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ASYMPTOTIC SPREADING OF PREDATOR-PREY POPULATIONS IN A
SHIFTING ENVIRONMENT

KING-YEUNG LAM AND RAY LEE

ABSTRACT. Inspired by a recent study associating shifting temperature conditions with changes in
the efficiency with which predators convert prey to offspring, we propose a predator-prey model of
reaction-diffusion type to analyze the consequence of such effects on the population dynamics and
spread of the predator species. In the model, the predator conversion efficiency is represented by a
spatially heterogeneous function depending on the variable £ = x — ¢t for some given ¢; > 0. Using
the Hamilton-Jacobi approach, we provide explicit formulas for the spreading speed of the predator
species. When the conversion function is monotone increasing, the spreading speed is determined in
all cases and non-local pulling is possible. When the function is monotone decreasing, we provide
formulas for the spreading speed when the rate of shift of the conversion function is sufficiently fast

or slow.

1. INTRODUCTION

A fundamental challenge in ecology is to understand the effect of climate change on the population
abundances and distributions of species. Climate-induced changes in species abundance and distribution
have significant implications for biodiversity [61, 48, 59], the functioning of ecosystems [59, 60, 66], the
spread of disease [54, 69] and human welfare [54]. While many species are vulnerable to a changing
climate, for many others climate change may facilitate expansion to new areas and population growth
[62, 4, 11, 34]. These outcomes arise not only from isolated effects of climate on individual species, but
also from changes to interactions between species [30].

Mathematical modeling can be used to determine why certain species decline while others prosper
under the changing climate. The study of species persistence and spread often depends on the spatial
context, and much analysis in the classical literature has been based on reaction-diffusion models.
A prominent example is the Fisher-KPP equation [27, 39], which describes the spreading of a single
population

Uy = duge + f(u) forxz € R, ¢ >0, (1.1)

where d corresponds to the dispersal rate, f(u) = ru(l — u), and r is the intrinsic growth rate of the
species u.

The problem of spreading speed for (1.1) was first investigated by Kolmogorov et al. [39] for heaviside
initial condition, who showed under monostable assumption on f(u) (i.e. f(s)/s is decreasing in s) that

¢ = 2+/df’(0).
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Here, ¢* refers to the key notion of spreading speed introduced by Aronson and Weinberger [2, 3], which
refers to the number ¢* > 0 such that

lim sup w(t,z) =0 for c€ (¢*,00), and lim inf w(t,z) >0 for c € (0,c").

E=00 12> et t—00 |z|>ct
The above result was also generalized in [3] to any compactly supported initial data and in higher
spatial dimensions. This theoretical spreading speed has yielded good estimates for range expansion
observed in nature [57].

Various studies have since revisited Fisher’s model with an interest in the impact of a shifting
environment. To consider climate change, it is often assumed that the behavior of the species depends
on the variable £ = x — ct, where the constant ¢ corresponds to the velocity of a shifting climate
[55, 8, 45, 9]. See also [26], in which this formulation is applied in the context of an SIS model, and
[64] for a survey on reaction-diffusion models in shifting environments. Many models have proposed the
case where the growth rate ru(1 — ) in (1.1) is replaced by a shifting logistic form u(r(x — ct) — ),
where r(z — ct) denotes the species’ intrinsic growth rate [55, 8]. These works assumed the growth rate
r(€) to be positive on a bounded patch of suitable habitat and negative elsewhere, and were broadly
interested in the effects of a shifting climate on the persistence of the species.

A shifting environment also leads to new spreading phenomena. In [41], the spreading speed for
solutions of Fisher’s equation with growth rate f(u,x — ct) = (r(x — ct) — u)u was determined using
the Hamilton-Jacobi method, in the case that the intrinsic growth rate of the species is positive and
monotone. They showed that, for a certain range of velocities of climate shift, the species spreads with
speed distinct from either of the limiting KPP invasion speeds in a phenomenon called non-local pulling
[35, 31]. When the growth rate is non-monotone, the existence of forced waves and their attractivity is
studied in [9)].

In addition to single species equations, the spreading dynamics for systems of equations has received
considerable attention. Building on the earlier works on order-preserving systems (such as cooperative
systems and competitive systems of two species) [44, 65, 46, 47], the spreading of two competing species
in a shifting habitat is studied in [71, 18].

By contrast, for predator-prey systems a comparison principle is not immediately available and many
studies regarding propagation phenomena in these systems have focused on the dynamics of traveling
wave solutions. The existence of traveling wave solutions for two-species predator prey equations was
established in [24, 29], and studied further in [36, 51], while some results on the stability of traveling
wave solutions were established in [28].

Until recently, few works have treated the spreading dynamics of predator-prey systems with general
initial data. In [53], Pan determined the spreading speed of the predator for a predator-prey system with
initially constant prey density and compactly-supported predator. Shortly thereafter, Ducrot, Giletti,
and Matano [22] used methods from uniform persistence theory to characterize the spreading dynamics
when both predator and prey are initially compactly supported. They showed that the behavior can
be classified based on the speeds of the prey in the absence of predator, and of the predator when
prey is abundant (see also [23], for the case of a predator-prey equation with non-local dispersal, and
[19, 52]). Since these works, the spreading speeds regarding the Cauchy problem for predator-prey
systems with three species was studied in [21] (see also [67]). There, it was shown that the nonlocal
pulling phenomenon can occur in a system with two predators and one prey.

For other types of non-cooperative systems and their spreading speeds, we refer to [63], which char-
acterizes the spreading speed for a general class of non-cooperative reaction diffusion systems as the
minimal traveling wave speed. We also note [20], which determined the spreading speed of infectious dis-
ease in an epidemic model, and [50], which considered the spreading dynamics for competition between
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three species. Spreading dynamics are also studied for nonlocal diffusion problems, here we mention
[70, 68] for such results in predator-prey models in the absence of shifting environment.

1.1. The predator-prey model in a shifting environment. We are interested in the effect of the
heterogeneous shifting profile of the conversion efficiency of prey to predator, represented below by the
function a(x — ¢1t), on the spreading dynamics. Though the temperature-dependence of the conversion
efficiency is not well-understood, there is some evidence that the conversion efficiency may be impacted
by climate. Using an experimental system of predator and prey, Daugaard et al. [16] found that the
conversion efficiency of the predator increased with warming. Moreover, while conversion efficiency
was not directly considered, a meta-analysis by Lang et. al [42] identified a trend toward increasing
efficiency of energy assimilation by consumers with increasing temperature. On the other hand, many
biological processes depend unimodally on temperature, such that measures of species performance and
fitness decline once temperature increases sufficiently beyond a “thermal optimum” [37, 17, 13]. It
is thus plausible that predators currently experiencing climates at or near their thermal optima may
experience declines in conversion efficiency with additional warming.

To this end, we propose the following predator-prey model of reaction-diffusion type to analyze the
consequence of such effects on the population dynamics and spread of species:

Ut = dilgy + U(—k —oq@ + a(z — c1t)0)  in (0,00) X R,
Uy = dolge + 0(F — g — bil) in (0,00) x R, (1.2)
w(0,2) = ao(x), 0(0,2) = Up(x) in R.

Here the predator and prey densities are represented by (¢, z) and o(¢,x). It is assumed that the
predator cannot persist in the absence of prey, and competes with other predators, while in the absence
of predation the prey exhibits logistic growth and is described by the standard Fisher-KPP equation.
The interaction rates between predator and prey are mediated by the consumption rate b>0of prey by
predator, and by the predator’s conversion efficiency function a(x — ¢1t), which describes the degree to
which consumed prey can be successfully converted to additional predators. For simplicity, we assume
the conversion efficiency has a fixed profile in the moving coordinate y = x — ¢t with constant velocity
c1. Finally, d;, a;, k, T are positive parameters, where d; are the random dispersal rates, a; are the
intraspecific competition rates,  is the natural death rate of the predator species and 7 is the natural
birth rate of the prey species.
Without loss of generality, we may non-dimensionalize the problem (1.2) and obtain the following
model:
Up =Ugy + (— 1 —u+a(z — crt)v)u in (0,00) xR
v = dvge + (1 — v —bu)v in (0,00) xR (1.3)
uw(0,2) = up(z), v(0,2) =wvg(x) in R.
We assume the following throughout our study of the reaction-diffusion system (1.3):

(H1) The function a : R — R is monotone, and satisfies
— : 1
B:=1-=>b(al, —1) >0, ;gﬂga(s) >3, and |af, > 1
By observing (via (IC) below and maximum principle) that the density of the predator is bounded

from above by ||a|lsc — 1, it follows that the quantity 8 :=1—b(||a||,, — 1) corresponds to the minimum
carrying capacity for the prey.

Remark 1.1. Tt is documented in a microbial predator-prey system [16] that the quantity of predators
produced for each prey consumed increases when temperature is increased. This corresponds to the
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case when ¢; > 0 and a(-) is decreasing. We also study the case when increasing temperature decreases
the predator efficiency, i.e. a(-) is increasing.

We are interested in the situation when the initial data of the predator is compactly supported, while
that of the prey has a positive upper and lower bound. For simplicity, we will assume throughout the
discussion that (ug,vo) € C?(R) satisfies

(IC) 0 <wuo < |lal]|l, — 1, B <wy <1, and uy has compact support.

Finally, we define the following limiting growth rates (at +o00), to simplify the statements and proofs
of the main results.

{n = a(—o0) — 1, rz = a(+o0) — 1, (1.4)

ry = Ba(—o0) — 1, ry = fa(+o0) — 1.

Here, r; and r, correspond to the limiting growth rates of the predator behind and ahead of the
environmental shift, respectively, when the prey density is at its minimum value v = 3, while r; and 79
are the limiting growth rates of the predator behind and ahead of the shift, respectively, when the prey
density is at its maximum value v = 1.

1.2. Main Results. In this paper, we are interested in the asymptotic speed of spread (or spreading
speed) as the predator species u expands its territory. Up to a change of coordinates x — —ux, it is
enough to focus our discussion on the rightward spreading speed, while allowing the spatial heterogeneity
a(-) to be monotonically increasing or decreasing.

In the remainder of this paper, we will refer to the rightward spreading speed ¢* simply as the
spreading speed, which is defined as follows:

Definition 1.1. Suppose a species has population density u(t,xz). We say that the species u has
spreading speed given by ¢* > 0 if

lim sup u(t,z) =0 for each c € (¢, 00), (1.5)

t—=00 g>ct

lim inf w(t,z) >0 for each ¢ € (0,c"). (1.6)
t—o00 0<z<ct

Following [33, Definition 1.2], we introduce the notion of maximal and minimal speed:

Definition 1.2. Suppose a species has population density u(t,x), then its maximal speed ¢, and
minimal speed ¢, are given by

¢, =inf {c > 0 | limsup sup u(t,x) = O} ,
t—oo x>ct (17)
c, =sup {c >0 | liminf inf w(t,z) > 0} .
t—oo 0<z<ct
Remark 1.2. It follows that the species u has a spreading speed if and only if ¢, = ¢,. In such a case,

the spreading speed c* is given by the common value ¢, = c, .

The following two main theorems characterize the spreading speed of u for the cases (i) a(-) is
monotonically increasing and (ii) a(-) is monotonically decreasing, respectively. Assuming the positive
axis points poleward and temperature is rising, they correspond to the cases when the the conversion
efficiency of the predator is suppressed or enhanced by the warming climate.
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Theorem 1.1. Let ¢; > 0 be given, a : R — R be increasing, and suppose (H1) holds. If (u(t,x),v(t,x))
is the solution of (1.3) with initial data satisfying (IC), then the spreading speed of u exists, and is
given by

2,/ if c1 < 24/ra

C* = %—\/rg—rl—‘y—ﬂ_?ﬂ\/iij Z‘f2\/7’72<C1<2\/7’71+2\/7"2—711 (18)
3 2—T1

2yr1 if c1 > 211 + 212 — 1.

Theorem 1.2. Let ¢; € R\ (24/r2,2./71] be given, a : R — R be decreasing, and suppose (H1) holds.

If (u(t, x),v(t,x)) is the solution of (1.3) with initial data satisfying (IC), then the spreading speed of
u exists, and is given by

% 2#7‘2 ifCl S 2,/7“2,
cC =
2./T1 ifc1>2,/1"1.

For the proof of Theorems 1.1 and 1.2, see Subsection 5.2
We also show the convergence of (u,v) to the homogeneous state in the moving frames with speed
different from ¢y or c*.

Theorem 1.3. Suppose the spreading speed of u exists and is denoted by ¢* > 0. Define, for each
c € (0,00)\ {c1,c*}, the translation of (u,v)

(ue(t, ), ve(t, z)) = (u(t,z + ct),v(t,z + ct)).
(a) If c € (¢*,00), then tlirglo(uc(-, t),ve(+,t)) = (0,1) in Croe(R).
(b) If c€ (0,¢*) \ {c1}, then
(ue(-5),ve(+5 1)) = (@,0)  in Cloc(R),

where the constant vector (ii,v) € R? is the unique positive equilibrium of the kinetic system

d . _ - d. .
au—u(—l—u—i—Av), %v—m(l—v—bu),
such that A = a(—0) if ¢ < ¢1 and A = a(+00) if ¢ > ¢;.

lim
t—o00

For the proof of Theorem 1.3, see Section 6.

Remark 1.3. Note that the case ¢; € (2\/7“2,2\/771] is not covered by Theorem 1.2. In that case the
Hamilton-Jacobi approach that we adopt in this paper does not directly apply. We conjecture that

¢* = ¢ in that case and the predator advances in locked step with the environment. See [9, 26] for
results regarding a single species in a shifting habitat. A possible approach is to use the persistence
theory as in [21].

Remark 1.4. In the case of a(-) = ag being a constant and vy = 1, the spreading speed of the predator
u was determined by Pan in [53, Theorem 2.1].

To consolidate the formulas for the spreading speeds in Theorems 1.1 and 1.2, we will denote \* =
% — +/|r2 — r1|. Then the spreading speed for all cases can be given by

2\/r2 ifry <ry and ¢ <2¢/12

AN+ ifrr <y oand 2y <o <2y 2y — 11

o(c1;r1,m2) = 24/ ifri <ry and ¢ > 2/r1 +2y/r2 — 11, (1.9)
2\/r2 ifry >ry and ¢ <24/ry

2/m ifry >ry and ¢ > 2,/17,
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or, equivalently,

212 if e <2¢/r2
olciyri,re) = QA+ 5 ifri <rp and 2y <o <21+ 22 — 11 (1.10)

2\/r1 if ¢1 > 2/r1 4+ 2y/max{0,ry — r1},

1.3. Related mathematical results. We also mention a closely related work of Choi, Giletti, and
Guo [15], where they considered a two-species predator-prey system similar to (1.3), with the intrinsic
growth rate r = r(xz — c¢1t) for the prey subject to the climate shift instead of the coefficient a. They
considered the case when both initial data ug and vy are compactly supported and a non-decreasing
profile for the growth rate with r changing sign, r(—oco) < 0 < r(c0). In the case of local dispersal,
they showed that the prey persists by spreading if and only if the maximal speed of the prey exceeds
the environmental speed (i.e., 24/dr(400) > ¢1), while the predator persists by spreading at the speed
given by the smaller of the prey and maximal predator spreading speeds. In their setting both species
tends to zero in {(¢,z) : © < cit}, while in the zone ahead of the environmental shift, the density of
the prey is strictly decreasing so there is no nonlocal pulling phenomenon. We also mention [32] for
the case of two weak-competing predators and one prey, and [1], for the case of one predator and two
preys. For compactly supported initial data, the invasion wave of the prey resembles the effect of a
shifting environment studied in our paper. However, the exact spreading speed of the predator(s) is not
completely determined.

Finally, we mention the work of Bramson [12], in which established via probabilistic techniques a
correction term of %logt which separates the the location of the spreading front for solutions to the
Fisher-KPP equation (1.1) and the asymptotic location of the minimal traveling wave solution. This
result was later generalized using maximum principle arguments by Lau [43] to KPP-like nonlinearities
f(s) satisfying f'(s) < f’(0) on [0,1]. For systems of equations of predator-prey type, the existence
and characterization of such a delay between the spreading front and the asymptotic rate of spread is
a challenging open question.

1.4. Organization of the paper. The rest of the paper will be organized as follows. In Section 2,
we give a quick proof of the upper estimate of the spreading speed (namely, ¢, < o(c1;7r1,72)) by
invoking the recent results on the diffusive logistic equation in shifting environment due to [41]. In
Section 3, we derive some rough estimates for the prey density v(¢, ), and state five separate cases for
the key parameters c1,r1, 79 where the spreading speed has to be treated separately. In Section 4, we
outline, in several lemmas, the conceptual steps to estimate the spreading speed from below via explicit
solution of some Hamilton-Jacobi equation (4.4) obtained as the limiting problem of the first equation
of (1.3). These lemmas will be proved in Subsections 4.1, 4.2 and 4.3. In Section 5, we determine the
explicit formulas of the unique solution p to the limiting problem in each case, and prove that the upper
bound of ¢* obtained in Section 3 is also the lower bound. Thus the spreading speed is determined and
Theorems 1.1 and 1.2 are proved. In Section 6, we prove Theorem 6.1 regarding the convergence to
homogeneous state. Finally, in the Appendix, we collect some useful comparison results regarding the
limiting Hamilton-Jacobi equations in [41], which are rephrased in a format suitable for our purpose
here.

2. UPPER BOUND ON SPREADING SPEED

In this section, we give a quick proof of ¢, < o(c1;71,72), where o(c1;71,7r2) is given by (1.10) (which
is equivalent to (1.9)). i.e., the spreading speed ¢* is bounded above by o(c1;71,72).
First, we establish some preliminary estimates on the solutions u and v of (1.3).
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Lemma 2.1. Assume 0 < ug < |lal|,, —1 and B < vg < 1. Then the corresponding solutions u(t, )
and v(t,x) of (1.3) satisfy 0 < u(t,z) <|lall, —1 and 8 <v(t,z) <1 for all (t,z) € (0,00) X R.

Proof. By the classical theory of reaction-diffusion equations, there exists a unique solution (u,v) satis-
fying (1.3) for all (t,x) € (0,00) x R; see, e.g. [58]. Moreover, since 0 < uy < ||al|,, —1 and 8 < vy < 1,
the maximum principle (see [56, Chapter 3, Section 6, Theorem 10] or [40, Theorem 6.2.1]) implies
0<u<lal,—1and f<v<1on (0,00) xR. O

The global upper bound for v established in Lemma 2.1, combining with existing results for the
diffusive logistic equation with heterogeneous shifting coefficients [41], can be used to determine an
upper bound for the spreading speed of u.

Proposition 2.2. Let (u(t,z),v(t,x)) be the solution of (1.3), with the associated mazimal spreading
speed ¢, as given in (1.7). Then

lim sup wu(t,z) =0 for each n > 0. (2.1)
E=00 2> (o4t

In particular, ¢. < o, where 0 = o(c1;7r1,72) is defined in (1.10).

Proof. By Lemma 2.1, v(t,z) < 1 for all (¢,z) € (0,00) xR, hence we may regard u(t, z) as a subsolution
of the following scalar problem

{u = Uy +u(—1 — u+a(z — c1t)) in (0,00) x R (22)

a(0,z) =up(z) inRR.

Let @ be the classical solution of (2.2) with initial data ug(z). By the parabolic maximum principle
we have

u(t,z) <u(t,xz) forall (¢,x) € (0,00) x R. (2.3)

In the case 73 > r1, we may invoke [41, Theorem 6] to deduce that @ satisfies

lim sup @(t,z) =0 for each n >0, (2.4)
E=00 2> (g4t

where o = o(c1;71,72) is given in (1.10).
In case r1 > r9, we define
exp(—y/mz + 2rit) if ¢1 > 2,/r1,
U(t,z) = < min{ry, exp(—A(z — c1t))} if 272 <1 <21, A=1 (01 —\/3 - 4r2>
min{ry, exp(—/rax + 2rat)}  if 0 < 1 < 24/r3.

Then it can be verified that U is a generalized supersolution of (2.2) (see [40, Definition 1.1.1] or [10,
Definition 4.2] for the definition). Hence, we again deduce that (2.4) holds where

2yr ifa > 2/,
o=/ ife <2,
c1 otherwise.
Combining with (2.3), we conclude that

lim sup w(t,z) =0 for each n >0,
P70 a> (o)t

where o is given in (1.10) (and o = ¢, in case 2,/r3 < ¢; < 24/71). This completes the proof. O
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3. ROUGH ESTIMATE FOR v(t, )

Having established that the spreading speed is bounded above by o = o(c1;71,72), we may also
deduce in the following lemma that v(¢,x) converges to its carrying capacity as ¢ — oo in the region
{(z,t) : & > ot}.

Lemma 3.1. Let (u(t,x),v(t,x)) be the solution of (1.3). Then

lim sup |v(t,z)—1] =0 for eachn >0, (3.1)
17900 4> (o)t

where o is given by (1.10).

Proof. Since v(t,z) < 1 (thanks to Lemma 2.1), it suffices to show the lower bound. We shall follow
the proof of Theorem 5.1 in [21]. Fix ¢ > o(c1;71,72). We may suppose for contradiction that there

exists a sequence {(t,,x,)} with ¢, — oo and =z, > ct, such that limsupv(t,,z,) < 1. Denote
n—oo

(Un,vn)(t, ) = (u,v)(t + tn, 2 + x,). By standard parabolic estimates, we may pass to a further
subsequence so that (u,,v,) converges to an entire in time solution (s, vso) of (1.3) in Cje(R?).
Since ¢ > o(c1;71,7r2), by Proposition 2.2, we have uy, = 0. Thus, vy, is an entire solution satisfying
the equation

(Voo)t = d(Voo)az + TVoo (1 —vse)  for (t,2) € R?.

Since v > 3 for all (t,7) € (0,00) x R, we deduce that v, > 3 for all (t,2) € R%. By the classification
of entire solutions of the diffusive logistic equation (see, e.g. [49, Lemma 2.3(d)]) we have vo = 1. This

is in contradiction with the statement lim sup v (¢, z,) < 1. O
n—oo

Having established the upper bound of the spreading speed, the outstanding task is to estimate the
spreading speed from below. We will do so by adopting the Hamilton-Jacobi approach [25]. To this
end, define

F(t,) = =1+ v(t,Z)a (2 — <) (3.2)

€ €

and its (lower) half-relaxed limit [6]

F(t,z) = liminf Fe(t',2"). (3.3)

(t/vzi)%(tvr)

Thanks to (H1), the function a(s) is monotone.
We will divide the proof of the spreading speed into the following cases, depending on the speed of
environmental shift ¢; and the profile of the conversion efficiency a(z — ¢1t).

Case 1(a): r; <73 and ¢; < 2,/r3

Case 1(b): ry <79 and 2\/73 < ¢1 < 2(\/T1 + /T2 —71)
Case 1(c): 7 <71y and ¢; > 2(\/r1 +/r2 — 1)

Case 2(a): r; > 73 and ¢; < 2,/T2

Case 2(b): ry >y and ¢1 = 2\/12

Case 2(c): r > rp and ¢1 > 2,/r1
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In Case 1(a) - (c), we have r; < rz, and we let

ro  for s > 2,/m

Ria(s)={r, forcy <s<2r; if c; < 2,/7rg,

r; fors<cg

ro for s > ¢y,

Ri(s)=q Rup(s) = qry for N+ 5 <s<c¢y if 2\/ry <1 < 2(\/r1 + /12 — 11), (3.4)
ry fors <N 4

ro for s > ¢y,

Ric(s)=qr for2/ri <s<c if e1 > 2(/r1 +V/r2 —71)
r; fors<2,rm

In Cases 2(a)-(c), we have rq > ro, and we let

ro  for s > 2,/r9,

Rou(s) = qry forep <s<2yr3 if ¢1 < 2y/r2,
r; for s <c.
o for s > 2,/r3,

Ry(s) = q Rap(s) = ¢ min{ry, 7y} for s =2,/r5 if c1 = 2y/r3, (3.5)

T for s < 2./rs.
ro for s > ¢y,

Rae(s) = qr1 for2/ri <s<c¢ if c; > 2/r1.
ry for s <2./r1

Lemma 3.2. F.(t,x) > R;(z/t) in cases 1(a)-(c) and 2(a)-(c).
Proof. The lemma follows from the definition of F, in (3.3), and the global bounds 8 < v(t,z) < 1
(Lemma 2.1). O

4. LOWER BOUND ON THE SPREADING SPEED

We will use the Hamilton-Jacobi method to prove a lower bound for the spreading speed. To this
end, define the WKB-Ansatz [25]

w(t,x) = —elogu(t, ) where  u(t,z) = u(t/e, x/e), (4.1)

and consider the half-relaxed limits [7]

w*(t,r) = limsup w(t,2’) and w.(t,z)= liminf w(t, z’). (4.2)
€ €e—
(t',a:')_:?(t,z) (t'2") = (t,2)

In the following lemma, we show that w* (¢, x) and w (¢, ) can be related to one-dimensional functions
p*(s) and p.(s), respectively.

Lemma 4.1. Let w* and w, be defined as in (4.2). Then w*(t,x) = tp*(x/t) and w.(t,z) = tp.(x/t)
for some functions p* and p,.
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Proof. For the existence of p*, we may compute
/ ! 1" 1

t
w*(t,z) = limsup —elogu(—,m—):t lim sup —(E/t)logu<€7t7fﬁ/t).

e—0 € € e—0
(t"a") = (t,2) t",a") = (La/t)
Thus w*(t,x) = tw*(1,z/t), and the first part of the result is proved if we take p*(s) = w*(1,s). The
proof of the second part is analogous. O

Next, we describe a bird’s-eye view of the Hamilton-Jacobi approach in order to achieve our final
goal of bounding the spreading speed from below by the optimal constant ¢ > 0. For clarity, we will
state the necessary lemmas and provide their proofs later on.

We start with the following lemma which is due to [25] for the KPP equation. The proof is presented
in Subsection 4.1.

Lemma 4.2. Suppose that there is so > 0 such that p*(s) = 0 for all s € [0,s0]. Then there exists
do > 0 such that

lim inf inf u(t,x) > o9  for each n > 0 sufficiently small.
t—o0 nt<ax<(so—n)t
Hence, a lower bound of the spreading speed (and hence the complete proofs of our main theorems)
can be obtained by determining the set {s: p*(s) = 0}. Precisely, it is sufficient to show that p*(s) =0
for s € [0, 0], where 0 = o(c1;71,72) as in (1.10).
To this end, we derive a limiting Hamilton-Jacobi equation for w* and then for p*. Observe that w*®
satisfies

wf — ewS, + [ws|* 4+ (F<(t,z) —u) =0 for (t,z) € (0,00) X R, (4.3)
where F€ is given in (3.2). By the fact that F.(t,z) > R(x/t), it is standard [25, 41] to deduce the
following.

Lemma 4.3. Suppose F.(t,x) > R(x/t), then p* is a viscosity subsolution of

min{p — sp’ + |p'|> + R(s),p} =0 for s € (0,00). (4.4)
Moreover,

p (0)=0 and p*(s)<oco forallse]0,00). (4.5)
Proof. We postpone the proof to Subsection 4.2. O

By the comparison principle, discussed in the Appendix, the Hamilton-Jacobi equation (4.4) has a
unique viscosity solution.

Lemma 4.4. For any given case (i,7) € {(1,a),(1,b),(1,¢),(2,a),(2,b),(2,¢)} as stated in Section 3,
let R be given by R = R;;. The Hamilton-Jacobi equation (4.4) has a unique viscosity solution, p,
satisfying

ps) _

p(0)=0 and lim (4.6)
§—00 S
Moreover, p is nondecreasing in s, i.e.
p(s)=0  for0<s<sup{s >0: p(s') =0}. (4.7)

Furthermore, the following Lemma holds:

Lemma 4.5. For any given case (i,7) € {(1,a),(1,b),(1,¢),(2,a),(2,b),(2,¢)} as stated in Section 3,
let R be given by R = R;; and let p be the unique solution of (4.4) as specified in Lemma 4.4. Then

0<p*(s) <p(s) fors>D0.
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The statement (4.7) and Lemma 4.5 imply that
p(s)=0 for 0<s<sup{s' >0: p(s')=0}. (4.8)
Together with Lemma 4.2, this enables us to establish
¢, >sup{s >0: p(s) =0}.

Next, we will establish the explicit formula of the unique solution p satisfying (4.4) in viscosity sense
and (4.6) in classical sense in Lemma 5.1.
For example, in Case 1(a) (r; < 72 and ¢; < 2,/72), we find that

R £ ) for s > 2,/rs
ps) =41 vre (19)
0 for 0 < s <2/r3.
Thanks to Lemma 4.5, we have 0 < p*(s) < p(s). Hence, we deduce that
p*(s)=0 for 0 <s<2¢rs.

By Lemma 4.2, we conclude that ¢, > 2,/75. This establishes the lower bound of the spreading speed
in Case 1(a). The spreading speed in Case 1(a) is thus determined, since 2,/73 is also the upper bound
of spreading speed (thanks to Proposition 2.2).

In the remainder of this section, we present the proofs of the above lemmas.

4.1. Proof of Lemma 4.2.

Proof of Lemma 4.2. Our proof is adapted from Theorem 1.1 of [25]. Fix a small 0 < n < 1. It is
sufficient to show that there exists dy = dp(n) > 0 such that

lim inf i%f u(t, z) > do (4.10)

e—0
for any compact set given by K = {(1,z) : n <z <so—n} CC {(t,z): 0 < z/t < so}. Indeed,

lim inf inf u(t,z) = liminf inf u®(¢,2) > do.
t—o0 pt<x<(sp—n)t e—0 K

To show (4.10), we first observe that w*(t,z) = tp*(x/t) = 0 in some compact subset K such that
KcIntK c {(t,z): 0<z/t<so},

which implies we(¢,2) — 0 uniformly in a neighborhood of K. Now for (to,z9) € K, let ¢(¢,z) =
(t —t0)? + (# — mp)?. Then w* — 1 has a strict local maximum at (¢, o). Since w® — 0 uniformly in
a neighborhood of K, for each € > 0 sufficiently small, the function w® — ¥ has a local maximum at
(te,xzc) € K, where (te,ze) — (to, o) as € — 0. Thus,

o(1) = 0pp — €0zt + |3m1/)|2 < Qhwt — €dppws + |8gcwf|2 =u® — F° <u® -4 (4.11)

at (t,2) = (te, x), where g = Sinfsecga(s) — 1 > 0.
Using the fact that w® — ¢ has a local maximum at (¢, z.), we deduce that

w(te, we) 2 (W = P)(te, we) = (W = P)(to, 2o) = w(to, o)
which implies that u®(to, zo) > u¢(te, zc). Combining with (4.11), we have
u(to, o) > u(te,xe) > 0o + 0o(1).

Since the above argument is uniform for arbitrary (¢, zo) € K, this implies (4.10). O
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4.2. Proof of Lemma 4.3. We recall the definition of viscosity solutions of (4.4), following [6, 38] (see
also [25, 41] for the definition involving variational inequalities).

Definition 4.1. In the following let R* and R, be the upper and lower envelope of R, which is given
by
R*(s) =limsup R(s’) and R.(s) = liminf R(s').

s/ s s'—s
e A lower semicontinuous function p is called a viscosity supersolution of (4.4) if p > 0, and for
any test function ¢ € C1, if s¢ is a strict local minimum of p — ¢, then

p(s0) — 509 (s0) + | (s0)> + R*(s0) > 0.

e An upper semicontinuous function p is called a viscosity subsolution of (4.4) if for any test
function ¢ € C1, if sq is a strict local maximum of p — ¢ and p(sg) > 0, then

p(s0) = s0d'(s0) + |6/ (s0)|* + Ri(s0) < 0.

e We say p is a viscosity solution of (4.4) if p is a viscosity super- and subsolution.
We will first show that p* is nonnegative and that p*(0) = 0.

Lemma 4.6. Let p* be defined as in Lemma 4.1. Then
p*(0)=0 and p*(s) >0 fors>0. (4.12)

Proof. We first show w*(t,z) > 0 for (¢,z) € (0,00) x R. Indeed, since u(t,z) < max{rs,r1} for all
(t,z) € [0,00) x R, by the definition of w® we have w® > —elog(max{rq,r1}) for each € > 0 and
(t,z) € (0,00) x R, and we may compute

w*(t,z) = limsup w(¢',2') >0 for (¢,z) € (0,00) x R. (4.13)
e—0
(") S (ta)
In particular, w*(¢,0) > 0 for ¢t > 0.

The proof will be complete once we show w*(¢,0) < 0 for ¢ > 0. Denote r = ry Ary. Then using the
lower bound v > 3, we see that u is a supersolution of

U, — Uy, =u(r—u) in (0,00) x R. (4.14)

TT

Let u(t,x) be the solution of (4.14) with identical (compactly supported) initial condition as w(t,x),
then the classical spreading result for the Fisher-KPP equation [3] says that u has spreading speed 2,/T.
In particular,

liminf inf w(t,x) >26; for some d; > 0.
t—o00 |g;|<ﬁt

By the comparison principle, u > u, i.e. there exists ¢t; > 0 such that

inf u(t,x) Z 51 for ¢ Z tl,
|z|<\/Tt

which implies

sup w(t,z) < —elogdy. (4.15)
|z|< /Tt

t>etq
Now, fix an arbitrary ¢ty > 0. Let (¢,2) — (t0,0) and € — 0, we deduce
w*(tp,0) = limsup w(t,z) <0. (4.16)

e—0
(t,z)—(t0,0)
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Combining (4.13) and (4.16), we have

w*(t,0) =0 forall t > 0. (4.17)

We recall w*(t,x) = tp*(x/t) (thanks to Lemma 4.1), so that (4.12) directly follows from (4.13) and
(4.17). This completes the proof. O

The following lemma implies that p*(s) < oo for s € [0, 00).

Lemma 4.7. Let w® be a solution of (4.3). Then for each compact subset @ of (0,00) x R, there is a
constant C(Q) independent of € such that

w(t,x) < C(Q) for (t,x) € Q and e € (0,1/C(Q)].
In particular,
w*(t,z) < +oo  for each (t,x) € (0,00) x R and p*(s) < 400  for each s € [0,00).  (4.18)

Proof. We only prove the bound for @ C (0,00) x [0,00). The case for @ C (0,00) x (—00, 0] is similar
and is omitted. Our proof follows the ideas in [25]. Fix § € (0,1) such that Q@ C [4,1/6] x [0,1/6].
Define

262
2°(t,z) = lz+ 2017 4= logt+ Cs5(1 +1t).
4t 2
By taking Cs > 0 to be a large constant depending on ¢, z¢ is a (classical) supersolution of (4.3) in

(0,00) x (0, 00).
By (4.17) in the proof of Lemma 4.6 and the definition of w*, there is a constant Cs > 0 such that,

sup w(t+6/2,0) < Cs forte[0,1/4].
0<e<1/2

Observe that for e sufficiently small, we have
we(d/2,2) < oo =2°(0,z) forxz>0
{wS(t—l—(S/Z,O) < Cs < 2¢(t,0)  for t €[0,1/4].
It follows from the maximum principle that
w(t+0/2,x2) < 2(t,x) for (t,z) € [0,1/5] x [0, 00).

Taking supremum over [6/2,1/6] x [0,1/§], we have

262
sup w(t+6/2,x) < C§ = sup lz+ 201 +logt+Cs(1+1)| . (4.19)
[6/2,1/6]%[0,1/6] [6/2,1/6]%[0,1/6] 4t
This completes the proof. O

Now, we are in position to prove Lemma 4.3.

Proof of Lemma 4.3. Since (4.5) is a consequence of Lemma 4.6 and (4.18), it remains to show that p*
is a viscosity subsolution of (4.4).

Let ¢ € C! be a test function and suppose that p* — ¢ has a strict local maximum at s = s, and
that p*(sg) > 0. Without loss of generality, we may assume that p* — ¢ < 0 for all s near sg, with
equality holding only at s = sg. We will show that

p*(s0) — s08' (s0) + ¢’ (s0)|” + Ru(s0) < 0.
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(Note that R.(sg) = R(sg) by our definition of R in (3.4) and (3.5).) First, we note that w*(t,z) =
tp*(x/t) and that w*(t,z) — to(z/t) — (t — 1)2 < 0 for all (¢, ) near (1, s0), with equality holding only
at (t,x) = (1, s0). Define, in terms of ¢, a two variable test function

Pt @) = to(x/t) - (t —1)*.

Then by the definition of w*, there exists a sequence €, — 0 and sequence of points (t,,z,) — (1, s0) as
n — oo such that: w™ — ¢ has a local maximum at (t,,z,), and w (t,,x,) = w*(to,zg) > 0. Thus,
for (t,z) = (tn,x,), we have

Orp = D™ = €,0p W — |Dpw|? — (F — ufr)
< €nOpap — |0p0)® — (F — um).
Thus,
1o — €nOpr0 + |0p|? + (F" —u) <0 (4.20)

for (t,z) = (tn,x,). Letting n — oo, we obtain

atSD(tO»fo) + |az§0(t071'0)|2 + F*(to,xo) < 07 (421)

where we have used the fact that we~(t,,z,) — w*(to,x9) > 0 implies u*"(t,,x,) — 0. Since
F.(to,x0) > R(xo/to), it follows from (4.21) that

B(s0) — s0' (s0) + ¢’ (s0)|” + Ru(s0) < 0.

Thus, p* is a viscosity subsolution of (4.4). O
4.3. Proofs of Lemmas 4.4 and 4.5.

Proof of Lemma 4.4. Observe, in each case i = 1,2, that our choice of R satisfies (B1)-(B2) of the
Appendix. By Corollary A.2 of the Appendix, there exists a unique p satisfying (4.4) in the viscosity
sense, and the boundary condition (4.6) in the classical sense. Moreover, s — p is nondecreasing. This
proves Lemma 4.4. ([l

Proof of Lemma 4.5. We observe that p* is a viscosity subsolution (by Lemma 4.3) and that p is a
viscosity supersolution (by Lemma 4.4). Moreover, by (4.5) and (4.6), we have

p*(0)=p(0)=0, and lim P(s) < 400 = lim @

s—oo 8 s—oo S
We can therefore apply the comparison principle (see Lemma A.1 of the Appendix) to derive
p*(s) < p(s) fors>0.

Finally, p*(s) > 0 is proved in Lemma 4.6. ]

5. SOLVING FOR THE SPREADING SPEED VIA EXPLICIT FORMULAS FOR [)

For each of the cases 1(a)-(c), 2(a)-(c), we will propose an explicit formula for p in Subsection 5.1.
Thanks to the uniqueness result in Lemma 4.4, it is enough to verify (separately for each of the cases)
that the given expression defines a viscosity solution of (4.4). This will be done in Subsection 5.2.
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5.1. Explicit formulas for p. Below, we state the explicit formula for p in each case. Subsequently,
we will verify in Lemma 5.1 that p solves (4.4) by invoking the definition of the viscosity solution [6].

e Case 1(a): 1 <1 and ¢; < 2/73.

2
. 2 —7ry for s > 2,/r3
pls) =<1 VT2 (5.1)
0 for 0 <5 <2y/r,
e Case 1(b): r1 <79 and 2/T2 < 1 < 2(\/T1 + /T2 — 71).
%—7‘2 for s >
p(s) = qAs—((A)2+r) for M+ 5)<s<q (5.2)
0 for 0 <s <A+ £,
where A* = ¢1/2 — \/ra — r1.
e Case 1(c): 71 <rg and ¢; > 2(\/r1 + /12 — 11).
§_7"2 for s > ¢
As — (A*)? for 2\* < s <
5(s) = g s—((N*)?+ 1) or s<c * (5.3)
s for 2,/r1 < s <2\
0 for 0 < s <2y/r1.

Case 2(a): r1 > rq and ¢ < 2,/73.
2
R =y for s > 2,/rs
pls) =14 4 (5.4)
0 for 0 <5 < 2,/m9,
Case 2(b): 1 > ry and ¢; = 2,/r3.

In this case, p(s) is defined the same as in (5.4).
Case 2(c): 71 > rp and ¢ > 2,/77.

T T2 for s > 2)
As — ;\2—1-’1“2 forcl<s§25\
(s) = 2 ( ) (5.5)
=T for 2,/r1 <s < ¢
0 for 0 < s <2y/m1,

where \ = c1/2+ \r1 —ra.
5.2. p solves the HJE (4.4) in the viscosity sense.

Lemma 5.1. There exists a unique viscosity solution p of (4.4) satisfying (in the classical sense)
p(0)=0 and lim ps) = 0. (5.6)
s—oo S

Moreover, it is given by the formulas of Subsection 5.1.

Proof. By Lemma 4.4, p is unique whenever it exists. To prove the lemma, it is enough to show that p,
as given in each case of Subsection 5.1, satisfies (i) the Hamilton-Jacobi equation (4.4) in the viscosity
sense, as well as (ii) the boundary condition (5.6) in the classical sense. In view of the explicit formulas,
(ii) is obvious. Thus, it remains to verify that p is a viscosity solution of (4.4) in each case.

Since the proof only differs slightly in each case, we consider only two representative cases 1(b) and
2(c) here, and omit the verification of the rest.
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Let us proceed with Case 1(b), where we fix 1,79, ¢; satisfying

ry <ra, and  2y/ra <1 < 2(y/r1+ V2 —11). (5.7)
Next, we set
ro for s > ¢y,
R(s)=Rup(s) =¢r for ¥+ <s<c
ry for s < ¥4 3.

G
and
% — 79 for s > ¢
p(s) =< X*s — (A\)2 +7r1) for M+ %) <s<c (5.8)
0 for0<s< A4+ 1L

A%
where \* = ¢1/2 — \/ra — 11.

First, observe that p is continuous, thanks to our choice of \*.

Next, we show that p is a viscosity subsolution of (4.4). To this end, observe that p satisfies
the equation (4.4) in the classical sense almost everywhere in [0, 00). (In fact, it satisfies the equation
classically for s € R\{c1, \*+r1/A*}.) By the convexity of the Hamiltonian, we can apply [5, Proposition
5.1] to conclude that it is in fact a viscosity subsolution of (4.4).

Next, we show that p is a viscosity supersolution of (4.4). Suppose p—¢ obtains a strict local minimum
at sg € [0,00) for some ¢ € C'. Now, p is a classical solution of (4.4) for all s & {\* + r1/\*,c1},
so it automatically satisfies (4.4) in the viscosity sense. We need only consider so € {\* + r1/A*, c1}.
Suppose sg = A* + r1/A*. Then 0 < ¢'(sg) < A*, and R*(sg) = max{r,,r1} = r1. Therefore, at the
point s = sp, it holds that

1

* * r *
p=sod +10/F+ R = —(\"+ 30)¢" + 10/ P+ = (¢ = V)¢ = 1)
where the last inequality is a consequence of ¢'(so) < A* < ¢+ (which in turn follows from the choice
of \* and the condition (5.7)).
If s9 = ¢1, then R*(sg) = max{ry,r2} = ro, and we have

p—s0¢ +|0'*+ R = (% — Tz) —c1 ¢ + )P+ = (¢ —

This proves that p is a viscosity supersolution.

>0,

C1

2)220 at s = sq.

This completes the proof that the unique viscosity solution p as guaranteed by Lemma 4.4 is given
by the explicit formula (5.8) for the first representative Case 1(b).
Let us proceed with Case 2(c), where we fix r1, 72, ¢; satisfying

r1>71e, and ¢ > 2/r1. (5.9)

Next, we set
ro for s > ¢y,
R(s) = Rac(s) = 41 for 2/r1 <s<c
ry fors <2./ry

and
% — 79 for s > 2\
s — (A2 4 f <5< 2\
po)= QT W) fora<s s (5.10)
T for 2/r1 <s< ¢

0 for 0 < s <2,/17,
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where \ = c1/2+ 1 — ra.

Again, we first observe that p, as given in (5.10), is continuous, and satisfies the equation (4.4) in
the classical sense for s € [0,00) \ {c1,2\/71} (note that it is in fact continuously differentiable in a
neighborhood of s = 2X). It then follows again from [5, Proposition 5.1] that j is a viscosity subsolution

of (4.4).

Next, we verify that it is also a viscosity supersolution. Suppose p— ¢ obtains a strict local minimum
at sg € [0,00) for some ¢ € C1. Since p is a classical solution of (4.4) for all s ¢ {c1,2./71}, We need
only consider sy = ¢; or sg = 2,/r1. Suppose sg = ¢1, then

2 2
p—sod +10/F+ R = (G —r1) —ad 16/ +r = (6~ 4) 20 ats=s.
Suppose sg = 2,/7r1, then

p—sod +|¢/P+ R =0— 2y + /P +11=(¢/ = i)* 20 ats=s0.

This verifies that p is a viscosity supersolution of (4.4). This completes the proof that the unique
viscosity solution g as guaranteed by Lemma 4.4 is given by the explicit formula (5.10) for the first
representative Case 2(c).

We omit the verification of the other cases since they are analogous. ]

Corollary 5.2. Suppose either that (1) r1 < o, or that (2) ri > 12 and c1 € (24/71,2+/72). Then there
exists 6g > 0 such that for each n > 0,

liminf  inf  w(t,z) >3y  for each n > 0 small enough,
i=00 |o|<(o—n)t

where o = o(c1;11,72) 18 given in (1.10). In particular, we have
¢, > o(c1;r1,72). (5.11)
Proof. Observe that
g > Uzy +u(d —u)  for (t,z) € (0,00) x R
where ¢’ = Binfsegra(s) —1 > 0, thanks to (H1). Since u has compactly supported initial data, it
follows from standard theory that the spreading speed of u is bounded from below by 2/, i.e.

liminf  inf  w(t,x) > dp. (5.12)
=00 |5|<3v5t/2
For given c¢1,71,72 > 0 satisfying any of the cases 1(a)-(c) and 2(a)-(c), Lemma 5.1 says that the
unique solution p guaranteed in Lemma 4.4 is given as in Subsection 5.1. If we define

§:=sup{s >0: p(s) =0},

then it is easy to see that § = o(cq;71,72), where the latter is given in (1.10). By Lemmas 4.5 and 4.6,
0 < p*(s) < p(s) for s > 0. Thus, p*(s) =0 for all s € [0,0], where 0 = o(c1;71,72).
It follows from Lemma 4.2 that

lim inf inf u(t,x) > 69 for each n > 0 small enough, (5.13)
t—o00 pt<z<(oc—n)t

and a similar statement holds for < 0. The desired result follows by combining with (5.12). ]
Proof of Theorems 1.1 and Theorem 1.2. We recall that ¢, < ¢,, by construction. On the other hand,

by Proposition 2.2, ¢, < o1(c1;71,72), and by Corollary 5.2, ¢, > o1(c1;7r1,72). It follows that ¢, =
C. = o1(c1;71,72), so that the spreading speed of u is given by ¢* = o1(c1;7r1,72). a



216 K.-Y. LAM AND R. LEE

6. CONVERGENCE TO HOMOGENEOUS STATE

In this section, we apply the previous spreading result to characterize the long-time behavior of
solutions of (1.3) in the moving frame where the predator persists.

Having established the existence of the spreading speed c¢*, and recalling Lemma 3.1, it follows that
(u,v) = (0,1) locally uniformly in any moving frames with speed above ¢*, and that u persists in any
moving frames with speed below c¢*. In the following we discuss the asymptotic behavior of the solutions

in the latter case. Define, for i = 1,2,
a; — 1 ]. —+ b
= ;= 6.1
Y 1+ a;b v 1+ a;b ( )

where a1 := a(—o0) and as := a(+00). Then (u;,v;) is the unique positive root of the algebraic system

u(—=1—u+aw)=0=rv(l —v—bu).
Then Theorem 1.3 can be restated as follows.

Theorem 6.1. Let (u,v) be the solution of (1.3), where (ug,vo) € C%(R) satisfies (IC).
(a) Suppose ¢c1 > ¢*. For any n € (0,c¢*/2),

lim  sup  ||(w,v) — (ug,v1)]| = 0. (6.2)
70 < (e =)t
where ||-|| denotes the Euclidean norm in R2.

(b) Suppose c1 < c¢*. For any n € (0,¢1/2),

lim  sup [|(u,v) = (ug,01)[| =0, (6.3)
E=00 z)<(c1—n)t
and for any n € (0, (c* — ¢1)/2),
lim sup [[(w, v) = (ug, v2)[| = 0, (6.4)
E=00 (¢) fm)t<a<(c*—n)t
where (u;,v;)is defined in (6.1).
Proof of Theorem 6.1. Denote ¢* = o(c1;71,72). Thanks to Corollary 5.2, for each n > 0, there exists
T =T(n) >0 and Jp > 0 such that

u(t,z) > 69 fort>T, —mt <a < (" —n/2)t. (6.5)

Suppose for a contradiction that there exists g, > 0 and a sequence (tx,xy) with t — oo and
0 < xp < (¢* =)ty (the case for z < 0 is similar), such that ||(u,v)(tg, zx) — (4, 0)]| > €o for all k > 1,
where

(3,5) = {(ug,vg) ifc; <c* andxy € ((cl + n)tg, (c* — n)tk), (6.6)
(u1,v1) otherwise.
Let
up(t,x) = u(t + tg,x +x) and vt x) = vt + tg, x + x),
then
ug(t,x) > 6o in Q,
where

Qp = {(t,x) t+te > T, —n(t +tk) <z+ax, < (C* — 77/2)(t + tk)}
Claim. Q; — R2, i.e., for any compact subset K C R? there erists ky > 1 such that

K cQy forall k> k.
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Indeed, given K, choose R > 0 such that K C [-R, R] x [-R, R]. Then for k > 1, we have
K C [-R,R)?
CH{(t,x): |t| <R, nR—ty) <x<—(c"—n/2)R+nty/2}
C{t,x): [t| <R, —nt+ty) <z < (c"—n/2)t+nty/2}
C{t,x) :t+t, >T, —nt+tr) —apr<a<("—n/2)t—xp+ (" —n/2)ti}
= Q.
This proves the claim.

It follows from the claim and Lemma 2.1 that there exists constants 0 < §; < 1 independent of k
such that

51§uk§i and 51§vk§i in Qp, (6.7)
(51 61

Using the above L bounds and parabolic L? estimates we may deduce, re-labelling a subsequence if

necessary, that (ug,vy) converges weakly in Wli’cl’p (R?) (and strongly in
Cl+a,(1+o¢)/2

low (R?) thanks to Sobolev embedding) to an entire solution (s, Vo) of the system

U = Ugy + u(—1 —u+ av)
vy = duge +rv(l — v — bu),

where @ = ap if ¢; < ¢* and @y € ((c1 + n)tx, (¢* —n)tx), and @ = a; otherwise. Moreover, (6.7) also
implies that

1 1
01 < Uoo < — and 6 <voo < —  in RZ. (6.8)
51 51

Having established the positive upper and lower bounds for (e, vs) on R2, one can then repeat
a standard argument via Lyapunov functional (see the proof of Lemma 4.1 in [21]) that (ueo,veo) i8
identically equal to the homogeneous steady state (i, ) given in (6.6), i.e., (ug, vk) — (@, ?) in Cjpe(R?).
This in particular implies

(u,v)(tg, xk) = (uk,vr)(0,0) = (4,0) ask — oo.

But this is a contradiction, which completes the proof. O

APPENDIX A. COMPARISON PRINCIPLE
Recall the Hamilton-Jacobi equation
min{p — sp’ + |¢'|*> + R(s),p} =0 for s € (0,00). (A.1)
We prove a comparison principle for (A.1) for discontinuous R :R — R that is locally monotone [14].

Definition A.1. A function h: R — R is locally monotone if for every sg € R, either
lim inf (h(s1) —h(s2)) >0 or lim sup (h(s1)—h(sz)) <O0.

0—0 |s;—s0|<d 5%O|s,;—so\<5
81>82 S1>82

The assumptions on R are stated precisely as follows.

(B1) R(s) is locally monotone;
(B2) R*(s) = R.(s) almost everywhere, and infs~¢ R(s) > 0, where R* and R, are defined by
R*(s) =limsup R(s') and R.(s) = liminf R(s).
s'—3s s'—s
Next, note that the specific form of the Hamilton-Jacobi equation (A.1) and hypotheses (B1)-(B2) imply
the hypotheses (H1)-(H6) in [41]. The following two results are due to [41].
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Lemma A.1. Suppose R(s) satisfies (B1)-(B2). Let p and p be non-negative viscosity super- and
subsolutions, respectively, of (A.1) such that

s _
p(0) <p(0) and lim & < lim P(s) (A.2)
= s—00 8 s—oo 8§

Then p <7 in (0,00).

Proof. This is a consequence of [41, Proposition 2.11]. a

Corollary A.2. Let R : R — R satisfy the assumptions (B1)-(B2). Then there exists a unique viscosity
solution p to(A.1) satisfying the boundary conditions

p(0)=0 and lim pLs) = o0. (A.3)
s—oo S
Moreover, p is nondecreasing.
Proof. This is a consequence of [41, Proposition 1.7(b) and Lemma 2.9] O
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