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Abstract
We show that the graph of normalized elliptic Dedekind sums is dense in its image
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1 Introduction

1.1 The density of elliptic Dedekind sums

The classical Dedekind sum s(m, n) is defined for m, n ∈ Z, (m, n) = 1, n �= 0, by

s(m, n) := 1

4n

n−1∑

k=1

cot

(
π
mk

n

)
cot

(
π
k

n

)
.

They are of arithmetic interest, arising originally from the transformation law of the
Dedekind eta function. It has found applications to the special values of L-functions,
and also areas outside of number theory such as knot theory, geometric topology, and
combinatorics. Grosswald and Rademacher conjectured that the values of s(m, n) are
dense in R, and moreover the graph {(m/n, s(m/n)) : m/n ∈ Q} is dense in R2 [12],
where s(m/n) := s(m, n) whenever (m, n) = 1. The latter statement (which implies
the former) was first proved by Hickerson [2].

Many generalizations of Dedekind sums have been made, and in this paper we
study elliptic Dedekind sums. These are generalizations of classical Dedekind sums
to complex lattices, or imaginary quadratic number fields. Let L be a non-degenerate
lattice in C. We define

Ek(z) =
∑

x∈L,
x+z �=0

(x + z)−k |x + z|−s
∣∣∣
s=0

,

where the value of the sum at s = 0 is evaluated by means of analytic continuation.
Define the ring of multipliers for L as OL = {m ∈ C : mL ⊂ L}. It is either equal
to the ring of integers or to an order in an imaginary quadratic field. Then, following
Sczech [13], the elliptic Dedekind sums for L are defined as

D(a, c) = 1

c

∑

μ∈L/cL

E1

(aμ

c

)
E1

(μ

c

)

for a, c ∈ OL , c �= 0.
Assume for the rest of this paper that OL is the ring of integers OK of an imagi-

nary quadratic field K = Q(
√−D). If K has class number 1, one can again define

D(a/c) = D(a, c) for a/c ∈ K and a, c coprime inOK . (Note that if the class number
is greater than 1, the fraction is no longer well-defined.) Ito [3] showed that the graph

{(a/c, D̃(a/c)) : a/c ∈ K }

of the normalized elliptic Dedekind sum

D̃(a/c) = D̃(a, c) = (i
√|dK |E2(0))

−1D(a, c)
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The density of the...

is dense in C × R when D = 2, 5, 7, where dK is the discriminant of K . (That is,
when OK is Euclidean and D �= 1, 3; note D̃ is trivial if and only if D = 1, 3.) It
was also shown recently by the last author and others [1] that the image of D̃(a, c)
is dense in R for general lattices L in C (and in particular for arbitrary class number)
using a recent method of Kohnen [5].

1.2 Main result

In this paper, we extend these results to the density of the graph for imaginary quadratic
fields of arbitrary class number.Note that the reduced fractiona/c associated to anyα ∈
K is only uniquely defined when K has class number 1. Also, the set of factorizations
of an element inOK is bounded [7]. For general class number, it will suffice for us to
fix any nonunique representative a/c of α and consider D̃(α) = D̃(a, c). Note that
D̃(a, c) = D̃(λa, λc) for any nonzero λ ∈ OK by [13, (15)]. With this convention,
we state our main result.

Theorem 1.1 Let K = Q(
√−D) with D �= 1, 3. Then the graph of the normalized

elliptic Dedekind sum
{(α, D̃(α)) : α ∈ K } (1.1)

is dense in C × R.

Following themethod of Ito and Hickerson, our proof first relies on a generalization
of the continued fraction algorithm recently established by Martin [6] for imaginary
quadratic fields of general class number. The second ingredient in our proof is Sczech’s
homomorphism � : SL2(OK ) → C

+ [13] given by

�

(
a b
c d

)
=

⎧
⎪⎪⎨

⎪⎪⎩

E2(0)I

(
a + d

c

)
− D(a, c), c �= 0

E2(0)I

(
b

d

)
, c = 0

where I (z) := z − z̄ = 2 Im(z). It was extended to GL2(OK ) by Obaisi [10] as
follows: for a more general matrix A ∈ GL2(OK ), we have

�

(
a b
c d

)
=

⎧
⎪⎪⎨

⎪⎪⎩

E2(0)I

(
a + det(A)d

c

)
− D(a, c), c �= 0

E2(0)I

(
b

d

)
, c = 0

by evaluating [10, (4.2)] at the point u = (0, 0). 1

1 Actually, Obaisi’s generalization of the Sczech cocycle in [10] should be multiplied by −1, but this does
not affect the computations.
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Let A ∈ GL2(O) act on the extended complex plane by Möbius transformations.
If d �= 0, then we see A(0) = b

d . If c �= 0, we also have A(∞) = a
c and

A−1(∞) =
(

d
det(A)

−b
det(A)−c

det(A)
a

det(A)

)
(∞) = −d

c
. (1.2)

Note that c and d cannot both be zero because A ∈ GL2(O). In addition, c = 0 if and
only if A(∞) = ∞, and d = 0 if and only if A(∞) �= ∞. Therefore, we can rewrite
the homomorphism extension as

�(A) =
{
E2(0)I (A(∞) − det(A)(A−1(∞))) − D(A(∞)), A(∞) �= ∞
E2(0)I (A(0)), A(∞) = ∞ . (1.3)

This is the form of the homomorphism that we shall use.
A natural question to ask is whether the graph of normalized elliptic Dedekind

sums is equidistributed. It would be natural to expect such a result based on the earlier
works [4] and [9]. We also note that the conjecture of Ito in the same paper [3, §3] on
the bias of Dedekind sums was recently proved in the case of classical Dedekind sums
[8]; it would be interesting to explore the conjecture for elliptic Dedekind sums.

We conclude with a brief summary of the contents of this paper. In Sect. 2, we recall
Martin’s continued fraction algorithm. We also derive some properties of Martin’s
continued fraction algorithm generalizing the properties of the Hurwitz continued
fraction algorithm in [3] and classical continued fractions [2]. In Sect. 3 we prove
an approximation property for the generalized continued fractions analogous to [3,
Lemma 1]. In Sect. 4 we prove the main theorem.

2 Martin’s algorithm

Martin [6] provides a continued fraction algorithm that can be executed in an arbitrary
imaginary quadratic field K with ring of integers O = OK . For any z ∈ C \ K ,
terminating the algorithm after n iterations produces an approximation pn

qn
∈ K of z.

The algorithm is implemented as follows: For a, b ∈ C, let

S(a, b) =
(
a 1
b 0

)
.

Fix ε ∈ (0, 1)Let B ⊂ O\{0} be a finite admissible subset for varepsilon in the sense
of [6,Definition2.4]. Intuitively, an admissible set is taken to be a set B of denominators
that are enough so that the collection of discs D(a/b, ε/|b|) with a ∈ K cover the
complex plane. By [6, Theorem 4.3], we may take B = {1, 2, . . . , �√|dK |	}.

We define recursively as in Algorithm 1 in [6, §2.2] the sequence of matrices

M0 =
(
1 0
0 1

)
, Mn = Mn−1S

(
an
bn−1

,
bn
bn−1

)
, n ≥ 1,
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where the coefficients ai ∈ O, bi ∈ B can be determined by Algorithm 2 in [6, §3.2].
Note that we are followingMartin’s convention in Algorithm 1 in [6, §2.2] that b0 = 1.

We then define the n-th convergents pn and qn as the left column entries of Mn . By
the definition of S, the right column entries of Mn are then pn−1 and qn−1. Hence, we
have

Mn =
(
pn pn−1
qn qn−1

)
,

and viewing Mn as a Möbius transformation on the extended complex plane, we can
write Mn(∞) = pn

qn
. It follows inductively from the definition of S that

det Mn = pnqn−1 − pn−1qn = (−1)nbn . (2.1)

Martin verifies that the n-th approximation pn
qn

can be written in the continued fraction
form

pn
qn

= a1
b1

+ b0/b1

a2
b2

+ b1/b2
. . . + an−1

bn−1
+ bn−2/bn−1

an/bn

.

2.1 Properties

We next recall the properties of Martin’s continued fraction algorithm proved in [6]
that we shall require. Define μ = maxB |b| for a fixed finite admissible set B with
ε ∈ (0, 1). Then for any n ≥ 1, the following properties hold.

(1) (Lemma 3.1)
|zn| ≥ 1/ε. (2.2)

(2) (Proposition 3.2)

|qnz − pn| ≤ ε|qn−1z − pn−1|.

(3) (Theorem 3.11) If 0 ≤ n′ < n, then

|qn| >
(1 − ε2)2|qn′ zn′ |

4εn−n′
μ2

. (2.3)

where zn = qn−1z − pn−1

pn − qnz
. In particular, |qn| > (1 − ε2)2/4εnμ2. This implies

limn→∞ |qn| = ∞.
(4) (Corollary 3.12) For all n ≥ 1,

∣∣∣∣z − pn
qn

∣∣∣∣ <
4ε2nμ2

(1 − ε2)2
, (2.4)

which implies that limn→∞ |z − pn
qn

| = 0.
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We next derive several additional identities for Martin’s generalized continued
fractions. They are not used for the main theorem, but they were developed in the
course of its proof. We include them here as they establish the general analogues of
the Euclidean case. Let an ∈ O and bn ∈ B as before. Now define recursively the
following notation

[b0] = b0, [b0, a1, b1] = a1

[b0, . . . , an, bn] = an
bn−1

[b0, . . . , an−1, bn−1] + bn
bn−1

[b0, . . . , an−2, bn−2].
The first property gives a continued fraction expansion identity for the convergents.

Lemma 2.1 The convergents pn and qn from Martin’s algorithm can be written as

pn = [b0, a1, b1, a2, . . . , an−1, bn−1, an, bn]

qn = [b1, a2, b2, a3, . . . , an−1, bn−1, an, bn].
Proof To prove these statements we will use induction. Beginning with pn , we use
two base cases where n = 0 and n = 1. When n = 0, we have that p0 = 1, and since
we assume that b0 = 1, p0 = 1 = b0 = [b0]. Additionally when n = 1, we have
that p1 = a1 = [b0, a1, b1]. We then assume that the n − 1 and n − 2 cases hold, and
examine the definition of [b0, a1, b1, a2, . . . , an−1, bn−1, an, bn]. We have that

[b0, a1, b1, a2, . . . , an−1, bn−1, an, bn]
= an

bn−1
[b0, . . . , an−1, bn−1] + bn

bn−1
[b0, . . . , an−2, bn−2]

= an
bn

pn−1 + bn
bn−1

pn−2 = pn,

which proves the equality for pn .
Next we do the same thing for qn , instead using base cases n = 1 and n = 2.

When n = 1, we have that q1 = b1 = [b1]. When n = 2, we have that q2 =
a2 = [b1, a2, b2]. Now we assume that the n − 1 and n − 2 cases hold, and have by
definition and the assumption of the n − 1 and n − 2 cases by a similar computation
that [b1, a2, b2, a3, . . . , an−1, bn−1, an, bn] = qn . 
�

The following properties then generalize those of Hurwitz continued fractions,
as stated in [3, §2]. These properties are analogous to those of Hurwitz continued
fractions, with the differences that our coefficients are no longer necessarily in the ring
of integers, that bn is now part of the third property, and that the index is increased by
one in (2.7) because we start at b0 without an a0.2

Lemma 2.2 The following identities hold:

[b0, . . . , an, bn] = a1
b1

[b1, . . . , an, bn] + b0
b1

[b2, . . . , an, bn], (2.5)

2 We thank the reviewer for also pointing out to us that these hold as formal identities in the field of fractions
of Z adjoined with sufficiently many variables.
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[b0, a1, b1, . . . , an, bn] = [bn, an, . . . , b1, a1, b0], (2.6)

[bm, . . . , bn][bm+1, . . . , bn−1] − [bm, . . . , bn−1][bm+1, . . . , bn] = bnbm(−1)n−m .

(2.7)

Proof Beginning with the bracket notation for pn
qn
, one checks that

[b0, a1, . . . , an, bn]
[b1, a2, . . . , an, bn] = a1

b1
+ b0

b1
· [b2, a3, . . . , an, bn]
[b1, a2, . . . , an, bn] .

Multiply the left and rightmost sides of this equality to obtain

[b0, . . . , an, bn] = a1
b1

[b1, . . . , an, bn] + b0
b1

[b2, . . . , an, bn].

This proves the first identity (2.5).
We prove the second property by induction. To start, we establish the base cases of

n = 0 and n = 1. For n = 0, we have that [b0] = b0 = [b0]. For n = 1 we have that
[b0, a1, b1] = a1 = [b1, a1, b0]. Having established the base cases, we assume that
the n − 1 and n − 2 cases hold. We have that

[b0, a1, . . . , an, bn] = a1
b1

[b1, a2, . . . , an, bn] + b0
b1

[b2, a3, . . . , an, bn]

by (2), and because we are assuming the n − 1 and n − 2 cases, this is equal to

a1
b1

[bn, an, . . . , a2, b1] + b0
b1

[bn, an, . . . , a3, b2] = [bn, an, . . . , a1, b0].

We prove (2.7) both when m is fixed and when n is fixed. When we fix m, we have by
direct computation that

[bm+1, am, . . . , an−1, bn−1]
(

an
bn−1

[bm, am+1, . . . , an−1, bn−1]

+ bn
bn−1

[bm, am+1, . . . , an−2, bm−2]
)

−[bm, am+1, . . . , an−1, bn−1]
(

an
bn−1

[bm+1, am+2, . . . , an−1, bn−1]

+ bn
bn−1

[bm+1, am+2, . . . , an−2, bn−2]
)

equals

bn
bn−1

(
(−1)(n−1)−mbn−1bm

)
= (−1)(n−m)bnbm .
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When we fix n, we have similarly that

[bm+1, am, . . . , an−1, bn−1]
(
am+1

bm+1
[bm+1, am+2, . . . , an, bn

+ bm
bm+1

[bm+2, am+3, . . . , an, bn]
)

−[bm+1, am+2, . . . , an, bn]
(
am+1

bm+1
[bm+1, am+2, . . . , an−1, bn−1]

+ bm
bm+1

[bm+2, am+3, . . . , an−1, bn−1]
)

equals

bm
bm+1

(
(−1)n−(m+1)bm+1bn

)
= (−1)(n−m)bnbm .


�

3 Approximation by generalized continued fractions

We now prove an approximation result generalizing [3, Lemma 1] to the convergents
produced by Martin’s algorithm. Denote

ζ = (1 − ε2)2

4ε2μ2 ,

where ε and μ are defined as above.

Lemma 3.1 Consider the continued fraction expansion of z ∈ C\K. Let δ ∈ (0, ζ ) and
W ∈ GL2(O) be such that W (∞) �= ∞ and |W (∞)| ≥ 1

ζ−δ
. Then, MnW (∞) �= ∞,

and for any ε > 0, there exists an N ∈ N independent of W such that

|z − MnW (∞)| < ε

for all n ≥ N.

Proof Since 0 < 1
ζ−δ

≤ |W (∞)| < ∞, we can define w := 1
W (∞)

. Note that
|w| ≤ ζ − δ by the assumption of the lemma. In addition, we have

MnW (∞) =
(
pn pn−1
qn qn−1

)
(W (∞))

= pnW (∞) + pn−1

qnW (∞) + qn−1

= pn + 1
W (∞)

pn−1

qn + 1
W (∞)

qn−1
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= pn + wpn−1

qn + wqn−1
.

In order to show that MnW (∞) �= ∞, we must show that qn +wqn−1 �= 0. Setting
n′ = n − 1 in (2.3) and combining with (2.2), we see that for n ≥ 2,

|qn| >
(1 − ε2)2

4εμ2 |qn−1zn−1| ≥ (1 − ε2)2

4ε2μ2 |qn−1| = ζ |qn−1|.

Using the triangle inequality, we have

|qn + wqn−1| ≥ |qn| − |wqn−1|
> ζ |qn−1| − |w||qn−1|
≥ δ|qn−1|.

Since |qn +wqn−1| > δ|qn−1| > 0, we can conclude that qn +wqn−1 �= 0, as desired.
Moving on to the second part of the proof, we must show that there exists N ∈ N

such that

|z − MnW (∞)| =
∣∣∣∣z − pn + wpn−1

qn + wqn−1

∣∣∣∣ < ε

for all n ≥ N .
Applying the triangle inequality, we have

∣∣∣∣z − pn + wpn−1

qn + wqn−1

∣∣∣∣ ≤
∣∣∣∣z − pn

qn

∣∣∣∣ +
∣∣∣∣
pn
qn

− pn + wpn−1

qn + wqn−1

∣∣∣∣ .

By (2.4), the first term above tends to zero, so we can define N1 ∈ N such that for all
n ≥ N1, we have ∣∣∣∣z − pn

qn

∣∣∣∣ <
ε

2
.

Now we are left to bound the second term above. By combining fractions, we see that

∣∣∣∣
pn
qn

− pn + wpn−1

qn + wqn−1

∣∣∣∣ =
∣∣∣∣
pnqn + wpnqn−1 − pnqn − wpn−1qn

qn(qn + wqn−1)

∣∣∣∣

=
∣∣∣∣
w(pnqn−1 − pn−1qn)

qn(qn + wqn−1)

∣∣∣∣ .

By (2.1), we see that

∣∣∣∣
w(pnqn−1 − pn−1qn)

qn(qn + wqn−1)

∣∣∣∣ =
∣∣∣∣

wbn(−1)n

qn(qn + wqn−1)

∣∣∣∣ =
∣∣∣∣

wbn
qn(qn + wqn−1)

∣∣∣∣ .

Finally, using that |qn + wqn−1| > δ|qn−1|, we have
∣∣∣∣

wbn
qn(qn + wqn−1)

∣∣∣∣ <

∣∣∣∣
wbn

δqnqn−1

∣∣∣∣ ≤ μ|w|
|δ|

1

|qnqn−1| .
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Since the rightmost side of this inequality tends to 0 as n approaches infinity by (2.3),
there exists N2 ∈ N such that for all n ≥ N2, we have

∣∣∣∣
pn
qn

− pn + wpn−1

qn + wqn−1

∣∣∣∣ <
μ|w|
|δ|

1

|qnqn−1| <
ε

2
.

Letting N = max{N1, N2} completes the proof. 
�

4 Proof of density

We now prove the main theorem.We utilize the homomorphism (1.3) to prove density
in the general case. Following along with Ito’s proof of [3, Theorem 2], we will show
that the set

{(x, (√|d|i)−1 I (x − z)) : x, z ∈ C − K }
is contained in the closure of the set

{(α, D̃(α)) : α ∈ K }.

Recall from the discussion in the introduction that any element of K can be written as
a/cwith a, c ∈ OK . This representation is non-unique but there are only finitely many
choices, and here we are fixing a choice of representative. Our proof is independent
of this choice.

Let ε > 0 and x, z ∈ C − K . Suppose first that for |α − x | < ε, we have

|D̃(α) − (
√|d|i)−1 I (x − z)| ≤ 4(

√|d|)−1ε. (4.1)

It then follows that

(x, (
√|d|i)−1 I (x − z)) ∈ {(α, D̃(α)) : α ∈ K },

since that K is dense inC (see for example [11]). It thus remains to prove (4.1).We shall
do this by constructing an A ∈ GL2(O) such that α = A(∞), which approximates
x , and β = A−1(∞) approximates z. Then (4.1) will follow from evaluating �(A) in
two ways.

By Lemma 3.1, we can choose sufficiently large m, n ∈ N such that for any W ∈
GL2(O) with |W (∞)| ≥ 2

ζ
, we have

|x − Mm,xW (∞)| < ε

and
|z − Mn,zW (∞)| < ε,

where Mm,x denotes the m-th convergent matrix in the continued fraction representa-
tion of x and similarly for Mn,z .
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Let S = M−1
m,x Mn,z , and let S∗ be given by

S∗ =

⎧
⎪⎨

⎪⎩
S, |S(∞)| �= ∞

(
0 −1

1 0

)
S,

|S(∞)| = ∞.

We claim that |S∗(∞)| �= ∞. First suppose that |S(∞)| �= ∞. In this case, we simply
have |S∗(∞)| = |S(∞)| �= ∞. Next suppose |S(∞)| = ∞. In this case, we have

|S∗(∞)| =
∣∣∣∣

(
0 −1
1 0

)
S(∞)

∣∣∣∣ =
∣∣∣∣

(
0 −1
1 0

)
(∞)

∣∣∣∣ = 0 �= ∞.

In both cases, this also tells us that |S∗−1
(∞)| �= ∞ because |S∗−1

(∞)| = ∞ would
imply |S∗(∞)| = ∞, a contradiction.

We also note that in either case we have

�(S∗) = �(S).

In the first case, this is clear because S∗ = S. In the second case, we use the fact that
� is a homomorphism to see that

�(S∗) = �

((
0 −1
1 0

)
S

)
= �

(
0 −1
1 0

)
+ �(S) = �(S),

since

4�

(
0 −1
1 0

)
= �

((
0 −1
1 0

)4
)

= �(I ) = 0.

Finally, we note that det(S∗) = det(S).
Now given u ∈ O, we can define the matrix A ∈ GL2(O) by

A = Mm,x T
u S∗T−uM−1

n,z , T u =
(
1 u
0 1

)
, T−u =

(
1 −u
0 1

)
.

Using the property that det(S∗) = det(S) = det(M−1
m,x Mn,z), we can verify by direct

computation that det(A) = 1. Next, let

α = A(∞), β = A−1(∞) = Mn,zT
u S∗−1

T−uM−1
m,x (∞)

and

W1 = T uS∗T−uM−1
n,z , W2 = T uS∗−1

T−uM−1
m,x ,

so that

α = Mm,xW1(∞), β = Mn,zW2(∞).
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We now pick u ∈ O sufficiently large so that

|W1(∞)| ≥ 2

ζ
, |W2(∞)| ≥ 2

ζ
.

Note that 2
ζ
can be written as 1

ζ−δ
for δ = ζ

2 ∈ (0, ζ ).
Wemust make sure that we are always able to pick a coefficient u with this property.

Let S∗ =
(
s1 s2
s3 s4

)
. Note that M−1

n,z =
(
qn−1 −pn−1
−qn pn

)
, where these are convergents

of z using Martin’s algorithm. Before proceeding with any computation, we add the
simple condition that u �= s4qn−s3qn−1

s3qn
, noting that qn �= 0 and s3 �= 0 since S∗ ∈

GL2(O) and S∗(∞) �= ∞. This condition implies that s3(qn−1 + qnu) − s4qn �= 0
and, as we will see below, ensures that W1(∞) �= ∞. Now, we can see that

W1 = T u S∗T−uM−1
n,z

=
(
1 u
0 1

)(
s1 s2
s3 s4

)(
1 −u
0 1

)(
qn−1 −pn−1

−qn pn

)

=
(
s1 + s3u s2 + s4u

s3 s4

) (
qn−1 + qnu −pn−1 − pnu

−qn pn

)

=
(

(s1 + s3u)(qn−1 + qnu) − (s2 + s4u)qn (s1 + s3u)(−pn−1 − pnu) + (s2 + s4u)pn
s3(qn−1 + qnu) − s4qn s3(−pn−1 − pnu) + s4 pn

)
.

We can use this, along with the triangle inequality, to see that

|W1(∞)| =
∣∣∣∣
(s1 + s3u)(qn−1 + qnu) − (s2 + s4u)qn

s3(qn−1 + qnu) − s4qn

∣∣∣∣

=
∣∣∣∣
u(s3(qn−1 + qnu) − s4qn) + s1(qn−1 + qnu) − s2qn

s3(qn−1 + qnu) − s4qn

∣∣∣∣

=
∣∣∣∣u + s1(qn−1 + qnu) − s2qn

s3(qn−1 + qnu) − s4qn

∣∣∣∣

≥ |u| −
∣∣∣∣
s1(qn−1 + qnu) − s2qn
s3(qn−1 + qnu) − s4qn

∣∣∣∣.

As |u| tends to infinity, the second term in the inequality above tends to

−
∣∣∣∣
s1
s3

∣∣∣∣ = −|S∗(∞)|,

which, by definition of S∗, is not infinite. Therefore, as |u| tends to infinity, |W1(∞)|
also tends to infinity. We can use a very similar argument, which uses the m-th con-
vergents of x and the fact that S∗−1

(∞) �= ∞, to show that |W2(∞)| can also be
made arbitrarily large as |u| becomes arbitrarily large. Again, we can impose a sim-
ple condition on the value of u of the same form as above in order to ensure that
W2(∞) �= ∞.
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Let δ1 = α − x and δ2 = β − z. We can now apply Lemma 3.1 to see that

|δ1| = |x − α| = |x − Mm,xW1(∞)| < ε.

By the same logic, we have |δ2| < ε. Since we know α and β are within ε of x and z,
respectively, we can be sure that α and β are both well-defined complex numbers and
not infinite.

To conclude the proof, we shall evaluate �(A) in two different ways. Note that
since A(∞) = α �= ∞, we are in the first case of (1.3). If we apply � to A directly,
we get

�(A) = E2(0)I (A(∞) − A−1(∞)) − D(A(∞))

= E2(0)I (α − β) − D(α)

= E2(0)I (x + δ1 − z − δ2) − D(α).

If we apply � to A by breaking it up into smaller matrices in GL2(O), we see that

�(A) = �(Mm,x T
u S∗T−uM−1

n,z )

= �(Mm,x ) + �(T u) + �(M−1
m,x Mn,z) + �(T−u) + �(M−1

n,z )

= 0.

Therefore, we have

E2(0)I (x + δ1 − z − δ2) − D(α) = 0,

which gives us D(α) = E2(0)I (x + δ1 − z − δ2) and hence

D̃(α) = (
√|d|i)−1 I (x + δ1 − z − δ2),

as required, which we note is independent of the choice of representation of α.
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