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ASYMPTOTIC SPREADING OF PREDATOR-PREY POPULATIONS IN A

SHIFTING ENVIRONMENT

KING-YEUNG LAM AND RAY LEE

Abstract. Inspired by a recent study associating shifting temperature conditions with changes in

the e�ciency with which predators convert prey to o↵spring, we propose a predator-prey model of

reaction-di↵usion type to analyze the consequence of such e↵ects on the population dynamics and

spread of the predator species. In the model, the predator conversion e�ciency is represented by a

spatially heterogeneous function depending on the variable ⇠ = x� c1t for some given c1 > 0. Using

the Hamilton-Jacobi approach, we provide explicit formulas for the spreading speed of the predator

species. When the conversion function is monotone increasing, the spreading speed is determined in

all cases and non-local pulling is possible. When the function is monotone decreasing, we provide

formulas for the spreading speed when the rate of shift of the conversion function is su�ciently fast

or slow.

1. Introduction

A fundamental challenge in ecology is to understand the e↵ect of climate change on the population
abundances and distributions of species. Climate-induced changes in species abundance and distribution
have significant implications for biodiversity [61, 48, 59], the functioning of ecosystems [59, 60, 66], the
spread of disease [54, 69] and human welfare [54]. While many species are vulnerable to a changing
climate, for many others climate change may facilitate expansion to new areas and population growth
[62, 4, 11, 34]. These outcomes arise not only from isolated e↵ects of climate on individual species, but
also from changes to interactions between species [30].

Mathematical modeling can be used to determine why certain species decline while others prosper
under the changing climate. The study of species persistence and spread often depends on the spatial
context, and much analysis in the classical literature has been based on reaction-di↵usion models.
A prominent example is the Fisher-KPP equation [27, 39], which describes the spreading of a single
population

ut = duxx + f(u) for x 2 R, t > 0, (1.1)

where d corresponds to the dispersal rate, f(u) = ru(1 � u), and r is the intrinsic growth rate of the
species u.

The problem of spreading speed for (1.1) was first investigated by Kolmogorov et al. [39] for heaviside
initial condition, who showed under monostable assumption on f(u) (i.e. f(s)/s is decreasing in s) that

c⇤ = 2
p
df 0(0).
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Here, c⇤ refers to the key notion of spreading speed introduced by Aronson and Weinberger [2, 3], which
refers to the number c⇤ > 0 such that

lim
t!1

sup
|x|>ct

u(t, x) = 0 for c 2 (c⇤,1), and lim
t!1

inf
|x|>ct

u(t, x) > 0 for c 2 (0, c⇤).

The above result was also generalized in [3] to any compactly supported initial data and in higher
spatial dimensions. This theoretical spreading speed has yielded good estimates for range expansion
observed in nature [57].

Various studies have since revisited Fisher’s model with an interest in the impact of a shifting
environment. To consider climate change, it is often assumed that the behavior of the species depends
on the variable ⇠ = x � ct, where the constant c corresponds to the velocity of a shifting climate
[55, 8, 45, 9]. See also [26], in which this formulation is applied in the context of an SIS model, and
[64] for a survey on reaction-di↵usion models in shifting environments. Many models have proposed the
case where the growth rate ru(1 � u) in (1.1) is replaced by a shifting logistic form u(r(x � ct) � u),
where r(x� ct) denotes the species’ intrinsic growth rate [55, 8]. These works assumed the growth rate
r(⇠) to be positive on a bounded patch of suitable habitat and negative elsewhere, and were broadly
interested in the e↵ects of a shifting climate on the persistence of the species.

A shifting environment also leads to new spreading phenomena. In [41], the spreading speed for
solutions of Fisher’s equation with growth rate f(u, x � ct) = (r(x � ct) � u)u was determined using
the Hamilton-Jacobi method, in the case that the intrinsic growth rate of the species is positive and
monotone. They showed that, for a certain range of velocities of climate shift, the species spreads with
speed distinct from either of the limiting KPP invasion speeds in a phenomenon called non-local pulling
[35, 31]. When the growth rate is non-monotone, the existence of forced waves and their attractivity is
studied in [9].

In addition to single species equations, the spreading dynamics for systems of equations has received
considerable attention. Building on the earlier works on order-preserving systems (such as cooperative
systems and competitive systems of two species) [44, 65, 46, 47], the spreading of two competing species
in a shifting habitat is studied in [71, 18].

By contrast, for predator-prey systems a comparison principle is not immediately available and many
studies regarding propagation phenomena in these systems have focused on the dynamics of traveling
wave solutions. The existence of traveling wave solutions for two-species predator prey equations was
established in [24, 29], and studied further in [36, 51], while some results on the stability of traveling
wave solutions were established in [28].

Until recently, few works have treated the spreading dynamics of predator-prey systems with general
initial data. In [53], Pan determined the spreading speed of the predator for a predator-prey system with
initially constant prey density and compactly-supported predator. Shortly thereafter, Ducrot, Giletti,
and Matano [22] used methods from uniform persistence theory to characterize the spreading dynamics
when both predator and prey are initially compactly supported. They showed that the behavior can
be classified based on the speeds of the prey in the absence of predator, and of the predator when
prey is abundant (see also [23], for the case of a predator-prey equation with non-local dispersal, and
[19, 52]). Since these works, the spreading speeds regarding the Cauchy problem for predator-prey
systems with three species was studied in [21] (see also [67]). There, it was shown that the nonlocal
pulling phenomenon can occur in a system with two predators and one prey.

For other types of non-cooperative systems and their spreading speeds, we refer to [63], which char-
acterizes the spreading speed for a general class of non-cooperative reaction di↵usion systems as the
minimal traveling wave speed. We also note [20], which determined the spreading speed of infectious dis-
ease in an epidemic model, and [50], which considered the spreading dynamics for competition between
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three species. Spreading dynamics are also studied for nonlocal di↵usion problems, here we mention
[70, 68] for such results in predator-prey models in the absence of shifting environment.

1.1. The predator-prey model in a shifting environment. We are interested in the e↵ect of the
heterogeneous shifting profile of the conversion e�ciency of prey to predator, represented below by the
function ã(x� c1t), on the spreading dynamics. Though the temperature-dependence of the conversion
e�ciency is not well-understood, there is some evidence that the conversion e�ciency may be impacted
by climate. Using an experimental system of predator and prey, Daugaard et al. [16] found that the
conversion e�ciency of the predator increased with warming. Moreover, while conversion e�ciency
was not directly considered, a meta-analysis by Lang et. al [42] identified a trend toward increasing
e�ciency of energy assimilation by consumers with increasing temperature. On the other hand, many
biological processes depend unimodally on temperature, such that measures of species performance and
fitness decline once temperature increases su�ciently beyond a “thermal optimum” [37, 17, 13]. It
is thus plausible that predators currently experiencing climates at or near their thermal optima may
experience declines in conversion e�ciency with additional warming.

To this end, we propose the following predator-prey model of reaction-di↵usion type to analyze the
consequence of such e↵ects on the population dynamics and spread of species:

8
>><

>>:

ũt = d1ũxx + ũ(�� ↵1ũ+ ã(x� c1t)ṽ) in (0,1)⇥ R,
ṽt = d2ṽxx + ṽ(r̃ � ↵2ṽ � b̃ũ) in (0,1)⇥ R,
ũ(0, x) = ũ0(x), ṽ(0, x) = ṽ0(x) in R.

(1.2)

Here the predator and prey densities are represented by ũ(t, x) and ṽ(t, x). It is assumed that the
predator cannot persist in the absence of prey, and competes with other predators, while in the absence
of predation the prey exhibits logistic growth and is described by the standard Fisher-KPP equation.
The interaction rates between predator and prey are mediated by the consumption rate b̃ > 0 of prey by
predator, and by the predator’s conversion e�ciency function ã(x� c1t), which describes the degree to
which consumed prey can be successfully converted to additional predators. For simplicity, we assume
the conversion e�ciency has a fixed profile in the moving coordinate y = x� c1t with constant velocity
c1. Finally, di,↵i,, r̃ are positive parameters, where di are the random dispersal rates, ↵i are the
intraspecific competition rates,  is the natural death rate of the predator species and r̃ is the natural
birth rate of the prey species.

Without loss of generality, we may non-dimensionalize the problem (1.2) and obtain the following
model: 8

>><

>>:

ut = uxx +
�
� 1� u+ a(x� c1t)v

�
u in (0,1)⇥ R

vt = dvxx + r(1� v � bu)v in (0,1)⇥ R
u(0, x) = u0(x), v(0, x) = v0(x) in R.

(1.3)

We assume the following throughout our study of the reaction-di↵usion system (1.3):

(H1) The function a : R ! R is monotone, and satisfies

� := 1� b(kak1 � 1) > 0, inf
s2R

a(s) > 1
� , and kak1 > 1.

By observing (via (IC) below and maximum principle) that the density of the predator is bounded
from above by kak1� 1, it follows that the quantity � := 1� b(kak1� 1) corresponds to the minimum
carrying capacity for the prey.

Remark 1.1. It is documented in a microbial predator-prey system [16] that the quantity of predators
produced for each prey consumed increases when temperature is increased. This corresponds to the



202 K.-Y. LAM AND R. LEE

case when c1 > 0 and a(·) is decreasing. We also study the case when increasing temperature decreases
the predator e�ciency, i.e. a(·) is increasing.

We are interested in the situation when the initial data of the predator is compactly supported, while
that of the prey has a positive upper and lower bound. For simplicity, we will assume throughout the
discussion that (u0, v0) 2 C2(R) satisfies
(IC) 0  u0  kak1 � 1, �  v0  1, and u0 has compact support.

Finally, we define the following limiting growth rates (at ±1), to simplify the statements and proofs
of the main results.

(
r1 = a(�1)� 1, r2 = a(+1)� 1,

r1 = �a(�1)� 1, r2 = �a(+1)� 1.
(1.4)

Here, r1 and r2 correspond to the limiting growth rates of the predator behind and ahead of the
environmental shift, respectively, when the prey density is at its minimum value v = �, while r1 and r2
are the limiting growth rates of the predator behind and ahead of the shift, respectively, when the prey
density is at its maximum value v = 1.

1.2. Main Results. In this paper, we are interested in the asymptotic speed of spread (or spreading
speed) as the predator species u expands its territory. Up to a change of coordinates x 7! �x, it is
enough to focus our discussion on the rightward spreading speed, while allowing the spatial heterogeneity
a(·) to be monotonically increasing or decreasing.

In the remainder of this paper, we will refer to the rightward spreading speed c⇤ simply as the
spreading speed, which is defined as follows:

Definition 1.1. Suppose a species has population density u(t, x). We say that the species u has
spreading speed given by c⇤ > 0 if

lim
t!1

sup
x>ct

u(t, x) = 0 for each c 2 (c⇤,1), (1.5)

lim
t!1

inf
0<x<ct

u(t, x) > 0 for each c 2 (0, c⇤). (1.6)

Following [33, Definition 1.2], we introduce the notion of maximal and minimal speed:

Definition 1.2. Suppose a species has population density u(t, x), then its maximal speed c⇤ and
minimal speed c⇤ are given by

8
>><

>>:

c⇤ := inf

⇢
c > 0 | lim sup

t!1
sup
x>ct

u(t, x) = 0

�
,

c⇤ := sup

⇢
c > 0 | lim inf

t!1
inf

0x<ct
u(t, x) > 0

�
.

(1.7)

Remark 1.2. It follows that the species u has a spreading speed if and only if c⇤ = c⇤. In such a case,
the spreading speed c⇤ is given by the common value c⇤ = c⇤.

The following two main theorems characterize the spreading speed of u for the cases (i) a(·) is
monotonically increasing and (ii) a(·) is monotonically decreasing, respectively. Assuming the positive
axis points poleward and temperature is rising, they correspond to the cases when the the conversion
e�ciency of the predator is suppressed or enhanced by the warming climate.
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Theorem 1.1. Let c1 > 0 be given, a : R ! R be increasing, and suppose (H1) holds. If (u(t, x), v(t, x))
is the solution of (1.3) with initial data satisfying (IC), then the spreading speed of u exists, and is

given by

c⇤ :=

8
>><

>>:

2
p
r2 if c1  2

p
r2

c1
2 �

p
r2 � r1 +

r1
c1
2 �

p
r2�r1

if 2
p
r2 < c1 < 2

p
r1 + 2

p
r2 � r1

2
p
r1 if c1 � 2

p
r1 + 2

p
r2 � r1.

(1.8)

Theorem 1.2. Let c1 2 R \ (2pr2, 2
p
r1] be given, a : R ! R be decreasing, and suppose (H1) holds.

If (u(t, x), v(t, x)) is the solution of (1.3) with initial data satisfying (IC), then the spreading speed of

u exists, and is given by

c⇤ =

(
2
p
r2 if c1  2

p
r2,

2
p
r1 if c1 > 2

p
r1.

For the proof of Theorems 1.1 and 1.2, see Subsection 5.2
We also show the convergence of (u, v) to the homogeneous state in the moving frames with speed

di↵erent from c1 or c⇤.

Theorem 1.3. Suppose the spreading speed of u exists and is denoted by c⇤ > 0. Define, for each

c 2 (0,1) \ {c1, c⇤}, the translation of (u, v)

(uc(t, x), vc(t, x)) = (u(t, x+ ct), v(t, x+ ct)).

(a) If c 2 (c⇤,1), then lim
t!1

(uc(·, t), vc(·, t)) ! (0, 1) in Cloc(R).
(b) If c 2 (0, c⇤) \ {c1}, then

lim
t!1

(uc(·, t), vc(·, t)) ! (ũ, ṽ) in Cloc(R),

where the constant vector (ũ, ṽ) 2 R2
is the unique positive equilibrium of the kinetic system

d

dt
ũ = ũ(�1� ũ+Aṽ),

d

dt
ṽ = rṽ(1� ṽ � bũ),

such that A = a(�1) if c < c1 and A = a(+1) if c > c1.

For the proof of Theorem 1.3, see Section 6.

Remark 1.3. Note that the case c1 2 (2
p
r2, 2

p
r1] is not covered by Theorem 1.2. In that case the

Hamilton-Jacobi approach that we adopt in this paper does not directly apply. We conjecture that
c⇤ = c1 in that case and the predator advances in locked step with the environment. See [9, 26] for
results regarding a single species in a shifting habitat. A possible approach is to use the persistence
theory as in [21].

Remark 1.4. In the case of a(·) ⌘ a0 being a constant and v0 ⌘ 1, the spreading speed of the predator
u was determined by Pan in [53, Theorem 2.1].

To consolidate the formulas for the spreading speeds in Theorems 1.1 and 1.2, we will denote �⇤ =
c1
2 �

p
|r2 � r1|. Then the spreading speed for all cases can be given by

�(c1; r1, r2) =

8
>>>>>>><

>>>>>>>:

2
p
r2 if r1 < r2 and c1  2

p
r2

�⇤ + r1
�⇤ if r1 < r2 and 2

p
r2 < c1 < 2

p
r1 + 2

p
r2 � r1

2
p
r1 if r1 < r2 and c1 � 2

p
r1 + 2

p
r2 � r1,

2
p
r2 if r1 > r2 and c1  2

p
r2

2
p
r1 if r1 > r2 and c1 > 2

p
r1,

(1.9)
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or, equivalently,

�(c1; r1, r2) =

8
>><

>>:

2
p
r2 if c1  2

p
r2

�⇤ + r1
�⇤ if r1 < r2 and 2

p
r2 < c1  2

p
r1 + 2

p
r2 � r1

2
p
r1 if c1 > 2

p
r1 + 2

p
max{0, r2 � r1},

(1.10)

1.3. Related mathematical results. We also mention a closely related work of Choi, Giletti, and
Guo [15], where they considered a two-species predator-prey system similar to (1.3), with the intrinsic
growth rate r = r(x � c1t) for the prey subject to the climate shift instead of the coe�cient a. They
considered the case when both initial data u0 and v0 are compactly supported and a non-decreasing
profile for the growth rate with r changing sign, r(�1) < 0 < r(1). In the case of local dispersal,
they showed that the prey persists by spreading if and only if the maximal speed of the prey exceeds
the environmental speed (i.e., 2

p
dr(+1) > c1), while the predator persists by spreading at the speed

given by the smaller of the prey and maximal predator spreading speeds. In their setting both species
tends to zero in {(t, x) : x < c1t}, while in the zone ahead of the environmental shift, the density of
the prey is strictly decreasing so there is no nonlocal pulling phenomenon. We also mention [32] for
the case of two weak-competing predators and one prey, and [1], for the case of one predator and two
preys. For compactly supported initial data, the invasion wave of the prey resembles the e↵ect of a
shifting environment studied in our paper. However, the exact spreading speed of the predator(s) is not
completely determined.

Finally, we mention the work of Bramson [12], in which established via probabilistic techniques a
correction term of 3

2 log t which separates the the location of the spreading front for solutions to the
Fisher-KPP equation (1.1) and the asymptotic location of the minimal traveling wave solution. This
result was later generalized using maximum principle arguments by Lau [43] to KPP-like nonlinearities
f(s) satisfying f 0(s)  f 0(0) on [0, 1]. For systems of equations of predator-prey type, the existence
and characterization of such a delay between the spreading front and the asymptotic rate of spread is
a challenging open question.

1.4. Organization of the paper. The rest of the paper will be organized as follows. In Section 2,
we give a quick proof of the upper estimate of the spreading speed (namely, c⇤  �(c1; r1, r2)) by
invoking the recent results on the di↵usive logistic equation in shifting environment due to [41]. In
Section 3, we derive some rough estimates for the prey density v(t, x), and state five separate cases for
the key parameters c1, r1, r2 where the spreading speed has to be treated separately. In Section 4, we
outline, in several lemmas, the conceptual steps to estimate the spreading speed from below via explicit
solution of some Hamilton-Jacobi equation (4.4) obtained as the limiting problem of the first equation
of (1.3). These lemmas will be proved in Subsections 4.1, 4.2 and 4.3. In Section 5, we determine the
explicit formulas of the unique solution ⇢̂ to the limiting problem in each case, and prove that the upper
bound of c⇤ obtained in Section 3 is also the lower bound. Thus the spreading speed is determined and
Theorems 1.1 and 1.2 are proved. In Section 6, we prove Theorem 6.1 regarding the convergence to
homogeneous state. Finally, in the Appendix, we collect some useful comparison results regarding the
limiting Hamilton-Jacobi equations in [41], which are rephrased in a format suitable for our purpose
here.

2. Upper bound on spreading speed

In this section, we give a quick proof of c⇤  �(c1; r1, r2), where �(c1; r1, r2) is given by (1.10) (which
is equivalent to (1.9)). i.e., the spreading speed c⇤ is bounded above by �(c1; r1, r2).

First, we establish some preliminary estimates on the solutions u and v of (1.3).
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Lemma 2.1. Assume 0  u0  kak1 � 1 and �  v0  1. Then the corresponding solutions u(t, x)
and v(t, x) of (1.3) satisfy 0  u(t, x)  kak1 � 1 and �  v(t, x)  1 for all (t, x) 2 (0,1)⇥ R.

Proof. By the classical theory of reaction-di↵usion equations, there exists a unique solution (u, v) satis-
fying (1.3) for all (t, x) 2 (0,1)⇥R; see, e.g. [58]. Moreover, since 0  u0  kak1 � 1 and �  v0  1,
the maximum principle (see [56, Chapter 3, Section 6, Theorem 10] or [40, Theorem 6.2.1]) implies
0  u  kak1 � 1 and �  v  1 on (0,1)⇥ R. ⇤

The global upper bound for v established in Lemma 2.1, combining with existing results for the
di↵usive logistic equation with heterogeneous shifting coe�cients [41], can be used to determine an
upper bound for the spreading speed of u.

Proposition 2.2. Let (u(t, x), v(t, x)) be the solution of (1.3), with the associated maximal spreading

speed c̄⇤ as given in (1.7). Then

lim
t!1

sup
x�(�+⌘)t

u(t, x) = 0 for each ⌘ > 0. (2.1)

In particular, c⇤  �, where � = �(c1; r1, r2) is defined in (1.10).

Proof. By Lemma 2.1, v(t, x)  1 for all (t, x) 2 (0,1)⇥R, hence we may regard u(t, x) as a subsolution
of the following scalar problem

(
ūt = ūxx + ū(�1� ū+ a(x� c1t)) in (0,1)⇥ R
ū(0, x) = u0(x) in R.

(2.2)

Let ū be the classical solution of (2.2) with initial data u0(x). By the parabolic maximum principle
we have

u(t, x)  ū(t, x) for all (t, x) 2 (0,1)⇥ R. (2.3)

In the case r2 > r1, we may invoke [41, Theorem 6] to deduce that ū satisfies

lim
t!1

sup
x�(�+⌘)t

ū(t, x) = 0 for each ⌘ > 0, (2.4)

where � = �(c1; r1, r2) is given in (1.10).
In case r1 > r2, we define

U(t, x) =

8
>><

>>:

exp(�p
r1x+ 2r1t) if c1 � 2

p
r1,

min{r1, exp(��(x� c1t))} if 2
p
r2 < c1 < 2

p
r1, � = 1

2

⇣
c1 �

p
c21 � 4r2

⌘

min{r1, exp(�
p
r2x+ 2r2t)} if 0 < c1  2

p
r2.

Then it can be verified that U is a generalized supersolution of (2.2) (see [40, Definition 1.1.1] or [10,
Definition 4.2] for the definition). Hence, we again deduce that (2.4) holds where

� =

8
>><

>>:

2
p
r1 if c1 � 2

p
r1,

2
p
r2 if c1  2

p
r2,

c1 otherwise.

Combining with (2.3), we conclude that

lim
t!1

sup
x�(�+⌘)t

u(t, x) = 0 for each ⌘ > 0,

where � is given in (1.10) (and � = c1, in case 2
p
r2 < c1 < 2

p
r1). This completes the proof. ⇤
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3. Rough Estimate for v(t, x)

Having established that the spreading speed is bounded above by � = �(c1; r1, r2), we may also
deduce in the following lemma that v(t, x) converges to its carrying capacity as t ! 1 in the region
{(x, t) : x > �t}.

Lemma 3.1. Let (u(t, x), v(t, x)) be the solution of (1.3). Then

lim
t!1

sup
x�(�+⌘)t

|v(t, x)� 1| = 0 for each ⌘ > 0, (3.1)

where � is given by (1.10).

Proof. Since v(t, x)  1 (thanks to Lemma 2.1), it su�ces to show the lower bound. We shall follow
the proof of Theorem 5.1 in [21]. Fix c > �(c1; r1, r2). We may suppose for contradiction that there
exists a sequence {(tn, xn)} with tn ! 1 and xn � ctn such that lim sup

n!1
v(tn, xn) < 1. Denote

(un, vn)(t, x) = (u, v)(t + tn, x + xn). By standard parabolic estimates, we may pass to a further
subsequence so that (un, vn) converges to an entire in time solution (u1, v1) of (1.3) in Cloc(R2).
Since c > �(c1; r1, r2), by Proposition 2.2, we have u1 ⌘ 0. Thus, v1 is an entire solution satisfying
the equation

(v1)t = d(v1)xx + rv1(1� v1) for (t, x) 2 R2.

Since v � � for all (t, x) 2 (0,1)⇥ R, we deduce that v1 � � for all (t, x) 2 R2. By the classification
of entire solutions of the di↵usive logistic equation (see, e.g. [49, Lemma 2.3(d)]) we have v1 ⌘ 1. This
is in contradiction with the statement lim sup

n!1
v(tn, xn) < 1. ⇤

Having established the upper bound of the spreading speed, the outstanding task is to estimate the
spreading speed from below. We will do so by adopting the Hamilton-Jacobi approach [25]. To this
end, define

F ✏(t, x) = �1 + v( t✏ ,
x
✏ )a

�
x
✏ � c1t

✏

�
(3.2)

and its (lower) half-relaxed limit [6]

F⇤(t, x) = lim inf
✏!0

(t0,x0)!(t,x)

F ✏(t0, x0). (3.3)

Thanks to (H1), the function a(s) is monotone.
We will divide the proof of the spreading speed into the following cases, depending on the speed of

environmental shift c1 and the profile of the conversion e�ciency a(x� c1t).

Case 1(a): r1 < r2 and c1  2
p
r2

Case 1(b): r1 < r2 and 2
p
r2 < c1 < 2(

p
r1 +

p
r2 � r1)

Case 1(c): r1 < r2 and c1 � 2(
p
r1 +

p
r2 � r1)

Case 2(a): r1 > r2 and c1 < 2
p
r2

Case 2(b): r1 > r2 and c1 = 2
p
r2

Case 2(c): r1 > r2 and c1 > 2
p
r1
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In Case 1(a) - (c), we have r1 < r2, and we let

R1(s) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

R1a(s) =

8
>><

>>:

r2 for s > 2
p
r2

r2 for c1 < s  2
p
r2

r1 for s  c1

if c1  2
p
r2,

R1b(s) =

8
>><

>>:

r2 for s > c1,

r1 for �⇤ + r1
�⇤ < s  c1

r1 for s  �⇤ + r1
�⇤

if 2
p
r2 < c1 < 2(

p
r1 +

p
r2 � r1),

R1c(s) =

8
>><

>>:

r2 for s > c1,

r1 for 2
p
r1 < s  c1

r1 for s  2
p
r1

if c1 � 2(
p
r1 +

p
r2 � r1)

(3.4)

In Cases 2(a)-(c), we have r1 > r2, and we let

R2(s) =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

R2a(s) =

8
>><

>>:

r2 for s > 2
p
r2,

r2 for c1  s  2
p
r2

r1 for s < c1.

if c1 < 2
p
r2,

R2b(s) =

8
>><

>>:

r2 for s > 2
p
r2,

min{r2, r1} for s = 2
p
r2

r1 for s < 2
p
r2.

if c1 = 2
p
r2,

R2c(s) =

8
>><

>>:

r2 for s � c1,

r1 for 2
p
r1 < s < c1

r1 for s  2
p
r1

if c1 > 2
p
r1.

(3.5)

Lemma 3.2. F⇤(t, x) � Ri(x/t) in cases 1(a)-(c) and 2(a)-(c).

Proof. The lemma follows from the definition of F⇤, in (3.3), and the global bounds �  v(t, x)  1
(Lemma 2.1). ⇤

4. Lower bound on the spreading speed

We will use the Hamilton-Jacobi method to prove a lower bound for the spreading speed. To this
end, define the WKB-Ansatz [25]

w✏(t, x) = �✏ log u✏(t, x) where u✏(t, x) = u(t/✏, x/✏), (4.1)

and consider the half-relaxed limits [7]

w⇤(t, x) = lim sup
✏!0

(t0,x0)!(t,x)

w✏(t0, x0) and w⇤(t, x) = lim inf
✏!0

(t0,x0)!(t,x)

w✏(t0, x0). (4.2)

In the following lemma, we show that w⇤(t, x) and w⇤(t, x) can be related to one-dimensional functions
⇢⇤(s) and ⇢⇤(s), respectively.

Lemma 4.1. Let w⇤
and w⇤ be defined as in (4.2). Then w⇤(t, x) = t⇢⇤(x/t) and w⇤(t, x) = t⇢⇤(x/t)

for some functions ⇢⇤ and ⇢⇤.
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Proof. For the existence of ⇢⇤, we may compute

w⇤(t, x) = lim sup
✏!0

(t0,x0)!(t,x)

�✏ log u
⇣ t0

✏
,
x0

✏

⌘
= t lim sup

✏!0
(t00,x00)!(1,x/t)

�(✏/t) log u
⇣ t00

✏/t
,
x00

✏/t

⌘
.

Thus w⇤(t, x) = tw⇤(1, x/t), and the first part of the result is proved if we take ⇢⇤(s) = w⇤(1, s). The
proof of the second part is analogous. ⇤

Next, we describe a bird’s-eye view of the Hamilton-Jacobi approach in order to achieve our final
goal of bounding the spreading speed from below by the optimal constant � > 0. For clarity, we will
state the necessary lemmas and provide their proofs later on.

We start with the following lemma which is due to [25] for the KPP equation. The proof is presented
in Subsection 4.1.

Lemma 4.2. Suppose that there is s0 > 0 such that ⇢⇤(s) = 0 for all s 2 [0, s0]. Then there exists

�0 > 0 such that

lim inf
t!1

inf
⌘t<x<(s0�⌘)t

u(t, x) � �0 for each ⌘ > 0 su�ciently small.

Hence, a lower bound of the spreading speed (and hence the complete proofs of our main theorems)
can be obtained by determining the set {s : ⇢⇤(s) = 0}. Precisely, it is su�cient to show that ⇢⇤(s) = 0
for s 2 [0,�], where � = �(c1; r1, r2) as in (1.10).

To this end, we derive a limiting Hamilton-Jacobi equation for w⇤ and then for ⇢⇤. Observe that w✏

satisfies

w✏
t � ✏w✏

xx + |w✏
x|2 + (F ✏(t, x)� u✏) = 0 for (t, x) 2 (0,1)⇥ R, (4.3)

where F ✏ is given in (3.2). By the fact that F⇤(t, x) � R(x/t), it is standard [25, 41] to deduce the
following.

Lemma 4.3. Suppose F⇤(t, x) � R(x/t), then ⇢⇤ is a viscosity subsolution of

min{⇢� s⇢0 + |⇢0|2 +R(s), ⇢} = 0 for s 2 (0,1). (4.4)

Moreover,

⇢⇤(0) = 0 and ⇢⇤(s) < 1 for all s 2 [0,1). (4.5)

Proof. We postpone the proof to Subsection 4.2. ⇤

By the comparison principle, discussed in the Appendix, the Hamilton-Jacobi equation (4.4) has a
unique viscosity solution.

Lemma 4.4. For any given case (i, j) 2 {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} as stated in Section 3,

let R be given by R = Rij. The Hamilton-Jacobi equation (4.4) has a unique viscosity solution, ⇢̂,
satisfying

⇢̂(0) = 0 and lim
s!1

⇢̂(s)

s
= 1. (4.6)

Moreover, ⇢̂ is nondecreasing in s, i.e.

⇢̂(s) ⌘ 0 for 0  s  sup{s0 � 0 : ⇢̂(s0) = 0}. (4.7)

Furthermore, the following Lemma holds:

Lemma 4.5. For any given case (i, j) 2 {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} as stated in Section 3,

let R be given by R = Rij and let ⇢̂ be the unique solution of (4.4) as specified in Lemma 4.4. Then

0  ⇢⇤(s)  ⇢̂(s) for s � 0.
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The statement (4.7) and Lemma 4.5 imply that

⇢⇤(s) = 0 for 0  s  sup{s0 � 0 : ⇢̂(s0) = 0}. (4.8)

Together with Lemma 4.2, this enables us to establish

c⇤ � sup{s � 0 : ⇢̂(s) = 0}.

Next, we will establish the explicit formula of the unique solution ⇢̂ satisfying (4.4) in viscosity sense
and (4.6) in classical sense in Lemma 5.1.

For example, in Case 1(a) (r1 < r2 and c1  2
p
r2), we find that

⇢̂(s) =

(
s2

4 � r2 for s > 2
p
r2

0 for 0  s  2
p
r2.

(4.9)

Thanks to Lemma 4.5, we have 0  ⇢⇤(s)  ⇢̂(s). Hence, we deduce that

⇢⇤(s) = 0 for 0  s  2
p
r2.

By Lemma 4.2, we conclude that c⇤ � 2
p
r2. This establishes the lower bound of the spreading speed

in Case 1(a). The spreading speed in Case 1(a) is thus determined, since 2
p
r2 is also the upper bound

of spreading speed (thanks to Proposition 2.2).
In the remainder of this section, we present the proofs of the above lemmas.

4.1. Proof of Lemma 4.2.

Proof of Lemma 4.2. Our proof is adapted from Theorem 1.1 of [25]. Fix a small 0 < ⌘ ⌧ 1. It is
su�cient to show that there exists �0 = �0(⌘) > 0 such that

lim inf
✏!0

inf
K

u✏(t, x) � �0 (4.10)

for any compact set given by K = {(1, x) : ⌘  x  s0 � ⌘} ⇢⇢ {(t, x) : 0 < x/t < s0}. Indeed,

lim inf
t!1

inf
⌘t<x<(s0�⌘)t

u(t, x) = lim inf
✏!0

inf
K

u✏(t, x) � �0.

To show (4.10), we first observe that w⇤(t, x) = t⇢⇤(x/t) = 0 in some compact subset K̃ such that

K ⇢ Int K̃ ⇢ {(t, x) : 0 < x/t < s0},

which implies w✏(t, x) ! 0 uniformly in a neighborhood of K. Now for (t0, x0) 2 K, let  (t, x) =
(t� t0)2 + (x� x0)2. Then w⇤ �  has a strict local maximum at (t0, x0). Since w✏ ! 0 uniformly in
a neighborhood of K, for each ✏ > 0 su�ciently small, the function w✏ �  has a local maximum at
(t✏, x✏) 2 K, where (t✏, x✏) ! (t0, x0) as ✏! 0. Thus,

o(1) = @t � ✏@xx + |@x |2  @tw
✏ � ✏@xxw

✏ + |@xw✏|2 = u✏ � F ✏  u✏ � �0 (4.11)

at (t, x) = (t✏, x✏), where �0 = � infs2R a(s)� 1 > 0.
Using the fact that w✏ �  has a local maximum at (t✏, x✏), we deduce that

w✏(t✏, x✏) � (w✏ �  )(t✏, x✏) � (w✏ �  )(t0, x0) = w✏(t0, x0)

which implies that u✏(t0, x0) � u✏(t✏, x✏). Combining with (4.11), we have

u✏(t0, x0) � u✏(t✏, x✏) � �0 + o(1).

Since the above argument is uniform for arbitrary (t0, x0) 2 K, this implies (4.10). ⇤
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4.2. Proof of Lemma 4.3. We recall the definition of viscosity solutions of (4.4), following [6, 38] (see
also [25, 41] for the definition involving variational inequalities).

Definition 4.1. In the following let R⇤ and R⇤ be the upper and lower envelope of R, which is given
by

R⇤(s) = lim sup
s0!s

R(s0) and R⇤(s) = lim inf
s0!s

R(s0).

• A lower semicontinuous function ⇢̂ is called a viscosity supersolution of (4.4) if ⇢̂ � 0, and for
any test function � 2 C1, if s0 is a strict local minimum of ⇢̂� �, then

⇢̂(s0)� s0�
0(s0) + |�0(s0)|2 +R⇤(s0) � 0.

• An upper semicontinuous function ⇢̂ is called a viscosity subsolution of (4.4) if for any test
function � 2 C1, if s0 is a strict local maximum of ⇢̂� � and ⇢̂(s0) > 0, then

⇢̂(s0)� s0�
0(s0) + |�0(s0)|2 +R⇤(s0)  0.

• We say ⇢̂ is a viscosity solution of (4.4) if ⇢̂ is a viscosity super- and subsolution.

We will first show that ⇢⇤ is nonnegative and that ⇢⇤(0) = 0.

Lemma 4.6. Let ⇢⇤ be defined as in Lemma 4.1. Then

⇢⇤(0) = 0 and ⇢⇤(s) � 0 for s � 0. (4.12)

Proof. We first show w⇤(t, x) � 0 for (t, x) 2 (0,1) ⇥ R. Indeed, since u(t, x)  max{r2, r1} for all
(t, x) 2 [0,1) ⇥ R, by the definition of w✏ we have w✏ � �✏ log(max{r2, r1}) for each ✏ > 0 and
(t, x) 2 (0,1)⇥ R, and we may compute

w⇤(t, x) = lim sup
✏!0

(t0,x0)!(t,x)

w✏(t0, x0) � 0 for (t, x) 2 (0,1)⇥ R. (4.13)

In particular, w⇤(t, 0) � 0 for t > 0.
The proof will be complete once we show w⇤(t, 0)  0 for t > 0. Denote r = r1 ^ r2. Then using the

lower bound v � �, we see that u is a supersolution of

ut � uxx = u(r � u) in (0,1)⇥ R. (4.14)

Let u(t, x) be the solution of (4.14) with identical (compactly supported) initial condition as u(t, x),
then the classical spreading result for the Fisher-KPP equation [3] says that u has spreading speed 2

p
r.

In particular,

lim inf
t!1

inf
|x|<p

rt
u(t, x) � 2�1 for some �1 > 0.

By the comparison principle, u � u, i.e. there exists t1 > 0 such that

inf
|x|<p

rt
u(t, x) � �1 for t � t1,

which implies

sup
|x|<p

rt
t�✏t1

w✏(t, x)  �✏ log �1. (4.15)

Now, fix an arbitrary t0 > 0. Let (t, x) ! (t0, 0) and ✏! 0, we deduce

w⇤(t0, 0) = lim sup
✏!0

(t,x)!(t0,0)

w✏(t, x)  0. (4.16)
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Combining (4.13) and (4.16), we have

w⇤(t, 0) = 0 for all t > 0. (4.17)

We recall w⇤(t, x) = t⇢⇤(x/t) (thanks to Lemma 4.1), so that (4.12) directly follows from (4.13) and
(4.17). This completes the proof. ⇤

The following lemma implies that ⇢⇤(s) < 1 for s 2 [0,1).

Lemma 4.7. Let w✏
be a solution of (4.3). Then for each compact subset Q of (0,1)⇥ R, there is a

constant C(Q) independent of ✏ such that

w✏(t, x)  C(Q) for (t, x) 2 Q and ✏ 2 (0, 1/C(Q)].

In particular,

w⇤(t, x) < +1 for each (t, x) 2 (0,1)⇥ R and ⇢⇤(s) < +1 for each s 2 [0,1). (4.18)

Proof. We only prove the bound for Q ⇢ (0,1)⇥ [0,1). The case for Q ⇢ (0,1)⇥ (�1, 0] is similar
and is omitted. Our proof follows the ideas in [25]. Fix � 2 (0, 1) such that Q ⇢ [�, 1/�] ⇥ [0, 1/�].
Define

z✏(t, x) =
|x+ 2�|2

4t
+
✏

2
log t+ C�(1 + t).

By taking C� > 0 to be a large constant depending on �, z✏ is a (classical) supersolution of (4.3) in
(0,1)⇥ (0,1).

By (4.17) in the proof of Lemma 4.6 and the definition of w⇤, there is a constant C� > 0 such that,

sup
0<✏1/2

w✏(t+ �/2, 0)  C� for t 2 [0, 1/�].

Observe that for ✏ su�ciently small, we have
(
w✏(�/2, x) < 1 = z✏(0, x) for x � 0

w✏(t+ �/2, 0)  C�  z✏(t, 0) for t 2 [0, 1/�].

It follows from the maximum principle that

w✏(t+ �/2, x)  z✏(t, x) for (t, x) 2 [0, 1/�]⇥ [0,1).

Taking supremum over [�/2, 1/�]⇥ [0, 1/�], we have

sup
[�/2,1/�]⇥[0,1/�]

w✏(t+ �/2, x)  C 0
� := sup

[�/2,1/�]⇥[0,1/�]


|x+ 2�|2

4t
+ log t+ C�(1 + t)

�
. (4.19)

This completes the proof. ⇤

Now, we are in position to prove Lemma 4.3.

Proof of Lemma 4.3. Since (4.5) is a consequence of Lemma 4.6 and (4.18), it remains to show that ⇢⇤

is a viscosity subsolution of (4.4).
Let � 2 C1 be a test function and suppose that ⇢⇤ � � has a strict local maximum at s = s0, and

that ⇢⇤(s0) > 0. Without loss of generality, we may assume that ⇢⇤ � �  0 for all s near s0, with
equality holding only at s = s0. We will show that

⇢⇤(s0)� s0�
0(s0) + |�0(s0)|2 +R⇤(s0)  0.
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(Note that R⇤(s0) = R(s0) by our definition of R in (3.4) and (3.5).) First, we note that w⇤(t, x) =
t⇢⇤(x/t) and that w⇤(t, x)� t�(x/t)� (t� 1)2  0 for all (t, x) near (1, s0), with equality holding only
at (t, x) = (1, s0). Define, in terms of �, a two variable test function

'(t, x) = t�(x/t)� (t� 1)2.

Then by the definition of w⇤, there exists a sequence ✏n ! 0 and sequence of points (tn, xn) ! (1, s0) as
n ! 1 such that: w✏n � ' has a local maximum at (tn, xn), and w✏n(tn, xn) ! w⇤(t0, x0) > 0. Thus,
for (t, x) = (tn, xn), we have

@t' = @tw
✏n = ✏n@xxw

✏n � |@xw✏n |2 � (F ✏n � u✏n)

 ✏n@xx'� |@x'|2 � (F ✏n � u✏n).

Thus,

@t'� ✏n@xx'+ |@x'|2 + (F ✏n � u✏n)  0 (4.20)

for (t, x) = (tn, xn). Letting n ! 1, we obtain

@t'(t0, x0) + |@x'(t0, x0)|2 + F⇤(t0, x0)  0, (4.21)

where we have used the fact that w✏n(tn, xn) ! w⇤(t0, x0) > 0 implies u✏n(tn, xn) ! 0. Since
F⇤(t0, x0) � R(x0/t0), it follows from (4.21) that

�(s0)� s0�
0(s0) + |�0(s0)|2 +R⇤(s0)  0.

Thus, ⇢⇤ is a viscosity subsolution of (4.4). ⇤

4.3. Proofs of Lemmas 4.4 and 4.5.

Proof of Lemma 4.4. Observe, in each case i = 1, 2, that our choice of R satisfies (B1)-(B2) of the
Appendix. By Corollary A.2 of the Appendix, there exists a unique ⇢̂ satisfying (4.4) in the viscosity
sense, and the boundary condition (4.6) in the classical sense. Moreover, s 7! ⇢̂ is nondecreasing. This
proves Lemma 4.4. ⇤

Proof of Lemma 4.5. We observe that ⇢⇤ is a viscosity subsolution (by Lemma 4.3) and that ⇢̂ is a
viscosity supersolution (by Lemma 4.4). Moreover, by (4.5) and (4.6), we have

⇢⇤(0) = ⇢̂(0) = 0, and lim
s!1

⇢⇤(s)

s
 +1 = lim

s!1

⇢̂(s)

s
.

We can therefore apply the comparison principle (see Lemma A.1 of the Appendix) to derive

⇢⇤(s)  ⇢̂(s) for s � 0.

Finally, ⇢⇤(s) � 0 is proved in Lemma 4.6. ⇤

5. Solving for the spreading speed via explicit formulas for ⇢̂

For each of the cases 1(a)-(c), 2(a)-(c), we will propose an explicit formula for ⇢̂ in Subsection 5.1.
Thanks to the uniqueness result in Lemma 4.4, it is enough to verify (separately for each of the cases)
that the given expression defines a viscosity solution of (4.4). This will be done in Subsection 5.2.
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5.1. Explicit formulas for ⇢̂. Below, we state the explicit formula for ⇢̂ in each case. Subsequently,
we will verify in Lemma 5.1 that ⇢̂ solves (4.4) by invoking the definition of the viscosity solution [6].

• Case 1(a): r1 < r2 and c1  2
p
r2.

⇢̂(s) =

(
s2

4 � r2 for s > 2
p
r2

0 for 0  s  2
p
r2,

(5.1)

• Case 1(b): r1 < r2 and 2
p
r2 < c1 < 2(

p
r1 +

p
r2 � r1).

⇢̂(s) =

8
>><

>>:

s2

4 � r2 for s > c1

�⇤s� ((�⇤)2 + r1) for (�⇤ + r1
�⇤ ) < s  c1

0 for 0  s  �⇤ + r1
�⇤ ,

(5.2)

where �⇤ = c1/2�
p
r2 � r1.

• Case 1(c): r1 < r2 and c1 � 2(
p
r1 +

p
r2 � r1).

⇢̂(s) =

8
>>>><

>>>>:

s2

4 � r2 for s > c1

�⇤s� ((�⇤)2 + r1) for 2�⇤ < s  c1
s2

4 � r1 for 2
p
r1 < s  2�⇤

0 for 0  s  2
p
r1.

(5.3)

• Case 2(a): r1 > r2 and c1 < 2
p
r2.

⇢̂(s) =

(
s2

4 � r2 for s > 2
p
r2

0 for 0  s  2
p
r2,

(5.4)

• Case 2(b): r1 > r2 and c1 = 2
p
r2.

In this case, ⇢̂(s) is defined the same as in (5.4).

• Case 2(c): r1 > r2 and c1 > 2
p
r1.

⇢̂(s) =

8
>>>><

>>>>:

s2

4 � r2 for s > 2�̃

�̃s� (�̃2 + r2) for c1 < s  2�̃
s2

4 � r1 for 2
p
r1 < s < c1

0 for 0  s  2
p
r1,

(5.5)

where �̃ = c1/2 +
p
r1 � r2.

5.2. ⇢̂ solves the HJE (4.4) in the viscosity sense.

Lemma 5.1. There exists a unique viscosity solution ⇢̂ of (4.4) satisfying (in the classical sense)

⇢̂(0) = 0 and lim
s!1

⇢̂(s)

s
= 1. (5.6)

Moreover, it is given by the formulas of Subsection 5.1.

Proof. By Lemma 4.4, ⇢̂ is unique whenever it exists. To prove the lemma, it is enough to show that ⇢̂,
as given in each case of Subsection 5.1, satisfies (i) the Hamilton-Jacobi equation (4.4) in the viscosity
sense, as well as (ii) the boundary condition (5.6) in the classical sense. In view of the explicit formulas,
(ii) is obvious. Thus, it remains to verify that ⇢̂ is a viscosity solution of (4.4) in each case.

Since the proof only di↵ers slightly in each case, we consider only two representative cases 1(b) and
2(c) here, and omit the verification of the rest.
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Let us proceed with Case 1(b), where we fix r1, r2, c1 satisfying

r1 < r2, and 2
p
r2 < c1 < 2(

p
r1 +

p
r2 � r1). (5.7)

Next, we set

R(s) = R1b(s) =

8
>><

>>:

r2 for s > c1,

r1 for �⇤ + r1
�⇤ < s  c1

r1 for s  �⇤ + r1
�⇤ .

and

⇢̂(s) =

8
>><

>>:

s2

4 � r2 for s > c1

�⇤s� ((�⇤)2 + r1) for (�⇤ + r1
�⇤ ) < s  c1

0 for 0  s  �⇤ + r1
�⇤ ,

(5.8)

where �⇤ = c1/2�
p
r2 � r1.

First, observe that ⇢̂ is continuous, thanks to our choice of �⇤.
Next, we show that ⇢̂ is a viscosity subsolution of (4.4). To this end, observe that ⇢̂ satisfies

the equation (4.4) in the classical sense almost everywhere in [0,1). (In fact, it satisfies the equation
classically for s 2 R\{c1,�⇤+r1/�⇤}.) By the convexity of the Hamiltonian, we can apply [5, Proposition
5.1] to conclude that it is in fact a viscosity subsolution of (4.4).

Next, we show that ⇢̂ is a viscosity supersolution of (4.4). Suppose ⇢̂�� obtains a strict local minimum
at s0 2 [0,1) for some � 2 C1. Now, ⇢̂ is a classical solution of (4.4) for all s 62 {�⇤ + r1/�⇤, c1},
so it automatically satisfies (4.4) in the viscosity sense. We need only consider s0 2 {�⇤ + r1/�⇤, c1}.
Suppose s0 = �⇤ + r1/�⇤. Then 0  �0(s0)  �⇤, and R⇤(s0) = max{r1, r1} = r1. Therefore, at the
point s = s0, it holds that

⇢� s0�
0 + |�0|2 +R⇤ = �

�
�⇤ +

r1
�⇤

�
�0 + |�0|2 + r1 = (�0 � �⇤)(�0 � r1

�⇤
) � 0,

where the last inequality is a consequence of �0(s0)  �⇤ < r1
�⇤ (which in turn follows from the choice

of �⇤ and the condition (5.7)).
If s0 = c1, then R⇤(s0) = max{r1, r2} = r2, and we have

⇢� s0�
0 + |�0|2 +R⇤ =

⇣
c21
4 � r2

⌘
� c1�

0 + |�0|2 + r2 = (�0 � c1
2
)2 � 0 at s = s0.

This proves that ⇢̂ is a viscosity supersolution.
This completes the proof that the unique viscosity solution ⇢̂ as guaranteed by Lemma 4.4 is given

by the explicit formula (5.8) for the first representative Case 1(b).
Let us proceed with Case 2(c), where we fix r1, r2, c1 satisfying

r1 > r2, and c1 > 2
p
r1. (5.9)

Next, we set

R(s) = R2c(s) =

8
>><

>>:

r2 for s � c1,

r1 for 2
p
r1 < s < c1

r1 for s  2
p
r1

and

⇢̂(s) =

8
>>>><

>>>>:

s2

4 � r2 for s > 2�̃

�̃s� (�̃2 + r2) for c1 < s  2�̃
s2

4 � r1 for 2
p
r1 < s  c1

0 for 0  s  2
p
r1,

(5.10)
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where �̃ = c1/2 +
p
r1 � r2.

Again, we first observe that ⇢̂, as given in (5.10), is continuous, and satisfies the equation (4.4) in
the classical sense for s 2 [0,1) \ {c1, 2

p
r1} (note that it is in fact continuously di↵erentiable in a

neighborhood of s = 2�̃). It then follows again from [5, Proposition 5.1] that ⇢̂ is a viscosity subsolution
of (4.4).

Next, we verify that it is also a viscosity supersolution. Suppose ⇢̂�� obtains a strict local minimum
at s0 2 [0,1) for some � 2 C1. Since ⇢̂ is a classical solution of (4.4) for all s 62 {c1, 2

p
r1}, we need

only consider s0 = c1 or s0 = 2
p
r1. Suppose s0 = c1, then

⇢� s0�
0 + |�0|2 +R⇤ =

⇣
c21
4 � r1

⌘
� c1�

0 + |�0|2 + r1 =
�
�0 � c1

2

�2 � 0 at s = s0.

Suppose s0 = 2
p
r1, then

⇢� s0�
0 + |�0|2 +R⇤ = 0� (2

p
r1)�

0 + |�0|2 + r1 = (�0 �
p
r1)

2 � 0 at s = s0.

This verifies that ⇢̂ is a viscosity supersolution of (4.4). This completes the proof that the unique
viscosity solution ⇢̂ as guaranteed by Lemma 4.4 is given by the explicit formula (5.10) for the first
representative Case 2(c).

We omit the verification of the other cases since they are analogous. ⇤

Corollary 5.2. Suppose either that (1) r1 < r2, or that (2) r1 > r2 and c1 62 (2
p
r1, 2

p
r2]. Then there

exists �0 > 0 such that for each ⌘ > 0,

lim inf
t!1

inf
|x|<(��⌘)t

u(t, x) � �0 for each ⌘ > 0 small enough,

where � = �(c1; r1, r2) is given in (1.10). In particular, we have

c⇤ � �(c1; r1, r2). (5.11)

Proof. Observe that

ut � uxx + u(�0 � u) for (t, x) 2 (0,1)⇥ R
where �0 = � infs2R a(s) � 1 > 0, thanks to (H1). Since u has compactly supported initial data, it
follows from standard theory that the spreading speed of u is bounded from below by 2

p
�0, i.e.

lim inf
t!1

inf
|x|<3

p
�0t/2

u(t, x) � �0. (5.12)

For given c1, r1, r2 > 0 satisfying any of the cases 1(a)-(c) and 2(a)-(c), Lemma 5.1 says that the
unique solution ⇢̂ guaranteed in Lemma 4.4 is given as in Subsection 5.1. If we define

ŝ := sup{s � 0 : ⇢̂(s) = 0},

then it is easy to see that ŝ = �(c1; r1, r2), where the latter is given in (1.10). By Lemmas 4.5 and 4.6,
0  ⇢⇤(s)  ⇢̂(s) for s � 0. Thus, ⇢⇤(s) = 0 for all s 2 [0,�], where � = �(c1; r1, r2).

It follows from Lemma 4.2 that

lim inf
t!1

inf
⌘t<x<(��⌘)t

u(t, x) � �0 for each ⌘ > 0 small enough, (5.13)

and a similar statement holds for x < 0. The desired result follows by combining with (5.12). ⇤

Proof of Theorems 1.1 and Theorem 1.2. We recall that c⇤  c⇤, by construction. On the other hand,
by Proposition 2.2, c⇤  �1(c1; r1, r2), and by Corollary 5.2, c⇤ � �1(c1; r1, r2). It follows that c⇤ =
c⇤ = �1(c1; r1, r2), so that the spreading speed of u is given by c⇤ = �1(c1; r1, r2). ⇤
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6. Convergence to homogeneous state

In this section, we apply the previous spreading result to characterize the long-time behavior of
solutions of (1.3) in the moving frame where the predator persists.

Having established the existence of the spreading speed c⇤, and recalling Lemma 3.1, it follows that
(u, v) ! (0, 1) locally uniformly in any moving frames with speed above c⇤, and that u persists in any
moving frames with speed below c⇤. In the following we discuss the asymptotic behavior of the solutions
in the latter case. Define, for i = 1, 2,

ui =
ai � 1

1 + aib
, vi =

1 + b

1 + aib
(6.1)

where a1 := a(�1) and a2 := a(+1). Then (ui, vi) is the unique positive root of the algebraic system

u(�1� u+ aiv) = 0 = rv(1� v � bu).

Then Theorem 1.3 can be restated as follows.

Theorem 6.1. Let (u, v) be the solution of (1.3), where (u0, v0) 2 C2(R) satisfies (IC).

(a) Suppose c1 � c⇤. For any ⌘ 2 (0, c⇤/2),

lim
t!1

sup
|x|<(c⇤�⌘)t

k(u, v)� (u1, v1)k = 0. (6.2)

where k·k denotes the Euclidean norm in R2
.

(b) Suppose c1 < c⇤. For any ⌘ 2 (0, c1/2),

lim
t!1

sup
|x|<(c1�⌘)t

k(u, v)� (u1, v1)k = 0, (6.3)

and for any ⌘ 2
�
0, (c⇤ � c1)/2

�
,

lim
t!1

sup
(c1+⌘)t<x<(c⇤�⌘)t

k(u, v)� (u2, v2)k = 0, (6.4)

where (ui, vi)is defined in (6.1).

Proof of Theorem 6.1. Denote c⇤ = �(c1; r1, r2). Thanks to Corollary 5.2, for each ⌘ > 0, there exists
T = T (⌘) > 0 and �0 > 0 such that

u(t, x) � �0 for t � T, �⌘t  x  (c⇤ � ⌘/2)t. (6.5)

Suppose for a contradiction that there exists ✏0, ⌘ > 0 and a sequence (tk, xk) with tk ! 1 and
0  xk < (c⇤� ⌘)tk (the case for xk  0 is similar), such that k(u, v)(tk, xk)� (ũ, ṽ)k > ✏0 for all k � 1,
where

(ũ, ṽ) =

(
(u2, v2) if c1 < c⇤ and xk 2

�
(c1 + ⌘)tk, (c⇤ � ⌘)tk

�
,

(u1, v1) otherwise.
(6.6)

Let

uk(t, x) := u(t+ tk, x+ xk) and vk(t, x) := v(t+ tk, x+ xk),

then

uk(t, x) � �0 in ⌦k,

where

⌦k = {(t, x) : t+ tk � T, �⌘(t+ tk)  x+ xk  (c⇤ � ⌘/2)(t+ tk)}.
Claim. ⌦k ! R2

, i.e., for any compact subset K ⇢ R2
there exists k1 > 1 such that

K ⇢ ⌦k for all k � k1.
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Indeed, given K, choose R > 0 such that K ⇢ [�R,R]⇥ [�R,R]. Then for k � 1, we have

K ⇢ [�R,R]2

✓ {(t, x) : |t|  R, ⌘(R� tk)  x  �(c⇤ � ⌘/2)R+ ⌘tk/2}
✓ {(t, x) : |t|  R, �⌘(t+ tk)  x  (c⇤ � ⌘/2)t+ ⌘tk/2}
✓ {(t, x) : t+ tk � T, �⌘(t+ tk)� xk  x  (c⇤ � ⌘/2)t� xk + (c⇤ � ⌘/2)tk}
= ⌦k.

This proves the claim.
It follows from the claim and Lemma 2.1 that there exists constants 0 < �1 < 1 independent of k

such that

�1  uk  1

�1
and �1  vk  1

�1
in ⌦k (6.7)

Using the above L1 bounds and parabolic Lp estimates we may deduce, re-labelling a subsequence if
necessary, that (uk, vk) converges weakly in W 2,1,p

loc (R2) (and strongly in

C1+↵,(1+↵)/2
loc (R2) thanks to Sobolev embedding) to an entire solution (u1, v1) of the system

(
ut = uxx + u(�1� u+ ãv)

vt = dvxx + rv(1� v � bu),

where ã = a2 if c1 < c⇤ and xk 2
�
(c1 + ⌘)tk, (c⇤ � ⌘)tk

�
, and ã = a1 otherwise. Moreover, (6.7) also

implies that

�1  u1  1

�1
and �1  v1  1

�1
in R2. (6.8)

Having established the positive upper and lower bounds for (u1, v1) on R2, one can then repeat
a standard argument via Lyapunov functional (see the proof of Lemma 4.1 in [21]) that (u1, v1) is
identically equal to the homogeneous steady state (ũ, ṽ) given in (6.6), i.e., (uk, vk) ! (ũ, ṽ) in Cloc(R2).
This in particular implies

(u, v)(tk, xk) = (uk, vk)(0, 0) ! (ũ, ṽ) as k ! 1.

But this is a contradiction, which completes the proof. ⇤

Appendix A. Comparison Principle

Recall the Hamilton-Jacobi equation

min{⇢� s⇢0 + |⇢0|2 + R̃(s), ⇢} = 0 for s 2 (0,1). (A.1)

We prove a comparison principle for (A.1) for discontinuous R̃ : R ! R that is locally monotone [14].

Definition A.1. A function h : R ! R is locally monotone if for every s0 2 R, either
lim
�!0

inf
|si�s0|<�

s1>s2

�
h(s1)� h(s2)

�
� 0 or lim

�!0
sup

|si�s0|<�
s1>s2

�
h(s1)� h(s2)

�
 0.

The assumptions on R̃ are stated precisely as follows.

(B1) R̃(s) is locally monotone;
(B2) R̃⇤(s) = R̃⇤(s) almost everywhere, and infs>0 R(s) > 0, where R̃⇤ and R̃⇤ are defined by

R̃⇤(s) = lim sup
s0!s

R̃(s0) and R̃⇤(s) = lim inf
s0!s

R̃(s0).

Next, note that the specific form of the Hamilton-Jacobi equation (A.1) and hypotheses (B1)-(B2) imply
the hypotheses (H1)-(H6) in [41]. The following two results are due to [41].
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Lemma A.1. Suppose R̃(s) satisfies (B1)-(B2). Let ⇢ and ⇢ be non-negative viscosity super- and

subsolutions, respectively, of (A.1) such that

⇢(0)  ⇢(0) and lim
s!1

⇢(s)

s
 lim

s!1

⇢(s)

s
. (A.2)

Then ⇢  ⇢ in (0,1).

Proof. This is a consequence of [41, Proposition 2.11]. ⇤
Corollary A.2. Let R̃ : R ! R satisfy the assumptions (B1)-(B2). Then there exists a unique viscosity

solution ⇢̂ to(A.1) satisfying the boundary conditions

⇢̂(0) = 0 and lim
s!1

⇢̂(s)

s
= 1. (A.3)

Moreover, ⇢̂ is nondecreasing.

Proof. This is a consequence of [41, Proposition 1.7(b) and Lemma 2.9] ⇤
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