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Abstract

This paper begins a new approach to the r-trace formula, without removing the nontempered
contribution to the spectral side. We first establish an invariant trace formula whose discrete
spectral terms are weighted by automorphic L-functions. This involves extending the results
of Finis, Lapid, and Miiller on the continuity of the coarse expansion of Arthur’s noninvari-
ant trace formula to the refined expansion, and then to the invariant trace formula, while
incorporating the use of basic functions at unramified places.

Résumé

Cetarticle propose une nouvelle approche de la formule de r-trace, sans supprimer la contribu-
tion non-tempérée au coté spectral. Nous établissons d’abord une formule de trace invariante
dont les termes spectraux discrets sont pondérés par des fonctions-L automorphes. Cela
implique d’étendre les résultats de Finis, Lapid et Miiller sur la continuité du développement
grossier de la formule de trace non-invariante d’ Arthur au développement raffiné, puis a la
formule de trace invariante, tout en utilisant les fonctions de base a des places non-ramifiés.
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1 Introduction
1.1 Motivation

The Arthur-Selberg trace formula is one of the major tools in the theory of automorphic forms
and harmonic analysis. Given a reductive group G over a number field F, there is a linear
form J on C°(G(A £)1) with parallel spectral and geometric expansions which constitute
the trace formula. The monumental work of Arthur established the stabilization of the trace
formula, which in turn has led to the endoscopic classification of automorphic representations
of various classical groups. In order to do so, one first makes the trace formula invariant,
expressing J as a linear combination of invariant distributions on Gj its stabilization in turn
depends crucially upon the Fundamental Lemma. To gain deeper knowledge of Langlands’
principle of functoriality, and in particular beyond the endoscopic cases, it is important to
establish further refinements of the trace formula. Langlands’ original investigation [24]
analyzed a limiting form of the trace formula, whereby the spectral terms would be weighted
by the order of the poles of the relevant L-functions (or their residues) at s = 1. In order
for the limit to exist, it was understood that the contribution of nontempered automorphic
representations to the trace formula would first have to be removed by some means. In
[19] it was suggested that a Poisson summation formula be applied to the elliptic terms on
the geometric side of the trace formula, where the dual sum would be used to cancel the
nontempered contribution.

To date, this method has only been made to work in the setting of GL, (Q) and the standard
representation [1], and even there requiring additional methods from analytic number theory
that appear to be prohibitive in higher rank [20]. Moreover, as Arthur has shown in [14],
even if we take for granted the generalization of [1] to general G, it remains unclear how one
should match the terms in the dual sum to the contribution of nontempered terms, let alone
how the limiting form of the trace formula might be studied. In hindsight, in attempting to
lay out a path beyond endoscopy, Langlands had uncovered numerous problems that have
to be solved, each one difficult in its own right [24]. It is perhaps because of these difficul-
ties that other new directions have unfolded in the last decade under the banner of ‘Beyond
Endoscopy,” divergent from Langlands’ vision of using the Arthur-Selberg trace formula;
these exciting new directions make points of contact with other important problems in the
theory of automorphic forms and raise interesting questions in arithmetic geometry. That
being said, in this paper we shall stay within the ambit of the aforementioned works, intro-
ducing a new approach while still falling in line with Arthur’s interpretation of Langlands’
proposal [13].

In Arthur’s formulation, two further refinements should follow the stabilization of the trace
formula. The first refinement, now called the r-trace formula, comes in the form of a trace
formula whose spectral terms are weighted by factors related to the poles of automorphic
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L-functions L(s, mr, r). Implicit in this is an extension of the trace formula to a class of
noncompactly supported test functions that we denote by €°(G(A)!"), where A = Ap,
defined in (2.2) and preceding. This latter extension was established by Finis, Lapid, and
Miiller [16—-18] for the coarse expansion of the noninvariant form J, as a distribution on the
group G(A)!,

JH =Y HH =Y 0, [fee(Guh.

xeXx 0€el

Among such test functions is a distinguished family of functions, now referred to as basic
functions, which can be used to weight the cuspidal spectral terms with the associated auto-
morphic L-functions. As the r-trace formula should be weighted by coefficients that are
nonzero if and only if L(s, 7, r) has a pole at s = 1 (such as the residue), we can view the
incorporation of the basic function as a step towards the r-trace formula. We note that up
until now, basic functions have been little studied in the context of the Arthur-Selberg trace
formula. While the geometry of basic functions have been the subject of intense study, the
behaviour of their orbital integrals is less understood. Of course, the coarse expansion of
J(f) is only the beginning of the story; the objective of this paper is to arrive at an invariant
trace formula that incorporates the use of the basic function, and also to lay the groundwork
for its stabilization in [31].

Crucially, our approach does not presume the need to remove the nontempered contribu-
tion to the trace formula, which was the core difficulty encountered in previous attempts to
carry out Langlands’ proposal with the Arthur-Selberg trace formula. With this modest but
significant change in strategy, rather than having to remove the nontempered contribution and
then take a limiting form of the trace formula, we are able to take an unconditional step for-
ward by obtaining expansions for the trace formula involving automorphic L-functions. We
give this intermediate distribution the uninspired name of a weighted trace formula. This will
lead us to the problem of obtaining the meromorphic continuation of the resulting distribution
to the point s = 1. Note that even L-functions of nontempered automorphic representations
are expected to have meromorphic continuation, so a priori this is not an obstacle as it was in
the limit of trace formulas. The latter method required that all the relevant L-functions have
analytic continuation to the right-half plane Re(s) > 1, so the nontempered contribution had
to be removed first. Incidentally, this was the original motivation for considering relative
trace formulas instead, but that perspective leads us down a significantly different path.

Recall that our goal is to establish an r-trace formula. The results of this paper together
with the sequel [31] represent progress in that direction. Taken together, we shall have in
our hands a stable distribution that incorporates the data of the basic function, and therefore
automorphic L-functions, from which point the task is to prove meromorphic continuation.
With that, the residual distribution at s = 1 will be an r-stable trace formula. One benefit of
these unconditional steps forward is that they place us on solid ground, and gradually yield
insight into how this continuation might be obtained. Indeed, it seems at the moment that we
shall find certain overlap with recent work of Hoffmann on prehomogenous vector spaces
and Ng6 on Hankel transforms, both in the context of the geometric side of the trace formula.
The situation there might not yet be clear, but more and new tools appear to be available
there, which were not in earlier works. As Arthur’s pioneering work on the trace formula
has taught us, we can expect the path towards the r-trace formula and its later refinement,
the primitive trace formula, to be a long and arduous one. The attendant problems will not
be solved in a single work, but piece by piece. It is with this long view of the old road to
functoriality that we undertake this task.
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1.2 Main results

In this paper, we make use of basic functions to establish a weighted invariant trace formula,
whose cuspidal spectral terms are weighted by automorphic L-functions. Fixing a central
induced torus Z of G with an automorphic character ¢ of Z(F)\Z(A), we let V be a large
finite set of valuations of F outside of which G and ¢ are unramified. Let Gy = G(Fy) =
[Tyey G(Fy) and GV = G(AY) = H;W G(F,), where the latter is the usual restricted
direct product. The main technical difficulty that we encounter is that Arthur’s stabilization
of the trace formula is valid only for test functions of the form

f=rxu’

asin (2.6), where f isa {“ -equivariant function in C°(G(Fy)) and u V' is the unit element
of the ! -equivariant Hecke algebra 2 (G, V, ¢) of G(AY) asin (2.1). In order to properly
weight the trace formula, we require instead test functions of the form

fl=fxb"

where f is a ¢ ~!-equivariant function in 4°(G(Fy)) as defined in Sect. 2.1, and b" is the
basic function which, as we recall in Sect. 2, does not have compact support. It depends on
an irreducible complex finite-dimensional representation r of the L-group “G of G, and a
complex number s with Re(s) large enough, which we shall assume to be fixed throughout
this paper. Note that for our applications, f can in fact taken to be compactly-supported.

In any case, we have to take the coarse expansion of the noninvariant linear form J as
our starting point, and begin the process of refinement there. More precisely, we shall first
establish a refined expansion for the noninvariant linear form J applied to f;, namely, for
Re(s) large enough, we have

=3 |W0M||WOG|—‘f ™ () Iy (. f)dn
n(m,v,;)

Me¥
= > wwg1Tt Y ah ) In. )
Me¥ yel(M,V.¢)

which, taking bY to be fixed, we may view as a linear form on ¥°(G, V, ¢). The local distri-
butions Jys (7, f) and Jys(y, f) occurring on either side are the usual weighted characters
and weighted orbital integrals appearing in Arthur’s trace formula. The global coefficients
a%s () and af"fs (y), on the other hand, are now weighted forms of the coefficients aM () and
a™ (y) that occur in the usual trace formula, where most importantly the spectral coefficient
a%, (r) now carries the data of the unramified automorphic L-function LV (s, m, r). Part of
the refined spectral expansion was already obtained in [18], so the bulk of the work falls on
refining the geometric expansion. To do so, we revisit Arthur’s original arguments, modifying
them where the support of the test function f; is relevant. As in Arthur’s work, the core argu-
ment relies on a study of the unipotent distributions, where the data of the basic function is
abstractly incorporated into the geometric coefficient a% (y) by an invariance argument. And
as with the case of a™ (y), our new coefficients a%, (y) are also only explicit for semisimple
y. The explicit determination of these coefficients for general y, we note, is the goal of a
recent program of Hoffmann that relates them to zeta functions of prehomogeneous vector
spaces. We shall return to this point in a later paper.

Having established the refined expansion of J(f;), we then proceed to make this form
invariant. Let €°(G, V, ¢) be the space of ¢ _1—equivariant functions in €°(G(Fy)) (see

@ Springer



A weighted invariant trace formula 83

Sect. 2.1 for the precise definition). The main result of this paper is an invariant trace formula
that is valid for the test functions f x bV, which we refer to here as the weighted invariant
trace formula.

Theorem 1 Let s € C with Re(s) large enough. The linear form

L) =1(f), [fec (G V.,

has the parallel expansions

> |Wé”||W0G|’1/ a (0 Iy (r, fdw (1.1)
Mey MM, V.0)
= > w1t Y dIny. ).
Me? yel'(M,V,¢)

The required identity will follow from the geometric and spectral expansions established in
Theorems 4.6 and 5.2, respectively. They are deduced inductively from the fine expansion
of J(f]) above in a rather straightforward manner. To prove the theorem, we first extend the
results of [16—18] to the invariant linear form 7, applied to the simpler test functions f x u" .
This will take us part of the way in refining the coarse geometric expansion of J ( f). That s,
we have the following (stated as Theorem 3.5).

Theorem 2 The invariant linear form I on 52 (G, V, ) extends to a continuous linear form
on ¢°(G,V, ). It has the spectral and geometric expansions given by

IH=>y |W5”||W$|*1f a™ () Iy (. f)d
Me¥ M. V.0
= > wwg 1t Y @ iu. .
Mes yel(M,V.,0)

The rest of the proof of Theorem 1, which is the most difficult part, rests on transforming the
global coefficients. The key difference here is that the global coefficients are now replaced
with the new coefficients that depend on the basic function b, while the local distributions
remain unchanged. In place of the unit element u", we are forced to work with the basic
function 5", a nontrivial and noncompactly supported function, at almost all places, thus
complicating the necessary arguments. The core of the analysis of the geometric side lies
in the unipotent contribution, where we apply a variation of Arthur’s linear independence
argument, whereby the dependence on b" is subsumed into the global geometric coefficient
a%, (y), leaving the usual weighted orbital integrals of f at the finite places V. In particular,
just as the automorphic L-function is a global object, we see that the role of the basic function
in the trace formula is also global in nature, despite the fact that recent studies have focused
on the local theory.

1.3 Outline

We conclude this introduction with a brief outline of the contents of the paper. In Sect. 2, we
introduce the necessary definitions and notation, and recall the properties of basic functions
that we shall require. In Sect. 3 we prove the continuity of the trace formula for both the
refined noninvariant trace formula and the invariant trace formula for f = f xu", which is
a straightforward exercise in the definitions. Then in Sects. 4 and 5 we undertake the more
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84 T.A.Wong

serious work of establishing the geometric and spectral expansions of I{ (f) respectively in
(1.1) using the function f7 = f x b", obtaining the new weighted global coefficients on
each side, proving Theorem 1.

2 Basic notions
2.1 Definitions

Let G be a connected reductive group over a field F' of characteristic zero. We denote by
Z (M) to be the collection of Levi subgroups of G containing M, .Z 0(M) the subset of proper
Levi subgroups in .Z (M), and & (M) the collection of parabolic subgroups of G containing
M. Let F be a global field, and V a finite set of places of F'. We have the real vector space
ay = Hom(X (M), R), and the set

ay,v = {Hy(m) :m € M(Fy)}

is a subgroup of ay, and Fy = [[,., Fu. It is equal to ay if V contains an archimedean
place, and is a lattice in as otherwise. The additive character group a’;[, v = a*M\aX,L v €quals
a}, in the first case, and is a compact quotient of a}, in the second. Let Ay be the maximal
split torus of a Levi subgroup M of G. We then identify the Weyl group of (G, Ay) with the
quotient of the normaliser of M by M, thus

WY (M) = Normg(M)/M.

If My is a minimal Levi subgroup of G, which we shall assume to be fixed, and denote . =
L(My), P = P(My), £° = 2°(My), and W = WG (My). Also write Py = MoNj for
the minimal parabolic subgroup containing M.

Let Z be a central induced torus of G over F. We define the pair (Z, {) where ¢ is a
character of Z(F) if F is local, and an automorphic character of Z(A) if F is global. Given
a finite set of places V, we write G(F,) = G(Fy) and write {y for the restriction of ¢ to
the subgroup Z(Fy) = Z(Fy) of Z(A). We then write G(Fy)? = G(Fy)? for the set of
x € G(Fy) such that Hg (x) lies in the image of the canonical map from az to ag. We shall
assume that V contains the places over which G and ¢ are ramified.

The stable trace formula requires that we work in fact with G a K-group as defined in
[10, §2]. Over F, nonarchimedean, it is again a connected reductive group, but over F),
archimedean, it can be a finite union of connected reductive groups. Thus

G:]_[Ga o € 1(G)

is a variety whose connected components G, are reductive groups over F, equipped with an
equivalence class of frames

W, u) = {(Vap, uap) : o, B € m0(G)}

satisfying natural compatibility conditions. Here ¥4 : G4 — Gpg in an isomorphism over
F, and uqp is a locally constant function from I' = Gal(F/F) to the simply connected
cover G, ¢ Of the derived group of G,. Any connected reductive group is a component of
an K -group that is unique up to weak isomorphism. It comes with a local product structure

GFr =[] I Gu®.

veV ayemy(G(Fy))
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The introduction of K -groups is to steamline certain aspects of endoscopy over archimedean
local fields, and the definitions for connected groups will extend to K-groups in a natural
way. For example, a central induced torus Z of a K-group G will have central embeddings
zZ5> Zy C Z(Gy) for each «, and ¢ determines a character ¢, for each o. We shall call a
K-group G quasisplit if it has a connected component that is quasisplit over F.

Let €(G(Ar)!) be the space of Harish-Chandra Schwartz functions on G(A)!, and
€ (G(Ar)?, ¢) the £ ~-equivariant functions on G (A)Z, meaning that f (zx) = £ 1 (2) f (x)
for all z € Z(A) [22, §9]. We write € (G, V,¢) = €(G(Fy)%, ¢y) for the space of
¢! -equivariant Schwartz functions on G (F v)Z, which contains the z ! -equivariant Hecke
algebra

H(G,V, ) =H(G(Fy)’, tv) 2.0

defined with respect to a choice of maximal compact subgroup Ko, of G(Fy,, ), where
Vo denotes the archimedean places in V. If F is a local field, we write ¢’ (G (F,), ¢,) and
(G (Fy), &) for the corresponding spaces. There are natural decompositions

CGF), )= P  €Go(F) )

oy €mo(G(Fy))

and

C(G(Fv), ¢v) = Q) C(G(F), ),

veV

and similarly for the Hecke algebra. We will also denote by % (G(F v)Z, ¢y) and
SE(G(Fy)Z, Cy) the spaces of orbital integrals and stable orbital integrals of functions
in €(G(Fy)?, ¢y) respectively.

We also recall the space of functions constructed in [18, §3] extending the usual space of
test functions C2°(G (A nh=cC ?O(G(A)l). For any compact open subgroup K of G(A )
the space G(A)!/K is a differentiable manifold. Any element X € U(g'), the universal
enveloping algebra of the Lie algebra g! of G(R)! = G(R) N G(A)! defines a left-invariant
differentiable operator f * X on G(A)!/K. Let €°(G(Ar), K) be the space of smooth,
right-K -invariant functions on G(A)' which belong to LYG@hH together with all their
derivatives. It is a Fréchet space under the family of seminorms

If = Xl Gwy. X €U@h.

For any nonnegative integer k, we define the norms

If ok =D 11Xi * fllziGean):
i

where X; ranges over a fixed basis of U/ (g) <, with respect to the standard filtration. Denote
by €° (G(Ap)') the union of €°(G(AF), K) as K varies over open compact subgroups of
G(Ay)!, and endow €°(G(Ap)!) with the inductive limit topology.

As with the Hecke algebra, we shall also define the corresponding spaces €°(G(Ar)Z, ¢)
and ¢°(G, V, ¢) obtained from the spaces of ;‘1—equivariant functions on G(A)Z and
G(Fy)? respectively, in a manner parallel to €°(G (A ). The resulting spaces are natural
subspaces of the Schwartz spaces €' (G (A ) Y, €(GAF)Z, ), and€(G, V, ) respectively.
In particular, we shall apply results of Arthur for distributions on 4 (G(Ar)') and so on to
the smaller spaces ¢°(G(Ax)") and so on. Moreover, we will again take G to be a K -group,

@ Springer



86 T.A.Wong

so that

(G = P ¢°(Galdr) 22)

aemny(G)

and similarly with the spaces €°(G(Ar)?, ¢) and 6°(G, V, ).

2.2 Basic functions and local L-factors

For the moment let F' be a nonarchimedean local field, and G a reductive group defined over
F. Suppose moreover that G is unramified over F, meaning that G admits a reductive model
over Or. Recall that we have an exact sequence

O0—>Ir—>Trp—>Tr—>0

where I is the inertia group of I'r , and k is the residue field of F* with Frobenius element
denoted by of. If G is quasisplit over F, it follows then that G is unramified if and only if
the restriction of the homomorphism I'r — Out(G ®F F) to I is trivial. In particular, the
action of ' on GV factors through Iy, thus we may take LG tobe GV X (oF).

An irreducible smooth representation of G (F) is unramified if it has a nonzero vector
under G (OF). Then the isomorphism classes of unramified representations 7 of G (F') are in
canonical bijection with the conjugacy classes & of GV in the connected component of “ G,
orGY C GY x {oF). Fix a maximal compact subgroup K of G(F). There is a twisted form
of the Satake isomorphism

Sat : #(G(F), K) — ClopGYME") 2.3)

from the unramified Hecke algebra of G (F) to the ring of regular functions on oG that
are invariant under the adjoint action of GV. The bijection 7 — a; is characterized by the
requirement that tr(w (f)) = Sat(f)(«,) for any unramified irreducible representation .

Given an irreducible complex finite-dimensional representation r : LG - GL(V), we
have the local L-factor of = given by

L(s, 7, r) =det(1 — r(az)g )"

where ¢ is the cardinality of the residue field of F. We may expand it as a formal series

> w((Sym”r)(ex))g ™"

n=0

converging absolutely for Re(s) large enough, where the abscissa of convergence depends on
the eigenvalues of «,;. Viewing det(1 — r(oz)q"v)’1 as a rational function on GV, we would
like to invert the Satake isomorphism to obtain a function b} such that

tr(mw (by)) = L(s, 7, r).

Using the formal series expansion above, it is the same as asking for a family of functions
b, in #(G(AF), K) such that

o0

b= b, 2.4)

n=0
and tr( (b)) = tr(Sym” (ot )).
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The basic function b is expected to be a distinguished vector in a certain Schwartz space
of r-functions called the r-Schwartz space, defined as the global sections with compact
support of a certain sheaf on a reductive monoid M” (F) containing G (F) as an open subset
[28]. Following Ngd, we may assume that G is equipped with a determinant homomorphism
v : G — Gy, such that composition r o v acts by scalar multiplication on the vector space V
of r, giving an exact sequence

1> Gy— G=> G, — 1

where Gy is a semisimple group. This is not a restrictive condition, seeing as we may replace
G by G x Gy, if necessary. Under this assumption, the sum (2.4) is locally finite, and its
support can be described explicitly by the weights of r. Basic functions have been the subject
of much study of late, but as we shall see, our interest will lie not in the functions themselves
but their orbital integrals.

For our purposes, it will suffice to know that b} belongs to the spherical subspace

72c(G(F), K) of the almost-compact unramified Hecke space 7.(G(F)) [5, §1]. Let T
be a maximal split torus of G over F. Fix a Borel pair (B, T) of G and consider the Cartan
decomposition G(F) = KT (F)4+K using the anti-dominant Weyl chamber X,.(7")_ in the
cocharacter lattice X, (7'), where T (F') is the image of X, (7)_ under the map u +— (@)
with & a uniformizer of F. The homomorphism v induces a map X, (7)) — Z. In this case,
Li has given an explicit description of the basic function

1
bp= > cu@dp (w@Nlku@ikg " ** (2.5)
neX,(T)—

where c¢(yt) is polynomial in ¢!, and is a nonnegative integer given explicitly in terms of

Kazhdan-Lusztig polynomials and symmetric powers of r.
Lemma 2.1 The basic function b} belongs to #;c(G(F), K) for Re(s) large enough.

Proof The case where G is split is due to [25, §3]. If G is quasisplit, we simply note that
the Kato-Lusztig formula remains valid by [21, Theorem 7.10] and [15, Theorem 1.9.1],
and applying the Satake inversion (2.3) for quasisplit G, it follows that the argument of [25,
Proposition 3.4] and the preceding discussion can be applied. O

We shall identify b with its ¢~ !-equivariant analogue by replacing the characteristic
functions 1k )k in (2.5) with their ¢~ !-equivariant analogues. It is also straightforward
to extend the basic function to K -groups,

b= P bis
aemny(G)

where by, | is the basic function defined by the component group G, thereby placing us in
proper generality.

2.3 Weighting the trace formula

We now return to F being a global field. Enlarging V if necessary, we shall assume that G, ¢,
and r are unramified outside of V. Recall the set of families C(G(A"), ¢V) of semisimple
conjugacy classes in LG (F,), for v ¢ V in [11, p. 202]. We shall in fact consider equiva-
lence classes of families ¢, where two families ¢ and ¢’ in C(G(AY), ¢V) are identified if
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88 T.A.Wong

¢y = ¢, for almost all v ¢ V. Then given any ¢ in C(G(A"), ¢") and finite-dimensional
representation r of G, the Euler product

LY (s.c.r) = [ ] detd = r(cu))g, ™)~
v¢V

converges to an analytic function in s in some right-half plane. The local components ¢, deter-
mine unramified irreducible representations w, = 7, (c) of G(Fy), and hence an unramified
representation 7" (¢) = Qugvmy(c) of G(AY). Then if ¢ is automorphic in the sense that
there exists an irreducible representation 7wy of G(Fy) suchthatw =y @ w V(¢) is an auto-
morphic representation of G (A), then a conjecture of Langlands asserts that LV (s, c,r) has
meromorphic continuation [23]. We can then identify the unramified automorphic L-function
as

LV(s, c,r)= LV(s, T, r).

If 7 is tempered, the set of coefficients tr(r (c(ry))F for v ¢ V and k > 1 is bounded; if
moreover 7 is cuspidal, one expects the L-function to have meromorphic continuation to the
complex plane, with at most a simple pole at s = 1.

We can now properly describe the test functions that we shall use. Let Viyn (G, ¢) be the
finite set of valuations of F' outside of which G and ¢ are unramified. Fix a subset V of §
containing Viam (G, ¢). Given f in ¥°(G, V, ¢), we shall form the test function

fr=fxb" (2.6)
in €°(G(Ar)?, ¢), where
=b/ =]]b,
vgV
so that
bi(e) =bl(" () =L"(s,c,r).

More generally, for nonarchimedean valuations v in V, we may choose f, to be a ;’1-
equivariant function in LY (G(F,)) and let foo be a smooth g‘_l—equivariant function on
G (Fso) wWhere Foo = [],100 Fv such that

v|oo
[l foo % Xl 1(G(Fyy) <00 X € Ugh.

It follows then that f{ belongs to €°(G(AF)?, ¢) for Re(s) large enough.

3 Continuity of the invariant trace formula

3.1 The coarse expansion

Let now F be a number field, and let 57 (G(Ar)') be the Hecke algebra on GA)!. We
first recall the noninvariant linear form J(f) on (G, V, ¢) established in [11, §2] from
the original linear form on J# (G(Ap)Y). Tt is a continuous, Z(F)-invariant linear form on
¢°(G(Ap)Y) consisting of two different expansions

T =Y T (fY =Y I (fY

0€l XEX
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for any f! € (G(Ar)"), with both sums converging absolutely. Here ¢ is the set of
O-equivalence classes of element in G(F), whereby two elements are equivalent if their
semisimple parts are G (F)-conjugate, and X is the set of equivalence classes of cuspidal
automorphic data x = {(P, o)}, where P is a standard parabolic subgroup of G with Levi
subgroup Mp and o is an irreducible representation of Mp(A)!, up to a certain equivalence
relation as described in [2]. There is a natural projection

ft—f¢
from €°(G(Ar)') onto the space €°(G(Ar)?, £) = €°(G(A)?, ¢) given by

ﬁmzéwﬂmmmﬂ 3.1)

where x € G(A)Z and Z(A)* is the set of z € Z(A) such that Hg(zx) = 0. We can then
define a linear form on €°(G(Afp)Z, ¢) by

Jdﬁzﬂdhzf J(fHE(@)dz (3.2)
Z(F\Z(A)!
where le denqtes th(f, translation of f !'by a point z € Z(A)', and the integral depends only
on the image f*¢ of f1 in 6°(G(Ar)?Z, ). Also, given a function f € €°(G, V, ¢), we can
also define a linear form on ¢°(G, V, ¢) by setting
=T

where f{ = f x bY. We then have the noninvariant linear form on °(G, V, ¢) given by

L =T =T
vs{here fl is any function in 4°(G(Ar)') whose projection f'f onto €°(G(Ar)?, ¢) equals

fl=fxb".
We next define an invariant linear form. /] on ¢°(G, V, ¢) inductively by setting
FH =T = > W IwWe 1 1M (w () (3.3)
Me£0
for certain maps
Sy Hac (G, V, 8) > Iac(M, V., $) 3.4

constructed from normalized weighted characters [30, (2.2)] (see also [9]). To stabilize the
invariant form /], we must first express the geometric and spectral expansions in terms of
local distributions.

3.2 The refined expansion
For the remainder of this section, we shall work more generally with the noninvariant linear
form on J7(G, V, ¢) given by

J(H=IH =7

where fl is any function in H(G(Ar)') whose projection ff onto A (G(Ar)%, ¢) equals
f = f xuV .1t follows from the preceding discussion that J (f) has the parallel expansions

T =D o) =D Jy(f)

0el XEX
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which we would like extend to a larger family of noncompactly supported test functions. The
following lemma extends the coarse expansion to a linear form on the space €°(G, V, ¢).

Lemma 3.1 The linear form J on (G, V,¢) extends to a continuous linear form on
€°(G,V,0).

Proof We follow the passage of J from 7Z (GARYH to #2G, Vv, ¢). There is a natural
projection

fr= 7

from €°(G(Ar)') to €°(G(Ar)?, ¢) given by the formula (3.1). Given the linear form J
on €°(G(Ar)), we define a linear form on €°(G(Ar)Z, ¢) by

J(f9 =T
where the right-hand side is defined as in (3.2). '
Now let f be a function in €°(G, V, ¢). inen any function f in €°(G(Ap)!) whose

projection f ¢ onto €°(G(AF)%, ) equals f = f x uV, we have the noninvariant linear
form on ¢°(G, V, ¢) given by

J(f)=JH) =I5

as before, with both spectral and geometric sides converging absolutely. By the construction
of the linear forms on each space, it follows that the form J(f) on €°(G, V, ¢) is the
continuous extension of the corresponding linear form on 52 (G, V, ¢). O

In order to pass to the invariant trace formula, we first have to refine the expansion of the
noninvariant trace formula. In particular, we need to express both sides in terms of the basic
distributions Jys (v, f) and Jy (, f). We first refine the geometric side. We refer to [11,
(2.8)] for the construction of the global geometric coefficient aM(y).

Proposition 3.2 Let f € €°(G, V, ¢). Then the linear form J (f) has a geometric expansion

dowtiwg Tt Y d e Iuy, . (3.5)

Me? yel(M.,V.¢)

Proof The linear form J(f) obtained in Lemma 3.1 has the coarse geometric expansion

I =Y Jo(f)

oel

with the sums converging absolutely. Let G° be the connected component of the identity in
G, and G the identity component of the centralizer of a semisimple element ¢ in G (F'). Then
the equivalence class o consists of elements in G (F) whose semisimple Jordan components
belong in the same G°(F) orbit. There is another equivalence relation, which depends on a
finite set of places S, which we shall assume contains V. The (G, S)-equivalence classes are
defined to be the sets

G(F)N @U)C' P = (g7 oug : g € GO(F),u € UN GO(F))

where o is a semisimple element of GO(F), and U is a unipotent conjugacy class in G, (F).
Any class 0 € ¢ breaks up into a finite set (0)g s of (G, S)-equivalence classes.
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Let fl be any function in €°(G (Ap)!) whose projection f'f onto €°(G(Ar)Z, ¢) equals
the function f = f x u". Suppose moreover that

fr=fxudl,  f§ e e (GFs)N.

for S O V large enough. The space €° (G (Fs) 1 naturally embeds in €°(G (A ) 1y while on
the other hand any function in ° (G(Ap)YH belongs to €°(G(Fs)!) for S sufficiently large.
It follows from [4, Theorem 8.1] that there is an expansion

LY =Y wghiwg it Y dM S I, £9) (3.6)

Me? ye(M(F)No)m.s

for any 0 € O, fS1 S CSO(G(FS)I), and S containing a finite set S, of valuations of F
including the archimedean places. Here Jys (y, fS]) is the weighted orbital integral of fS]
over the conjugacy class of y in G(Fs), and is a tempered distribution by [8]. The derivation
of this formula relies on a combinatorial argument and descent to unipotent weighted orbital
integrals, and in particular remains valid so long as the distribution J, (') is absolutely
convergent, and thus for f ! belonging to the larger space €°(G(Ar)'). (We discuss the
unipotent terms in greater detail in [30, §2].)

In order to sum over the classes 0 € &, we have to modify the proof of [4, Theorem 9.2]
and appeal to [17, Theorem 7.1] instead for the convergence of the sum since f! no longer
has compact support. Let

ad(G°(A))o = (xlyx :x € G°(A), y € o},

and write & for the set of classes o such that ad(G°(A)), meets the support of fsl Since
Jo annihilates any function which vanishes on ad(G°(A)),, we obtain therefore

o= wptiwg Tt Y Y d S I ).
oel Me¥ 0€0 A ye(M(F)N0)y.s

Now suppose that y is any element of (M (F))r, s. Then ]}'iS contained in a unique class
0 € 0, and it follows from [7, Theorem 5.2] that Jy(y, fsl) vanishes if fs1 vanishes on
ad(G°(A)),, hence IJu(y, fsl) vanishes unless o belongs to &a. From this we have that

TGN =30 wwg Tt 30 @S I £).

Me% yeM(Fs)F,s

The rest of the argument is similar to the proof of [11, Proposition 2.2], so we can be brief.
For a fixed set of valuations S, the linear form J ( f ]) is KS-invariant, we may then write

J(f) = f J(fHe(zydz
Z(F)Z(05)\Z(A)!

as

doawgiwg Tty aM(S,y‘)/ T2y, f§)¢(2)dz
ZS,U\Z_IS

Me? ye(M(F))m.s
where

Zs.o = Z(F) N Z(Fs)Z(0%)
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and 0% = [, 45 04, since Z(A) = Z(F)Z(Fs)Z(0%) and Iy (7, f3 ) = Jm(zy, f§) forany
z € Z(Fs). Then using the definition of the coefficient aM(y), it follows that the geometric
expansion of J(f) can be written as

doowgtiwg Tt Y @Iy, )
Me¥ yell(M,V.¢)

as required. O

Remark 3.3 We note that we have not obtained the absolute convergence of this refined
geometric expansion. For semisimple elements y, this follows from [16, Theorem 1], which
proves the absolute convergence of the semisimple contribution to (3.6), and by the argument
above one deduces the absolute convergence of the semisimple contribution to the refined
geometric expansion (3.5). As the authors point out, the absolute convergence of the unipotent
contribution would require a uniform bound on the global geometric coefficients, which at
present are known only for GL(n) [26, Theorem 1.1]. Fortunately, this is not needed for the
applications that we are interested in, which is the comparison of trace formulae.

We next refine the spectral expansion.

Proposition 3.4 Let f € €°(G, V, ¢). Then the linear form J(f) has a spectral expansion

> [ aM e, (37)

Me% M. v.5)

with the integrals converging absolutely.

Proof The linear form J(f) obtained in Lemma 3.1 has the fine spectral expansion

T =Y I (f)

xXeX

which converges absolutely, and where J, (f) is equal to the sum over M € £ of the product
of

MG —1 _ -1
[Wo™ lIWg"| ™" det(s — Da |
with
> Y / U ILP TP (5,0 Ip y x (s )R,
TEMunic(M.8) LEL (M) se WL (M)pey * °1/1%G
as stated in [2, Theorem 8.2]. Here

— i 7 —1
SL(P. 1) = lim Z Jo(P, A, Mfo(A)7!,
Qe (M)

for A ei a}*w near to 0, is the limit of (G, M)-families
Jo(P. 0, A) = Tpio()  Jgip(h + A)

and Jo|p (1) is the global unnormalized operator intertwining the actions of the induced
representations .#p (1;) and g (7r;). Also

JP(S,O) = Jp|p(s, 7TA+A)-
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Itis a consequence of [18, Corollary 1] that the sums are finite and the integrals are absolutely
convergent with respect to the trace norm, and define distributions on ¢° (G (AFr) 1. We note
that the absolute convergence is proved for an expansion slightly different from the above,
but is shown to be equivalent in [18, §5.3]. Importantly, the sum over = does not occur in the
latter, but the necessary estimate for this sum, which is not necessarily finite, is contained in
[18, §5.1]. (See also [29, Theorem 7.2] for the twisted case.)

Beginning with

IO = (Y = / 7@z,
Z(F)\Z(A)!

where f 1 1s any function in €°(G (Ap)!) whose projection onto ¢°(G (Ap)Z,0) equals
f f xuV, it follows from the argument of [6, Theorem 4.4] and the definition of adlSC ()
that J(f) has an expansion

Sowdtiwgt agtse i) In G, fHE(2)ddz
z ! ag,
(FN\ZA)! ey #eMge (M) ¥ 104.2\9G 7

where

In (o, £ = gy, P)Ip (7, 1)

is the global unnormalized weighted character on C°(GAR)H. Tt is a consequence of
[18, §5.1] that the inner integral converges absolutely. On the other hand, the integral over
Z(F)\Z(A)! annihilates the contribution of 7z coming from the complement of Igisc (M, ¢)
in Igisc (M), hence J (f) equals

Sowwd Y [ alGaG Han G8)

Mez FeMse(M,¢) Y 10.2/1%G.2

Then arguing as in [11, Proposition 3.3], it follows from the definition of aM () that the
spectral expansion (3.8) equals

> wiwg ! / a™ () (o, f)dn
MeZz M.V.5)
where

In (@, f) = w(sy (., P)Ip(m, ),  LeZM),PePL)

is the local normalized weighted character. It is related to the global unnormalized character
by the formula

InGo, fy="3 rigendit, ),

Le.?Z (M)

and hence is defined for f belonging to ¢°(G, V, ¢). Also, the operator Zo (A, 13, P)isa
scalar multiple of .Zg (A, m;, P), that is,

o\, 70y, P) =ro(A, o, P)uo(A, ¢, P)Ao(A, 7y, P),

where the coefficient 7o (A, c;,, P) is defined in [9, §2], and it follows then that the integral
over [1(M, V, ¢) converges absolutely. O
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3.3 The invariant expansion

Given the noninvariant linear form J on 5 (G, V, ¢), we have already discussed the invariant
linear form [ also on »# (G, V, ¢) obtained by setting inductively

I =T = D W IWE T T (par () (3.9)
M#G

for the maps ¢y, described in (3.4).

Theorem 3.5 The invariant linear form I on 7#(G,V, ) extends to a continuous linear
formon €°(G, V, ¢). It has the spectral and geometric expansions given by

> |Wé”||W0G|*1/ a™ () Iy (. f)dm
Me% nM.v.0
= Y Iwhwg 1t Y aMniuy .
Me¥ yell (M, V)

Proof We recall that for any f € ¢°(G(Fy), ¢y), the function ¢y (f) is defined to be the
function on Memp (M (F v)Z, tv) whose value at 77 is the tempered distribution Jy; (77, f) [8,
§2], and

i (f, ) = / S (F. )

Pk
laM<Z

where f and mr are the restrictions of f and 7 to G(Fy)Z and M (Fy)? respectively. We also
define

ou(f, 7, X)=Iu(f, 7, X), Xeauy
and ¢ (f, , X) using

I, X, )= / I (s, e Pdx

Lay,

if Jy (7, f) is regular for A € ia*M. In this case, it follows from [9, Lemma 3.1] that ¢,
maps €°(G (Fy)?, ¢y) continuously to I4°(G(Fy)Z, ¢y). For general w in [1(M, V, ¢), it
follows from the proof of Proposition 3.4 that Jy (, f) is well-defined for f € €°(G, V, ¢),
and moreover the integral

i w0 = [ I Gon. FHre N
i uD,V/iaE,V
converges absolutely. Here Z is the image in ag,y of X.
On the other hand, the weighted orbital integrals Jjs(y, f) are tempered distributions on
%¢°(G, V, ) as a consequence of [8, Theorem 4.1]. Altogether, it follows that the invariant
distributions defined inductively by

InGe, f)=JduGr, )= > Iy ¢u(f)
LeZ%(M)

and

In(r, ) =Jdu(r. )= D 1, é(f)

LeZ0(M)
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on either side of the invariant trace formula hold for functions f in €°(G, V, ¢).

Beginning with the linear form J on °(G, V, ¢), we define the invariant linear form /
as in (3.9). We can see that the absolute value of /( f)) extends to a continuous linear form on
¢°(G, V,¢), by assuming inductively that the statement holds for L € £ then applying
the continuity of the map ¢y on €°(G(Fy)Z, ¢y) and the linear form J. But we shall also
arrive at the same conclusion once we have obtained the desired expansions. Let us first show
that 7( f) has the geometric expansion

=Y whiwg ™t Y aM iy, .

Me% yel'(M,V.¢)

Assume inductively that the required expansion holds if G is replaced by any group L € .#°.
Combining this with the geometric expansion (3.5) for J, we see then that 7 (f) equals

Sowgtiwgt o > dMoy [ H - D> v n .

MeZ yell(M,V,¢) LeO(M)

and by definition of Iy;(y, f) this yields the required geometric expansion for 7(f). On the
other hand, the spectral expansion

=Y wwE [ Mt fdn

Ver mM.V.0)

follows in a similar manner. That is, assuming inductively that the required identity holds for
L € .Y, and using the spectral expansion (3.7) for J it follows that I( f) equals

Z|WOM||W§|*1/ ) A"y [ IuG H— Y I | dr
¢

MeZ nM.v.0 LeZO(M)

Then by definition of Iy; (s, f) this yields the required spectral expansion for 7(f). O

As we have alluded to in the beginning, the extension of the linear form / to noncompactly-
supported test functions in 4° (G, V, ¢) does not yet allow for proper use of the basic function.
To correct for this, we have to reconsider the passage from %”° (G(AF)Z, ) t0%°(G,V, ),
which requires, among other things, a reconsideration of the global geometric coefficients
that depend on the finite set S in a complicated way.

4 Weighting the geometric side

The treatment of the geometric side is more involved. Let ag = ayy,, and let Aq be the split
component of the center of M(. The summands in the geometric expansion

TN =1 (4.1)

ol

are obtained by evaluating certain polynomials J ! ( f1) at a distinguished point 7 = Ty in
ap. We agree to write J, (fl) = JOT0 (fl). More precisely, let fl € ¢°(G(Ap))and T bea

point in the positive chamber ag in ag associated to Py, suitably regular in the sense that its
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distance from the walls of ag is large. Then JOT (fl) is the integral over x € G(F)\G(A)!
of the function

Do nimar 3T ke p(Bx)Ep(Hp(6x) = T)

Pew SeP(F)\G(F)
where 7p is the characteristic function of the set
(Heay:w(H) >0, € Ap},

and

kop(6x) = Y / FlxYynx)dn.
yeMp(F) I NeA)
Ip(y)=o
Here A p is the basis of a";) / a*G which is dual to the simple roots A p of (P, Ap). As a function
of T, JOT ( f 1 is a polynomial of degree at most dy = dim ay, thus it can be extended to all
T € ap. Our present goal is to provide an expansion for (4.1) as a distribution on ° (G (A ) by
in terms of local distributions. According to the proof of Proposition 3.2, we can express the
geometric side as

T = > wptiwg Tt Y aMiIu . £,
Me? yeM(F)m.s

and from [12, §22], it follows that the limit
lim J 1
1S (f )

taken over increasing sets S, stabilizes for large finite S. Thus, in principle it may be possible
to make use of the basic function in the form of 7 in the above limit, but we would like to
have a more explicit form. For this, we shall revisit the refinement of the coarse geometric
expansion.

4.1 Unipotent terms

We first have to deal with the unipotent contribution, which is the most delicate. It corresponds
to the term

TG =I5 (D

where 0 = %g(F), the Zariski closure in G of the unipotent set in G(F). It is a closed
algebraic subvariety of G defined over F, and is one of the classes in &. We recall that the

. . . T ~ . . . . . .
distribution Junip( f) is obtained by integrating an alternating sum over standard parabolic
subgroups, whose leading term is given by

Kunip(x, ) = Y flax 'y

VEUG(F)

Let (%) be the set of Gal(F / F)-orbits of % . Then the previous expression can be rewritten
as the sum over U € (%) of

Kyv,x)= Y flayn.

yeU(F)
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In order to establish the refined geometric expansion for functions f = f x u", where
f € ¥°(G,V,¢) and u" is the ¢ ~'-equivariant characteristic function of the maximal
compact subgroup KV, we requier the existence of a measure on the unipotent variety for
functions in €°(G(Ap)!). We provide the argument here for f{ , which we shall also need
to construct our new geometric coefficients.

Fix a Euclidean norm ||- || on ag, and setd(T') = minmeAPO {a(T)}. Let Ag be the Arthur’s
truncation operator applied to the diagonal [3, p. 1242]

Lemma 4.1 There exist distributions Jg for each U € % which are polynomials in T of
total degree at most dy and such that

Thin(FY =I5 (Y
U
for fl € €°(G(Ap)"). Moreover, there is a continuous seminorm W on ¢°(G(Ap)Y and

constants €, €y > 0 such that

< u(fhHesd® 4.2)

Jg(fl)—/ AgKU(x,x)dx
G(F)\GA)!

forallU € (%), f' € €°(G(Ar)") and every suitably regular T with d(T) > €ol|T|).

Proof The proof of this statement is a mild generalization of [3, Theorem 4.2], where instead
of the convergence estimate [3, Theorem 3.1] for f lec SO(G(AF)]) we shall rely on [17,
Theorem 7.1] for ! € €°(G(Ap)Y).

Fix an orbit U € (%g). Itis a locally closed subset of G, defined over F, and its Zariski
closure U is a closed subvariety of G, again defined over F. The ideal of polynomial functions
on G which vanish on U is of the form (¢y, ..., q;), where g1, . . ., g; are polynomials on G
defined over F. If v is nonarchimedean valuation of F, we define p, to be the characteristic
function of [—1, 1], and if v is archimedean, define p, to be any function such that0 < p, < 1,
equalto 1 on[—3, ] and zero outside of [—1, 1].Then forany f! € °(G(Ar)")and e > 0,
we define the truncated function

F55@ = @ gi@l) -+ pule ()]

where x € G(A) 1_ It again belongs to ¢°(G(Ap)Y), and equals f in a sufficiently small
neighborhood of U (A).
Let v be any valuation of F. We shall construct Jg by examining the behavior of

T fle :
Junip (ft/) s € approaches zero. Let us write

Kg(x,x) = > Ky (x, x).
(Ueg)U'cU)

It will suffice to show there exists a continuous seminorm on €°(G(Ar)!) such that for all
fl e €°(GAR)Y), the difference

JuTnip(le;’j) —/ A;Kg(x, x)dx 4.3)
G(F)\G(A)!

is bounded by ]
u(fHsm (1 4 (T )%, 4.4

for some 6 such that 0 < § < 1, r > 0, and m large enough. The desired result will then
follow by the same argument as in the proof of [3, Theorem 4.2].
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Given standard parabolic subgroups P; C P, we write A%‘l’ for the identity component
AP] (R)O of AP] (R), and A?)C;,P2 = A%Cl) N MPZ (A)l Moreover, given Ty, T» € ap, we denote
by A p,(T1, T) the set

{a € A%, p, s a(Hp (@) = T1) > 0,a € AP 55 (Hp, (a) — T) < 0, € Apuy, ).

Let T € ag be a suitably regular point. We define F(x, T) to be the characteristic function
of the compact subset of G(F)\G (A)! obtained by the projection

NO(A)MO(A)A‘;%,G(H, T)K — G(F)\G(A)'.

Using [3, Lemma 2.3], which states that

/ AgKU(x,x)de/ AfFe [ YD Floyx | ax
G(F)\G(A)! G(P\G(A)! yeUF)

and the property that
Kgrx)y= Y falyo= Y friatyx,
yeU(F) yeU(F)

we may bound the difference (4.3) by the sum of

oo (FU5) = / P | YD yhaT v | da 4.5)
G(P\G(A) U (F)
and
/ FoT) Y 1 eyl (4.6)
G(F)\G(A)! p 7
YEUG(F)\U(F)

The first expression (4.5) is bounded by
w(fy DA+ ITIH%e D

for some continuous seminorm gt on €°(G(Ar)'), as an application of [17, Theorem 7.1].
Replacing the seminorm w(f) with w(f)N(f)" where the N( f) is defined according to [3,
p- 1257] and for n large enough, we can apply [3, Corollary 3.3], which remains valid for
functions in €° (G (Ar)'), to conclude that the latter expression is bounded by

u(fHa+|ITIp e .
On the other hand, the second expression (4.6) is bounded by
r(fHA+ITIDE

for some r > 0, using [3, Lemma 4.1], which holds also in our case as the characteristic
function F(x, T) implies that the integral is taken over a compact set. Taking € = §" then,
the required bound (4.4) follows. O

We shall apply the lemma to obtain the following expansion for the unipotent term.

Proposition 4.2 Fix a representation r of G and s € C with Re(s) large enough. Then for
any S, there are uniquely determined numbers

a (S,u), MeZ ue@u(F)us
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such that

Jhp(Fro =Y wtiwg Tt Y @S I, £ 4.7)
Me% ue(@m(F)m.s

forany L € £ and f = f§ x b} with fi € €°(G(Fs)").

Proof Assume inductively that the result holds for any Levi M properly containing L. Define
TE(f!}) to be the difference

Jaip(Fr = Yo wtiwg 1™ > @S w I, f3)

Megt ue(@u(F))m,s

M#L
for f as above. We can thus view T as a distribution on L}g that annihilates any function
which vanishes on %7 (Fs). It is an invariant distribution by the same argument in pp. 1269—
1270 of [3]. We need to show that there exist uniquely determined numbers arL,S (S, u) such
that

TEfo = Y ak(SawIfw. ). (4.8)

ue(%L(F))L,s

The uniqueness follows from the linear independence of the invariant orbital integrals J LL (n),
thus it remains to prove their existence.

For any integer d, let %, 4 be the union of orbits U in (%) of maximal dimension d. The
set

U.a(Fs) = | [ %c.a(F)
vesS
of Fg-valued points is a closed subspace of Lg consisting of a finite union of L g-conjugacy
classes. Let %;,.4(Fs)' denote the union over orbits U € (%) such that dim(U) < d and
such that U (F) is nonempty, of the spaces U (Fy). It is the union of L g-conjugacy classes
parametrized by elements u € (%1 (F))r,s with dim(UuL) < d. We see then that if there
exist numbers

ab (S,u),  we (U (F)Ls

such that for any d the distribution

THA ) =TG- Y b awdf . fO
ue(%L(F))L.s
dim(U})>d

annihilates any function f Sl € ¢°(G(Fs)") which vanishes on 1.4(Fs), therequired expres-
sion (4.8) will follow.

Ifd > ‘dim(%L), th_en U .q(Fs)' is the unipn of spaces Ug such that U (F) is not empty,
and T)(f') = TE(f! ). In this case, T (/) is the difference between the distribution
obtained in Lemma 4.1,

Jul;np(frl’s) = Z J[%(fr{_g)?
Ue(ZL)
and a sum of integrals over U (Fs) for which U (F) is nonempty. Since Jé is zero when
U (F) is empty, it follows that TdL annihilates any function which vanishes on %7, 4(Fs)'.
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Ifd > dim(%}), assume inductively that arljs (S, u) is defined for any u with dim(UuL) >d
and 5 annihilates any function which vanishes on %, 4(Fs)'. Let %19 4 be the union over
orbits U in (%) with dim(U) = d, and let C¢ be the complement of %Loyd(Fs) in%y,.q(Fs).
Thus C¢ equals to union over v € S and U € (%) with dim(U) < d of the sets

Ch,=UWF) [ %.a(Fu).

wes

w#v

itis a closed subset of L(Fs)'. We shall first consider the restriction of TdL to the complement
of C¢ in LIS. The space

U1.a(Fs)\C? = Uy.a(Fs) N % 4(Fs)

is adisjoint union of L g-conjugacy classes which are closed in L IS\Cd. The conjugacy classes
are parametrized by u € (% (F))r,s such that dim(UuL) = d. For each such u, let L, be the
centralizer in L of a fixed representative of u in L(F'). There is a surjective L;—equivariant
map

G (LH\C! - P E°(Ls/Lu.s),

u

with kernel consisting of functions in €°(L g\Cd) which vanish on %, 4(Fs)'. We may view
any function that annihilates the kernel as the pullback of an Lg-equivariant distribution
on the right-hand side. It follows then that we can choose constants arlj s(S,u) for each

u € (%, (F))L.s with dim(UL) = d such that

Trflo= Y akS.wIfH
ue(#L(F)L,s
dim(U})=d
for any fS1 € ‘5°(L§\Cd).
On the other hand, if f is any arbitrary function in <tf"(LIS), we set

TP )=THE D= >0 ab (S.wIf ).
ue(#L(F))L.s
dim(U}f)=d

Then TdL_1 (f,l.’s) is an invariant distribution supported on C¢ which annihilates any function
that vanishes on %7, 4(Fs)'. By the inductive assumption, it will suffice to show that

TdL—l(frl,s) =0

for any function fsl that vanishes on %, 4—1(Fs)’. Consider then the sets C ?}, , for which
fS1 does not vanish on a neighborhood of the closures C_‘f],v. If no such set exists, then fS1
belongs to ‘5°(L§\Cd) and hence Tdel (fr{s) = 0. Otherwise, let there be (k + 1) such sets
with k > 0. Let Cg’ , be one such set. Then for any € > 0, we have that f(jy , 1s equal to f

in a neighborhood of C ;1} > and (f — f5 ) vanishes in a neighborhood of the closure of all
but at most k sets. We may assume inductively then that

TdL—l(frl,s - (frl,s)il,v) =0.
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On the one hand, le;l ( fr1 ,) is the difference between JL. ( f',{s) and

unip
SwdtiwiTt > S wifw fH+ Y alS.wIEw. f).
McCL ue(¥m(F)m.s ue(%L(F)Ls
M#L dim(UL)>d

On the other hand, using the property that
lim Ty e, (£ ) = Im @, £,
if Uf C U, otherwise it is zero, and
ehino Juz;lip((frl,s);f,v) = Z JT’(frl.s)
{U'e(¥c):U'cU)

for any valuation v, which follows from Lemma 4.1 by the same argument as [3, Corol-
lary 4.3], we then have that

lim 7 (£ )5 )
e—0
is equal to

JEAL =T wptwg Tt ST a (S dfw, £
McL ue(@u(F)m,s
M#L ukco
fordim U < d. Since f;{s vanishes on %z, 4—1(F)', it follows from (4.2) that Jl%(f,{s) =0.
The other terms in the preceding expression also vanish, thus Tdel ( fr1 ;) =0asdesired. O

Specializing to the case L = G, we have our desired expression for the unipotent contri-
bution.

Corollary 4.3 For any fS1 € €°(G(Fs)Y), we have

Tuip(f) = DWW 1™t Y aM(S i Iu G, £9).

Me¥ ”E(/J]/M(F))M,S

In particular, the restriction of Junip to G(Fs)! is a measure.

4.2 Refinement

Having treated the unipotent terms, the rest of the geometric expansion follows naturally. Let
M be a Levi subgroup of G, and ¢ a semisimple element of M (F). For any ¢ € G, we denote
by G. + the centraliser of ¢ in G, and G the connected component of the identity in G 4.
We say a semisimple element c is F-elliptic in G if Ag, = Ag. We recall that two elements
y and y; in G(Fs) with standard Jordan decompositions y = c& and y; = ¢ are said to
be (G, S)-equivalent if there is an element §e G (F) such that 5_1616 = ¢ and 5‘10518 is
conjugate to @ in G.(Fs). For a general element y = ca, we define the general coefficient
by the descent formula

a’(S.y) =i%(S. c)|Stab(c, )| 'aTs (S, &) (4.9)

s

where Stab(c, &) denotes the stabilizer of ¢ in the finite group G, +(F)/G.(F), and i9(S,¢)
is equal to 1 if ¢ is F-elliptic in G and the G (A)3-conjugacy class of ¢ meets K5, and is zero
otherwise.
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Proposition 4.4 Let f} € €°(G(Fs)"). We then have

T = D0 w1t > a S I £,

Me¥ yEM(F)m,s

Proof The result will follow from the proof of [4, Theorem 9.2] if we can show that for each
0 € 0, there is a finite set S, containing the archimedean places, such that for any finite set
S§O S, and f € €°(G(Fs)h),

To(f)y= > W wg ™t Y a (S ) Iu . ).
Mes yeM(F)No)um,s
This in turn follows from the proof of [4, Theorem 8.1], where we need only indicate the
changes that must be made in our setting. To that end, fix a semisimple element ¢ € o such
that ¢ € Mp, (F) for a fixed standard parabolic Py, and such that it does not belong to any
proper parabolic subset of M1 = Mp,. Also let CG(c) = |Ge,+(F)/G:(F)|, and let T be
a suitably regular point in ag. Then following [4, Lemma 3.1], the distribution J! (f) can
be expressed as the integral over x in G(F)\G(A)!, and the sums over standard parabolic
subgroups R of G, and elements & € R(F)\G(F) of the product of

1.9 ()| ! Z / f e Yeungx)dn
ueMg(F) Y NrR(&)
with
> (=)ImAPAD R, (Hp (x) — Zp(T — To) — To).
PeFr(My)

Here .%g (M) is the set of parabolic subsets P with Levi factor M with centralizer P, = R,
and Zp is defined in [4, (3.3)].

Let Pi. = Pi1NG,, andlet M. beits Levi factor. Let %€ be the set of parabolic subgroups
of G, containing M. Let

L (8x,y) =Y} (6x,y) : P € Zr(My)},
where
YE(x,y) = —Hp(Kp,(8x)y) — Zp(T — To) — Te + Tp),

and Kp (x) is the component of x in K, relative to the decomposition G.(A) =
Np (A)Mp,.(A)K.. We would like to rewrite JOT (f) using a series of changes of variables
as

_ Ms, T,
|LG(C)| 1 / E (f /Oo 1 ‘]unii) (q)g:,a,k,y)da dk) dy
GeA\GA) (se Forsopy) \JKe JaFnGR)

where <I>§’a,k’y(m), m e Mg(A)! is given by

¢ (Hg(a) — T, # (k. )85 (m)? f

Ng(A

f(y_lck_lmnky)dn
)

and F? (X, #g) is a compactly supported function on X € ag, depending continuously on
%k defined in [4, §4]. We can do so by applying the combinatorial arguments of [4, §6],
noting that the integral over y remains absolutely integrable by the rapid decay of f, and
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that a weaker form [4, Lemma 6.1] holds by a similar argument (and simpler, as we do not
require compactness). Namely, given a subset A of G(A)! we can choose a subset ¥ of
G:(A)\G(A) such that y_lc%gc (A)y N A is empty unless y belongs to . We can then
choose S, to be the finite set of valuations as described in [4, p. 203] (see also [11, p. 193]).

O

We have the following formula for the global geometric coefficient in the case of semisim-
ple elements.

Corollary 4.5 Let y € G(F) be a semisimple element. Then for any finite set S O S,, we
have

a’ (S, 7) =Gy +(F)/Gy(F)|”'Vol(Gy\G (A) )by (1)
if y is F-elliptic, and zero otherwise.
Proof Let us first show that

al (8, 1) =a"(S, Db (1) = vol(G(F\G(A) )b ((1).

Notice that if U is the trivial unipotent class, then

/ ALKy, xydx = f! (1) F(x, T)dx,
GF\G(h) GIF\G(A)!

and by the dominated convergence theorem, we see that J {Tl} (f'r{X) is equal to the product of

vol(G(F)\G(A)") with b7 (1) f{ (1). From Proposition 4.2 we deduce the desired expression
for trivial y, and the claim then follows from the descent formula (4.9). m}

4.3 The invariant geometric expansion

Following [11, §1], we now want to reindex the geometric terms in a different way. Let
2(G(Fy)%, ty)bethe space of ¢y -equivariant distributions that are invariant under G (Fy ) Z.
conjugation and supported on the preimage in G (Fy)? of a finite union of conjugacy classes
in G(Fy)? = G(Fy)?/Z(Fy). Let Zon(G(Fy)%, ¢y) be the subspace spanned by distri-
butions

f / tv (@) fezyv)dz,  yv € G(Fy)?
Z(Fy)

where

foyv) = ID(yy)|'? / FO yyx)dx,

Gyy NG(Fv)?\G(Fv)?

for Gy, = [lyey Gy, (Fy) and [D(yv)| = [l ey |ID(vu)ly is the usual discriminant. Let
I'(G(Fy)?, ¢) be a fixed basis of 2(G(Fy)?, ¢y), and let

Con(G(Fv)%, ¢v) = T(G(Fy)%, ¢v) N Do (G(Fv)Z, ty).

Let (ys/y) be the ratio of the invariant measure on ys and the signed measure on ys that
comes with y, so that

fo(s) = s/ fc),  feC(GEZ, tv), v € Town(G(FV)%, ¢y).
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Forany f € 4°(G,V,¢)and y € (M (Fy)Z, Cv), we inductively define the linear forms

In(y, £)=Julv. )= > I éL(f)
LeL (M)
where Jy/(y, f) is the generalized weighted orbital integral defined in [11, §2] and ¢, is the
map defined in (3.4).
We define the elliptic coefficients

a’s n@s) = Y 1Z(F, I al (S, )57 /7s) (4.10)
r}

where the sum over {y} runs over a set of representatives of Zg ,-orbits in (G(F))g,s, and
Z(F,y) is the subset of z € Zg , such that zy = y. We note that arGJ(S, y) exists for any
S-admissible element y € G(F), by [11, Lemma 2.1] and the analogue of [4, Lemma 7.1]
for f € €°(G(Fs)!) which follows from the proof of Proposition 4.4.

Let Viam (G, ¢) be the finite set of valuations of F outside of which G and ¢ are unramified.
We shall fix a subset V of S containing Viam (G, ¢), and that f is S-admissible in the sense
of [11, §1]. We specialize the test function ff =fx bY, hence

f—= fl=fxby

gives a map from ¢°(G, V, ¢) to €°(G, S, ¢). We shall combine the elliptic coefficients
with unramified weighted orbital integrals of basic functions at the places in S — V. Let
K (G(Ag)) denote the set of conjugacy classes in G(Ag) = G(Ag) / Zg that are bounded in
the sense that for any v in V — §, the image of any representative lies in a compact subgroup
of G(F,). Any element k € K(G(AY)) induces a distribution y¢ (k) in Tom (G (AY), £J).
Given y in I'(G(Fy)Z, ¢v), we write

y xk=y xyd k)

for the associated element in ' (G (Fs)Z, ¢s). Furthermore, let IC;I(M , §) denote the elements
in K(E(Ag)) such that y x k belongs to I'ej (G, S, ¢) for some y. Here e (G, S, ¢) is the
set of y in Ty (G (Fs)Z, ¢s) such that there is a y € G(F) such that

(i) the semisimple part of y is F-elliptic in G,
(ii) the conjugacy class of y in G(F,) maps to y, and
(iii) y is bounded at each v ¢ S.

We can then define the unramified weighted orbital integrals
rip(kob) = Ju(yg (k). b5), k€ K(M(Ag)). @.11)

Now the set I'(G, V, ¢) is given by the union of induced distributions 1% where p runs over
elements in [¢ (M, V, ¢) and M runs over Levis in .Z. Recall that the induction is defined
by the relation

few®) = fu@), [ e (G(Fy),tv),

and f — fuy is the canonical map from €°(G(Fy), {y) to IF°(G(Fy), {y) factoring
through the map f +— fg. We also have the adjoint restriction map y + yy from
Z(G(Fy), {y) to Z(M(Fy), ¢v), such that

Yo amrmwbe = Y. am(wbeu®) (4.12)

yel(G(Fv).tv) nel (M(Fy).ty)
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for any linear function ay on Z(M (Fy), ¢y) and bg on Z(G(Fy), {v). We then define for
any y € I'(G(F v)Z, Cv), the geometric coefficient

al ()= Y WMWY @ am x by b) (4.13)
Me2 kekCk (M. S)

where S is any finite set of valuations of containing V such that y x KV is S-admissible. It
follows from the definitions that af 4(y) is supported on the discrete subset I'(G, V, ¢) of

L(G(Fy)?, ¢v).

Theorem 4.6 Let f € 6°(G, V, ¢). Then the invariant linear form I} ( f) has the geometric
expansion

=Y wwg ™t Y a o iuty, ) (4.14)

Me¥ yell(M,V.0)

Proof Recall from Proposition 4.4 the expression

T =Jf o= Y wiwg 1™ Y aM S I, £9).

Me% yEM(Fs)F.s

For a fixed set of valuations §, the linear form J ( f 1) is KS-invariant, we may then write

J(f) = / T )¢ ()dz
Z(H)ZSNZ(8)!

as

dSoawtwg > as.y) In(ey. f§)e@)dz
Mey yeM(F)us Zs.0\Zs
since Z(A) = Z(F)Z(Fs)Z(0%) and Jy (v, f{.) = Ju(zy. f§) for any z € Z(Fs). The

inner sum can be written as

Sz DS [ G, e
{7} §

Then applying the definition of (4.10), we have
JH =Y wiwg ™t Y a G In @ fs) (4.15)

Me¥ yselen(M.V.5)
where fs is the projection of fS1 onto (G, S, ¢).
Since fs is equal to f X bg, we claim that
ImGs, fs)=">_ Tu@d, GHDILGY, ).
LeZ (M)

This follows from the descent and splitting properties of the weighted orbital integrals, stated
in (18.7) and (18.8) of [12] or, more directly in [27, VI.1.9(2)]). Here we use the fact that
(b)) = (by) g is independent of Q € Z(L), where

Ffom) = 8g(m)? / f PO mnk)dn dk.
K NQ(FS)
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since by (2.5) we see that the basic function depends only on the restriction to T (Fy)+
for each v € V — S. Moreover, JAL,I()}SV, (bg)L) vanishes unless )}SV = )'/SV (k) for some
k € KK(M(AY)), in which case it equal rj; (k, b) by definition. Hence a”  (s) vanishes
unless ;o = py liesin Ten(M, V, ¢) and k lies in K (M, S). We can thus write (4.15) as

ooy whiwgt > >0 al i x kri kb IL(u®, ).

LeZ Meyl nelen(M,V.0) kekCl (M, S)

Using the property (4.12) and the definition (4.13) it follows that the inner sum can be
expressed as

Yowtwg Tt Y S aM m x bk kb, f)

Me¥ y€eL(L,V.0) kekk (M. S)
= WIwg 1™t Y al L. ).
yel'(L,V,¢)

Writing M for L in the preceding expression, the geometric expansion of J; (f) can thus be
written as

=Y whiwg ™t > eIy ).
Me¥ yel'(M,V,¢)

Converting this expansion for J( f;') into an expansion for / (f7) is standard. Recall from
the definition in (3.3) that

L =3H= D W IWg 1 1M m (£).
MeZ0

Assume inductively that the expansion (4.14) holds if G is replaced by any proper Levi
L € .#°. Then using the expansion we have just obtained for J! (f), we see that

=Y wwg ™t Y a o [ H = D T en(f)

Me¥ yel (M, V.0) LeZ (M)

By the definition of I3;(y, f) then this is equal to
Yowtiwg Tt Y e nIny, f)

Me% yel'(M,V.¢)

as required. O
Corollary 4.7 The coefficients arGJ (y) are independent of S.

Proof The linear form I (f) is constructed from the noninvariant form J; (f), which is
independent of S. Assume inductively that for any proper Levi subgroup M of G, the coef-
ficients a% (y) are independent of S. Then the terms corresponding to the M in (4.14) are
independent of S, thus so is the term corresponding to G, which is

Y af ) fe).

yel'(M,V,¢)

It follows then that the af ¢ (y) are independent of S. O
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5 Weighting the spectral side

On the spectral side, we have the sum
TN =) 0,
XX

whose summands are also obtained by evaluating the polynomials J XT ( f 1) at a distinguished
point 7' € ag. They are simpler to treat than the geometric expansion, given the absolute
convergence of the spectral side in hand, together with the results of [18] which concern the
refined noninvariant spectral expansion.

5.1 Refinement

Let Munic(M(A)") be the set of unitary representations of M(A)'. Given an element 7 €
My (M (A)) and A € ia},, we form the representation 7 by multiplying by M HPO) and
the induced representation .#p (i7;) for any P € 2(M). Let WL (M )Jreg be the subset of
regular elements in WL (M), that is, elements in W (M) with kernel equal to az. Also let
ag. 7 be the subspace of linear forms on ag that are trivial on the image of az in a¢. For any
Q€ (M) and s € W(M) there is a global (unnormalized) unitary intertwining operator
Jop (s, ) from #p (1) to #7p (7). We set

Joip(1,73) = Joip (),  Jp(s,0) = Jpp(s, Trtn).

We recall that there is a discrete subset [gisc (G (A p)!) that supports a finite linear combina-
tion of characters

Lise(f =" Y a0 fe6),

7t €Mgise (G(AF))

with f e €°(G(Ap)Y). The spectral coefficients agsc (7r) are the multiplicities defined by
the spectral expansion of the discrete part

Luse(fD) = Y0 IWIWE 1™ Y0 Idet(s = D |7 teUp (5. 00.7p G, 1)

Mes SEWL(M)reg

in [6, §4], written as a linear combination of characters. )
We begin by recording the following spectral expansion of J( frl’ o)

Proposition 5.1 Let f‘} € €°(G(Fy)'). We then have

Ty =Y whiwg 1T Y ad G | TG, fL)do.

Me¥ 7 €lgise (M) iay 7/iagG. 2
Proof We recall that J, ( f 1) is equal to the sum over M € & of the product of
My G —1 _ -1
[Wo  lIWg" I det(s — D46 |

with

Z Z Z / ) (7L, P)Jp(s, 0).Ip (7, f))dA,
zai iu’&

7 eMuil(M(A)!) LeZ (M) SEWL(M)reg
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as in the proof of Proposition 3.4. Here

. BT . —1
S, P) = lim Z Jo(A, 70, PYoo ()7,
Qe (M)

for A € ia}*w near to 0, is the limit of (G, M)-families

Fo(A, 75, P) = Jpio() e (sa).

Then the required formula follows by the same argument in the proof of [6, Theorem 4.4]. O

5.2 The invariant spectral expansion

As before, we have to convert this expansion to a distribution on G (F v)%. We continue to
assume that V contains Viym (G, ¢). Let # (G (F V2, ¢y ) be the space of finite complex linear
combinations of irreducible characters on G (Fy)? with Z(Fy)-central character equal to
¢y, with a canonical basis IT1(G(Fy)Z, ¢y) of irreducible characters. We identify elements
7w € F(G(Fy)%, ¢y) with the linear form

[ = fo(m) =t(m(f))

on S (G(Fy)Z, Zy). We write it (G (Fy)Z, ¢y ) for the subset of unitary characters. The
orbits of the action

T, AEiagy,

on 7 € Muit(G(Fy), £y) can be identified with the set i (G (Fyv)%, ¢y). We also define
the induced characters

fu@) = fo(@%) =uw(Ip(n, ), 7 € Munie(M(Fy), ¢v).

Given any f € J(G, V, ¢) and w € Iy, we inductively define the linear form

InGr, ) =JIuGr, )= D Iy é(f)

MeL0(M)

where Jys (r, f) is the weighted character defined in [11, §3] and ¢, is the map defined in
(3.4).

‘We shall combine the spectral coefficients with unramified characters using basic functions
at places outside of V. Let us define Mgisc (G(AR)Z, ¢) to be the set of representations in
[1(G(A)%, ¢) whose restrictions to G(A)! lie in Mgisc(G(Ar)'). It can be identified with
the representations in Mgisc (G(Ap)!) whose central character on Z(A)! is equal to ¢. We
then define Igisc (G, V, ¢) to be the subset of 7 € TT1(G(Fy)Z, ¢y) such that & x ¢ belongs
to IMgisc (G(AF)Z, ¢) for some ¢ € C(G(AY), V). Now given c € C(G(AY), ¢"), there is
a natural action of A € a’&y z.c sending

c—>co={cpa:véV}h

Let 7 x ¢ = 7w @ 7V (c) denote the associated representation in I1(G(A), ¢), and let
Cuaisc (G(AF)Z, ¢) denote the elements ¢ € C(G(AY),¢V) such that 7 x ¢ belongs to
Maise (G(AF)Z, ¢) for some w € Ilgisc(G, V, ¢). Following Arthur, we define for any
c € CA;SC(G(AF)Z, ¢) the unramified normalizing factors rg|p(c;) as the quotient of com-
pleted automorphic L-functions

L(0, ¢x, poip)L(1, ci, poip) ",

@ Springer



A weighted invariant trace formula 109

for P, Q € (M), where pg|p is the adjoint representation of LM on the Lie algebra
of the intersection of the unipotent radicals of P and Q. We also form the corresponding
(G, M)-family of functions

ro(A i) =rg5(c)  rg 5(Crrar)
for Q € #(M) and A € ia},. The limit
G o ~1
rycy) = 1{1210 Z ro(A, )t (A)
QeZ (M)

is defined as a meromorphic function of A. The global unnormalized weighted character, on
the other hand,

Iu G f) = 0y G, P)Ip (. f)
is to be expressed in terms of the local normalized weighted characters
JL(i, f) = (L, P Ip, (0, ). L€ Z(M), P e Z(L).

Since 7 is unramified outside of V, #Zo(A, 1, P) is a scalar multiple of .#p (A, 7, P),
namely

Jo\, 1y, P)=ro(A, cy, P)ug(A, ¢, P)Ao(A, my, P)
according to [11, p. 207]. We can then define the unramified character
rir(en b) = rip(e)by(c), ¢ € (M, 0). (5.1)

It follows from [11, Lemma 3.2] and the absolute convergence of bY 1 (c) for Re(s) large
enough that for ¢ € c¥ (M, Z), the function rM (cy, b) is an analytic functlon of L € 1uM’Z
and

disc

f rip(ca, YA + A1) "Nda

o
ay,2/19G 7

converges for N large enough.
Let Hdlsc(M V., ¢) be the preimage of HdlSC(M V,¢) in yic(M(Fy), ¢y), and let
(M, V, ) be the set of i laG z-orbits in i (M, V, ¢). There is a free action

dl%C
p = pr  hEidy z/iag ;

on Hglsc (M, V,¢) whose orbits can be identified with [Tgisc(M, V, ¢). Any element p €

HgSC(M V., ¢) is an irreducible representation of M (Fy) N G(Fy)Z, from which one can
form the parabolically induced representation p© of G(Fy)?. Recall that the induction is
defined by the relation

fo(%) = fu(p),  f € C(G(Fv),ty),

with the adjoint restriction map 7 +— mps from .#(G(Fy), ¢y) to F (M (Fy), Ly), such that
Yo emtmde(m = Y em(p)dg(p) (5.2)
7 €ll(G(Fv).¢v) PEM(M(Fv).Cv)

for any linear function cps on .# (M (Fy), ¢y) and dG on Z#(G(Fy), ¢y). We then define
I1(G, V, ¢) to be the union over M € .Z and p € I1 dlbc(M , 'V, ¢) of irreducible constituents
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of p©. It has a Borel measure dr given by

hoodr = 3 (W wE ! f h(p)d
/1'1(0,\/,;) Z 0 0 Z ia *

x _Jiak
MeZz pellgise(M.V,5) " "M.2I77G.Z

for any h € C.(I1(G, V, ¢)). We then define for any 7 € [1(G(Fy)%, ¢y), the spectral
coefficient

al(r)y =Y _IWFIUWSI™ > adl (rm x (e, b), (5.3)
Le? ceCl (M.¢)

where 7y X c is a finite sum of representations 7 in Ty (M (A), ¢), and aé‘fsc(nM X C)

is the sum of corresponding values adGiSC (77). It follows from the definitions that af G(m) is

supported on the subset I[1(G, V, ¢) of [1(G(Fy)Z, Ly).

Theorem 5.2 Let f € €°(G, V, ). Then the invariant linear form I} (f) has the spectral
expansion

noh= Y et [ e, . (5.4)

Me% . v.g

with the integrals converging absolutely.

Proof As in (3.2), we would like a parallel expansion for the linear form

J(H=T(f = f T(fL De(2)dz

Z(F\Z(M)!

where f;{s is any function in in °(G (Ar)') whose projection onto ¢°(G(AF)%, ¢) equals
fI = f x bV . It then follows from Proposition 5.1 that J! () has an expansion

> wtwg It al T In (., £ e (@)dn dz.
VA 1 ok .k
(FNZA) pre #eMgie (M) Y 19%,2/19G 2

Now the outer integral annihilates the contribution of 7 in the complement of ITgisc(M, ¢)
in Igisc (M), so the expression simplifies to

TH =Y whwg 1ty / i) Iy (s frs)d
Meg freMgiee(M.0) * Om.2/19G.2

We have to express Jys (775, f ) in terms of local normalized weighted characters. Applying
the splitting formula

Iu(ry, P) = Z rh (e Tk, P)
Le% (M)
in [11, p. 208], we have for the choice of test function function f;’ the relation
MG =Y rhen b IuE, ).
LeZL (M)

which vanishes unless 77 is unramified outside of V. Writing & = 7 X ¢, we can replace the

sum over 77 with a sum over 7 in Igjsc (M, V, ) and ¢ € chqsc (M, ¢). From the definition
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of the spectral coefficients, we write

L L M L
ab (thy= Y alf(m x c)ryy(ca b)

ceb (M.0)

forany A € ia}, , in general position, ignoring sets of measure zero. We can therefore rewrite
our expansion as

>owpwg Y i | at by Ik, fdo.
a

Leg MeglL melgise(M,V,¢) 71 OM,2/186 7

The coefficient a (nAL) and the integral
/ JLth s A
iazz/ia’é,z

depend iny on the imagc? of A in ia’;,ly 7/ az 2»hence on the restriction of n/\L to Lg. Writing
7 for this restriction, which runs over I1(L, V, ¢), we arrive at

Ifh=) |W0L||WOG|‘1f( )aL(mJL(n, frdm.

Lez m.v.g

Again, to convert the expansion for J(f]) into an expansion of I (f]), we assume induc-
tively that the expansion (5.4) holds if G is replaced by any proper Levi L € £°. Then using
the expansion we have just obtained for J; (f), we see that I{ (f) is equal to

> |W0M||W§|*‘/ )a%v(n) TG f)— > Ig.eu(f) | dr.

Mey (M. V.¢ LeZ (M)

By the definition of Ij;(w, f) then this is equal to

> winiwg ! [ i, fyin

Mew M.V

as required. O

Putting Theorems 4.6 and 5.2 together, we have an invariant trace formula that is valid for

fi=fxb.
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