC (G, V , ζ ) respectively.
In particular, we shall apply results of Arthur for distributions on C (G(AF )1) and so on to
the smaller spaces C ◦(G(AF )1) and so on. Moreover, we will again take G to be a K -group,

123

85



T. A. Wong

so that

C ◦(G(AF )1) =
⊕

α∈π0(G)

C ◦(Gα(AF )) (2.2)

and similarly with the spaces C ◦(G(AF )Z , ζ ) and C ◦(G, V , ζ ).

2.2 Basic functions and local L-factors

For the moment let F be a nonarchimedean local field, and G a reductive group defined over
F . Suppose moreover that G is unramified over F , meaning that G admits a reductive model
over OF . Recall that we have an exact sequence

0 → IF → �F → �k → 0

where IF is the inertia group of �F , and k is the residue field of F with Frobenius element
denoted by σF . If G is quasisplit over F , it follows then that G is unramified if and only if
the restriction of the homomorphism �F → Out(G ⊗F F̄) to IF is trivial. In particular, the
action of �F on G∨ factors through �k , thus we may take LG to be G∨

� 〈σF 〉.
An irreducible smooth representation of G(F) is unramified if it has a nonzero vector

under G(OF ). Then the isomorphism classes of unramified representations π of G(F) are in
canonical bijection with the conjugacy classes α of G∨ in the connected component of LG,
σFG∨ ⊂ G∨

� 〈σF 〉. Fix a maximal compact subgroup K of G(F). There is a twisted form
of the Satake isomorphism

Sat : H (G(F), K ) → C[σFG
∨]ad(G∨) (2.3)

from the unramified Hecke algebra of G(F) to the ring of regular functions on σFG∨ that
are invariant under the adjoint action of G∨. The bijection π → απ is characterized by the
requirement that tr(π( f )) = Sat( f )(απ ) for any unramified irreducible representation π .

Given an irreducible complex finite-dimensional representation r : LG → GL(V ), we
have the local L-factor of π given by

L(s, π, r) = det(1 − r(απ )q−s)−1

where q is the cardinality of the residue field of F . We may expand it as a formal series

∞∑

n=0

tr((Symnr)(απ ))q−ns

converging absolutely for Re(s) large enough, where the abscissa of convergence depends on
the eigenvalues of απ . Viewing det(1− r(α)q−s)−1 as a rational function on G∨, we would
like to invert the Satake isomorphism to obtain a function brs such that

tr(π(brs )) = L(s, π, r).

Using the formal series expansion above, it is the same as asking for a family of functions
brn in H (G(AF ), K ) such that

brs =
∞∑

n=0

brnq
−ns, (2.4)

and tr(π(brn)) = tr(Symn(απ )).
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The basic function brs is expected to be a distinguished vector in a certain Schwartz space
of r -functions called the r -Schwartz space, defined as the global sections with compact
support of a certain sheaf on a reductive monoid Mr (F) containing G(F) as an open subset
[28]. Following Ngô, we may assume that G is equipped with a determinant homomorphism
ν : G → Gm such that composition r ◦ ν acts by scalar multiplication on the vector space V
of r , giving an exact sequence

1 → G0 → G
ν→ Gm → 1

where G0 is a semisimple group. This is not a restrictive condition, seeing as we may replace
G by G × Gm if necessary. Under this assumption, the sum (2.4) is locally finite, and its
support can be described explicitly by the weights of r . Basic functions have been the subject
of much study of late, but as we shall see, our interest will lie not in the functions themselves
but their orbital integrals.

For our purposes, it will suffice to know that brs belongs to the spherical subspace
Hac(G(F), K ) of the almost-compact unramified Hecke space Hac(G(F)) [5, §1]. Let T
be a maximal split torus of G over F . Fix a Borel pair (B, T ) of G and consider the Cartan
decomposition G(F) = KT (F)+K using the anti-dominant Weyl chamber X∗(T )− in the
cocharacter lattice X∗(T ), where T (F)+ is the image of X∗(T )− under the map μ �→ μ(
)

with 
 a uniformizer of F . The homomorphism ν induces a map X∗(T ) → Z. In this case,
Li has given an explicit description of the basic function

brs =
∑

μ∈X∗(T )−
cμ(q)δ

1
2
B−(μ(
))1Kμ(
)K q

−ν(μ)s (2.5)

where c(μ) is polynomial in q−1, and is a nonnegative integer given explicitly in terms of
Kazhdan-Lusztig polynomials and symmetric powers of r .

Lemma 2.1 The basic function brs belongs to Hac(G(F), K ) for Re(s) large enough.

Proof The case where G is split is due to [25, §3]. If G is quasisplit, we simply note that
the Kato-Lusztig formula remains valid by [21, Theorem 7.10] and [15, Theorem 1.9.1],
and applying the Satake inversion (2.3) for quasisplit G, it follows that the argument of [25,
Proposition 3.4] and the preceding discussion can be applied. ��

We shall identify brs with its ζ−1-equivariant analogue by replacing the characteristic
functions 1Kμ(
)K in (2.5) with their ζ−1-equivariant analogues. It is also straightforward
to extend the basic function to K -groups,

brs =
⊕

α∈π0(G)

brα,s

where brα,s is the basic function defined by the component group Gα , thereby placing us in
proper generality.

2.3 Weighting the trace formula

We now return to F being a global field. Enlarging V if necessary, we shall assume that G, ζ ,
and r are unramified outside of V . Recall the set of families C(G(AV ), ζ V ) of semisimple
conjugacy classes in LG(Fv), for v /∈ V in [11, p. 202]. We shall in fact consider equiva-
lence classes of families cV , where two families c and c′ in C(G(AV ), ζ V ) are identified if
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cv = c′
v for almost all v /∈ V . Then given any c in C(G(AV ), ζ V ) and finite-dimensional

representation r of LG, the Euler product

LV (s, c, r) =
∏

v /∈V
det(1 − r(cv))q

−s
v )−1

converges to an analytic function in s in some right-half plane. The local components cv deter-
mine unramified irreducible representations πv = πv(c) of G(Fv), and hence an unramified
representation πV (c) = ⊗v /∈Vπv(c) of G(AV ). Then if c is automorphic in the sense that
there exists an irreducible representation πV ofG(FV ) such that π = πV ⊗πV (c) is an auto-
morphic representation of G(A), then a conjecture of Langlands asserts that LV (s, c, r) has
meromorphic continuation [23].We can then identify the unramified automorphic L-function
as

LV (s, c, r) = LV (s, π, r).

If π is tempered, the set of coefficients tr(r(c(πv)))
k for v /∈ V and k ≥ 1 is bounded; if

moreover π is cuspidal, one expects the L-function to have meromorphic continuation to the
complex plane, with at most a simple pole at s = 1.

We can now properly describe the test functions that we shall use. Let Vram(G, ζ ) be the
finite set of valuations of F outside of which G and ζ are unramified. Fix a subset V of S
containing Vram(G, ζ ). Given f in C ◦(G, V , ζ ), we shall form the test function

ḟ rs = f × bV (2.6)

in C ◦(G(AF )Z , ζ ), where

bV = bVr ,s =
∏

v /∈V
brv,s .

so that

bVG(c) = bVG(πV (c)) = LV (s, c, r).

More generally, for nonarchimedean valuations v in V , we may choose fv to be a ζ−1-
equivariant function in L1(G(Fv)) and let f∞ be a smooth ζ−1-equivariant function on
G(F∞) where F∞ = ∏

v|∞ Fv such that

|| f∞ ∗ X ||L1(G(F∞)) < ∞, X ∈ U(g1).

It follows then that ḟ rs belongs to C ◦(G(AF )Z , ζ ) for Re(s) large enough.

3 Continuity of the invariant trace formula

3.1 The coarse expansion

Let now F be a number field, and let H (G(AF )1) be the Hecke algebra on G(A)1. We
first recall the noninvariant linear form J ( f ) on H (G, V , ζ ) established in [11, §2] from
the original linear form on H (G(AF )1). It is a continuous, Z(F)-invariant linear form on
C ◦(G(AF )1) consisting of two different expansions

J ( ḟ 1) =
∑

o∈O
Jo( ḟ

1) =
∑

χ∈X
Jχ ( ḟ 1)
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for any ḟ 1 ∈ H (G(AF )1), with both sums converging absolutely. Here O is the set of
O-equivalence classes of element in G(F), whereby two elements are equivalent if their
semisimple parts are G(F)-conjugate, and X is the set of equivalence classes of cuspidal
automorphic data χ = {(P, σ )}, where P is a standard parabolic subgroup of G with Levi
subgroup MP and σ is an irreducible representation of MP (A)1, up to a certain equivalence
relation as described in [2]. There is a natural projection

ḟ 1 → ḟ ζ

from C ◦(G(AF )1) onto the space C ◦(G(AF )Z , ζ ) = C ◦(G(A)Z , ζ ) given by

ḟ ζ (x) =
∫

Z(A)x
ḟ 1(zx)ζ(zx)dz (3.1)

where x ∈ G(A)Z and Z(A)x is the set of z ∈ Z(A) such that HG(zx) = 0. We can then
define a linear form on C ◦(G(AF )Z , ζ ) by

J ( ḟ ζ ) = J ζ ( ḟ 1) =
∫

Z(F)\Z(A)1
J ( ḟ 1z )ζ(z)dz (3.2)

where ḟ 1z denotes the translation of ḟ 1 by a point z ∈ Z(A)1, and the integral depends only
on the image ḟ ζ of ḟ 1 in C ◦(G(AF )Z , ζ ). Also, given a function f ∈ C ◦(G, V , ζ ), we can
also define a linear form on C ◦(G, V , ζ ) by setting

Jrs ( f ) = J ( ḟ rs )

where ḟ rs = f × bV . We then have the noninvariant linear form on C ◦(G, V , ζ ) given by

Jrs ( f ) = J ( ḟ rs ) = J ζ ( ḟ 1)

where ḟ 1 is any function in C ◦(G(AF )1) whose projection ḟ ζ onto C ◦(G(AF )Z , ζ ) equals
ḟ rs = f × bV .
We next define an invariant linear form. I rs on C ◦(G, V , ζ ) inductively by setting

I rs ( f ) = Jrs ( f ) −
∑

M∈L 0

|WM
0 ||WG

0 |−1 Î r ,Ms (φM ( f )) (3.3)

for certain maps
φM : Hac(G, V , ζ ) → Iac(M, V , ζ ) (3.4)

constructed from normalized weighted characters [30, (2.2)] (see also [9]). To stabilize the
invariant form I rs , we must first express the geometric and spectral expansions in terms of
local distributions.

3.2 The refined expansion

For the remainder of this section, we shall work more generally with the noninvariant linear
form on H (G, V , ζ ) given by

J ( f ) = J ( ḟ ) = J ζ ( ḟ 1)

where ḟ 1 is any function inH (G(AF )1) whose projection ḟ ζ ontoH (G(AF )Z , ζ ) equals
ḟ = f × uV . It follows from the preceding discussion that J ( f ) has the parallel expansions

J ( f ) =
∑

o∈O
Jo( f ) =

∑

χ∈X
Jχ ( f )
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which we would like extend to a larger family of noncompactly supported test functions. The
following lemma extends the coarse expansion to a linear form on the space C ◦(G, V , ζ ).

Lemma 3.1 The linear form J on H (G, V , ζ ) extends to a continuous linear form on
C ◦(G, V , ζ ).

Proof We follow the passage of J from H (G(AF )1) to H (G, V , ζ ). There is a natural
projection

ḟ 1 → ḟ ζ

from C ◦(G(AF )1) to C ◦(G(AF )Z , ζ ) given by the formula (3.1). Given the linear form J
on C ◦(G(AF )1), we define a linear form on C ◦(G(AF )Z , ζ ) by

J ( ḟ ζ ) = J ζ ( ḟ 1)

where the right-hand side is defined as in (3.2).
Now let f be a function in C ◦(G, V , ζ ). Given any function ḟ in C ◦(G(AF )1) whose

projection ḟ ζ onto C ◦(G(AF )Z , ζ ) equals ḟ = f × uV , we have the noninvariant linear
form on C ◦(G, V , ζ ) given by

J ( f ) = J ( ḟ ) = J ζ ( ḟ 1)

as before, with both spectral and geometric sides converging absolutely. By the construction
of the linear forms on each space, it follows that the form J ( f ) on C ◦(G, V , ζ ) is the
continuous extension of the corresponding linear form on H (G, V , ζ ). ��

In order to pass to the invariant trace formula, we first have to refine the expansion of the
noninvariant trace formula. In particular, we need to express both sides in terms of the basic
distributions JM (γ, f ) and JM (π, f ). We first refine the geometric side. We refer to [11,
(2.8)] for the construction of the global geometric coefficient aM (γ ).

Proposition 3.2 Let f ∈ C ◦(G, V , ζ ). Then the linear form J ( f ) has a geometric expansion
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )JM (γ, f ). (3.5)

Proof The linear form J ( f ) obtained in Lemma 3.1 has the coarse geometric expansion

J ( f ) =
∑

o∈O
Jo( f )

with the sums converging absolutely. Let G0 be the connected component of the identity in
G, andGc the identity component of the centralizer of a semisimple element c inG(F). Then
the equivalence class o consists of elements in G(F) whose semisimple Jordan components
belong in the same G0(F) orbit. There is another equivalence relation, which depends on a
finite set of places S, which we shall assume contains V . The (G, S)-equivalence classes are
defined to be the sets

G(F) ∩ (σU )G
0(F) = {g−1σug : g ∈ G0(F), u ∈ U ∩ G0(F)}

where σ is a semisimple element of G0(F), andU is a unipotent conjugacy class in Gσ (F).
Any class o ∈ O breaks up into a finite set (o)G,S of (G, S)-equivalence classes.
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Let ḟ 1 be any function in C ◦(G(AF )1)whose projection ḟ ζ onto C ◦(G(AF )Z , ζ ) equals
the function ḟ = f × uV . Suppose moreover that

ḟ 1 = ḟ 1S × uS,1, ḟ 1S ∈ C ◦(G(FS)
1).

for S ⊃ V large enough. The space C ◦(G(FS)
1) naturally embeds in C ◦(G(AF )1), while on

the other hand any function in C ◦(G(AF )1) belongs to C ◦(G(FS)
1) for S sufficiently large.

It follows from [4, Theorem 8.1] that there is an expansion

Jo( ḟ
1) =

∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(F)∩o)M,S

aM (S, γ̇ )JM (γ̇ , ḟ 1S ) (3.6)

for any o ∈ O , ḟ 1S ∈ C∞
c (G(FS)

1), and S containing a finite set So of valuations of F
including the archimedean places. Here JM (γ̇ , ḟ 1S ) is the weighted orbital integral of ḟ 1S
over the conjugacy class of γ̇ in G(FS), and is a tempered distribution by [8]. The derivation
of this formula relies on a combinatorial argument and descent to unipotent weighted orbital
integrals, and in particular remains valid so long as the distribution Jo( ḟ 1) is absolutely
convergent, and thus for ḟ 1 belonging to the larger space C ◦(G(AF )1). (We discuss the
unipotent terms in greater detail in [30, §2].)

In order to sum over the classes o ∈ O , we have to modify the proof of [4, Theorem 9.2]
and appeal to [17, Theorem 7.1] instead for the convergence of the sum since ḟ 1 no longer
has compact support. Let

ad(G0(A))o = {x−1γ x : x ∈ G0(A), γ ∈ o},
and write O� for the set of classes o such that ad(G0(A))o meets the support of ḟ 1S . Since
Jo annihilates any function which vanishes on ad(G0(A))o, we obtain therefore

∑

o∈O
Jo( ḟ

1) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

o∈O�

∑

γ̇∈(M(F)∩o)M,S

aM (S, γ̇ )JM (γ̇ , ḟ 1S ).

Now suppose that γ̇ is any element of (M(F))F,S . Then γ̇ is contained in a unique class
o ∈ O , and it follows from [7, Theorem 5.2] that JM (γ̇ , ḟ 1S ) vanishes if ḟ 1S vanishes on
ad(G0(A))o, hence JM (γ̇ , ḟ 1S ) vanishes unless o belongs to O�. From this we have that

J ( ḟ 1) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(FS))F,S

aM (S, γ̇ )JM (γ̇ , ḟ 1S ).

The rest of the argument is similar to the proof of [11, Proposition 2.2], so we can be brief.
For a fixed set of valuations S, the linear form J ( ḟ 1) is K S-invariant, we may then write

J ( f ) =
∫

Z(F)Z(oS)\Z(A)1
J ( ḟ 1z )ζ(z)dz

as

∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(F))M,S

aM (S, γ̇ )

∫

ZS,o\Z1
S

JM (zγ̇ , ḟ 1S )ζ(z)dz

where

ZS,o = Z(F) ∩ Z(FS)Z(oS)
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and oS = ∏
v /∈S ov , since Z(A) = Z(F)Z(FS)Z(oS) and JM (γ̇ , ḟ 1S,z) = JM (zγ̇ , ḟ 1S ) for any

z ∈ Z(FS). Then using the definition of the coefficient aM (γ ), it follows that the geometric
expansion of J ( f ) can be written as

∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )JM (γ, f )

as required. ��
Remark 3.3 We note that we have not obtained the absolute convergence of this refined
geometric expansion. For semisimple elements γ , this follows from [16, Theorem 1], which
proves the absolute convergence of the semisimple contribution to (3.6), and by the argument
above one deduces the absolute convergence of the semisimple contribution to the refined
geometric expansion (3.5). As the authors point out, the absolute convergence of the unipotent
contribution would require a uniform bound on the global geometric coefficients, which at
present are known only for GL(n) [26, Theorem 1.1]. Fortunately, this is not needed for the
applications that we are interested in, which is the comparison of trace formulae.

We next refine the spectral expansion.

Proposition 3.4 Let f ∈ C ◦(G, V , ζ ). Then the linear form J ( f ) has a spectral expansion

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (π)JM (π, f )dπ, (3.7)

with the integrals converging absolutely.

Proof The linear form J ( f ) obtained in Lemma 3.1 has the fine spectral expansion

J ( f ) =
∑

χ∈X
Jχ ( f )

which converges absolutely, and where Jχ ( f ) is equal to the sum over M ∈ L of the product
of

|WM
0 ||WG

0 |−1| det(s − 1)aGM
|−1

with
∑

π∈�unit(M,ζ )

∑

L∈L (M)

∑

s∈WL (M)reg

∫

ia∗
L/ia∗

G

tr(JL(P, λ)JP (s, 0)IP,χ,π (λ, f ))dλ,

as stated in [2, Theorem 8.2]. Here

JL(P, λ) = lim
�→0

∑

Q∈P (M)

JQ(P, λ,�)θQ(�)−1,

for � ∈ ia∗
M near to 0, is the limit of (G, M)-families

JQ(P, λ,�) = JP|Q(λ)−1 JQ|P (λ + �)

and JQ|P (λ) is the global unnormalized operator intertwining the actions of the induced
representations IP (πλ) and IQ(πλ). Also

JP (s, 0) = JP|P (s, πλ+�).
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It is a consequence of [18, Corollary 1] that the sums are finite and the integrals are absolutely
convergent with respect to the trace norm, and define distributions on C ◦(G(AF )1). We note
that the absolute convergence is proved for an expansion slightly different from the above,
but is shown to be equivalent in [18, §5.3]. Importantly, the sum over π does not occur in the
latter, but the necessary estimate for this sum, which is not necessarily finite, is contained in
[18, §5.1]. (See also [29, Theorem 7.2] for the twisted case.)

Beginning with

J ( f ) = J ζ ( ḟ 1) =
∫

Z(F)\Z(A)1
J ( ḟ 1z )ζ(z)dz,

where ḟ 1 is any function in C ◦(G(AF )1) whose projection onto C ◦(G(AF )Z , ζ ) equals
ḟ = f × uV , it follows from the argument of [6, Theorem 4.4] and the definition of aGdisc(π̇)

that J ( f ) has an expansion
∫

Z(F)\Z(A)1

∑

M∈L
|WM

0 ||WG
0 |−1

∑

π̇∈�disc(M)

∫

ia∗
M,Z \ia∗

G,Z

aMdisc(π̇λ)JM (π̇λ, ḟ 1z )ζ(z)dλdz

where

JM (π̇λ, ḟ 1z ) = tr(JM (π̇λ, P)IP (π̇λ, ḟ 1z ))

is the global unnormalized weighted character on C ◦(G(AF )1). It is a consequence of
[18, §5.1] that the inner integral converges absolutely. On the other hand, the integral over
Z(F)\Z(A)1 annihilates the contribution of π̇ coming from the complement of �disc(M, ζ )

in �disc(M), hence J ( f ) equals

∑

M∈L
|WM

0 ||WG
0 |−1

∑

π̇∈�disc(M,ζ )

∫

ia∗
M,Z /ia∗

G,Z

aMdisc(π̇λ)JM (π̇λ, ḟ )dλ. (3.8)

Then arguing as in [11, Proposition 3.3], it follows from the definition of aM (π) that the
spectral expansion (3.8) equals

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (π)JM (π, f )dπ

where

JM (πλ, f ) = tr(MM (πλ, P)IP (πλ, f )), L ∈ L (M), P ∈ P(L)

is the local normalized weighted character. It is related to the global unnormalized character
by the formula

JM (π̇λ, ḟ ) =
∑

L∈L (M)

r LM (cλ)JL(π L
λ , f ),

and hence is defined for f belonging to C ◦(G, V , ζ ). Also, the operatorJQ(�, π̇λ, P) is a
scalar multiple of MQ(�, πλ, P), that is,

JQ(�, π̇λ, P) = rQ(�, cλ, P)μQ(�, cλ, P)MQ(�, πλ, P),

where the coefficient rQ(�, cλ, P) is defined in [9, §2], and it follows then that the integral
over �(M, V , ζ ) converges absolutely. ��
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3.3 The invariant expansion

Given the noninvariant linear form J onH (G, V , ζ ), we have already discussed the invariant
linear form I also on H (G, V , ζ ) obtained by setting inductively

I ( f ) = J ( f ) −
∑

M �=G

|WM
0 ||WG

0 |−1 ÎM (φM ( f )) (3.9)

for the maps φM described in (3.4).

Theorem 3.5 The invariant linear form I on H (G, V , ζ ) extends to a continuous linear
form on C ◦(G, V , ζ ). It has the spectral and geometric expansions given by

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (π)IM (π, f )dπ

=
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )IM (γ, f ).

Proof We recall that for any f̃ ∈ C ◦(G(FV ), ζV ), the function φM ( f̃ ) is defined to be the
function on�temp(M(FV )Z , ζV )whose value at π̃ is the tempered distribution JM (π̃, f̃ ) [8,
§2], and

φM ( f , π) =
∫

ia∗
M,Z

φM ( f̃ , π̃)dλ

where f and π are the restrictions of f̃ and π̃ to G(FV )Z and M(FV )Z respectively. We also
define

φM ( f̃ , π̃ , X) = JM ( f̃ , π̃ , X), X ∈ aM,V

and φM ( f , π, X) using

JM (π, X , f ) =
∫

ia∗
M

JM (πλ, f )e−λ(X)dλ

if JM (πλ, f ) is regular for λ ∈ ia∗
M . In this case, it follows from [9, Lemma 3.1] that φM

maps C ◦(G(FV )Z , ζV ) continuously to IC ◦(G(FV )Z , ζV ). For general π in �(M, V , ζ ), it
follows from the proof of Proposition 3.4 that JM (π, f ) is well-defined for f ∈ C ◦(G, V , ζ ),
and moreover the integral

JM ( f̃ , π̃ , X) =
∫

ia∗
M,V /ia∗

G,V

JM (π̃λ, f̃ Z )e−λ(X)dλ

converges absolutely. Here Z is the image in aG,V of X .
On the other hand, the weighted orbital integrals JM (γ, f ) are tempered distributions on

C ◦(G, V , ζ ) as a consequence of [8, Theorem 4.1]. Altogether, it follows that the invariant
distributions defined inductively by

IM (π, f ) = JM (π, f ) −
∑

L∈L 0(M)

Î LM (π, φL( f ))

and

IM (γ, f ) = JM (γ, f ) −
∑

L∈L 0(M)

Î LM (γ, φL ( f ))
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on either side of the invariant trace formula hold for functions f in C ◦(G, V , ζ ).
Beginning with the linear form J on C ◦(G, V , ζ ), we define the invariant linear form I

as in (3.9). We can see that the absolute value of I ( f ) extends to a continuous linear form on
C ◦(G, V , ζ ), by assuming inductively that the statement holds for L ∈ L 0 then applying
the continuity of the map φM on C ◦(G(FV )Z , ζV ) and the linear form J . But we shall also
arrive at the same conclusion once we have obtained the desired expansions. Let us first show
that I ( f ) has the geometric expansion

I ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )IM (γ, f ).

Assume inductively that the required expansion holds if G is replaced by any group L ∈ L 0.
Combining this with the geometric expansion (3.5) for J , we see then that I ( f ) equals

∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aM (γ )

⎛

⎝JM (γ, f ) −
∑

L∈L 0(M)

Î LM (γ, f )

⎞

⎠ ,

and by definition of IM (γ, f ) this yields the required geometric expansion for I ( f ). On the
other hand, the spectral expansion

I ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (π)IM (π, f )dπ

follows in a similar manner. That is, assuming inductively that the required identity holds for
L ∈ L 0, and using the spectral expansion (3.7) for J it follows that I ( f ) equals

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aM (γ )

⎛

⎝JM (π, f ) −
∑

L∈L 0(M)

Î LM (π, f )

⎞

⎠ dπ.

Then by definition of IM (π, f ) this yields the required spectral expansion for I ( f ). ��

Aswe have alluded to in the beginning, the extension of the linear form I to noncompactly-
supported test functions inC ◦(G, V , ζ ) does not yet allow for proper use of the basic function.
To correct for this, we have to reconsider the passage from C ◦(G(AF )Z , ζ ) to C ◦(G, V , ζ ),
which requires, among other things, a reconsideration of the global geometric coefficients
that depend on the finite set S in a complicated way.

4 Weighting the geometric side

The treatment of the geometric side is more involved. Let a0 = aM0 , and let A0 be the split
component of the center of M0. The summands in the geometric expansion

J ( ḟ 1) =
∑

o∈O
Jo( ḟ

1) (4.1)

are obtained by evaluating certain polynomials J To ( ḟ 1) at a distinguished point T = T0 in
a0. We agree to write Jo( ḟ 1) = J T0o ( ḟ 1). More precisely, let ḟ 1 ∈ C ◦(G(AF )1) and T be a
point in the positive chamber a+

0 in a0 associated to P0, suitably regular in the sense that its
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distance from the walls of a+
0 is large. Then J To ( ḟ 1) is the integral over x ∈ G(F)\G(A)1

of the function
∑

P∈P
(−1)dim aP

∑

δ∈P(F)\G(F)

ko,P (δx)τ̂P (HP (δx) − T )

where τ̂P is the characteristic function of the set

{H ∈ a0 : 
(H) > 0,
 ∈ �̂P },
and

ko,P (δx) =
∑

γ∈MP (F)
IP (γ )=o

∫

NP (A)

ḟ 1(x−1γ nx)dn.

Here �̂P is the basis of a∗
P/a∗

G which is dual to the simple roots�P of (P, AP ). As a function
of T , J To ( ḟ 1) is a polynomial of degree at most d0 = dim a0, thus it can be extended to all
T ∈ a0. Our present goal is to provide an expansion for (4.1) as a distribution onC ◦(G(AF )1)

in terms of local distributions. According to the proof of Proposition 3.2, we can express the
geometric side as

J ( ḟ 1) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(F))M,S

aM (γ̇ )JM (γ̇ , ḟ 1S ),

and from [12, §22], it follows that the limit

lim
S

J ( ḟ 1)

taken over increasing sets S, stabilizes for large finite S. Thus, in principle it may be possible
to make use of the basic function in the form of ḟ rs in the above limit, but we would like to
have a more explicit form. For this, we shall revisit the refinement of the coarse geometric
expansion.

4.1 Unipotent terms

Wefirst have to dealwith the unipotent contribution,which is themost delicate. It corresponds
to the term

J Tunip( ḟ
1) = J To ( ḟ 1)

where o = UG(F), the Zariski closure in G of the unipotent set in G(F). It is a closed
algebraic subvariety of G defined over F , and is one of the classes in O . We recall that the
distribution J Tunip( ḟ ) is obtained by integrating an alternating sum over standard parabolic
subgroups, whose leading term is given by

Kunip(x, x) =
∑

γ∈UG (F)

ḟ 1(x−1γ x).

Let (UG) be the set of Gal(F̄/F)-orbits ofUG . Then the previous expression can be rewritten
as the sum over U ∈ (UG) of

KU (x, x) =
∑

γ∈U (F)

ḟ 1(x−1γ x).
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In order to establish the refined geometric expansion for functions ḟ = f × uV , where
f ∈ C ◦(G, V , ζ ) and uV is the ζ−1-equivariant characteristic function of the maximal
compact subgroup KV , we requier the existence of a measure on the unipotent variety for
functions in C ◦(G(AF )1). We provide the argument here for ḟ rs , which we shall also need
to construct our new geometric coefficients.

Fix a Euclidean norm ||·|| on a0, and set d(T ) = minα∈�P0
{α(T )}. Let�T

d be the Arthur’s
truncation operator applied to the diagonal [3, p. 1242]

Lemma 4.1 There exist distributions J TU for each U ∈ UG which are polynomials in T of
total degree at most d0 and such that

J Tunip( ḟ
1) =

∑

U

JTU ( ḟ 1)

for ḟ 1 ∈ C ◦(G(AF )1). Moreover, there is a continuous seminorm μ on C ◦(G(AF )1) and
constants ε, ε0 > 0 such that

∣∣∣∣J
T
U ( ḟ 1) −

∫

G(F)\G(A)1
�T

d KU (x, x)dx

∣∣∣∣ ≤ μ( ḟ 1)eεd(T ) (4.2)

for all U ∈ (UG), ḟ 1 ∈ C ◦(G(AF )1) and every suitably regular T with d(T ) ≥ ε0||T ||.
Proof The proof of this statement is a mild generalization of [3, Theorem 4.2], where instead
of the convergence estimate [3, Theorem 3.1] for ḟ 1 ∈ C∞

c (G(AF )1) we shall rely on [17,
Theorem 7.1] for ḟ 1 ∈ C ◦(G(AF )1).

Fix an orbit U ∈ (UG). It is a locally closed subset of G, defined over F , and its Zariski
closure Ū is a closed subvariety ofG, again defined over F . The ideal of polynomial functions
on G which vanish onU is of the form (q1, . . . , ql), where q1, . . . , ql are polynomials on G
defined over F . If v is nonarchimedean valuation of F , we define ρv to be the characteristic
function of [−1, 1], and if v is archimedean, defineρv to be any function such that 0 ≤ ρv ≤ 1,
equal to 1 on [− 1

2 ,
1
2 ] and zero outside of [−1, 1].Then for any ḟ 1 ∈ C ◦(G(AF )1) and ε > 0,

we define the truncated function

ḟ 1,εU ,v(x) = ḟ 1(x)ρv(ε
−1|q1(x)|v) · · · ρv(ε

−1|ql(x)|v)
where x ∈ G(A)1. It again belongs to C ◦(G(AF )1), and equals f in a sufficiently small
neighborhood of Ū (A).

Let v be any valuation of F . We shall construct J TU by examining the behavior of

J Tunip( ḟ
1,ε
U ,v) as ε approaches zero. Let us write

KŪ (x, x) =
∑

{U ′∈(UG ):U ′⊂Ū }
KU ′(x, x).

It will suffice to show there exists a continuous seminorm on C ◦(G(AF )1) such that for all
ḟ 1 ∈ C ◦(G(AF )1), the difference

∣∣∣∣J
T
unip( ḟ

1,ε
U ,v) −

∫

G(F)\G(A)1
�T

d KŪ (x, x)dx

∣∣∣∣ (4.3)

is bounded by
μ( ḟ 1)δrm(1 + ||T ||)d0 , (4.4)

for some δ such that 0 < δ < 1, r ≥ 0, and m large enough. The desired result will then
follow by the same argument as in the proof of [3, Theorem 4.2].
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Given standard parabolic subgroups P1 ⊂ P2, we write A∞
P1

for the identity component

AP1(R)0 of AP1(R), and A∞
P1,P2

= A∞
P1

∩ MP2(A)1. Moreover, given T1, T2 ∈ a0, we denote
by A∞

P1,P2
(T1, T ) the set

{a ∈ A∞
P1,P2 : α(HP1(a) − T1) > 0, α ∈ �P1∩MP2 ;
(HP1(a) − T ) < 0,
 ∈ �̂P1∩MP2

}.
Let T ∈ a0 be a suitably regular point. We define F(x, T ) to be the characteristic function
of the compact subset of G(F)\G(A)1 obtained by the projection

N0(A)M0(A)A∞
P0,G(T1, T )K → G(F)\G(A)1.

Using [3, Lemma 2.3], which states that

∫

G(F)\G(A)1
�T

d KU (x, x)dx =
∫

G(F)\G(A)1
�T

d F(x, T )

⎛

⎝
∑

γ∈U (F)

ḟ 1(x−1γ x)

⎞

⎠ dx

and the property that

KŪ (x, x) =
∑

γ∈Ū (F)

f (x−1γ x) =
∑

γ∈Ū (F)

ḟ 1,εU ,v(x
−1γ x),

we may bound the difference (4.3) by the sum of
∣∣∣∣∣∣
J Tunip( ḟ

1,ε
U ,v) −

∫

G(F)\G(A)1
F(x, T )

⎛

⎝
∑

γ∈UG (F)

ḟ 1,εU ,v(x
−1γ x)

⎞

⎠ dx

∣∣∣∣∣∣
(4.5)

and ∫

G(F)\G(A)1
F(x, T )

∑

γ∈UG (F)\Ū (F)

| ḟ 1(x−1γ x)|dx . (4.6)

The first expression (4.5) is bounded by

μ( ḟ 1,εU ,v)(1 + ||T ||)d0e−d(T )

for some continuous seminorm μ1 on C ◦(G(AF )1), as an application of [17, Theorem 7.1].
Replacing the seminorm μ( f ) with μ( f )N ( f )n where the N ( f ) is defined according to [3,
p. 1257] and for n large enough, we can apply [3, Corollary 3.3], which remains valid for
functions in C ◦(G(AF )1), to conclude that the latter expression is bounded by

ε−lμ( ḟ 1)(1 + ||T ||)d0e−d(T ).

On the other hand, the second expression (4.6) is bounded by

μ( ḟ 1)(1 + ||T ||)d0εr
for some r > 0, using [3, Lemma 4.1], which holds also in our case as the characteristic
function F(x, T ) implies that the integral is taken over a compact set. Taking ε = δm then,
the required bound (4.4) follows. ��

We shall apply the lemma to obtain the following expansion for the unipotent term.

Proposition 4.2 Fix a representation r of LG and s ∈ C with Re(s) large enough. Then for
any S, there are uniquely determined numbers

aMr ,s(S, u), M ∈ L , u ∈ (UM (F))M,S
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such that

J L
unip( ḟ

1
r ,s) =

∑

M∈L
|WM

0 ||WL
0 |−1

∑

u∈(UM (F))M,S

aMr ,s(S, u)JM (u, ḟ 1S ) (4.7)

for any L ∈ L and ḟ 1r ,s = ḟ 1S × bS,1
r ,s with ḟ 1S ∈ C ◦(G(FS)

1).

Proof Assume inductively that the result holds for any Levi M properly containing L . Define
T L( ḟ 1r ,s) to be the difference

J L
unip( ḟ

1
r ,s) −

∑

M∈L L

M �=L

|WM
0 ||WL

0 |−1
∑

u∈(UM (F))M,S

aMr ,s(S, u)J L
M (u, ḟ 1S )

for ḟ as above. We can thus view T L as a distribution on L1
S that annihilates any function

which vanishes onUL(FS). It is an invariant distribution by the same argument in pp. 1269–
1270 of [3]. We need to show that there exist uniquely determined numbers aLr ,s(S, u) such
that

T L( ḟ 1r ,s) =
∑

u∈(U L (F))L,S

aLr ,s(S, u)J L
L (u, ḟ 1S ). (4.8)

The uniqueness follows from the linear independence of the invariant orbital integrals J L
L (u),

thus it remains to prove their existence.
For any integer d , letUL,d be the union of orbitsU in (UL) of maximal dimension d . The

set

UL,d(FS) =
∏

v∈S
UL,d(Fv)

of FS-valued points is a closed subspace of LS consisting of a finite union of LS-conjugacy
classes. Let UL,d(FS)

′ denote the union over orbits U ∈ (UL) such that dim(U ) ≤ d and
such that U (F) is nonempty, of the spaces U (FS). It is the union of LS-conjugacy classes
parametrized by elements u ∈ (UL(F))L,S with dim(UL

u ) ≤ d . We see then that if there
exist numbers

aLr ,s(S, u), u ∈ (UL(F))L,S

such that for any d the distribution

T L
d ( ḟ 1r ,s) = T L( ḟ 1r ,s) −

∑

u∈(U L (F))L,S

dim(UL
u )>d

aLr ,s(S, u)J L
L (u, ḟ 1S )

annihilates any function ḟ 1S ∈ C ◦(G(FS)
1)which vanishes onUL,d(FS), the required expres-

sion (4.8) will follow.
If d ≥ dim(UL), then UL,d(FS)

′ is the union of spaces US such that U (F) is not empty,
and T L

d ( ḟ 1r ,s) = T L( ḟ 1r ,s). In this case, T L
d ( ḟ 1r ,s) is the difference between the distribution

obtained in Lemma 4.1,

J L
unip( ḟ

1
r ,s) =

∑

U∈(U L )

J L
U ( ḟ 1r ,s),

and a sum of integrals over U (FS) for which U (F) is nonempty. Since J L
U is zero when

U (F) is empty, it follows that T L
d annihilates any function which vanishes on UL,d(FS)

′.
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If d > dim(UL), assume inductively that aLr ,s(S, u) is defined for any uwith dim(UL
u ) > d

and L
d annihilates any function which vanishes on UL,d(FS)

′. Let U 0
L,d be the union over

orbitsU in (UL)with dim(U ) = d , and letCd be the complement ofU 0
L,d(FS) inUL,d(FS).

Thus Cd equals to union over v ∈ S and U ∈ (UL) with dim(U ) < d of the sets

Cd
U ,v = U (Fv)

∏

w∈S
w �=v

UL,d(Fw).

it is a closed subset of L(FS)
1. We shall first consider the restriction of T L

d to the complement
of Cd in L1

S . The space

UL,d(FS)
′\Cd = UL,d(FS)

′ ∩ U 0
L,d(FS)

is a disjoint union of LS-conjugacy classeswhich are closed in L1
S\Cd . The conjugacy classes

are parametrized by u ∈ (UL(F))L,S such that dim(UL
u ) = d . For each such u, let Lu be the

centralizer in L of a fixed representative of u in L(F). There is a surjective L1
S-equivariant

map

C ◦(L1
S)\Cd →

⊕

u

C ◦(LS/Lu,S),

with kernel consisting of functions in C ◦(L1
S\Cd)which vanish onUL,d(FS)

′. We may view
any function that annihilates the kernel as the pullback of an L1

S-equivariant distribution
on the right-hand side. It follows then that we can choose constants aLr ,s(S, u) for each
u ∈ (UL(F))L,S with dim(UL

u ) = d such that

T L
d ( ḟ 1r ,s) =

∑

u∈(U L (F))L,S

dim(UL
u )=d

aLr ,s(S, u)J L
L ( ḟ 1S )

for any ḟ 1S ∈ C ◦(L1
S\Cd).

On the other hand, if f is any arbitrary function in C ◦(L1
S), we set

T L
d−1( ḟ

1
r ,s) = T L

d ( ḟ 1r ,s) −
∑

u∈(U L (F))L,S

dim(UL
u )=d

aLr ,s(S, u)J L
L ( ḟ 1S ).

Then T L
d−1( ḟ

1
r ,s) is an invariant distribution supported on C

d which annihilates any function
that vanishes on UL,d(FS)

′. By the inductive assumption, it will suffice to show that

T L
d−1( ḟ

1
r ,s) = 0

for any function ḟ 1S that vanishes on UL,d−1(FS)
′. Consider then the sets Cd

U ,v for which

ḟ 1S does not vanish on a neighborhood of the closures C̄d
U ,v . If no such set exists, then ḟ 1S

belongs to C ◦(L1
S\Cd) and hence T L

d−1( ḟ
1
r ,s) = 0. Otherwise, let there be (k + 1) such sets

with k ≥ 0. Let Cd
U ,v be one such set. Then for any ε > 0, we have that f ε

U ,v is equal to f

in a neighborhood of C̄d
U ,v , and ( f − f ε

U ,v) vanishes in a neighborhood of the closure of all
but at most k sets. We may assume inductively then that

T L
d−1( ḟ

1
r ,s − ( ḟ 1r ,s)

ε
U ,v) = 0.
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On the one hand, T L
d−1( ḟ

1
r ,s) is the difference between J L

unip( ḟ
1
r ,s) and

∑

M⊂L
M �=L

|WM
0 ||WL

0 |−1
∑

u∈(UM (F))M,S

aMr ,s(S, u)J L
M (u, ḟ 1S ) +

∑

u∈(U L (F)L,S

dim(UL
u )≥d

aLr ,s(S, u)J L
L (u, ḟ 1S ).

On the other hand, using the property that

lim
ε→0

JM (u, ( ḟ 1r ,s)
ε
U ,v) = JM (u, ḟ 1r ,s),

if UG
u ⊂ Ū , otherwise it is zero, and

lim
ε→0

J Tunip(( ḟ
1
r ,s)

ε
U ,v) =

∑

{U ′∈(UG ):U ′⊂Ū }
J TU ′( ḟ 1r ,s)

for any valuation v, which follows from Lemma 4.1 by the same argument as [3, Corol-
lary 4.3], we then have that

lim
ε→0

T L
d−1(( ḟ

1
r ,s)

ε
U ,v)

is equal to

J L
Ū

( ḟ 1r ,s) −
∑

M⊂L
M �=L

|WM
0 ||WL

0 |−1
∑

u∈(UM (F))M,S

U L
u ⊂Ū

aMr ,s,(S, u)J L
M (u, ḟ 1S )

for dimU < d . Since ḟ 1r ,s vanishes on UL,d−1(F)′, it follows from (4.2) that J L
Ū

( ḟ 1r ,s) = 0.

The other terms in the preceding expression also vanish, thus T L
d−1( ḟ

1
r ,s) = 0 as desired. ��

Specializing to the case L = G, we have our desired expression for the unipotent contri-
bution.

Corollary 4.3 For any ḟ 1S ∈ C ◦(G(FS)
1), we have

Junip( ḟ
1
r ,s) =

∑

M∈L
|WM

0 ||WG
0 |−1

∑

u∈(UM (F))M,S

aMr ,s(S, u̇)JM (u̇, ḟ 1S ).

In particular, the restriction of Junip to G(FS)
1 is a measure.

4.2 Refinement

Having treated the unipotent terms, the rest of the geometric expansion follows naturally. Let
M be a Levi subgroup of G, and c a semisimple element of M(F). For any c ∈ G, we denote
by Gc,+ the centraliser of c in G, and Gc the connected component of the identity in Gc,+.
We say a semisimple element c is F-elliptic in G if AGc = AG . We recall that two elements
γ̇ and γ̇1 in G(FS) with standard Jordan decompositions γ̇ = cα̇ and γ̇1 = c1α̇1 are said to
be (G, S)-equivalent if there is an element δ̇ ∈ G(F) such that δ̇−1c1δ = c and δ̇−1α1δ is
conjugate to α in Gc(FS). For a general element γ̇ = cα̇, we define the general coefficient
by the descent formula

aGr ,s(S, γ̇ ) = iG(S, c)|Stab(c, α̇)|−1aGc
r ,s (S, α̇) (4.9)

where Stab(c, α̇) denotes the stabilizer of α̇ in the finite groupGc,+(F)/Gc(F), and iG(S, c)
is equal to 1 if c is F-elliptic in G and the G(A)S-conjugacy class of c meets K S , and is zero
otherwise.
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Proposition 4.4 Let ḟ 1S ∈ C ◦(G(FS)
1). We then have

J ( ḟ 1r ,s) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(F))M,S

aMr ,s(S, γ̇ )JM (γ̇ , ḟ 1S ).

Proof The result will follow from the proof of [4, Theorem 9.2] if we can show that for each
o ∈ O , there is a finite set So containing the archimedean places, such that for any finite set
S ⊃ So and f ∈ C ◦(G(FS)

1),

Jo( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈(M(F)∩o)M,S

aMr ,s(S, γ̇ )JM (γ̇ , ḟ 1S )).

This in turn follows from the proof of [4, Theorem 8.1], where we need only indicate the
changes that must be made in our setting. To that end, fix a semisimple element c ∈ o such
that c ∈ MP1(F) for a fixed standard parabolic P1, and such that it does not belong to any
proper parabolic subset of M1 = MP1 . Also let ιG(c) = |Gc,+(F)/Gc(F)|, and let T be
a suitably regular point in a0. Then following [4, Lemma 3.1], the distribution J To ( f ) can
be expressed as the integral over x in G(F)\G(A)1, and the sums over standard parabolic
subgroups R of Gc and elements ξ ∈ R(F)\G(F) of the product of

|ιG(c)|−1
∑

u∈MR(F)

∫

NR(A)

f (x−1ξ−1cunξ x)dn

with
∑

P∈F R(M1)

(−1)dim(AP/AG )τ̂P (HP (ξ x) − ZP (T − T0) − T0).

HereFR(M1) is the set of parabolic subsets P with Levi factor M1 with centralizer Pc = R,
and ZP is defined in [4, (3.3)].

Let P1c = P1∩Gc, and letM1c be its Levi factor. LetF c be the set of parabolic subgroups
of Gc containing M1c. Let

Y T
R (δx, y) = {Y T

P (δx, y) : P ∈ FR(M1)},
where

Y T
P (δx, y) = −HP (KPc (δx)y) − ZP (T − T0) − Tc + T0),

and KPc (x) is the component of x in Kc relative to the decomposition Gc(A) =
NPc (A)MPc (A)Kc. We would like to rewrite J To ( f ) using a series of changes of variables
as

|ιG(c)|−1
∫

Gc(A)\G(A)

∑

{S∈F c :S⊃P1c}

(∫

Kc

∫

A∞
S ∩G(A)1

J MS ,Tc
unip (�T

S,a,k,y)da dk

)
dy

where �T
S,a,k,y(m),m ∈ MS(A)1 is given by

�G
S (HS(a) − Tc,Y

T
S (k, y))δS(m)

1
2

∫

NS(A)

f (y−1ck−1mnky)dn

and �G
S (X ,YR) is a compactly supported function on X ∈ aGR , depending continuously on

YR defined in [4, §4]. We can do so by applying the combinatorial arguments of [4, §6],
noting that the integral over y remains absolutely integrable by the rapid decay of f , and
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that a weaker form [4, Lemma 6.1] holds by a similar argument (and simpler, as we do not
require compactness). Namely, given a subset � of G(A)1 we can choose a subset � of
Gc(A)\G(A) such that y−1cUGc (A)y ∩ � is empty unless y belongs to �. We can then
choose So to be the finite set of valuations as described in [4, p. 203] (see also [11, p. 193]).

��
We have the following formula for the global geometric coefficient in the case of semisim-

ple elements.

Corollary 4.5 Let γ̇ ∈ G(F) be a semisimple element. Then for any finite set S ⊃ So, we
have

aGr ,s(S, γ̇ ) = |G γ̇ ,+(F)/G γ̇ (F)|−1vol(G γ̇ \G γ̇ (A)1)bSr ,s(1)

if γ̇ is F-elliptic, and zero otherwise.

Proof Let us first show that

aGr ,s(S, 1) = aG(S, 1)bSr ,s(1) = vol(G(F)\G(A)1)bSr ,s(1).

Notice that if U is the trivial unipotent class, then
∫

G(F)\G(A)

�T
d KU (x, x)dx = ḟ 1r ,s(1)

∫

G(F)\G(A)1
F(x, T )dx,

and by the dominated convergence theorem, we see that J T{1}( ḟ 1r ,s) is equal to the product of
vol(G(F)\G(A)1)withbSr ,s(1) ḟ

1
S (1). FromProposition 4.2wededuce the desired expression

for trivial γ̇ , and the claim then follows from the descent formula (4.9). ��

4.3 The invariant geometric expansion

Following [11, §1], we now want to reindex the geometric terms in a different way. Let
D(G(FV )Z , ζV )be the space of ζV -equivariant distributions that are invariant underG(FV )Z -
conjugation and supported on the preimage in G(FV )Z of a finite union of conjugacy classes
in G(FV )Z = G(FV )Z/Z(FV ). Let Dorb(G(FV )Z , ζV ) be the subspace spanned by distri-
butions

f �→
∫

Z(FV )

ζV (z) fG(zγV )dz, γV ∈ G(FV )Z

where

fG(γV ) = |D(γV )|1/2
∫

GγV ∩G(FV )Z \G(FV )Z
f (x−1γV x)dx,

for GγV = ∏
v∈V Gγv (Fv) and |D(γV )| = ∏

v∈V |D(γv)|v is the usual discriminant. Let
�(G(FV )Z , ζ ) be a fixed basis of D(G(FV )Z , ζV ), and let

�orb(G(FV )Z , ζV ) = �(G(FV )Z , ζV ) ∩ Dorb(G(FV )Z , ζV ).

Let (γ̇S/γ̇ ) be the ratio of the invariant measure on γ̇S and the signed measure on γ̇S that
comes with γ̇ , so that

fG(γ̇S) = (γ̇S/γ̇ ) fG(γ̇ ), f ∈ C ◦(G(FV )Z , ζV ), γ̇ ∈ �orb(G(FV )Z , ζV ).

123

103



T. A. Wong

For any f ∈ C ◦(G, V , ζ ) and γ ∈ �(M(FV )Z , ζV ), we inductively define the linear forms

IM (γ, f ) = JM (γ, f ) −
∑

L∈L 0(M)

Î LM (γ, φL ( f ))

where JM (γ, f ) is the generalized weighted orbital integral defined in [11, §2] and φL is the
map defined in (3.4).

We define the elliptic coefficients

aGr ,s,ell(γ̇S) =
∑

{γ̇ }
|Z(F, γ̇ )|−1aGr ,s(S, γ̇ )(γ̇ /γ̇S) (4.10)

where the sum over {γ̇ } runs over a set of representatives of ZS,o-orbits in (G(F))G,S , and
Z(F, γ̇ ) is the subset of z ∈ ZS,o such that zγ̇ = γ̇ . We note that aGr ,s(S, γ̇ ) exists for any
S-admissible element γ̇ ∈ G(F), by [11, Lemma 2.1] and the analogue of [4, Lemma 7.1]
for f ∈ C ◦(G(FS)

1) which follows from the proof of Proposition 4.4.
Let Vram(G, ζ ) be the finite set of valuations of F outside of whichG and ζ are unramified.

We shall fix a subset V of S containing Vram(G, ζ ), and that f is S-admissible in the sense
of [11, §1]. We specialize the test function ḟ rs = f × bVS , hence

f → ḟ rs = f × bVS

gives a map from C ◦(G, V , ζ ) to C ◦(G, S, ζ ). We shall combine the elliptic coefficients
with unramified weighted orbital integrals of basic functions at the places in S − V . Let
K(G(AV

S )) denote the set of conjugacy classes in G(AV
S ) = G(AV

S )/ZV
S that are bounded in

the sense that for any v in V − S, the image of any representative lies in a compact subgroup
of G(Fv). Any element k ∈ K(G(AV

S )) induces a distribution γ V
S (k) in �orb(G(AV

S ), ζ V
S ).

Given γ in �(G(FV )Z , ζV ), we write

γ × k = γ × γ V
S (k)

for the associated element in�(G(FS)
Z , ζS). Furthermore, letKV

ell(M̄, S)denote the elements
in K(G(AV

S )) such that γ × k belongs to �ell(G, S, ζ ) for some γ . Here �ell(G, S, ζ ) is the
set of γ in �orb(G(FS)

Z , ζS) such that there is a γ̇ ∈ G(F) such that

(i) the semisimple part of γ̇ is F-elliptic in G,
(ii) the conjugacy class of γ̇ in G(Fv) maps to γ , and
(iii) γ̇ is bounded at each v /∈ S.

We can then define the unramified weighted orbital integrals

rGM (k, b) = JM (γ V
S (k), bVS ), k ∈ K(M̄(AV

S )). (4.11)

Now the set �(G, V , ζ ) is given by the union of induced distributions μG where μ runs over
elements in �ell(M, V , ζ ) and M runs over Levis in L . Recall that the induction is defined
by the relation

fG(μG) = fM (μ), f ∈ C ◦(G(FV ), ζV ),

and f �→ fM is the canonical map from C ◦(G(FV ), ζV ) to IC ◦(G(FV ), ζV ) factoring
through the map f �→ fG . We also have the adjoint restriction map γ �→ γM from
D(G(FV ), ζV ) to D(M(FV ), ζV ), such that

∑

γ∈�(G(FV ),ζV )

aM (γM )bG(γ ) =
∑

μ∈�(M(FV ),ζV )

aM (μ)bG(μG) (4.12)
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for any linear function aM on D(M(FV ), ζV ) and bG on D(G(FV ), ζV ). We then define for
any γ ∈ �(G(FV )Z , ζV ), the geometric coefficient

aGr ,s(γ ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

k∈KV
ell(M̄,S)

aMr ,s,ell(γM × k)rGM (k, b) (4.13)

where S is any finite set of valuations of containing V such that γ × KV is S-admissible. It
follows from the definitions that aGr ,s(γ ) is supported on the discrete subset �(G, V , ζ ) of
�(G(FV )Z , ζV ).

Theorem 4.6 Let f ∈ C ◦(G, V , ζ ). Then the invariant linear form I rs ( f ) has the geometric
expansion

I rs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )IM (γ, f ) (4.14)

Proof Recall from Proposition 4.4 the expression

J ( f rs ) = J ( ḟ 1r ,s) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(FS))F,S

aMr ,s(S, γ̇ )JM (γ̇ , ḟ 1S ).

For a fixed set of valuations S, the linear form J ( ḟ 1) is K S-invariant, we may then write

J ( f rs ) =
∫

Z(F)Z(oS)\Z(A)1
J ( ḟ 1r ,s,z)ζ(z)dz

as
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇∈(M(F))M,S

aMr ,s(S, γ̇ )

∫

ZS,o\Z1
S

JM (zγ̇ , ḟ 1S )ζ(z)dz

since Z(A) = Z(F)Z(FS)Z(oS) and JM (γ̇ , ḟ 1S,z) = JM (zγ̇ , ḟ 1S ) for any z ∈ Z(FS). The
inner sum can be written as

∑

{γ̇ }
|Z(F, γ̇ )|−1aMr ,s(S, γ̇ )

∫

Z1
S

JM (zγ̇ , ḟ 1S )ζ(z)dz

Then applying the definition of (4.10), we have

Jrs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ̇S∈�ell(M,V ,ζ )

aMr ,s,ell(γ̇S)JM (γ̇ , ḟS) (4.15)

where ḟ S is the projection of ḟ 1S onto H (G, S, ζ ).
Since ḟS is equal to f × bVS , we claim that

JM (γ̇S, ḟ S) =
∑

L∈L (M)

J L
M (γ̇ V

S , (bVS )L)JL(γ̇ L
V , f ).

This follows from the descent and splitting properties of the weighted orbital integrals, stated
in (18.7) and (18.8) of [12] or, more directly in [27, VI.1.9(2)]). Here we use the fact that
(bVS )L = (bVS )Q is independent of Q ∈ P(L), where

fQ(m) = δQ(m)
1
2

∫

K

∫

NQ(FS)
f (k−1mnk)dn dk,
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since by (2.5) we see that the basic function depends only on the restriction to T (Fv)+
for each v ∈ V − S. Moreover, J L

M (γ̇ V
S , (bVS )L) vanishes unless γ̇ V

S = γ̇ V
S (k) for some

k ∈ K(M̄(AV
S )), in which case it equal r LM (k, b) by definition. Hence aMr ,s,ell(γ̇S) vanishes

unless μ = γ̇V lies in �ell(M, V , ζ ) and k lies in KV
ell(M̄, S). We can thus write (4.15) as

∑

L∈L

∑

M∈L L

|WM
0 ||WG

0 |−1
∑

μ∈�ell(M,V ,ζ )

∑

k∈KV
ell(M̄,S)

aMr ,s,ell(μ × k)r LM (k, b)JL(μL , f ).

Using the property (4.12) and the definition (4.13) it follows that the inner sum can be
expressed as

∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(L,V ,ζ )

∑

k∈KV
ell(M̄,S)

aMr ,s,ell(γM × k)r LM (k, b)JL (γ, f )

= |WM
0 ||WG

0 |−1
∑

γ∈�(L,V ,ζ )

aLr ,s(γ )JL(γ, f ).

Writing M for L in the preceding expression, the geometric expansion of Jrs ( f ) can thus be
written as

Jrs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )JM (γ, f ).

Converting this expansion for J ( f rs ) into an expansion for I ( f rs ) is standard. Recall from
the definition in (3.3) that

I rs ( f ) = Jrs ( f ) −
∑

M∈L 0

|WM
0 ||WG

0 |−1 Î r ,Ms (φM ( f )).

Assume inductively that the expansion (4.14) holds if G is replaced by any proper Levi
L ∈ L 0. Then using the expansion we have just obtained for Jrs ( f ), we see that

I rs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )

⎛

⎝JM (γ, f ) −
∑

L∈L (M)

Î LM (γ, φL( f ))

⎞

⎠ .

By the definition of IM (γ, f ) then this is equal to
∑

M∈L
|WM

0 ||WG
0 |−1

∑

γ∈�(M,V ,ζ )

aMr ,s(γ )IM (γ, f )

as required. ��
Corollary 4.7 The coefficients aGr ,s(γ ) are independent of S.

Proof The linear form I rs ( f ) is constructed from the noninvariant form Jrs ( f ), which is
independent of S. Assume inductively that for any proper Levi subgroup M of G, the coef-
ficients aMr ,s(γ ) are independent of S. Then the terms corresponding to the M in (4.14) are
independent of S, thus so is the term corresponding to G, which is

∑

γ∈�(M,V ,ζ )

aGr ,s(γ ) fG(γ ).

It follows then that the aGr ,s(γ ) are independent of S. ��
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5 Weighting the spectral side

On the spectral side, we have the sum

J ( ḟ 1) =
∑

χ∈X
Jχ ( ḟ 1),

whose summands are also obtained by evaluating the polynomials J Tχ ( ḟ 1) at a distinguished
point T ∈ a0. They are simpler to treat than the geometric expansion, given the absolute
convergence of the spectral side in hand, together with the results of [18] which concern the
refined noninvariant spectral expansion.

5.1 Refinement

Let �unit(M(A)1) be the set of unitary representations of M(A)1. Given an element π̇ ∈
�unit(M(A)1) and λ ∈ ia∗

M , we form the representation πλ by multiplying by eλ(HP (·)) and
the induced representation IP (π̇λ) for any P ∈ P(M). Let WL (M)reg be the subset of
regular elements in WL (M), that is, elements in WL(M) with kernel equal to aL . Also let
a∗
G,Z be the subspace of linear forms on aG that are trivial on the image of aZ in aG . For any
Q ∈ P(M) and s ∈ W (M) there is a global (unnormalized) unitary intertwining operator
JQ|P (s, π̇λ) from HP (π̇) to HQ(π̇). We set

JQ|P (1, π̇λ) = JQ|P (π̇λ), JP (s, 0) = JP|P (s, π̇λ+�).

We recall that there is a discrete subset �disc(G(AF )1) that supports a finite linear combina-
tion of characters

Idisc( ḟ
1) =

∑

π̇∈�disc(G(AF )1)

aGdisc(π̇) ḟ 1G(π̇),

with ḟ 1 ∈ C ◦(G(AF )1). The spectral coefficients aGdisc(π̇) are the multiplicities defined by
the spectral expansion of the discrete part

Idisc( ḟ
1) =

∑

M∈L
|WM

0 ||WG
0 |−1

∑

s∈WL (M)reg

| det(s − 1)aGM
|−1tr(JP (s, 0)IP (π̇, ḟ 1))

in [6, §4], written as a linear combination of characters.
We begin by recording the following spectral expansion of J ( ḟ 1r ,s).

Proposition 5.1 Let ḟ 1V ∈ C ◦(G(FV )1). We then have

J ( ḟ 1r ,s) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

π̇∈�disc(M)

aMdisc(π̇λ)

∫

ia∗
M,Z /ia∗

G,Z

JM (π̇λ, ḟ 1r ,s)dλ.

Proof We recall that Jχ ( ḟ 1) is equal to the sum over M ∈ L of the product of

|WM
0 ||WG

0 |−1| det(s − 1)aGM
|−1

with
∑

π∈�unit(M(A)1)

∑

L∈L (M)

∑

s∈WL (M)reg

∫

ia∗
L/ia∗

G

tr(JL(π̇λ, P)JP (s, 0)IP (π̇λ, ḟ ))dλ,

123

107



T. A. Wong

as in the proof of Proposition 3.4. Here

JL(π̇λ, P) = lim
�→0

∑

Q∈P (M)

JQ(�, π̇λ, P)θQ(�)−1,

for � ∈ ia∗
M near to 0, is the limit of (G, M)-families

JQ(�, π̇λ, P) = JP|Q(π̇λ)
−1 JQ|P (π̇λ+�).

Then the required formula follows by the same argument in the proof of [6, Theorem 4.4]. ��

5.2 The invariant spectral expansion

As before, we have to convert this expansion to a distribution on G(FV )Z . We continue to
assume that V contains Vram(G, ζ ). LetF (G(FV )Z , ζV ) be the space of finite complex linear
combinations of irreducible characters on G(FV )Z with Z(FV )-central character equal to
ζV , with a canonical basis �(G(FV )Z , ζV ) of irreducible characters. We identify elements
π ∈ F (G(FV )Z , ζV ) with the linear form

f �→ fG(π) = tr(π( f ))

on H (G(FV )Z , ζV ). We write �unit(G(FV )Z , ζV ) for the subset of unitary characters. The
orbits of the action

π �→ πλ, λ ∈ ia∗
G,Z

on π ∈ �unit(G(FV ), ζV ) can be identified with the set �unit(G(FV )Z , ζV ). We also define
the induced characters

fM (π) = fG(πG) = tr(IP (π, f )), π ∈ �unit(M(FV ), ζV ).

Given any f ∈ H (G, V , ζ ) and π ∈ �unit, we inductively define the linear form

IM (π, f ) = JM (π, f ) −
∑

M∈L 0(M)

Î LM (π, φL( f ))

where JM (π, f ) is the weighted character defined in [11, §3] and φL is the map defined in
(3.4).

We shall combine the spectral coefficientswith unramified characters using basic functions
at places outside of V . Let us define �disc(G(AF )Z , ζ ) to be the set of representations in
�(G(A)Z , ζ ) whose restrictions to G(A)1 lie in �disc(G(AF )1). It can be identified with
the representations in �disc(G(AF )1) whose central character on Z(A)1 is equal to ζ . We
then define �disc(G, V , ζ ) to be the subset of π ∈ �(G(FV )Z , ζV ) such that π × c belongs
to �disc(G(AF )Z , ζ ) for some c ∈ C(G(AV ), ζ V ). Now given c ∈ C(G(AV ), ζ V ), there is
a natural action of λ ∈ a∗

G,Z ,C sending

c → cλ = {cv,λ : v /∈ V }.
Let π × c = π ⊗ πV (c) denote the associated representation in �(G(A), ζ ), and let
Cdisc(G(AF )Z , ζ ) denote the elements c ∈ C(G(AV ), ζ V ) such that π × c belongs to
�disc(G(AF )Z , ζ ) for some π ∈ �disc(G, V , ζ ). Following Arthur, we define for any
c ∈ CV

disc(G(AF )Z , ζ ) the unramified normalizing factors rQ|P (cλ) as the quotient of com-
pleted automorphic L-functions

L(0, cλ, ρQ|P )L(1, cλ, ρQ|P )−1,
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for P, Q ∈ P(M), where ρQ|P is the adjoint representation of LM on the Lie algebra
of the intersection of the unipotent radicals of P̂ and Q̂. We also form the corresponding
(G, M)-family of functions

rQ(�, cλ) = rQ|Q̄(cλ)
−1rQ|Q̄(cλ+�/2)

for Q ∈ P(M) and � ∈ ia∗
M . The limit

rGM (cλ) = lim
�→0

∑

Q∈P (M)

rQ(�, cλ)θQ(�)−1

is defined as a meromorphic function of λ. The global unnormalized weighted character, on
the other hand,

JM (π̇λ, ḟ 1z ) = tr(JM (π̇λ, P)IP (π̇λ, ḟ 1z ))

is to be expressed in terms of the local normalized weighted characters

JL(π L
λ , f ) = tr(ML(π L

λ , PL)IPL (π
L
λ , f )), L ∈ L (M), PL ∈ P(L).

Since π̇ is unramified outside of V , JQ(�, π̇λ, P) is a scalar multiple of MQ(�, π, P),
namely

JQ(�, π̇λ, P) = rQ(�, cλ, P)μQ(�, cλ, P)MQ(�, πλ, P)

according to [11, p. 207]. We can then define the unramified character

r LM (cλ, b) = r LM (cλ)b
V
M (cλ), c ∈ CV

disc(M, ζ ). (5.1)

It follows from [11, Lemma 3.2] and the absolute convergence of bVM (cλ) for Re(s) large
enough that for c ∈ CV

disc(M, ζ ), the function r LM (cλ, b) is an analytic function of λ ∈ ia∗
M,Z

and
∫

ia∗
M,Z /ia∗

G,Z

r LM (cλ, b)(1 + ||λ||)−Ndλ

converges for N large enough.
Let �̃disc(M, V , ζ ) be the preimage of �disc(M, V , ζ ) in �unit(M(FV ), ζV ), and let

�G
disc(M, V , ζ ) be the set of ia∗

G,Z -orbits in �̃disc(M, V , ζ ). There is a free action

ρ → ρλ, λ ∈ ia∗
M,Z/ia∗

G,Z

on �G
disc(M, V , ζ ) whose orbits can be identified with �disc(M, V , ζ ). Any element ρ ∈

�G
disc(M, V , ζ ) is an irreducible representation of M(FV ) ∩ G(FV )Z , from which one can

form the parabolically induced representation ρG of G(FV )Z . Recall that the induction is
defined by the relation

fG(ρG) = fM (ρ), f ∈ C ◦(G(FV ), ζV ),

with the adjoint restriction map π �→ πM fromF (G(FV ), ζV ) toF (M(FV ), ζV ), such that
∑

π∈�(G(FV ),ζV )

cM (πM )dG(π) =
∑

ρ∈�(M(FV ),ζV )

cM (ρ)dG(ρG) (5.2)

for any linear function cM on F (M(FV ), ζV ) and dG on F (G(FV ), ζV ). We then define
�(G, V , ζ ) to be the union over M ∈ L and ρ ∈ �G

disc(M, V , ζ ) of irreducible constituents
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of ρG . It has a Borel measure dπ given by
∫

�(G,V ,ζ )

h(π)dπ =
∑

M∈L
|WM

0 |−1|WG
0 |−1

∑

ρ∈�disc(M,V ,ζ )

∫

ia∗
M,Z /ia∗

G,Z

h(ρG
λ )dλ

for any h ∈ Cc(�(G, V , ζ )). We then define for any π ∈ �(G(FV )Z , ζV ), the spectral
coefficient

aGr ,s(π) =
∑

L∈L
|WL

0 ||WG
0 |−1

∑

c∈CV
disc(M,ζ )

aMdisc(πM × c)rGM (c, b), (5.3)

where πM × c is a finite sum of representations π̇ in �unit(M(A), ζ ), and aMdisc(πM × c)
is the sum of corresponding values aGdisc(π̇). It follows from the definitions that aGr ,s(π) is
supported on the subset �(G, V , ζ ) of �(G(FV )Z , ζV ).

Theorem 5.2 Let f ∈ C ◦(G, V , ζ ). Then the invariant linear form I rs ( f ) has the spectral
expansion

I rs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aMr ,s(π)IM (π, f )dπ, (5.4)

with the integrals converging absolutely.

Proof As in (3.2), we would like a parallel expansion for the linear form

Jrs ( f ) = J ζ ( ḟ 1r ,s) =
∫

Z(F)\Z(A)1
J ( ḟ 1r ,s,z)ζ(z)dz

where ḟ 1r ,s is any function in in C ◦(G(AF )1) whose projection onto C ◦(G(AF )Z , ζ ) equals
ḟ rs = f × bV . It then follows from Proposition 5.1 that Jrs ( f ) has an expansion
∫

Z(F)\Z(A)1

∑

M∈L
|WM

0 ||WG
0 |−1

∑

π̇∈�disc(M)

∫

ia∗
M,Z /ia∗

G,Z

aMdisc(π̇λ)JM (π̇λ, ḟ 1r ,s,z)ζ(z)dλ dz.

Now the outer integral annihilates the contribution of π̇ in the complement of �disc(M, ζ )

in �disc(M), so the expression simplifies to

Jrs ( f ) =
∑

M∈L
|WM

0 ||WG
0 |−1

∑

π̇∈�disc(M,ζ )

∫

ia∗
M,Z /ia∗

G,Z

aMdisc(π̇λ)JM (π̇λ, ḟr ,s)dλ.

Wehave to express JM (π̇λ, ḟ ) in terms of local normalizedweighted characters. Applying
the splitting formula

JM (π̇λ, P) =
∑

L∈L (M)

r LM (cλ)ML(π L
λ , P)

in [11, p. 208], we have for the choice of test function function ḟ rs the relation

JM (π̇λ, ḟ rs ) =
∑

L∈L (M)

r LM (cλ, b)JM (π L
λ , f ),

which vanishes unless π̇ is unramified outside of V . Writing π̇ = π × c, we can replace the
sum over π̇ with a sum over π in �disc(M, V , ζ ) and c ∈ CV

disc(M, ζ ). From the definition
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of the spectral coefficients, we write

aLr ,s(π
L
λ ) =

∑

c∈C V
disc(M,ζ )

aMdisc(πλ × cλ)r
L
M (cλ, b)

for any λ ∈ ia∗
M,Z in general position, ignoring sets ofmeasure zero.We can therefore rewrite

our expansion as

∑

L∈L
|WL

0 ||WG
0 |−1

∑

M∈L L

|WM
0 ||WL

0 |−1
∑

π∈�disc(M,V ,ζ )

∫

ia∗
M,Z /ia∗

G,Z

aLr ,s(π
L
λ )JL(π L

λ , f )dλ.

The coefficient aL(π L
λ ) and the integral

∫

ia∗
L,Z /ia∗

G,Z

JL(π L
λ+�, f )d�

depend only on the image of λ in ia∗
M,Z/ia∗

L,Z , hence on the restriction of π
L
λ to LV

Z . Writing
π for this restriction, which runs over �(L, V , ζ ), we arrive at

J ( ḟ rs ) =
∑

L∈L
|WL

0 ||WG
0 |−1

∫

�(L,V ,ζ )

aL(π)JL(π, f )dπ.

Again, to convert the expansion for J ( f rs ) into an expansion of I ( f rs ), we assume induc-
tively that the expansion (5.4) holds if G is replaced by any proper Levi L ∈ L 0. Then using
the expansion we have just obtained for Jrs ( f ), we see that I rs ( f ) is equal to

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aMr ,s(π)

⎛

⎝JM (π, f ) −
∑

L∈L (M)

Î LM (π, φL( f ))

⎞

⎠ dπ.

By the definition of IM (π, f ) then this is equal to

∑

M∈L
|WM

0 ||WG
0 |−1

∫

�(M,V ,ζ )

aMr ,s(π)IM (π, f )dπ

as required. ��
Putting Theorems 4.6 and 5.2 together, we have an invariant trace formula that is valid for

ḟ rs = f × b.
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