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Abstract

We show that the graph of normalized elliptic Dedekind sums is dense in its image
for arbitrary imaginary quadratic fields, generalizing a result of Ito in the Euclidean
case. We also derive some basic properties of Martin’s continued fraction algorithm
for arbitrary imaginary quadratic fields.
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S.Bartell et al.

1 Introduction
1.1 The density of elliptic Dedekind sums

The classical Dedekind sum s(m, n) is defined for m,n € Z, (m,n) = 1,n # 0, by

1 k k
s(m,n) = in Zcot (n%) cot <n;) .
k=1

They are of arithmetic interest, arising originally from the transformation law of the
Dedekind eta function. It has found applications to the special values of L-functions,
and also areas outside of number theory such as knot theory, geometric topology, and
combinatorics. Grosswald and Rademacher conjectured that the values of s(m, n) are
dense in R, and moreover the graph {(m/n, s(m/n)) : m/n € Q} is dense in R? [12],
where s(m/n) := s(m, n) whenever (m, n) = 1. The latter statement (which implies
the former) was first proved by Hickerson [2].

Many generalizations of Dedekind sums have been made, and in this paper we
study elliptic Dedekind sums. These are generalizations of classical Dedekind sums
to complex lattices, or imaginary quadratic number fields. Let L be a non-degenerate
lattice in C. We define

E@= ) G+t

xeL,
x+z7#0

where the value of the sum at s = 0 is evaluated by means of analytic continuation.
Define the ring of multipliers for L as O = {m € C : mL C L}. It is either equal
to the ring of integers or to an order in an imaginary quadratic field. Then, following
Sczech [13], the elliptic Dedekind sums for L are defined as

1
Da.cy=- Y. E1<%)E1<E>
c c c
nel/cL
fora,c e Op,c #0.
Assume for the rest of this paper that O is the ring of integers Ok of an imagi-
nary quadratic field K = Q(+/—D). If K has class number 1, one can again define

D(a/c) = D(a, c)fora/c € K and a, c coprime in Ok . (Note that if the class number
is greater than 1, the fraction is no longer well-defined.) Ito [3] showed that the graph

{(a/c, D(a/c)) : ajc € K}
of the normalized elliptic Dedekind sum
D(a/c) = D(a, c) = (iy/|dk|E2(0)) "' D(a, ¢)
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The density of the...

is dense in C x R when D = 2, 5,7, where dg is the discriminant of K. (That is,
when Ok is Euclidean and D # 1, 3; note D is trivial if and onlyif D =1,3) It
was also shown recently by the last author and others [1] that the image of D(a, c)
is dense in R for general lattices L in C (and in particular for arbitrary class number)
using a recent method of Kohnen [5].

1.2 Main result

In this paper, we extend these results to the density of the graph for imaginary quadratic
fields of arbitrary class number. Note that the reduced fraction a /c associated toany o €
K is only uniquely defined when K has class number 1. Also, the set of factorizations
of an element in O is bounded [7]. For general class number, it will suffice for us to
fix any nonunique representative a/c of o and consider D(a) = ﬁ(a, ¢). Note that
ﬁ(a, c) = E(Aa, Ac) for any nonzero A € Ok by [13, (15)]. With this convention,
we state our main result.

Theorem 1.1 Let K = Q(+/—D) with D # 1, 3. Then the graph of the normalized
elliptic Dedekind sum ~
{(a, D(@)) : @ € K} (1.1)

is dense in C x R.

Following the method of Ito and Hickerson, our proof first relies on a generalization
of the continued fraction algorithm recently established by Martin [6] for imaginary
quadratic fields of general class number. The second ingredient in our proof is Sczech’s
homomorphism ® : SL,(Og) — C* [13] given by

a+d
E>(0)1 + — D(a,c), c#0
ab C
[0) =
cd b
E,(0)I 7)) c=0

where 1(z) := z — z = 2Im(z). It was extended to GL,(Ok) by Obaisi [10] as
follows: for a more general matrix A € GL,(Ok), we have

i b E»(0)1
@ <c d) - b
E>(0)1 5) ; c=0

w> —D(a,c), ¢c#0
c

by evaluating [10, (4.2)] at the point u = (0, 0). !

1 Actually, Obaisi’s generalization of the Sczech cocycle in [10] should be multiplied by —1, but this does
not affect the computations.
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Let A € GL2(O) act on the extended complex plane by M&bius transformations.
If d # 0, then we see A(0) = L Ife # 0, we also have A(c0) = ¢ and

_d__=b_ d
A7 (00) = [ 4t A | (00) = ——. (1.2)
det(A) det(A) ¢

Note that ¢ and d cannot both be zero because A € GL,(©). In addition, ¢ = 0 if and
only if A(co) = 00, and d = 0 if and only if A(co) 7# oco. Therefore, we can rewrite
the homomorphism extension as

_ -1 _
®(A) = E2(0)1(A(00) — det(A)(A™(00))) — D(A(00)), A(00) # 00 (13)
E2(0)1(A(0)), A(00) = 00

This is the form of the homomorphism that we shall use.

A natural question to ask is whether the graph of normalized elliptic Dedekind
sums is equidistributed. It would be natural to expect such a result based on the earlier
works [4] and [9]. We also note that the conjecture of Ito in the same paper [3, §3] on
the bias of Dedekind sums was recently proved in the case of classical Dedekind sums
[8]; it would be interesting to explore the conjecture for elliptic Dedekind sums.

We conclude with a brief summary of the contents of this paper. In Sect. 2, we recall
Martin’s continued fraction algorithm. We also derive some properties of Martin’s
continued fraction algorithm generalizing the properties of the Hurwitz continued
fraction algorithm in [3] and classical continued fractions [2]. In Sect.3 we prove
an approximation property for the generalized continued fractions analogous to [3,
Lemma 1]. In Sect.4 we prove the main theorem.

2 Martin’s algorithm

Martin [6] provides a continued fraction algorithm that can be executed in an arbitrary
imaginary quadratic field K with ring of integers O = Og. Forany z € C\ K,
terminating the algorithm after » iterations produces an approximation Z—” € K of z.
The algorithm is implemented as follows: For a, b € C, let !

S(a, b) = (Z (1)) .

Fixe € (0, 1) Let B € O\{0} be a finite admissible subset for varepsilon in the sense
of [6, Definition 2.4]. Intuitively, an admissible set is taken to be a set B of denominators
that are enough so that the collection of discs D(a/b, ¢/|b|) with a € K cover the
complex plane. By [6, Theorem 4.3], we may take B = {1,2, ..., [/dk|]}.

We define recursively as in Algorithm 1 in [6, §2.2] the sequence of matrices

b
Moy = <(1) ?) M, =M,,_1s<ba"l,b "1>, n>1,
n— n—

—_—
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where the coefficients a@; € O, b; € B can be determined by Algorithm 2 in [6, §3.2].
Note that we are following Martin’s convention in Algorithm 1 in [6, §2.2] thatby = 1.

We then define the n-th convergents p, and g,, as the left column entries of M,,. By
the definition of S, the right column entries of M,, are then p,,_; and g,—1. Hence, we

have
Mn — (pn pl’l—l) ,
qn 4n-1

and viewing M,, as a Mobius transformation on the extended complex plane, we can
write M, (c0) = % It follows inductively from the definition of S that

det My, = pnqn—1 — Pn—1qn = (=1)"by. 2.1

Martin verifies that the n-th approximation ’q’—" can be written in the continued fraction
form !

Pn_ @ bo/bi
qn b1, b1 /by
2 buz/b
c. an—1 n—2/Pn—1
S et My

2.1 Properties

We next recall the properties of Martin’s continued fraction algorithm proved in [6]
that we shall require. Define 4 = maxp |b| for a fixed finite admissible set B with
¢ € (0, 1). Then for any n > 1, the following properties hold.

(1) (Lemma 3.1)
|zn| = 1/e. 2.2)
(2) (Proposition 3.2)

|gnz — pnl < €lgn—12 — pp—1l.
(3) (Theorem 3.11)If 0 < n’ < n, then

(1 — &) gnzn|

48n—n/u2 (23)

|qn

dn—12 — Pn—1

. Pn — qnZ
limy, 00 |gn| = 00.

(4) (Corollary 3.12) For alln > 1,

where 7z, = . In particular, |g,| > (1 — €2)2 /4" u2. This implies

< = (2.4)

which implies that lim,,— o |z — %| =0.
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We next derive several additional identities for Martin’s generalized continued
fractions. They are not used for the main theorem, but they were developed in the
course of its proof. We include them here as they establish the general analogues of
the Euclidean case. Let a, € O and b, € B as before. Now define recursively the
following notation

[bol = bo,  [bo,a1,bil =a

ay bn
[b07-"7anabn]= b [b()a"~7an—17bn—l]+b [b07~--,an—2abn—2]-

n—1 n—1

The first property gives a continued fraction expansion identity for the convergents.

Lemma 2.1 The convergents p, and q, from Martin’s algorithm can be written as
pn = [b07 a17 bla (’127 M) an—15 bn—l, ana bn]

qn =1Ib1,a2,b2,a3,...,a,—1,by—1,an, byl.

Proof To prove these statements we will use induction. Beginning with p,, we use
two base cases where n = 0 and n = 1. When n = 0, we have that pp = 1, and since
we assume that bg = 1, po = 1 = by = [bo]. Additionally when n = 1, we have
that p; = a; = [bo, a1, b1]. We then assume that the n — 1 and n — 2 cases hold, and

examine the definition of [bg, a1, b1, az, ..., an_1, by_1, an, b,]. We have that
[bOa al ’ bl ’ 025 R ) an—l ’ bn—l ’ an’ bn]
a b

= z [b()’ "-7ai‘l—17bn—1]+ z [b()’"'san—Zsbn—z]

bn—] bn—l

dn by
= — _ + I s

b, Pn—1 bn—l Pn-2 Pn

which proves the equality for p,,.

Next we do the same thing for g, instead using base cases n = 1 and n = 2.
When n = 1, we have that g = b; = [b1]. When n = 2, we have that g =
ay = [b1, a2, by]. Now we assume that the n — 1 and n — 2 cases hold, and have by
definition and the assumption of the n — 1 and n — 2 cases by a similar computation
that [b1, a2, b2, a3, ..., an—1,bn—1, an, by] = qn. O

The following properties then generalize those of Hurwitz continued fractions,
as stated in [3, §2]. These properties are analogous to those of Hurwitz continued
fractions, with the differences that our coefficients are no longer necessarily in the ring
of integers, that b, is now part of the third property, and that the index is increased by
one in (2.7) because we start at by without an ag.2

Lemma 2.2 The following identities hold:

ai bo
[b()a ceesp, b}’l] = b_l[bla <. dp, bn] + b_l[bz’ <. dp, bn], (25)

2 We thank the reviewer for also pointing out to us that these hold as formal identities in the field of fractions
of Z adjoined with sufficiently many variables.
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[b()a als b19 cee anv bn] = [bnv al’ls ) bls Cl], b()]v (26)
[bm» e bn][bm—i-l, e bn—l] - [bma e bn—l][bm—i-la B bn] = bnbm(_l)n_m~
2.7

Proof Beginning with the bracket notation for %, one checks that

[bO’al""vthbn]_a_l @'[b%a%-«-,anvbn]
(b1, a2, ....an, byl b1 by [br,aa, ..., a5, byl

Multiply the left and rightmost sides of this equality to obtain
aq b()
[b09 <oy Ap, bn] = _[blv <o ap, bn] + _[b27 ceesap, bn]
b] bl

This proves the first identity (2.5).

We prove the second property by induction. To start, we establish the base cases of
n =0and n = 1. For n = 0, we have that [by] = by = [bg]. For n = 1 we have that
[bo, a1, b1] = a1 = [b1, a1, bp]. Having established the base cases, we assume that
the n — 1 and n — 2 cases hold. We have that

ai bO
[bo,ai, ... ,an, byl = b_[bla az,...,a, byl + E[bZa as, ..., au, byl
1

by (2), and because we are assuming the n — 1 and n — 2 cases, this is equal to
aj by
E[bns an, ...,az, b1] + b_l[bm an, ...,a3, ba] =[by, an, ..., a, bol.

We prove (2.7) both when m is fixed and when n is fixed. When we fix m, we have by
direct computation that

dn
bn—]

[bm+1’ am, ...,04p—1, bn—l] < [bWH am+1,--+,0an—1, b}’l—l]

+ . (D, am+1,s -+, ap-2, bm—2]>
bnfl
an
—[bm, Am+1,---,0n—1, by_1] b_l[bm—i-la am+2,---,0n—1, by_1]
n—
by
+_[bm+] s Am425 - -5 Ap—-2, bn72]
bn—1

equals

b - -
2 (=D by ) = (=D by,

n—1
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When we fix n, we have similarly that

Am+1
(b1, am, ..oy an—1, bp—1] ( s (b1, my2, ..., an, by
bm+1
b
+b m] (bmt2, A3, -« -5 an, bn])
m—+
Am+1
—[bm+1, amy2, - .., an, by (m_+[bm+1a Amt2s -5 An—1, by—1]
bm+1
b
ﬁ[bm+25 Am+3, -+ -5 An—1, bnl])
m—+
equals
bm n—(m+1) (n—m)
5 (D bgaby) = Db,
m+

3 Approximation by generalized continued fractions

We now prove an approximation result generalizing [3, Lemma 1] to the convergents
produced by Martin’s algorithm. Denote

(1—&%)?

¢= 4e2p2

where ¢ and u are defined as above.

Lemma 3.1 Consider the continued fraction expansion of 7 € C\K. Let § € (0, ) and

W € GLy(O) be such that W (00) # 0o and |W (c0)| > ;]Ta Then, M, W (c0) # oo,
and for any € > 0, there exists an N € N independent of W such that

|z — M, W(c0)| < €

foralln > N.

Proof Since 0 < {% < |[W(o0)| < 00, we can define w = m Note that

lw| < ¢ — & by the assumption of the lemma. In addition, we have

M, W (00) = (;’ ;’:j) (W(00))

_ PaW(00) + pu—i
 gaW(00) +gn
Dn + mpn—l
qn + mqn—l
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_ DPn T wpp—
qn + wWqn—1 )

In order to show that M,, W (00) # oo, we must show that g, +wg,—1 # 0. Setting
n’ =n — 11in (2.3) and combining with (2.2), we see that for n > 2,

(1—62)?2 (1—&2)?
lgn| > Tqun—lZn—H > qun_” = ¢lgn-1l-

Using the triangle inequality, we have

Ign + wqn—1] = 1gn| — lwgn—1|
> Clgn—1] — lwllgn-1l
> 8|Qn—l|-

Since |q, +wqn—1| > 8|gn—1] > 0, we can conclude that ¢, +wg,—1 # 0, as desired.
Moving on to the second part of the proof, we must show that there exists N € N

such that

+ wpn—
|Z—MnW(OO)|=‘Z—M <

€
qn + Wqn—1
foralln > N.
Applying the triangle inequality, we have
‘Z_Pn‘l‘an—l < Z_P_n Pn Pn+ wWpn—i .
qn +wqn-1| 4n qn  Gn + Wqn—1

By (2.4), the first term above tends to zero, so we can define N| € N such that for all
n > Nj, we have
Pn
=2
qn

Now we are left to bound the second term above. By combining fractions, we see that

€
< =.
2

Pndn + WPnqn—1 — Pnqn — WPn—14qn
qn(gn + wWqn—-1)
‘w(pnCIn—l — Pn—1qn)
Gn(Gn +wgn-1) |

Pn Pn + wpn—1
qn qn + Wqn—1

By (2.1), we see that

wby, (—1)"
qn(gn +wgn—_1)

wb,
qn(gn +wgu—1)

‘w(pnqn1 — Pn—14n)
Qn(Qn + U)Qn—l)

Finally, using that |g, + wg,—1| > 8|gn—1|, we have

wb,

8‘]n‘]n—l

wb,
qn(gn +wgn—_1)

o Mwl 1 .
18] |gngn—1l

< ’
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Since the rightmost side of this inequality tends to 0 as n approaches infinity by (2.3),
there exists N> € N such that for all n > N;, we have

Pn Pntwpp—i| plw| 1 _€
dn  Gn+WGn—1 81 1gngn—1l 2
Letting N = max{Np, N»} completes the proof. O

4 Proof of density

We now prove the main theorem. We utilize the homomorphism (1.3) to prove density
in the general case. Following along with Ito’s proof of [3, Theorem 2], we will show
that the set

(&, JIdli)™ 1 (x —2)) :x,z € C— K}

is contained in the closure of the set

{(, D(@)) : & € K}.
Recall from the discussion in the introduction that any element of K can be written as
a/cwitha, ¢ € Og. This representation is non-unique but there are only finitely many
choices, and here we are fixing a choice of representative. Our proof is independent

of this choice.
Lete > 0and x, z € C — K. Suppose first that for | — x| < €, we have

ID@) — (V1) T (x = 2)| < 4(/1d]) e, (4.1)

It then follows that

(x, 1d)) " (x = 2)) € {(@, D()) : @ € K},

since that K is dense in C (see for example [11]). It thus remains to prove (4.1). We shall
do this by constructing an A € GL2(O) such that « = A(co), which approximates
x,and B = A~1(c0) approximates z. Then (4.1) will follow from evaluating ®(A) in
two ways.

By Lemma 3.1, we can choose sufficiently large m, n € N such that for any W €
G L, (0) with |W (c0)| > % we have

|x — M, W(o0)| <€

and
|z — My W(c0)| <,
where M,, , denotes the m-th convergent matrix in the continued fraction representa-

tion of x and similarly for M,, .
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Let S = M,;’IXMM, and let $* be given by

0-1
o_ s |5(oo)|¢oo(1 O)s,

|S(00)| = oc.

We claim that | S*(00)| # oo. First suppose that | S(c0)| # oo. In this case, we simply
have |S*(0c0)| = |S(00)| # oco. Next suppose |S(c0)| = oo. In this case, we have

steon = | (1) sea| = | (1) o =0 2 .

In both cases, this also tells us that [S* ' (00)] # oo because 15%"" (00)| = oo would
imply |S*(0c0)| = 00, a contradiction.
We also note that in either case we have

D(5*) = B(S).

In the first case, this is clear because S* = S. In the second case, we use the fact that
® is a homomorphism to see that

. 0-1\ ) _ . (0-1 B
@(S)_cp((l O)s>_<1><1 O>+q>(5)_<1>(5),

40 (? —01) ~o ((? ‘01>4> = o) =0.

Finally, we note that det(S*) = det(S).
Now given u € O, we can define the matrix A € GL2(O) by

A= My T'S*T™"M,}, T"'= (1 ”) T = <1 _”)
- m,x - ’ - .

since

"z 01 01

Using the property that det(S*) = det(S) = det(M nj’lx M, ;), we can verify by direct
computation that det(A) = 1. Next, let

_ -1, _
a=A(0), p=A""(0)=M, . T"S*" T™"M," (c0)
and

Wy = TS ' T~ pM~!

m,x>

Wi =T"S*T "M, !,

so that

a = Mm,xWI (00), B = Mn,zWZ(OO).
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We now pick u € O sufficiently large so that

IWi(e0)| = =, [W2(c0)| =

N
| N

Note that % can be written as ;]Ts for§ = % € (0,¢).
‘We must make sure that we are always able to pick a coefficient u with this property.
S| S ~1 —Pn—
Let $* = (Sl S2>. Note that M, ; = (qn S 1), where these are convergents
354 ’

—qn  Pn
of z using Martin’s algorithm. Before proceeding with any computation, we add the

simple condition that u # %, noting that g, # 0 and s3 # O since S* €
GL,(0O) and S*(00) # oo. This condition implies that s3(g,—1 + gnut) — saqn # 0
and, as we will see below, ensures that W (oco) # oco. Now, we can see that

—u g1
Wi =T"ST"M, !

_ (1 u) (sl 52> (1 _u) <q;171 _pnfl)
01 53 S4 01 —qn Pn

_ (Sl + s3u 52 + S4M) <61n—1 + qnit —pn—1 — Pnu)

53 S4 —qn Pn
_ ((Sl + 53u)(gn—1 + quit) — (52 + sau)qp (51 + 53U) (= pp—1 — patt) + (52 + S4M)Pn)
53(qn—1+ qntt) — 54qn $3(=Ppn—1 — pult) + 54pn ’

We can use this, along with the triangle inequality, to see that

(s1 + s3u)(gn—1 + gnu) — (52 + s4u)q,
83(qn—1 + qntt) = S4qn
u(s3(qn—1 + qntt) — s4qn) + s1(qu—1 + gntt) — S2Gn
53(qn—1 + qntt) — S4qn

51(gn—1 + qntt) — S2Gn
53(qn—1 + gntt) — 54qn
51(qn—1 + qntt) — 52qn
83(qn—1 =+ qnit) — Saqn

|W1(00)]

v

|u| —

As |u| tends to infinity, the second term in the inequality above tends to

S1

= —|8*(c0).

which, by definition of S*, is not infinite. Therefore, as |u| tends to infinity, | W (c0)|
also tends to infinity. We can use a very similar argument, which uses the m-th con-
vergents of x and the fact that 5! (00) # 00, to show that |W>(0c0)| can also be
made arbitrarily large as |u| becomes arbitrarily large. Again, we can impose a sim-
ple condition on the value of u of the same form as above in order to ensure that
W2 (00) # 0.
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Letd; = o —x and 6 =  — z. We can now apply Lemma 3.1 to see that
811 =[x — ] =[x — My x Wi(00)| < €.

By the same logic, we have |32| < €. Since we know « and S are within € of x and z,
respectively, we can be sure that o and 8 are both well-defined complex numbers and
not infinite.

To conclude the proof, we shall evaluate ®(A) in two different ways. Note that
since A(00) = a # 00, we are in the first case of (1.3). If we apply ® to A directly,
we get

®(A) = E»(0)1(A(00) — A (00)) — D(A(0))
= Ex(0)I(a¢ — B) — D()
= E(0)I(x + 61 —z—82) — D().

If we apply @ to A by breaking it up into smaller matrices in G L2(O), we see that

D(A) = (M TS T M, })
= O (M) + D(TY) + DMy M, ) + (T ™) + (M, ]

m,x
=0.
Therefore, we have
E2(0)I(x +61 —z2—82) — D() =0,
which gives us D(«) = E2(0)I(x + 81 — z — &2) and hence
D(@) = (JIdl)™' 1 (x +81 —z = &),

as required, which we note is independent of the choice of representation of «.

Acknowledgements The authors thank Daniel Martin for communications regarding their paper. This
research was conducted at the REU site: Mathematical Analysis and Applications at the University of
Michigan-Dearborn.

References

1. Berkopec, Nicolas, Branch, Jacob, Heikkinen, Rachel, Nunn, Caroline, Wong, Tian An: The density
of elliptic Dedekind sums. Acta Arith. 205(1), 33—40 (2022)

2. Hickerson, Dean: Continued fractions and density results for Dedekind sums. J. Reine Angew. Math.

290, 113-116 (1977)

Ito, Hiroshi: A density result for elliptic Dedekind sums. Acta Arith. 112(2), 199-208 (2004)

4. Kim Klinger-Logan and Tian An Wong: The equidistribution of elliptic Dedekind sums and generalized

Selberg-Kloosterman sums. Res. Number Theory 10(1), 19 (2024)

Kohnen, Winfried: A short note on Dedekind sums. Ramanujan J. 45(2), 491-495 (2018)

6. Martin, D.E.: Continued fractions over non-Euclidean imaginary quadratic rings. J. Number Theory
243, 688-714 (2023)

W

W

@ Springer



S.Bartell et al.

7. Martin, Kimball: Nonunique factorization and principalization in number fields. Proc. Am. Math. Soc.
139(9), 3025-3038 (2011)
8. Minelli, Paolo, Sourmelidis, Athanasios, Technau, Marc: Bias in the number of steps in the Euclidean
algorithm and a conjecture of Ito on Dedekind sums. Math. Ann. 387(1-2), 291-320 (2023)
9. Myerson, Gerald: Dedekind sums and uniform distribution. J. Number Theory 28(3), 233-239 (1988)
10. Obaisi, R.: Eisenstein cocycles for GL(2) and special values of Hecke L-functions over imaginary
quadratic fields. ProQuest LLC, Ann Arbor, MI, 2000. Thesis (Ph.D.)—Rutgers The State University
of New Jersey - Newark
11. Oswald, N.M.R.: Diophantine approximation of complex numbers. Siauliai Math. Semin. 10(18),
91-102 (2015)
12. Rademacher, H., Grosswald, E.: Dedekind sums. The Carus Mathematical Monographs, No. 16. The
Mathematical Association of America, Washington, D.C. (1972)
13. Sczech, R.: Dedekindsummen mit elliptischen Funktionen. Invent. Math. 76(3), 523-551 (1984)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer



	The density of the graph of elliptic Dedekind sums
	Abstract
	1 Introduction
	1.1 The density of elliptic Dedekind sums
	1.2 Main result

	2 Martin's algorithm
	2.1 Properties

	3 Approximation by generalized continued fractions
	4 Proof of density
	Acknowledgements
	References


