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Dehydroepiandrosterone (DHEA) and its sulfate (DHEAS) are important estrogen precursors, secreted mainly by
the adrenal cortex. At late gestation, both DHEA and DHEAS (DHEA(S)) are produced at high concentrations in
some species due to the developing fetal adrenal gland. Failure in DHEAS increase during late gestation can
indicate fetal death, which prompts its use as a biomarker of pregnancy and fetal health in wildlife. Here, we
review the most common non-invasive biomarkers of reproduction in wildlife, the molecular mechanisms of
DHEAS synthesis and action during gestation, in addition to the advantages and limitations of incorporating
DHEA(S) in these studies. Using previously published data, we tested the specificity and sensitivity of fecal
DHEAS as a predictor of successful gestation in four captive primate species (orangutans (Pongo pygmaeus), si-
amangs (Symphalangus syndactylus), Japanese macaques (Macaca fuscata), and howler monkeys (Alouatta car-
aya)). Using data from non-pregnant/non-lactating females, we set a threshold on fecal DHEAS levels for
detecting successful pregnancy per species, controlling for age and housing condition (social vs single). We found
that DHEAS had 100% specificity for all species (non-pregnant samples were below the threshold for pregnancy),
and 100% sensitivity for Japanese macaques housed individually, and for orangutan and siamangs (all samples
from successful pregnancies were above the threshold, and all samples from stillbirth were below the threshold).
However, the sensitivity was 80% in howler monkeys and 50% in Japanese macaques housed socially. Our
preliminary results indicate that, while DHEAS is a promising biomarker of fetal health, it is limited to late
gestation and to some species. We suggest increasing the sample size to calculate the pregnancy threshold per
species and to test multiple samples from the same individual when using this method.

measuring estrogens and progestogens alone. Although early pregnancy
loss results in a drastic reduction in these hormones within a few weeks
in humans [11,12] and in other animals [5,13-15], perinatal loss or

1. Introduction

Pregnancy monitoring by ultrasound, laboratory, or physical exams

are common practices in humans and domestic animals [1,2]. However,
while these techniques can be easily performed in domestic species,
their application to wild animal monitoring requires animal training,
restraining, or anesthesia, which may cause stress and increase the risks
of spontaneous abortion [3].

As an alternative to those methods, hormone metabolites measured
non-invasively have been employed to monitor reproductive status,
gestation, and fetal development in wild species [4-6]. The most com-
mon hormones used for this purpose are progesterone [7,8] and estro-
gens [6,9], given that they increase progressively during pregnancy, and
can be easily measured in feces [5,9,10], urine [7], and hair [8].

However, the outcome of pregnancy may be difficult to predict by
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stillbirth conditions not caused by low progesterone levels may be
masked. Two studies in bottlenose dolphins (Tursiops truncates) reported
overall lower progesterone levels in perinatal loss compared with
normal pregnancies, but some of the samples from the perinatal loss
condition were above or within the expected range in normal preg-
nancies and above pre-pregnancy levels [15,16]. Similarly, one study in
Japanese macaques (Macaca fuscata) reported that progesterone and
estrogen levels in two stillbirth cases were above non-pregnant levels
even at late gestation, [5], suggesting that single data points of these
hormones are not reliable as markers of fetal health without extensive
efforts to establish baseline levels for successful gestation in each
species.
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In this context, fetal-derived hormones might be better predictors of
fetal health and can help us distinguish between prenatal and postnatal
death, which is important for studies on fertility and mortality rates in
wild animals where daily tracking of the entire population is not viable.
Some of those fetal-derived hormones are dehydroepiandrosterone
(DHEA) and its sulfate (DHEAS), which are steroids produced by the
fetal adrenal gland during late gestation in humans and other primates
[5,10,17,18]. These steroids are transferred to the mother via the
placenta, where they are converted to estrogens, which play essential
roles in gestation maintenance and in regulating the mechanism of
parturition [17-19].

For these reasons, the measurement of DHEA(S) during gestation is a
potential tool to monitor fetal health in wild animals, especially in
nonhuman primates where the production of this steroid is more
abundant [20]. However, there are species-specific differences in the
regulatory mechanisms and steroid metabolic pathways involved in the
secretion of these hormones that must be considered and described prior
to the establishment of DHEAS as a biomarker of fetal health. Here, we
review the current biomarkers used for gestation monitoring in wild
animals, the importance of DHEA(S) for gestation and fetal develop-
ment, and the advantages and pitfalls of using DHEA(S) metabolites for
monitoring wildlife reproduction.

2. Noninvasive monitoring of wildlife reproduction

Monitoring wildlife reproduction and gestation can contribute to
population dynamics as it can be used to estimate population trends and
ascertain potential environmental effects on population density. This
data can assist with population management and can help us evaluate
the efficacy of conservation efforts for species with decreasing popula-
tion sizes. However, traditional methods for gestation monitoring such
as ultrasound can be hazardous to the subjects and to the researchers due
to the need to capture and anesthetize the animals [21-25]. For this
reason, non-invasive sample collection has been beneficial in longitu-
dinal studies of placental mammals with a relatively long gestational
period, such as felids, ungulates, cetaceans, and primates [5,26-28].

The most commonly used method of non-invasive monitoring of
gestation in wildlife is through hormone analysis of sex steroids. This is
because the key gonadal steroids involved in gestation, estrogens and
progestins, conserve the same molecular structure throughout
mammalian species [29]. The metabolites of these hormones are
concentrated in the urine and feces after clearing from the gut, allowing
for the measurement of these hormones in the excreta through com-
mercial immunoassay kits [29]. However, fecal and urine samples are
susceptible to degradation as a result of delayed collection time and
bacterial enzymes [30]. Moreover, these samples contain hormonal
metabolites that may cross-react with the target hormone in certain
immunoassays. Therefore, proper validation of the sampling protocol
and of the immunoassay for each species must be followed when
measuring hormones non-invasively [31]. Considering these factors, the
similarity of the target steroid hormones and accessibility of samples
from wildlife has allowed for the standardization and frequency of
hormone analyses across, but not limited to, several taxonomic groups
discussed here.

2.1. Carnivora

Noninvasive endocrine analysis is helpful in carnivore reproductive
monitoring as longitudinal assessments could identify periods of estrus
(elevated estradiol) and periods of diestrus (elevated progesterone)
[32-34] without the risk of anesthesia or stress interrupting ovarian
activity [35]. For example, fecal hormone analysis is the most common
method for monitoring estrous cycle in felids, because fecal estrogen
metabolites (FEM) and fecal progesterone metabolites (FPM) fluctuate
less than circulating hormone levels throughout the day [31]. However,
there is a 24-hour delay between the rise in circulating hormone levels
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and metabolite concentrations which can impact detection of estrus and
misdiagnose pregnancy, as most felid species have short periods of
fecundity [31,32]. Additionally, in carnivores such as the giant panda
(Ailuropoda melanoleuca) [36], the red panda (Ailurus fulgens) [371, and
wolverines (Gulo gulo) [38], there is a delayed spike in progesterone
after mating, signaling a delayed implantation, or embryonic diapause,
which results in a wide range of gestation length. For this reason, when
using endocrine analyses for pregnancy diagnosis in carnivores, longi-
tudinal sample collection and observation is necessary to avoid false
positive or negative diagnoses [39].

Early pregnancy detection in carnivores is also hindered by pro-
longed luteal phases and pseudopregnancies. In carnivore species with a
prolonged luteal phase, these progesterone concentrations are similar to
those in early pregnancy [32,39] thus making early detection more
difficult. However, in Formosan black bears (Ursus thibetanus for-
mosanus), early pregnancy detection is possible as FEM and FPM are
significantly different from nonpregnant females within the first two
months of gestation, though this difference was not consistently
observed yearly pregnancies with the same females [40], which makes
hormones unreliable for diagnosing pregnancies in these species. Simi-
larly, pseudopregnancies in carnivores are difficult to detect by endo-
crine and behavioral analyses alone due to their similar hormone
patterns to pregnant females after observing mating behavior. In these
nonpregnant females, the corpus luteum secretes high levels of proges-
terone comparable to those levels measured in pregnant females [37,
41]. However, in canid species such as maned wolves (Chrysocyon bra-
chyurus) [42], red foxes (Vulpes vulpes)[43], and grey wolves (Canis
lupus)[44], progestin concentrations were lower in pseudopregnant fe-
males than in pregnant females, suggesting that the diagnosis of preg-
nancy versus pseudopregnancy by endocrine analyses is possible in
some species, as long as there are reference hormonal values established
for each species.

As carnivore habitats are being threatened with extinction, breeding
in captivity is becoming more important [45-50], thus the noninvasive
measurement of biomarkers of gestation are useful to refine breeding
strategies and to increase their success rates. In a study in ocelots
(Leopardus pardalis), Blank et al. [26] measured FPM, FEM, and fecal
glucocorticoid metabolites (FGCM) from eight females classified as
naturally fertilized or with an embryonic transfer. Unlike naturally
fertilized females who had consistently high levels of FPM, females with
an embryonic transfer had elevated FPM levels in the first trimester,
which then decreased until parturition, even though both conditions
resulted in successful pregnancies [26]. The embryonic transfer females
also secreted decreasing levels of FEM and FGCM throughout the preg-
nancy, which is the opposite of the natural fertilization pattern [26].
Therefore, while noninvasive sampling was applicable to this study, the
use of these hormones for monitoring gestation is limited to natural
fertilization in this species.

2.2. Ungulates

The ungulates are a diverse taxonomic group with differing endo-
crine systems in odd- versus even-toed ungulates. Studies investigating
these potential differences are important for gestational monitoring in
these species. For example, studies in odd-toed ungulates such as do-
mestic horses (Equus caballus) have benefitted from dipstick tests to
detect equine chorionic gonadotropin (eCG) from urine in pregnant fe-
males [51,52], though blood samples appear to be more reliable than
urine samples for this test [53]. However, a false negative diagnosis can
occur if the sample is collected before day 40 or after day 120 of preg-
nancy [52,54]. In addition, a false positive diagnosis could occur if a
mare lost her pregnancy after day 40, because the female will not return
to estrus until after day 120, when the endometrial cup responsible for
eGC secretion has fully regressed [52]. In feral horses, the dipstick
method was accurate in detecting pregnancies within 40-140 days of
gestation, and a significant elevation in urinary estrone conjugates was
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detected after day 35, with a sensitivity and specificity of > 90% [55].
However, in other wild odd-toed ungulates, such as Przewalski’s horse
(E. caballus przewalskii), Grevy’s zebra (E. grevyi), and Hartman’s
Mountain zebra (E. zebra hartmannae), the eCG dipstick did not reliably
correlate with radioimmunoassay (RIA) methods [56]. Moreover,
although RIA detected high eCG levels in urine samples from pregnant
Przewalski’s horses and Hartman’s mountain zebras early in gestation,
only low eCG levels were detected in tapir (Tapirus sp.) and rhinoceros
(Diceros bicornis, Ceratotherium simum) species, indicating that eCG
methods are restricted to certain equids [56]. Alternatively, enzyme
immunoassay (EIA) methods to measure estrone and progesterone me-
tabolites from urine have been employed in these species, though none
of these methods has been reliable in detecting pregnancy from a single
sample [56].

In other ungulates, however, urine sample collection is precluded by
seasonal ground coverage changes, leaving as alternative the use of fecal
samples for the concomitant measurement of FEM and FPM [57].
Similar to other mammals, both estrogens and progestins increase in
ungulates following conception until parturition, with progestins
increasing at a more dramatic rate [27,58,59]. Thus, FPM had more
reliable results in studies on even-toed ungulates such as pronghorn
(Antilocapra americana) [27], guanacos (Lama guanicoe) [60], bighorn
sheep (Ovis canadensis) [58], tule elk (Cervus elaphus nannodes) [61], and
forest musk deer (Moschus berezovskii) [62], which is probably why it has
been used exclusively in bison (Bison bison) [57], red brocket deer
(Mazama americana) [63], peccaries (Pecari tajacu) [64], Himalayan
musk deer (M. chrysogaster) [65], Arabian oryx (Oryx leucoryx) [66], and
white-tailed deer (Odocoileus virginianus) [67]. However, like in felid
species, early detection of pregnancy is difficult due to similarities of
FPM levels between early gestation and the luteal phase of the estrus
cycle, which has been reported in both odd-toed ungulates (Indian
rhinos (Rhinoceros unicornis) [68], Southern white rhinos (Ceratotherium
simum) [69]) and even-toed ungulates (Arabian oryxes [66], and
white-tail deer (Odocoileus virginianus) [671]). In contrast, studies in musk
deer (Moschus berezovskii) [62] and in pronghorn (Antilocapra ameri-
cana) [27] found a significant difference in FPM levels early in gestation
compared to their luteal phases, suggesting this pattern is not conserved
across all ungulates. The difference in the rate of progesterone rise
during early pregnancy underscores the importance of longitudinal
sample collection in hormonal analyses as a pregnancy diagnosis
method [27].

2.3. Cetaceans

While considered within the ungulate taxonomic group, monitoring
reproduction in cetaceans is unique due to its challenges in non-invasive
sampling. In these animals, most endocrine studies have been conducted
on serum samples, which have been useful for studies on male and fe-
male development [70,71], as well as on pregnancy monitoring by
natural breeding or artificial insemination in bottlenose dolphins (Tur-
siops truncatus) [14,16,72,73], killer whales (Orcinus orca) [74,75],
beluga whales (Delphinapterus leucas) [76], and bowhead whales
(Balaena mysticetus) [77]. For instance, a longitudinal study compared
progesterone and estrogen levels between normal and abnormal preg-
nancies in bottlenose dolphins, and reported lower progesterone con-
centrations in false pregnancies, early loss and abortion cases than
normal pregnancies, but no differences were detected in perinatal loss
and failure to thrive conditions [15]. Another study in the same species
reported that androstenedione concentrations were higher in pregnan-
cies resulting in calves that failed to thrive compared to normal preg-
nancies in the early and late stages of gestation [78]. Moreover, cortisol
levels were overall higher in failure to thrive and in perinatal loss con-
ditions when compared to normal pregnancies [78]. Another study in
killer whales suggested that relaxin may be used to confirm later term
pregnancy because its concentrations increase by 800% at late gestation.
However, relaxin is not suitable to detect abnormal pregnancies because
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it is a product of the corpus luteum [74].

Although training techniques have enabled blood collection without
the need to capture or cause stress in these animals, those methods are
limited to small species and captive populations where human-animal
contact is relatively frequent. For this reason, non-invasive or mini-
mally invasive samples have gained attention and enabled the deter-
mination of steroid profiles in free-ranging cetaceans (reviewed by Melo
et al. [28]). One study in humpback whales (Megaptera novaeangliae)
reported a method to detect pregnancy by measuring progesterone
levels from blubber [79]. However, another study in the same species
found that females near parturition did not have high blubber proges-
terone levels characteristic of gestation, and suggested that andro-
stenedione and testosterone were better biomarkers of late gestation
[80]. Additionally, studies have used blow samples (respiratory vapor)
to characterize male and female reproduction development in beluga
[81] and North Atlantic right whales (Eubalaena glacialis) [82], and for
measuring cortisol levels in harbor porpoises (Phocoena phocoena) [83],
beluga whales [84,85], and in humpback whales (Megaptera novaean-
gliae) [86].

Other less commonly used matrixes to measure hormones in ceta-
ceans include urine [78,87,88], saliva [89,90], feces [91-93], earplug
[94,95], and ocular secretions [96]. Unfortunately, individual identifi-
cation is limited to opportunistically collected fecal samples at feeding
areas [97] while urine, saliva, earplug, and ocular secretions are only
possible or practical in trained captive animals or in dead carcasses. For
this reason, blow and blubber have been the methods of choice to
investigate reproductive hormones in living wild cetaceans [28].

2.4. Primates

Similar to the aforementioned species, in the early stages of primate
pregnancy, progesterone levels are equitable to the levels observed
during the luteal phase of the ovarian cycle [89]. However, the timing of
elevated progesterone as a result of the luteal phase is different between
the infraorders Platyrrhini and Catarrhini. In Platyrrhines, such as
cotton-tip tamarins (Saguinus oedipus), common marmosets (Callithrix
jacchus), white-faced saki (Pithecia pithecia) and muriqui (Brachyteles
arachnoides), progesterone metabolites increase after ovulation with
delayed excretion of estrogen metabolites [9,98-101], while in Catar-
rhines, such as pigtailed macaques (Macaca nemestrina), yellow baboons
(Papio cynecephalus), and golden snub-nosed monkeys (Rhinopithecus
roxellana), the excretion of estrogen metabolites occurs before ovulation
and the surge in progesterone metabolites [102,103].

In addition to cycle monitoring, estrogen and progesterone metab-
olites have been useful in gestational monitoring, with a consistent
pattern of elevated steroids during the first trimester and a gradual in-
crease until parturition in several species, including the golden snub-
nosed monkey (Rhinopithecus roxellana; [104]), rhesus monkeys
(Macaca mulatta; [105,106], olive baboons (Papio anubis; [107,108],
yellow baboons (Papio cynocephalus; [109]), and Japanese macaques
(M. fuscata) [5110]. However, gestational endocrine profiles of Wied’s
black tufted-ear marmosets (Callithrix kuhli) showed a drop in urinary
estrogen and progesterone levels starting 6 weeks prior to parturition
[111].

The measurement of steroid metabolites can be informative of
pregnancy viability. In woolly monkeys (Lagothrix lagotricha poeppigii),
females with shorter gestations and a deceased infant had lower levels of
FEM and FPM than females with normal pregnancies [8,9]. The typical
increase in FPM and FEM was also found in Japanese macaques that had
a stillbirth but not those who had an early miscarriage [5]. Conversely,
when measuring both urinary estrogen and progesterone metabolite in
black tufted-ear marmosets, both were elevated but only urinary estro-
gen had a significant difference related to infant survival [111]. Addi-
tionally, a difference in FEM levels were found between successful and
aborted pregnancies in baboons with no difference in FPM [109]. This
suggests that FEM and FPM may not be reliable indicators of fetal health
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throughout gestation for every primate species.

While the measurement of progesterone and estrogen metabolites is
frequently measured during primate pregnancy, the measurement of
adrenal metabolites has also been considered as a potential early
biomarker of pregnancy in primates. For example, a study measuring
fecal epiandrosterone in wild assamese macaques (Macaca assamensis)
found that fecal androgens may be able to detect pregnancy earlier than
the measurement of fecal progestins because they are substantially
higher during the first trimester than in the luteal phase with a subse-
quent decrease to pre-gestation levels until parturition [112]. However,
the opposite pattern was observed in a study on fecal androgen metab-
olites (FAM) in mandrills (Mandrillus sphinx) where FAM levels
increased beginning mid-gestation and were at their highest during late
gestation [113], which indicates androgen differences in secretion
pattern during pregnancy. Therefore, biological or physiological vali-
dations must be carried out when using immunoassays in fecal or urine
samples to test for androgen specificity and avoid cross-reactivities with
different metabolites. Alternatively, more refined techniques such as
liquid chromatography-mass spectrometry or gas chromatography can
be employed to avoid such problems.

The utilization of noninvasive biomarkers also has the potential to
indicate further information regarding gestation, such as sex and num-
ber of infants. Previous studies have reported higher FAM levels in
mothers carrying male fetuses compared to mothers carrying female
fetuses at the end of pregnancy in macaques [112,114,115], baboons
[116], and lemurs [117], but no effect was observed in mandrills [118].
Furthermore, a study on golden snub-nosed monkeys reported that a
female pregnant with twins had FPM levels approximately 3-fold the
levels of single birth females [104]. Additionally, a single birth in
marmosets compared to twins or triplets had lower serum levels of
LH/CG, progesterone, and estradiol [119], indicating the potential of
these hormones in detecting multiple births.

3. Endocrinology of gestation

During gestation, the placenta is a temporary organ that acts as an
endocrine exchange between the mother and the fetus. In certain
mammals, such as most primates [120], rabbits, and rodents [121], the
placenta is hemochorial, which is characterized by contact between the
maternal bloodstream and fetal tissue, called the chorion. This hemo-
chorial placenta has the lowest degree of separation between the
maternal and fetal tissues in comparison to epitheliochorial (found in
equine and porcine), synepitheliochorial (found in ruminants), and
endotheliochorial (found in carnivores) placentas [121]. The level of
contact between these tissues create an opportunity for the hormones
secreted from the placenta to regulate both the mother and the fetal
physiology [122-124].

In humans, increasing amounts of human chorionic gonadotropin
(hCG) are produced by the placenta and function to maintain the corpus
luteum for progesterone synthesis [4125]. While hCG has a dramatic
increase in the first trimester, progesterone and estrogen levels gradu-
ally increase throughout gestation, with their highest levels around
parturition [126-128]. Prior to pregnancy, estrogens are primarily
produced by the ovaries, while progestins are produced by the corpus
luteum following the spike in luteinizing hormone at ovulation. If
fertilization and implantation occur, the corpus luteum will be main-
tained for a few weeks by hCG produced by syncytiotrophoblastic cells
that surround the embryo [129]. Towards mid-late gestation, the main
source of progesterone derives from placental utilization of fetal pre-
cursors and is integral in the maintenance of fetal life [119]. Similarly,
estrogens derived from the placenta during gestation are synthesized
through precursors produced in the maternal and fetal adrenal gland (e.
g. DHEA(S)) because the placenta is unable to convert C21 steroids to
C19 steroids (estrogen precursors) [130].

Placental-derived estrogens result in an upregulation of 11p-
hydroxysteroid dehydrogenase (114-HSD), which controls the ability of
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the placenta to convert cortisol to cortisone [131]. This conversion is
important because the maturation of the zona fasciculata (ZF) within the
fetal adrenal is controlled by fetal exposure to this cortisol [5]. Cortisol
then acts on the fetal adrenal gland, activating the negative feedback
loop of the Hypothalamic-Pituitary-Adrenal (HPA) axis during early to
mid-gestation, and resulting in the low synthesis of glucocorticoids and
low expression of 3p-hydroxysteroid dehydrogenase (HSD3B2) [4].
Although HSD3B2 is also involved in the conversion of pregnenolone to
progesterone, the fetus relies on the placenta to obtain progesterone
[119]. During late gestation, the rise in estrogen production by the
placenta stimulates 11-HSD to convert cortisol to cortisone, which re-
duces fetal exposure to cortisol [4]. The resulting decline in cortisol
stimulates the HPA axis, which is key for the fetal adrenal gland to
mature to the capacity needed to synthesize its own cortisol [132,133].

In addition to steroid hormones, protein hormones are involved with
assistance and maintenance of mammalian pregnancy and parturition.
In humans, relaxin is stimulated by the release of hCG and is secreted by
the ovaries during the luteal phase [78,134-136]. If the luteal phase
ends in corpus luteum degradation, relaxin levels will decline until the
next luteal phase [134,137]. If the luteal phase ends in pregnancy,
relaxin levels begin to increase at the end of the first trimester with the
formation of the placenta [134,137,138], and continue rising until
parturition [138,139]. In combination with estrogen, relaxin causes
depolymerization of hyaluronic acid, which inhibits pelvic stability
[140,141] and loosens the pelvic ligaments, specifically, the pubic
symphysis during parturition [140,142]. Additional roles of relaxin
include the growth of the mammary gland [143], inhibition of myo-
metrium contractions [144], and softening the cervix uteri [145].
Furthermore, circulating levels of maternal oxytocin rise during the final
stages of labor causing contractions of the uterine smooth muscle
[146-148], in concert with relaxin to facilitate parturition.

In addition to relaxin and oxytocin, the peptide hormone prolactin,
which is secreted by the anterior pituitary, increases in concentration
beginning in the first trimester until parturition [149]. This increase is
promoted by chorionic somatomammotropin (hCS), secreted by the
placenta, which supports the secretion of prolactin against the inhibitory
effects of estrogen and progesterone [149]. Furthermore, placental
lactogen and placental growth hormone are two peptide hormones
synthesized in the syncytiotrophoblastic cells early in gestation and
continue rising in concentration throughout pregnancy to enhance
maternal lipolysis [150,151]. While prolactin and hCS prime the
mammary gland for the eventual role of lactation after parturition,
placental lactogen and placental growth hormone provide the energy
sources for both maternal metabolism and fetal development.

4. The role of DHEA(S) in gestation

Dehydroepiandrosterone (DHEA) and its sulfate conjugate (DHEAS)
are the most abundant circulating steroids in primates and are primarily
synthesized within the adrenal cortex, in the zona reticularis (ZR), but
can be also produced by the gonads and the brain [152]. The synthesis of
DHEA(S) is dependent on the co-expression of cytochrome b5 and
P450c17 and results from the conversion of pregnenolone through the
catalyst complex of P450c17 and NADPH-CPR (Fig. 1) [18]. At late
gestation, the fetal adrenal develops a transient layer called the fetal
zone (FZ), which is homologous to the ZR and produces high amounts of
DHEA(S) due to the expression of cytochrome 17a-hydroxylase/17,20
lyase (CYP17), an enzyme that converts pregnenolone to DHEA [5,10,
18,153]. Following the regression of the FZ within the first year of life,
the adrenal gland develops the ZR at around 6 years of age in humans,
which then begins to secrete DHEA(S) levels [154-156]. The high con-
centration of DHEA(S) postnatally is possible by the reduced expression
of the enzyme HSD3B2 that normally competes with CYP17 for cortisol
production, and by the high expression of P450c17 in the ZR [156,157].
Although the presence of these enzymes was previously thought to be a
trait exclusive to some primates, more recent studies have detected
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Fig. 1. Overview of the biosynthesis of DHEA(S) and the hormonal exchange between the human placental, maternal, and fetal tissues during late gestation.

DHEA(S)-related enzymes in the spiny mouse (Acomys cahirinus) adrenal
gland at 76% of their gestational term [158] throughout postpartum, as
well as an observed increase in DHEA levels postnatally from 8 to 20
days of age in this species following gonadectomy [158]. This indicates
that, like primates, DHEA production in the spiny mouse is independent
from gonadal synthesis. In contrast, in common marmosets (Callithrix
jacchus) DHEAS levels decrease soon after birth [159]. In this species,
males lack a functional ZR, whereas the female adrenal gland is able to
produce small amounts of DHEA(S) in adult life if stimulated by low or
absent gonadal activity [159,160]. However, neonates have a functional
FZ, which is highly steroidogenic [160].

The changes in fetal adrenal development in addition to gonadal
development during late gestation in some species appear to play a
significant role in steroid production, which is crucial for both gestation
maintenance and parturition. High DHEA(S) production during the fetal
period are the main precursors for estrogen production in species pre-
dominantly using the A5 steroid synthesis pathway such as higher pri-
mates, equine [161,162], and bovine [163] due to the inability of the
placenta to synthesize these steroids from C21 precursors [18-20]. In
contrast, other species using either A4 or A5 pathway or exclusively the
A4 steroid synthesis pathway such as rats [164], polar bears [165], goats
[166], rely on the placenta or the gonads for estrogen synthesis during
pregnancy. For example, equine placenta lacks significant expression of
CYP17A1, which converts C21 to C19 steroids, and rely on ovaries for
provision of C19 precursors such as DHEA [167]. In rats,
placental-derived androstenedione is converted into active steroids in
maternal ovary [168], and sheep and bovine placenta are capable of
synthesizing estrogen from C21 steroids [169,170].

Although the evolutionary reasons for the species difference in ste-
roid and DHEA(S) synthesis remain unclear, some studies have sug-
gested that DHEA(S) may be involved in pre- and post-natal brain
development due to its function in neurogenesis, neuroprotection, and
possibly in memory and cognition [171-173]. Nevertheless, the fact that
those precursors originate from fetal adrenal gland makes them ideal
candidates as biomarkers of fetal health.

5. DHEA(S) as a biomarker of pregnancy outcome

There is empirical evidence that the fetal adrenal gland is responsible
for most DHEA(S) produced at late gestation. One study in pregnant
baboons showed that estrogen levels were 5% lower in fetectomized
baboons than pregnant controls, and that exogenous estrogen treatment
increased estradiol concentrations but decreased DHEA(S) concentra-
tions in maternal serum, indicating that a negative feedback mechanism

triggered by high estrogen levels suppresses DHEA(S) synthesis from the
maternal adrenal gland during gestation [174]. Similarly, a study in
rhesus monkeys showed that DHEAS and cortisol levels were lower in
fetectomized females compared to controls, though the circadian
rhythm of cortisol was maintained [175]. Furthermore, one study re-
ported high serum DHEA levels in cows at late gestation, with signifi-
cantly lower levels in cows continuously milked compared to controls
[176]. In bovines, however, the main source of DHEA during gestation is
the placenta [177], which may be unable to detect fetal death.

One study in humans reported that serum DHEAS concentrations
decline with advancing gestation, whereas DHEA levels increase espe-
cially in the first and second trimesters, and the DHEA/DHEAS ratio is
higher throughout gestation when compared to non-pregnant samples
[178]. This result is likely reflective of the differences in the mechanism
of the biological action of DHEA and DHEAS, with the former being
generally considered the active version, given that it is readily converted
into androgens, whereas the latter is more stable ([179]; reviewed by
[180]). For this reason, this study suggests that for pregnancy moni-
toring, DHEA might be a better biomarker of fetal health than DHEAS.
However, the distinction between DHEA and DHEAS in this study was
possible due to the separation of those steroids via high-performance
liquid chromatography (HPLC). When using immunoassays, particu-
larly with fecal or urine samples, both DHEA and DHEAS will be
measured due to cross-reactivity between these compounds.

To date, only a few studies have measured fecal DHEA(S) (fDHEAS)
non-invasively. A literature review using the keywords “primates”,
“DHEAS”, “gestation”, and “fecal” on the search engine Google Scholar
revealed only four studies on four species. One study in Japanese ma-
caques (Macaca fuscata) reported no changes in fDHEAS levels during
the first half of pregnancy in comparison to the baseline, but a significant
increase in fDHEAS levels in the second half of successful gestations in
comparison to the baseline and to the first half of gestation [5]. DHEAS
levels declined in these females after parturition (1.08 + 0.68 pg/g), and
neonates had extremely elevated concentrations of fDHEAS (9.13
+ 7.22 pg/g) as a remaining product from the regressing fetal zone [5].
In contrast, females that had stillbirths did not show any changes in
fDHEAS levels, though FEM and FPM remained above non-pregnant
levels throughout the gestational period [5]. The same study reported
that a female that had a miscarriage during early pregnancy had high
FEM and FPM in the first month of pregnancy, followed by a drastic
decline to non-pregnant levels after fetal loss was detected by ultrasound
[5]. This indicates that longitudinal measurement of FEM and FPM can
detect early fetal loss but may mask late fetal loss and stillbirth.
Conversely, fDHEAS are not suitable for early loss detection, but are
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useful in predicting fetal health at late gestation.

Similarly, previous studies measuring fDHEAS using EIA in orangu-
tans [10], siamangs [181], and in howler monkeys [182] have shown
that the mean fDHEAS levels were higher in females at late gestation
than non-pregnant/non-lactating females (Table 1). However, we still
do not know how accurate DHEAS is in predicting fetal health from one
single sample. We propose a method to detect pregnancy outcome in
non-human primates at late gestation by establishing basal DHEAS
levels per species. Using previously published data (Table 1), we
calculated the mean plus 2 standard deviations (SD) of fDHEAS in
non-pregnant/non-lactating females, in each species, controlling for
environment (captivity, social vs single-housing) and age (adults only),
given that these factors influence DHEAS levels [10,183-185].
Following a method similar to the iterative process previously described
[31,181,186-190], we predicted that any sample from a pregnant fe-
male in the last third of gestation that fell above this threshold would
indicate healthy pregnancy, and samples that fell below the threshold
would indicate stillbirth. The specificity of the method was determined
by the percentage of samples that were correctly identified as
non-pregnant and the sensitivity of this method was determined by the
percentage of samples that were correctly identified as successfu-
1/unsuccessful gestation. In addition, we conducted ROC curve analyses
in R software (version 4.2.2) using the function “roc” (package pROC)
[191] to test the accuracy of fecal DHEAS in predicting pregnancy and
fetal health.

The method had 100% specificity for all species, and 100% sensi-
tivity for orangutan, siamangs, and Japanese macaques housed indi-
vidually at late gestation, given that all samples from successful
pregnancies were above the threshold, and all samples from stillbirth
were below the threshold (Fig. 2 — A, B, E). However, the sensitivity was
80% in howler monkeys (Fig. 2 — C) and 50% in Japanese macaques
housed socially (Fig. 2 — D). The lower sensitivity in these species may
have been caused by the fact that both species were housed in social
groups. DHEAS is affected by stress levels and has been implicated in the
regulation of dominance rank in female Japanese macaques [192]. In
addition, a previous study in Japanese macaques comparing the
age-related changes in fecal DHEAS levels between single- and
socially-housed females reported that the relationship between age and
DHEAS levels was stronger in females housed individually than socially,
suggesting that social factors influence DHEAS levels [184]. Thus, future
studies that compare successful versus unsuccessful pregnancies in
macaques living under the same housing conditions would be valuable
to test the accuracy of fecal DHEAS in predicting fetal health. Never-
theless, the ROC curve analyses using this preliminary data suggests that
fDHEAS is a good predictor of both pregnancy (AUC = 0.8039) and fetal
health (AUC= 0.8137) (Fig. 3).

Another possible reason for the lower sensitivity in howler monkeys
compared to other species is that the two samples that fell below the
threshold were collected prior to the complete development of the fetal
zone (37 and 85 days prior to parturition), but further studies on fetal
development in the species are needed to confirm this hypothesis.
However, we acknowledge that the high sensitivity for the other species
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may have been achieved due to the small sample size of our preliminary
data. For this reason, while this method might be useful to predict
gestation outcome, we suggest caution when applying it to species in
which the DHEAS pattern has not been well investigated, a bigger
sample size to establish baseline levels per population, and we do not
recommend its use on a single sample.

6. Other potential applications of DHEA(S) in wildlife
reproduction

6.1. Maternal behavior

One of the most important factors that determine infant survival is
parental care, which has been negatively associated with stress levels
[193-195]. DHEA(S) are involved in stress regulation [196] in addition
to their role as an estrogen precursor. During the stress response, the
activation of the HPA axis results in secretion of glucocorticoids (GC)
and DHEA(S). While short-term elevations in GC will be beneficial by
enhancing the ability of the body to cope with the stressor (e.g, glucose
mobilization and analgesia during “fight or flight™), prolonged stress
will be detrimental to the individual (e.g immunosuppression, neuro-
toxicity, cardiac diseases) [197-199]. In contrast, DHEA(S) act as
GC-antagonists by competing with GC for glucocorticoids and mineral-
ocorticoid receptors, which helps the body restore homeostasis with
their beneficial effects, such as neuroprotection, immune-enhancement
and mood improvement [196,200]. However, in prolonged stress, GC
are secreted at higher levels than DHEA(S), which can lead to immu-
nodepression, cognitive impairment, and mood disorders (e.g anxiety
and depression), characteristics of chronic stress [201]. For this reason,
the GC:DHEA(S) ratio has been considered an important index to eval-
uate stress levels in wildlife [10,192,202].

One recent study in humans measured cortisol and DHEAS levels
during the last trimester of pregnancy in patients exhibiting severe
anxiety (ANX). The authors observed that the ANX group had signifi-
cantly higher cortisol and lower DHEAS levels when compared to
healthy pregnant women, resulting in a higher cortisol:DHEAS ratio in
the ANX group [203]. Although this study did not investigate maternal
behavior, previous studies have reported an association between anxiety
or stress levels and postpartum depression in humans [204-206], as well
as high stress levels and maternal rejection in lowland gorillas (Gorilla
gorilla gorilla)[195]), rhesus monkey [193] and in Japanese macaques
[207]. Considering the beneficial effects of DHEA(S) in mood and
anti-depression [208] as opposed to the negative effects of dysregulated
GC secretion in increasing anxiety [209], the co-measurement of these
two adrenal hormones can be useful in evaluating the severity of mood
disorders, which may affect maternal behavior.

Stress levels during the postpartum are also associated with repro-
ductive experience. Multiparous females generally have lower risk of
peripartum stress and provide higher infant investment than nulliparous
females [210,211]. In monogamous species, this relationship may be
extended to fathers. Bardi et al.[212] investigated the response of uri-
nary cortisol, DHEA, and the DHEA:cortisol ratio to a cognitive-foraging

Table 1

Mean =+ standard deviation (SD) of fecal DHEAS levels in captive primates all measured using EIA. Data was controlled for environment, age, and species.
Species Mean =+ SD fecal DHEAS levels (ng/g) Reference

Age (Years) Baseline Late Gestation” Fold change Outcome

Pongo pygmaeus 28 - 58 172.66 + 102.48 N =2 (11) 511.45+137.35N=1 (3) 2.96 Successful [10]
Symphalangus syndactilus 13-28 2534.17 +£1035.88 N = 4 (13) 15625.85 + 7867.06 N = 1 (6) 6.16 Successful [181]
Macaca fuscata (socially living) 5-12 886.67 + 490.51 N =4 (12) 2545 + 1687.71 N =2 (4) 2.87 Successful [5]
Macaca fuscata (singly living) 5-13 2411.25 + 1410.28 N = 3 (9) 1747.14 + 1606.01 N = 2 (7) 0.72 Stillbirth [5]
Alouatta caraya 5-12 13281.15 + 4092.38 N =1 (3) 57843.86 + 37160.31 N = 4 (10) 4.35 Successful [182]

N = number of females (total number of fecal samples)

@ Sample collection start for each species: P. pygmaeus, last trimester; S. syndactilus, 46 days prepartum; M. fuscata (both), 83 days prepartum; A. caraya, 90 days

prepartum
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(A) Pongo pygmaeus

(B) Symphalangus syndactylus
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(C) Alouatta caraya
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Fig. 3. (A) The receiver operating characteristic curve (ROC) of samples from all females in the study (N = 72; Baseline = 49; Pregnant = 23) excluding the unsuccessful
births showing the diagnostic ability of using fecal DHEAS to determine pregnancy at late gestation. AUC = 0.8039 (B) The ROC of samples from all pregnant females
in the study (N = 30; Successful = 23; Unsuccessful = 7) showing the diagnostic ability of using fecal DHEAS to determine fetal viability at late gestation.

AUC = 0.8137.

task in pairs of a monogamous species (owl monkey (Aotus spp.)), with
and without reproductive experience (RE). The authors observed that RE
did not affect cortisol concentrations, but experienced parents had a
higher DHEA:cortisol ratio after exposure to habituation training and in
the first day of testing than non-experienced parents. Pairs with RE also
had 4-fold more efficient foraging strategies than did non-RE pairs.
These results showed that in this species, RE reduces the stress response
and enhances cognitive skills in monogamous pairs, consequently
improving the likelihood of infant survival.

6.2. Infant development

Several studies have focused on fetal and neonatal HPA axis activity
to investigate how early exposure to stressful events can impact the
offspring’s development through epigenetic mechanisms [213,214]. For
those studies, the use of non-invasive matrixes characterized by a
long-time lag (e.g hair and nails from neonates) can provide important
past information about fetal physiology because hormonal metabolites
from these samples represent changes that can occur months prior to
collection, as opposed to feces and urine, which have a relatively shorter
time lag (6-24 h) [215,216].
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One study in 80 humans collected nails from infants to measure
whether fetal DHEA and DHEAS were affected in gestations character-
ized by stressful life events compared to normal gestations [213]. The
authors observed that infants of mothers with stressful life events during
pregnancy had higher DHEA levels than controls, but no apparent
changes in DHEAS levels. Furthermore, DHEA levels were not related to
maternal stress before pregnancy.

Another study in capuchin monkeys (Cebus apella) investigated
whether photoperiod stress (maternal constant light exposure during the
last third of gestation) affect infant cortisol and DHEAS levels at birth, at
one month and at ten months of age [214]. The resulting effect was a
marked reduction in DHEAS concentrations in these infants and almost
twice the concentration of cortisol than controls. The authors high-
lighted the influence of maternal chronodisruption during late gestation
on primate adrenal gland maturation and suggest further investigations
regarding these changes during postnatal and particularly adult life
[214].

Studies in domestic species have also shown the potential of DHEAS
and GC:DHEAS as biomarkers of chronic stress, of prenatal HPA func-
tion, and in gestation monitoring, especially during the third trimester.
For example, Lanci et al. [217] measured hair cortisol and DHEAS levels
in foals and mares to investigate the feto-maternal relationship, as well
as differences in hormonal concentrations between healthy and sick
foals. The authors found a correlation between foal and mare hair
cortisol concentrations, as well as a positive correlation between cortisol
and DHEAS concentrations in both. Hair cortisol concentrations did not
differ between groups and was not influenced by clinical parameters.
However, sick foals had higher DHEAS concentrations (43.1
+ 69.0 pg/mg) than healthy ones (19.2 &+ 44.0 pg/mg) and a lower
cortiso:DHEAS ratio (4.1 + 3.8 pg/mg versus 7.8 + 6.7 pg/mg,
respectively). The authors associated this increase in DHEAS with the
neuroprotective effect of this hormone because most of the sick foals had
Hypoxic-Ischemic Encephalopathy/Neonatal Syndrome. Moreover, they
found increased levels of both cortisol and the cortisol:DHEAS ratio in
females pregnant with sick foals (0.8 + 0.5 pg/mg) compared to those
pregnant with healthy foals (0.6 + 0.4 pg/mg). The authors suggest that
high maternal cortisol levels could have led to impaired HPA develop-
ment in the fetus, which resulted in sick foals [217]. Another study by
Fusi et al. [218] in 126 newborn puppies investigated the relationship
between DHEA concentrations and fetal birth condition (premature,
stillbirth, and puppies that died between days 1-30 postbirth) using hair
and claws. The authors found that premature puppies had higher DHEA
claw concentrations (33.8 + 13.15 pg/mg) when compared with still-
birth (26.6 + 13.20 pg/mg) and failure to thrive (24.7 &+ 15.80 pg/mg),
but no effects in hair DHEA concentrations. These studies suggest that
the relationship between GC, DHEA(S), and fetal health may vary with
species and sample matrix, which reinforces the need for comparative
studies. Moreover, early exposure to life-stress events may affect fetal
programming of the HPA axis, therefore a good understanding of these
mechanisms is vital to adopt these hormones as biomarkers of fetal
health.

Another factor that must be considered is the relation between GC
and its impact in the reproductive system, which indicates the intrinsic
connection between the HPA and the Hypothalamic-Pituitary-Gonadal
(HPG) axis. While the stress during gestation can affect fetal and post-
natal periods, resulting in reduced birth weight, anxiety, and impaired
maternal and fetal HPA axis activity [219,220], in adult life, stress
suppresses important reproductive hormones, such as testosterone, LH,
and estrogen secretion, as well as their action on gonads due to the
downregulation of their receptors [219,221]. Thus, monitoring stress
levels has been pivotal in wildlife management for improving breeding
strategies [222,22.3]. In this context, DHEA(S) is a promising biomarker
for wildlife monitoring due to their regulatory roles in both stress and
reproduction.
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7. Summary

The reported studies have demonstrated that DHEA(S) are potential
biomarkers of reproduction and fetal health due to the intrinsic role of
these steroids as both an estrogen precursor (in the A5 metabolic
pathway) and a stress regulator. On the one hand, the ability to measure
DHEA(S) at late gestation as biomarkers of fetal health might be
restricted to some taxa, and due to the high interspecies variation in
adrenal steroid metabolic pathways, it requires further comparative
studies to establish the endocrine pattern of gestation for each species.
On the other hand, the use of DHEA(S) as biomarkers of stress has been
expanded to numerous wild and domestic species, which can be helpful
in developing breeding management protocols and in evaluating con-
servation strategies. Furthermore, the advance of noninvasive matrixes
has enabled studies to investigate the effect of environment and early
stress exposure on fetal development, maternal behavior, and infant
survival. Although the use of DHEA(S) in predicting fetal outcome is
limited to late gestation, it complements the information provided by
progesterone and estrogens. Combined, these hormones can detect both
early and late miscarriage events and may be helpful in identifying
possible causes of decreased fertility in some populations.
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