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Abstract

Large diffuse galaxies are hard to find, but understanding the environments where they live, their numbers, and
ultimately their origins, is of intense interest and importance for galaxy formation and evolution. Using Subaru’s
Hyper Suprime-Cam Strategic Survey Program, we perform a systematic search for low surface brightness galaxies
and present novel and effective methods for detecting and modeling them. As a case study, we surveyed 922 Milky
Way analogs in the nearby Universe (0.01 < z < 0.04) and built a large sample of satellite galaxies that are outliers
in the mass—size relation. These “ultra-puffy” galaxies (UPGs), defined to be 1.50 above the average mass—size
relation, represent the tail of the satellite size distribution. We find that each MW analog hosts Nypg = 0.31 £ 0.05
UPGs on average, which is consistent with but slightly lower than the observed abundance at this halo mass in the
Local Volume. We also construct a sample of ultra-diffuse galaxies (UDGs) in MW analogs and find an abundance
of Nypg = 0.44 £ 0.05 per host. With literature results, we confirm that the UDG abundance scales with the host
halo mass following a sublinear power law. We argue that our definition of UPGs, which is based on the mass—size
relation, is more physically motivated than the common definition of UDGs, which depends on the surface
brightness and size cuts and thus yields different surface mass density cuts for quenched and star-forming galaxies.

Unified Astronomy Thesaurus concepts: Low surface brightness galaxies (940); Dwarf galaxies (416); Galaxy
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properties (615); Galaxy abundances (574)
Supporting material: machine-readable table

1. Introduction

In a variety of galaxies in the Universe, there is an interesting
subset of galaxies with low surface brightness (dubbed low
surface brightness galaxies or LSBGs; e.g., Sandage &
Binggeli 1984; Caldwell & Bothun 1987; Impey et al. 1988;
McGaugh et al. 1995; Dalcanton et al. 1997). Recently, new
excitement has been generated by the discovery of a large
population of ultra-diffuse galaxies (UDGs) in the Coma
cluster (van Dokkum et al. 2015), accompanied by many other
works on detecting UDGs in clusters (e.g., Koda et al. 2015;
Mihos et al. 2015; Yagi et al. 2016; van der Burg et al.
2016, 2017; Lee et al. 2017; Mancera Pifia et al. 2018; Zaritsky
et al. 2019; Danieli & van Dokkum 2019), groups (e.g., Roman
& Trujillo 2017a; Mao et al. 2021; Romén et al. 2021; Carlsten
et al. 2022a), and the field (e.g., Leisman et al. 2017; Greco
et al. 2018; Romadn et al. 2019; Prole et al. 2019; Tanoglidis
et al. 2021; Kadowaki et al. 2021). There have been a variety of
studies of these diffuse galaxy systems, ranging from their dark
matter content (e.g., Mowla et al. 2017; van Dokkum et al.

8 NASA Hubble Fellow.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

2018, 2019; Danieli et al. 2019; Wasserman et al. 2019;
Mancera Pifia et al. 2019b; Keim et al. 2022; Mancera Pifia
et al. 2022b; Kong et al. 2022), globular cluster populations
(e.g., van Dokkum et al. 2017; Somalwar et al. 2020; Forbes
et al. 2020; Danieli et al. 2022; Gannon et al. 2022; van
Dokkum et al. 2022a; Gannon et al. 2022), and stellar
populations (e.g., Gu et al. 2018; Ferré-Mateu et al. 2018;
Pandya et al. 2018; Villaume et al. 2022). We refer to LSBGs
as objects selected purely based on surface brightness without
distance information. With known distances, people define
UDGs to be galaxies with large sizes (r, > 1.5 kpc) and low
surface brightnesses (u,(g) > 24.0 mag arcsec™2), and thus
UDGs are outliers in size and surface brightness compared to
normal dwarf galaxies. A central question about LSBGs,
including UDGs, is what causes them to be outliers from the
average mass—size relation of dwarf galaxies.

Various mechanisms have been proposed to explain the
presence of large, diffuse galaxies (as mass—size outliers)
across different environments. In the field (i.e., in isolation),
their large sizes might be a result of stellar feedback (Di Cintio
et al. 2017; Chan et al. 2018), early galaxy mergers (Wright
et al. 2021), passing into and out of a more massive halo (so-
called backsplash satellites; Benavides et al. 2021), or of
inhabiting halos with higher spins (Dalcanton et al. 1997;
Amorisco & Loeb 2016; Liao et al. 2019; Mancera Pifa et al.
2020; Benavides et al. 2023; Kong et al. 2022). In groups and
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clusters, their large sizes may ensue from tidal heating near the
pericenter (Jiang et al. 2019), via adiabatic expansion due to
mass loss (Tremmel et al. 2020), or even via a bullet-dwarf
collision (van Dokkum et al. 2022b, 2022a). Despite theoretical
advances, it is still an open question how mass—size outliers
like UDGs are formed. It is also unclear whether mass—size
outliers belong to a distinct class of galaxies or are just a natural
extension of dwarf systems to lower surface brightness or
larger sizes (e.g., Greene et al. 2022). A straightforward way to
answer these questions is to compare mass—size outliers
with “normal” low-mass galaxies, which have been studied
extensively.

Our best understanding of the low mass galaxy regime
comes from the satellite system of our Milky Way (MW) and
the Local Group (LG; e.g., McConnachie 2012; Simon 2019).
With the advent of deep sky surveys and dedicated spectro-
scopic programs, we are now in a position to also map the
satellite systems of MW analogs (typically defined as galaxies
having similar stellar mass or halo mass to MW) in the Local
Volume and nearby Universe. The Satellites Around Galactic
Analogs survey (SAGA; Geha et al. 2017; Mao et al. 2021) is
designed to spectroscopically confirm the satellites of 100 MW
analogs at 20-40 Mpc. The Exploration of Local VolumE
Satellites survey (ELVES; Carlsten et al. 2021, 2022b, 2022a)
uses deep imaging data to identify satellite candidates of MW-
like hosts in the Local Volume (LV; D < 12 Mpc) and estimate
surface brightness fluctuation distances from images to confirm
their association with their hosts. Having these satellites of MW
analogs as a reference frame, we can contrast them with the
mass—size outliers in the same environment to understand the
formation of large diffuse galaxies. However, there are only
~40 confirmed UDGs associated with MW analogs in the
literature (Romdn & Trujillo 2017a; Cohen et al. 2018; Mao
et al. 2021; Carlsten et al. 2022a; Nashimoto et al. 2022;
Karunakaran & Zaritsky 2023). Therefore, a larger sample of
mass—size outliers associated with MW-like hosts is needed to
conduct such a comparison between the mass—size outliers and
the normal satellites.

The goal of this paper is to find and study large diffuse
satellite galaxies in the context of MW analogs. Leveraging the
depth and wide sky coverage of Hyper Suprime-Cam (HSC)
Subaru Strategic Program (Aihara et al. 2018) imaging data, we
perform a search for LSBGs using novel methods in detection,
false-positive identification, and modeling. We further build a
large sample of mass—size outliers that are likely satellites of
MW-mass hosts in the nearby Universe. We propose a new
definition of mass—size outliers, dubbed “ultrapuffy galaxies”
(UPGs), based on the observed mass—size relation of satellites
of MW analogs in the LV using the ELVES sample. This
concept is less affected by the galaxy color and provides a
robust avenue to study the mass—size outlier population. We
calculate the abundances of mass—size outliers in MW analogs
and compare them with their abundances in other environ-
ments. Our results seek to shed light on the role of the
environment on the formation of large diffuse dwarf galaxies.

The layout of this paper is as follows. Section 2 describes the
data used in this work. In Section 3, we describe the LSBG
search in HSC data, including source detection (Section 3.1),
deblending (Section 3.2), modeling (Section 3.3), complete-
ness, and uncertainty (Section 3.4). In Section 4, we propose a
new definition of large and diffuse galaxies (UPGs) and present
our UDG and UPG samples. In Section 5, we compare the
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UDGs and UPGs on the mass—size plane. We calculate their
abundances and compare them with the literature (Section 5.2).
Based on these results, in Section 6 we further argue that we
should move beyond UDGs and adopt the UPG definition.
Section 7 presents a summary of this work and prospects for
the future. In a companion paper (Li et al. 2023), we discuss the
size distributions, spatial distributions, and quenching of UDGs
and UPGs.

In this work, we refer to mass—size outliers (including both
UDGs and UPGs) as galaxies with large physical sizes
compared to normal dwarf galaxies. We adopt a flat ACDM
cosmology from Planck Collaboration et al. (2016) with
Qm=0.307 and Hy=67.7km s~' Mpc~'. We use the AB
system (Oke & Gunn 1983) for magnitudes. The stellar mass
used in this work is based on a Chabrier (2003) initial mass
function.

2. Data
2.1. The Hyper Suprime-Cam Subaru Strategic Program

The HSC Subaru Strategic Program (HSC-SSP, hereafter the
HSC survey; Aihara et al. 2018)” is an optical imaging survey
using the 8.2 m Subaru telescope and the HSC (Miyazaki et al.
2012, 2018). The Wide layer is designed to cover ~1000 deg”
of the sky in five broad bands (grizy), reaching a depth of
g=26.6 mag, r = 26.2 mag, and i =26.2 mag (50 point-
source detection). HSC data are processed using hscPipe
(Bosch et al. 2018), which is a customized version of the Vera
Rubin Observatory Legacy Survey of Space and Time (LSST)
pipeline (Juri¢ et al. 2017).""

In this work, we use the Wide layer of the co-added data from
the Public Data Release 2 (PDR2, also known as S18A2; Aihara
et al. 2018) of the HSC survey. It covers ~300 deg” in all five
bands, which is 1.5 times larger than the data set (S16A)
analyzed in Greco et al. (2018). One of the key improvements
made in PDR2 is the sky background subtraction. Compared
with previous data releases, PDR2 adopted a full focal plane sky
subtraction algorithm to overcome the oversubtraction of the
local sky background around bright objects (Aihara et al. 2018;
Li et al. 2022). The unprecedented depth and careful sky
subtraction make PDR2 an ideal data set to study low surface
brightness galaxies. In this work we take the point-spread
function (PSF) models in hscPipe (Bosch et al. 2018), where
the Point Spread Function Extractor (PSFEx; Bertin 2011) takes
a star catalog and generates the PSF model.

2.2. NASA-Sloan Atlas

We use the NASA-Sloan Atlas (NSA;12 Blanton et al.
2005, 2011) to select galaxies that are analogous to our Milky
Way based on their stellar mass (see Section 4.1); then we
match the LSBGs to these MW analogs. The NSA catalog
provides various physical properties of galaxies in the nearby
Universe as derived from the Sloan Digital Sky Survey (SDSS;
York 2000). We use the most recent version of the NSA
catalog (vl_O_l'3), which contains about 640, 000 galaxies
out to z<0.15. This version also updates the aperture

o https:/ /hsc-release.mtk.nao.ac.jp/doc/

10 https:/ /hsc.mtk.nao.ac.jp/pipedoc_e/

" hitps: / /pipelines.Isst.io/

2 hutp: //nsatlas.org

13 https: //www.sdss.org/dr13 /manga/manga-target-selection /nsa/
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Table 1
LSBG Search Steps and Number of Remaining Objects After Each Step

Process Description Remaining Objects
Initial detection Section 3.1 86,002
Matching with MW analogs at 0.01 < z < 0.04 Section 4.1 10,579
Deblending Section 3.2 2673

Spergel profile modeling Section 3.3, Section 4.1 2510
Completeness Section 3.4, Appendix D 2510
Measurement error and uncertainty Section 3.4, Appendix D 2510
Mass—size outlier selection Section 4.2 337 UPGs, 412 UDGs

photometry to elliptical Petrosian photometry, which is
considered to be more reliable than the photometry used in
the older versions. In this paper, we use the stellar masses
derived from the elliptical Petrosian photometry using
kcorrect v4_2 (Blanton & Roweis 2007). The redshifts
of the galaxies in the NSA come from several spectroscopic
surveys, HI gas surveys, or direct distance measurements.

3. LSBG Search in HSC PDR2

Continuing the work of Greco et al. (2018; hereafter G18),
we conducted a systematic search for low surface brightness
galaxies in the HSC PDR2 data, which covers ~1.5 times the
sky area of G18. The schematic of the searching method in this
paper remains similar to that in G18, but we do improve the
search completeness and purity by adding several new steps,
which are highlighted in this section. We outline the major
steps below and refer the readers who are already familiar with
the algorithms in LSBG searches to Section 4 for the mass—size
outlier sample construction.

1. Source  detection (Section 3.1): We  run
SourceExtractor'? (Bertin & Arnouts 1996) on
the co-added images after removing bright extended
sources. Then we apply an initial size and color cut based
on the output catalog.

2. Deblending (Section 3.2): We remove false positives that
are not likely to be LSBGs by running scarlet'’
(Melchior et al. 2018). We use the scarlet models to
define color—size-morphology—surface brightness cuts.
This step removes roughly 98% of false positives.

3. Modeling (Section 3.3): We fit a parametric model to the
LSBGs to estimate their properties, including their sizes,
total magnitudes, and average surface brightnesses.

4. Completeness and measurement biases and uncertainties
(Section 3.4) are characterized by injecting mock Sérsic
galaxies into images and recovering them following the
procedures described above.

The number of objects remaining after each step is shown in
Table 1. Our source detection pipeline hugs'® and the
deblending and modeling code kuaizi'’ are open-source
and available online.

3.1. Source Detection

G18 performed a search for LSBGs in the first ~200 deg?® of
the HSC survey and uncovered 781 LSBGs. We continued the

14 https: //www.astromatic.net/software /sextractor/
'3 hitps: / /pmelchior.github.io/scarlet/

16 https://github.com/johnnygreco/hugs

17 https://github.com/AstroJacobLi/kuaizi

work in G18 and extended the search to the HSC PDR2 data,
which cover ~300 deg” and have sky subtraction better suited
for LSB studies compared to prior data releases. We follow the
same method for source detection as in G18 but make several
updates to accommodate the PDR2 data. These updates are
guided by both our understanding of PDR2 data and
completeness tests using mock galaxies. We summarize the
main steps of the LSBG search method here and refer the
interested reader to G18 and Appendix A for more details.

We start by replacing the bright sources and their associated
LSB outskirts with sky noise. Bright objects and their diffuse light
are identified using surface brightness thresholding. We run an
additional detection using sep'® (Barbary 2016) to remove small
compact sources and noisy peaks and replace their footprints
with sky noise. Then we use SourceExtractor to detect
sources on the “cleaned” images with a low detection threshold.
Taking the output catalog from SourceExtractor, we apply
an initial selection based on the size, color, and peakiness of
objects.

After these steps, we have an initial sample that contains
86,002 LSBG candidates. We obtain 4 times more sources per
square degree (~280deg ) than G18 mainly because HSC
PDR?2 has sky subtraction suited for finding LSB features. Our
detection here is more inclusive of larger objects, and our size
cut is less restrictive for small objects. Among these objects,
there are still many false positives, including shredded galaxy
outskirts, tidal features, Galactic cirrus, and blended compact
sources. Therefore, we perform an extra “deblending” step to
further remove false positives.

3.2. Deblending

Removing false positives from the initial sample while retaining
high completeness is one of the major challenges in LSBG searches
(e.g., van Dokkum et al. 2015; Koda et al. 2015; Yagi et al. 2016;
Greco et al. 2018; Geha et al. 2017; Zaritsky et al. 2019, 2021;
Tanoglidis et al. 2021; Zaritsky et al. 2022). A common type of
false positives occurs when point-like sources are blended with
diffuse light from background galaxies or the LSB outskirts of stars
and galaxies. Our initial detection cannot distinguish them from real
LSBGs. In order to identify and remove these objects from our
sample, we perform nonParametn'c modeling of all LSBG
candidates using scarlet' (Melchior et al. 2018) and design
an effective metric to remove false positives.

3.2.1. Scarlet Fitting

Scarlet is a deblending and modeling tool designed for
multiband and multiresolution imaging data. It utilizes color

18 https://sep.readthedocs.io/en/v1.1.x
19 https: //pmelchior.github.io/scarlet/
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Figure 1. Demonstration of the deblending step described in Section 3.2 and Appendix B. Here we show two objects from our initial sample: the one shown in the top
panels is a blue LSBG, whereas the one shown in the bottom is a false positive, which is a blend between a high-z galaxy and galaxy outskirts. The first columns show
the griz color-composite images with the bounding boxes overlaid. The objects covered by the gray shades are masked during fitting. The remaining columns show the
initial model, the optimized model (PSF convolved), the residual image, and the optimized model of the target galaxy only. The red dashed circle in the rightmost

column denotes the measured half-light radius.

and morphology information to separate blended objects and
model objects in a nonparametric fashion. In the following, we
briefly summarize how scarlet works, and we refer
interested readers to Melchior et al. (2018, 2021) and the
online documentation®® for more details.

In scarlet, each source k in the cutout is described by a
morphology image S and a spectral energy distribution (SED)
vector A;. The multiband images are represented as Y. The goal
of the modeling is to minimize the objective function
f= %HY - P*(Z,CA,{T X S)|? under certain constraints,
where P is the PSF and * is convolution. The morphology
image of each source is limited by a bounding box. We assume
two constraints when running scarlet: all sources have
positive fluxes (positivity constraint), and the light profiles of
all sources monotonically decrease from the center to the
outskirts (monotonicity constraint). The monotonicity con-
straint is oversimplified for well-resolved galaxies with
complicated structures, but for objects in our sample, this
assumption still holds for most cases and provides an effective
and robust way to deblend overlapping sources. We refer to this
modeling method as vanilla scarlet.

We use vanilla scarlet to model the LSBG candidate, and
the structural and morphological parameters are then used to
exclude false positives from our LSBG sample. In the
following, we briefly describe how we detect peaks on the
image to initialize and optimize scarlet models. We refer
the readers to Appendix B for a more detailed description.

The deblending step is designed to model the sources in the
vicinity of the LSBG candidate. Therefore, we run sep on the
griz-combined image to detect objects (i.e., peaks) around the
LSBG candidate. Objects that are close to the LSBG candidate
are modeled using scarlet models. The models are
initialized based on the smoothed image to capture the LSB
outskirts of the target galaxy. Then the models are optimized

20 https: //pmelchior.github.io/scarlet/

using the adaptive proximal gradient method (Melchior et al.
2019). Typically, convergence is achieved after ~50 steps of
optimization, and the whole modeling process takes about 40 s
for a typical LSBG.

The deblending procedures are demonstrated in Figure 1
with two distinct examples. The one shown in the top panels is
a blue LSBG, whereas the one shown on the bottom is a high-z
galaxy blended with the outskirts of a nearby galaxy, which
falls in our initial sample as a false positive.

We note that the optimized model of the blue LSBG captures
its color and morphology quite well. For the false-positive case,
the optimized model has a notable bright background because
we model the sky together with all other sources. The model for
the target itself is actually very red and compact. It passes our
initial selection because the galaxy outskirts are shredded by
SourceExtractor and happen to have a large size and
similar color to our LSB galaxies. However, once modeled
using scarlet, it becomes clear that this is just a false-
positive detection and should be removed. A rubric based on
the scarlet model is therefore needed to help us identify and
exclude the false positives.

3.2.2. False-positive Removal

After running vanilla scarlet for LSBG candidates, the
target object is successfully deblended from nearby sources.
Unlike other parametric modeling methods, the nonparametric
scarlet model is flexible enough to adequately represent
galaxies with complex structures. However, the nonparametric
nature of the code means that we have to make additional
measurements to quantify the size and shape of the scarlet
model. As shown in the rightmost column of Figure 1, we
isolate the model of the target object and analyze it using
statmorph®' (Rodriguez-Gomez et al. 2019). The purpose of

2! hitps:/ /statmorph.readthedocs.io /en /latest/
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this analysis is to extract the structural and morphological
parameters of the target object. We further use these
diagnostics to remove false positives.

Statmorph calculates nonparametric morphological and
structural parameters, including effective radius, concentration-
asymmetry-smoothness statistics (CAS; Conselice 2003), and
Gini-M20 (Abraham et al. 2003; Lotz et al. 2004). The
measurement requires an image, a variance map, and a PSF.
For our purpose, the “image” is just the scarlet model
convolved with the observed PSF. The variance map and PSF
are taken from HSC cutouts. We also force the sky level in
Statmorph to be zero because the sky has already been fit
when running vanilla scarlet.

One of the most important diagnostics is the effective radius
of the object. In this paper, we refer to the effective radius as
the circularized effective radius r, defined as the
To = Feff.smay D/ @ Where regsma is the effective radius measured
along the semimajor axis of the aligned elliptical isophotes, and
b/a is the axis ratio of the isophotes.”? In statmorph, the
effective radius is calculated using elliptical apertures, where
the ellipticity € is determined by calculating the second moment
of the image. The total magnitudes are simply calculated by
summing up the model flux in each band, and colors are
defined using total magnitudes. A Galactic extinction correc-
tion is not applied at this point. The central surface brightness
Lo 1s measured by linearly extrapolating the surface brightness
profile to r— 0 using the scipy interpolation function®
(Jones et al. 2001). We define the average surface brightness
within the effective radius as

Tier = m + 2.5log,o(27r2), (1)

where m is the total magnitude.

We also use the Gini-M20 and CAS statistics. The Gini
coefficient and M20 statistics (Abraham et al. 2003; Lotz et al.
2004) quantify how concentrated/extended the flux distribu-
tion is across the image. The CAS statistics characterize the
concentration C, asymmetry A, and smoothness S of the light
distribution of the object. We refer the reader to Rodriguez-
Gomez et al. (2019) for more details on their definitions and
implementations.

To better guide us on how to use these diagnostics, we
visually inspect a subset of LSBG candidates in our initial
sample (Section 3.1) and use the classification results to help
construct the metrics. More specifically, we randomly select
5000 LSBG candidates that are matched with a MW-like host
at 0.01 <z<0.04 from the NSA catalog (see Section 4.1 for
details). We run vanilla scarlet for all of them and measure
the structural and morphological parameters as described
above. Then we do visual inspections of the griz color-
composite images with 0!5 on a side. False positives, including
tidal streams, galaxy outskirts, blends, and other artifacts
(dubbed junk), are identified during the visual inspection by
coauthors J.E.G., J.G., S.H., R.B., K.C., A.G., and E.K-F. Each
object has been inspected by at least two people. In the end, an
object is classified as junk if the number of votes as junk is
larger than the number of votes as nonjunk. In total, there are

22 We note that some authors use Teff.sma S the effective radius. We do not find
consensus in the literature regarding the most ideal definition of the effective
radius.

3 https://docs.scipy.org/doc/scipy /reference /generated /scipy.interpolate.
interpld.html

Li et al.
Table 2
Number of Objects Remaining after Each Deblending Cut
Process # junk # nonjunk # Total
Visual inspection 1661 3339 5000
Color—size—surface brightness cuts 200 1407 1607
Morphology cuts 37 1278 1305

1661 objects classified as junk. The visual inspection is
summarized in Table 2.

We first apply the following selection cuts to remove false
positives and background galaxies. They are motivated based
on the knowledge of the color distribution of LSBGs (e.g.,
Geha et al. 2017; Greco et al. 2018; Zaritsky et al. 2019;
Tanoglidis et al. 2021) and survey completeness in size and
surface brightness (Section 3.4).

1. Color:
00<g—i<12,
2. Size:

(g —r) —0.7-(g — 1] <0.25.

178 < r, < 12",
3. Surface brightness:

po(g) > 225, 23.0 < Jig(g) < 27.5 mag arcsec™2.

The color cuts here are more restrictive than the one used in the
initial detection (Section 3.1) to further remove junk and high
redshift galaxies. We not only remove objects with small sizes
but also exclude objects with large sizes and very low surface
brightness because they are mostly spurious objects. After such
cuts, there are 200 junk and 1407 nonjunk remaining. The
color—size—surface brightness cuts remove 88% of junk and
58% of nonjunk. We note that although we lose a lot of
nonjunk objects, most of them are small, red objects, which
are not likely to be LSBGs of our interest.

We further use these visual inspection results to inform how
to use morphological diagnostics. In the top panels of Figure 2,
we show the distributions of junk (red) and nonjunk (green)
in the parameter space spanned by four morphological
parameters. There is still a significant amount of junk with
high M,,, Gini coefficient, and asymmetry. Therefore, we add
another set of selection cuts to further remove junk:

1. Morphology:

€ < 0.65, Gini < 0.70, My < —1.1,
Gini < —0.136 - My + 0.37,
1.8 <C<35 A<O0S8.

The slanted demarcation line on the Gini-My, diagram is
motivated by the line used in Lotz et al. (2008) to separate
merging galaxies from normal galaxies. The bottom panels in
Figure 2 show the objects after applying the morphology
selections, which remove another 82% of junk while only
removing 9% of nonjunk. Such morphology cuts (shown as
dashed lines in Figure 2) effectively help us remove false
positives that are not likely to be LSBGs of interest.

In this way, we obtain an LSBG sample with high purity,
where 98% of the false positives are removed (see Table 2).
Therefore, our empirical selection based on the nonparametric
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Figure 2. Distribution of scarlet morphological measurements for the
LSBG candidates from our initial sample. The sample after the color—size—
surface brightness cuts is shown in the top panels. We further remove false
positives (junk; highlighted in red) by selecting their morphological
parameters (dashed boxes). Morphology cuts (bottom panels) remove another
82% of junk. In total, 98% of false positives are removed in the
deblending step.

measurements on the scarlet models successfully removes most
of the false positives and a large fraction of small red galaxies
(most likely background galaxies) in our initial sample.
Furthermore, the completeness of the real LSBG detection
remains high. In Section 3.4, we characterize the completeness
of this “deblending” step by injecting mock Sérsic
galaxies, and we achieve ~80% completeness at i (g) =
27.0 mag arcsec™> and >50% completeness at T (g) =
27.5 mag arcsec~? (Figure 3). We emphasize that the vanilla
scarlet modeling and nonparametric measurements are not
designed to measure the structural properties of the galaxies.
They are used only as a diagnostic tool to remove false
positives. We perform more detailed modeling in Section 3.3 to
measure galaxy properties for science.

Many other works have used machine-learning (ML)
algorithms to classify LSBG candidates and exclude spurious
detection. Among others, Tanoglidis et al. (2021) take the
output catalog from SourceExtractor and use the Support
Vector Machine algorithm to classify objects in their initial
sample and reduce the number of objects that are visually
inspected. Zaritsky et al. (2019, 2021, 2022) use convolutional
neural networks to classify LSBGs into binary classes based on
candidate images. These endeavors certainly help reduce the
human labor of visually inspecting tens of thousands of objects.
However, our measurement-based method is more intuitive,
reproducible, and transferable compared with many ML
methods. We will explore machine-learning methods and
compare them with our deblending cuts in future work. Future
work will also utilize information about Milky Way dust to
exclude spurious detection of Galactic cirrus (e.g., Zaritsky
et al. 2021, 2022).

3.3. Modeling

Although the vanilla scarlet modeling provides useful
information to help us remove false positives, it does not
necessarily give us reliable estimations of galaxy size, color,
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total magnitude, etc. In fact, the vanilla scarlet model
systematically underestimates the size and total flux of LSB
objects. This is because nonparametric modeling cannot
capture the faint outskirts of LSBGs very well. When doing
parametric modeling such as Sérsic fitting, we effectively apply
radial averaging within elliptical annuli and boost the signal-to-
noise ratio by binning pixels. In this case, pixels within the
same isophotal annulus are assumed to have the same intensity
and thus are strongly correlated. However, the nonparametric
nature of vanilla scarlet only assumes monotonicity, which
imposes quite weak correlations among pixels. Consequently, it
is hard for nonparametric modeling to probe very LSB features.
Furthermore, the monotonicity constraint stops the model from
growing in certain directions if there is another source along
this direction.>* As a result, the nonparametric model often
does not capture the very LSB outskirts of LSBG, thus biasing
the measurements. In the following, we explore a novel method
to perform robust parametric modeling and measurement for
LSBGs.

A traditional way of doing parametric modeling is to mask
out contaminants based on the detection segmentation map and
fit a model to the masked image. However, such fitting results
are very sensitive to the masking scheme and sky background
(e.g., Greco et al. 2018). A possible solution to this problem is
to simultaneously model all the objects in the cutout and the
sky using parametric models (e.g., Lang et al. 2016; Dey et al.
2019; Liu et al. 2022). In this work, we combine the advantage
of parametric modeling with the power of deblending in
scarlet. To be specific, we follow the spirit of deblending as
described in Section 3.2, but replace the nonparametric model
for the target galaxy with a parametric model. In this way, the
LSB outskirts of LSBGs can be better captured with the
parametric model, and the impact of contaminants is minimized
because they are modeled simultaneously in all bands with
nonparametric models. The parametric model for the target
object can also extend to the whole scene without artificially
truncating if it encounters a neighboring object.

In this work, we use the Spergel surface brightness profile
(Spergel 2010) to model the LSBGs (see Appendix C for
details). The Spergel profile is motivated by having a simple
analytical expression in Fourier space, making it easy to
convolve with a PSF. Similar to the Sérsic index, the parameter
v in Equation (Cl) (the “Spergel index”) controls the
concentration of the light profile. As shown in Appendix C,
the Spergel profile approximates the Sérsic profile very well
over the range of Sérsic indices that are relevant to the study of
LSBGs.

While other objects are initialized in the same way as in the
deblending step (Section 3.2), we initialize the Spergel model
for the target object differently. First, we initialize a vanilla
scarlet model for the target object, and we measure the
effective radius r,, total flux, and shape of the scarlet model.
The size of the bounding box is also updated to be the
maximum between 250 pixels and 10 r,. For the target, we still
require a positivity constraint, and the monotonicity is
automatically satisfied by the Spergel profile. After optim-
ization, we take the 7, in Equation (C1) as the circularized half-
light radius r, and take L as the total flux. The average surface
brightness i is calculated in the same way as in Equation (1).
The Spergel modeling results are used for studying the

24 This issue can be seen in the third column of Figure 1 where the model of
the target object never exceeds the other objects next to it.
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Figure 3. Completeness of our LSBG search as a function of the effective radius r, and the average surface brightness i ¢ (¢). The overall completeness (right panel)
comprises the detection completeness (left panel) and deblending completeness (middle panel). The dashed lines in the right panel highlight the 70%, 50%, and 20%
completeness contours. The completeness drops as we go to fainter surface brightness and smaller size. For the size range of 3" < r, < 14", we are >70% complete to

properties of LSBGs. In the following section, we assess the
quality of the Spergel modeling by injecting mock Sérsic
galaxies and comparing the recovered properties with the truth.

3.4. Completeness and Measurement Uncertainty

The completeness of the LSBG search is important not only
for understanding our search efficiency and improving the
method in the future but also for deriving the completeness-
corrected results for science purposes. Similar to many other
works (e.g., van der Burg et al. 2017; Zaritsky et al. 2021;
Carlsten et al. 2022a; Greene et al. 2022), we derive the
completeness by simulating mock LSBGs and recovering them
from the image. Using these mock galaxies, we also
characterize the measurement bias and uncertainty by compar-
ing the measured properties with the truth. We present the main
steps below and describe details in Appendix D.

A real LSBG can be missed in the detection step (Section 3.1)
or excluded in the deblending step (Section 3.2). Thus, the
overall completeness combines the detection and deblending
steps. We perform a large suite of image simulations to derive
completeness. We inject single-Sérsic light profiles (Sérsic 1963)
into the co-added images and try to recover them using the
detection method (Section 3.1), model them using vanilla
scarlet (Section 3.2), and apply the deblending cuts. The
mock Sérsic galaxies span a wide range in size 2" < r, < 21”)
and surface brightness (23 < fi ¢ (g) < 28.5 mag arcsec™?).
Detection completeness is defined as the number of detected
objects divided by the number of injected objects, whereas the
deblending completeness is defined as the fraction of objects
remaining after the deblending cuts.

We find that completeness mainly depends on size and
surface brightness. As shown in Figure 3, the detection
completeness remains high across different sizes. It drops
below 50% when the surface brightness gets fainter than
Tosr (8) = 27.5 mag arcsec 2. The deblending completeness is
very high at the bright end but starts to decline with increasing
size and decreasing surface brightness. Mock galaxies fainter
than 7i.(g) > 27.5 mag arcsec > are mostly removed by the
deblending step, likely due to the blending between compact
sources and the mock galaxy. Interestingly, the detection
completeness and deblending completeness both drop below

e (g) < 26.5 mag arcsec™2 and >50% complete to Ji;(g) < 27.0 mag arcsec™ .

40% around Ji.(g) = 27.5 mag arcsec™2. In this sense, the
detection and deblending cooperate well in terms of
completeness.

The combined completeness is shown in the right panel of
Figure 3. The dashed lines highlight the 70%, 50%, and 20%
completeness contours. The completeness drops as we go to
fainter surface brightness and smaller size. For the size
range of 3" <r,< 14", we are >70% complete to Ti.(g) <
26.5 mag arcsec > and >50% complete 0 i (g) <
27.0 mag arcsec2. Although Sérsic galaxies do not necessa-
rily resemble the morphology of real LSBGs, our completeness
based on the Sérsic model tests still sets a baseline for real
completeness. In the future, we might be more capable of
generating realistic LSBGs using deep learning techniques.

We compare our completeness with that of other LSBG
searches. Our completeness is most similar to G18, where they
also reached ~50% at Ti g (g) ~ 27.0 mag arcsec 2 and 3" <
r. < 12" (Kado-Fong et al. 2021; Greene et al. 2022), but their
completeness decreased more quickly with increasing size than
ours does. This is because HSC PDR2 has a better sky
subtraction for LSB studies than S16A in G18, and our initial
selection is more inclusive for large objects. Carlsten et al.
(2022a) searched for LSBGs in Dark Energy Camera Legacy
Survey (DECaLS; Dey et al. 2019) and Canada—France-Hawaii
Telescope (CFHT) data using a similar search algorithm to G18
and ours. They reached a completeness of ~50% at p,(g) ~
26.5 mag arcsec 2 or equivalently T . (g) = 27.5 mag arcsec >
assuming a Sérsic index n~ 1. van der Burg et al. (2016)
surveyed eight galaxy clusters at 0.044 <z < 0.063 using
CFHT data and achieved ~50% completeness at fi (1) ~
26.0 mag arcsec ™2 or equivalently i, (g) ~ 26.6 mag arcsec .
van der Burg et al. (2017) searched for LSBGs from the ESO
Kilo-Degree Survey data and achieve similar completeness as in
van der Burg et al. (2016). Mancera Pifia et al. (2019a) also
searched for UDGs in nearby clusters using the 2.5 m
Isaac Newton Telescope (INT) and achieve ~50% complete-
ness at T (r) ~ 26.5 mag arcsec™> or equivalently [ ¢ (g) ~
27.1 mag arcsec™2 . Zaritsky et al. (2021) focused on searching
for LSBGs in the SDSS Stripe82 region using DECaLS (Dey
et al. 2019) images and reach ~25% completeness at (,(g) ~

25.5 mag arcsec ™2 or equivalently 7 (g) ~ 26.5 mag arcsec >
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Figure 4. Measurement bias (defined as “truth minusmeasurement”) and uncertainty as a function of the measured angular size r, and surface brightness 7i g (g). The
colors show the bias term while the dashed contours show the constant uncertainty lines. We derive the bias in the total magnitudes from the combined bias in r,,
Ttes; (€), and color. We find that the bias and uncertainty in our measurement increase toward the fainter end. We apply the bias correction to the real LSBGs before

studying their physical properties.

for n=1. Their lower completeness might be explained by the
fact that they remove a large fraction of the sky contaminated by
Galactic dust. Tanoglidis et al. (2021) conducted an LSBG
search using the Dark Energy Survey (DES; Abbott et al. 2018)
data and reached an overall completeness of ~40% by
comparing their catalog with the deeper observations in the
Fornax cluster. Kado-Fong et al. (2021) estimated the
completeness of Tanoglidis et al. (2021) by comparing it
with G18 and found a completeness similar to GI18 at
Tegr (¢) = 25.5 mag arcsec™2 but a much lower completeness
for i.(g) > 26.5 mag arcsec2. The Dragonfly Wide Field
Survey (Danieli et al. 2020) reached ~29 mag arcsec™> for
>30 detection on scales ~1’, which is deeper than all other
surveys by sacrificing spatial resolution. In summary, our search
achieves overall high completeness compared with other works,
and we demonstrate the great power of HSC data on LSBG
studies (e.g., Huang et al. 2018a; Kado-Fong et al. 2018).

The size, magnitude, surface brightness, and shape of
LSBGs are hard to characterize because of their low-surface-
brightness nature. We characterize the quality of the structural
measurements by comparing the Spergel modeling results with
the ground truth for mock Sérsic galaxies. We find that the
measured effective radius r, tends to be smaller than the truth,
and the bias depends on the surface brightness and the angular
size. For surface brightness fainter than >27 mag arcsec™2, the
measured size can be much smaller than the truth. As a result,
the measured total magnitude m is also too faint. For the
measured average surface brightness fi g, the trade-off between
the total magnitude and size makes it less biased than the total
magnitude. Similar to Zaritsky et al. (2021), we derive the
measurement bias and uncertainties in size, surface brightness,
total magnitude, and color as a function of the size and surface
brightness. We refer interested readers to Appendix D for
details. The main results are summarized in Figure 4, where the
colors show the bias terms as a function of the measured size
and surface brightness. The size and surface brightness bias
grow with increasing surface brightness. The bias term is not a
monotonic function of the size because the size here in Figure 4
is not intrinsic. It is the bias in size measurement that makes

galaxies with large intrinsic size pile up around r, ~ 6”. We
find the bias in the g —i color to be quite small. The lo
measurement errors o(X) are shown in Figure 4 as contours,
and they have the same units as the bias. We set the minimum
uncertainties to be o(r,) = 0”3, o (i) > 0.05 mag arcsec2,
o(g — i) > 0.05 to avoid meaninglessly small uncertainties.

We apply the bias corrections to the real LSBGs, estimate
the measurement uncertainties, and evaluate the completeness
based on the bias-corrected properties. The values presented in
our catalogs (Table 3) are already bias-corrected, but we do
provide the bias values for reference.

4. Mass—Size Outliers Around Milky Way Analogs

The goal of this paper is to study the mass—size outliers in
the satellite systems of MW-like galaxies. However, distance
information is needed to convert the observed size and
magnitude to the physical size and stellar mass. It is well-
known that getting the distances to LSBGs is one of the major
obstacles to studying their properties. Besides direct distance
measurements (e.g., SAGA and ELVES; Kadowaki et al.
2021), it is common to assume a distance to an LSBG by
associating it with a host galaxy based on the projected angular
distance (e.g., van Dokkum et al. 2015; van der Burg et al.
2016; Wang et al. 2021; Zaritsky et al. 2022; Nashimoto et al.
2022). Statistical background subtraction is then needed to
account for the contribution from background and foreground
sources. Furthermore, the cross-correlation between an LSBG
sample and a host galaxy sample can also reveal the distance
distribution of LSBGs (Greene et al. 2022). These methods are
also complemented by recent machine-learning techniques
(Baxter et al. 2021; Wu et al. 2022).

In this section, we cross-match our LSBG catalog with MW-
like galaxies in the NSA catalog. For the LSBGs matched with
MW analogs, we run the deblending step to exclude false
positives (Section 3.2) and then run Spergel modeling to
measure the properties of LSBGs (Section 3.3). In the end, we
construct the samples of mass—size outliers among the satellites
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Table 3
UDG and UPG Catalog Description
Column Name Unit Description
Type Galaxy type
ID Unique LSBG ID
R.A. deg Source R.A. in decimal degrees (J2000)
Decl. deg Source decl. in decimal degrees (J2000)
Te arcsec Circularized effective radius
o(r,) arcsec Uncertainty in r,
e (8) mag arcsec > g-band average surface brightness within
r&‘
0 (Fieir (8)) mag arcsec 2 Uncertainty in i (g)
myg mag g-band apparent magnitude
o(myg) mag Uncertainty in m,
g—i mag g — i color
o(g — i) mag Uncertainty of g — i color
g—r mag g — r color
o(g—r) mag Uncertainty of g — r color
v Spergel index
€ Ellipticity
A, mag g-band Galactic extinction
A, mag r-band Galactic extinction
A; mag i-band Galactic extinction
comp Completeness
weight Importance weight
Tephys kpc Circularized physical effective radius
log M, M log stellar mass
o(logM,) M., Uncertainty in log M,
host_name Host galaxy name
host_ra deg Host galaxy R.A. in decimal degrees
(J2000)
host_dec deg Host galaxy decl. in decimal degrees
(J2000)
host_z Host galaxy redshift
host_log_m_star M, Host galaxy logl10 stellar mass
host_r_vir kpc Host galaxy virial radius
host_g_i mag Host galaxy g — i color
sep_to_host arcmin Angular separation between host and

UDG/UPG

Note. Magnitudes are on the AB system and have been corrected for
measurement biases and Galactic extinction. The information on the host
galaxies is from NASA-Sloan Atlas. We provide Galactic extinction
corrections, which are derived from the Schlafly & Finkbeiner (2011)
recalibration of the Schlegel et al. (1998) dust maps.

(This table is available in its entirety in machine-readable form.)

of MW analogs. Table 1 summarizes the number of objects
after each step.

4.1. Matching with Milky Way Analogs

The properties of the Milky Way itself vary in the literature
(Licquia & Newman 2015; Bland-Hawthorn & Gerhard 2016),
and the definitions of MW analogs vary between studies. In the
SAGA survey (Geha et al. 2017; Mao et al. 2021), MW analogs
are selected based on the absolute K-band magnitude
—23 > My > —24.6 mag (corresponding to a stellar mass
range of 10.2 < logM,/M; < 11.0) and redshift 0.005 <
7<0.01 (2040 Mpc). SAGA generally requires that the
MW analogs be in isolation (without nearby bright galaxies). In
the ELVES survey (Carlsten et al. 2021, 2022b, 2022a), the
requirements for a MW-like host are loosened to be
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My < —22.1 mag (M, > 10°° M_.) because the probed volume
by ELVES (D < 12 Mpc) is smaller than that of SAGA. In this
work, we choose the stellar mass range of our MW analog
sample to be 10.2 < logM, /M < 11.2 based on NSA stellar
mass, which is simply a 1 dex bin centered at the measured
stellar mass of the Milky Way (M, pmw ~ 10'7 M., Licquia &
Newman 2015). MW analogs selected using this definition are
very close to those in SAGA but are slightly less massive than
the ELVES hosts as ELVES has several groups more massive
than SAGA hosts. We do not discriminate between isolated or
paired hosts. We acknowledge that defining MW analogs is
tricky because of the steep mass function of galaxies and
limited survey volumes. A slight change in the mass range
could alter the number of MW analogs, and how the galaxies
populate the brighter end of mass function also matters (see
Carlsten et al. 2022a). For example, it is also possible to select
MW analogs in linear stellar mass such as 1.5 x 10" <
M, < 8.5 x 10" M.. Compared to our logarithmic selection,
such a linear selection excludes 10% of high-mass MW analogs
at 109 < logM,/M; < 11.2, and will result in lower
abundances of UDGs and UPGs. Better ways to define MW
analogs are needed and will certainly benefit the community.

Mass—size outliers, by definition, are relatively scarce
compared with “normal” satellites around MW analogs (Mao
et al. 2021; Carlsten et al. 2022a). It is therefore helpful to
probe a larger volume to obtain better statistics. We choose our
redshift range to be 0.01 < z < 0.04, which ensures that we can
detect a significant number of LSB satellite candidates around
MW-like hosts. The depth of HSC limits our detection to below
7~ 0.04 because dwarf galaxies will be too small and too
faint to be detected beyond that distance. Our search only
includes objects larger than r,=2”, which corresponds to
M, ~10*° M., at z=0.04 assuming the average mass—size
relation from Carlsten et al. (2021). We also exclude galaxies at
7<0.01 because (1) the number of mass—size outliers will be
very small due to the small volume; (2) their large angular size
makes them more vulnerable to being shredded during
detection, so including them will introduce a number of
spurious LSB objects.

After applying the stellar mass and redshift cuts to the NSA
catalog (Section 2), there are 23,218 MW-like galaxies. We
then select those within the HSC PDR2 footprint and match
them to the initial LSBG sample (described in Section 3.1,
before the deblending step) as follows.

For a given MW-like galaxy, we calculate its virial mass
based on the stellar-to-halo mass relation (SHMR) in Behroozi
et al. (2010) using halotools® (Hearin et al. 2017). The
viral mass is defined to be the enclosed mass with
p > Ayi(2)p(z), where the virial overdensity only depends on
cosmological parameters and redshift (Bryan & Norman 1998).
Then we convert virial mass to virial radius R,;, using the virial
overdensity. It turns out that 40% of our hosts have virial radii
larger than 300 kpc, which is commonly used for the virial
radius of the Milky Way. We note that the SHMR from
abundance matching might overestimate the halo mass for
massive spirals (e.g., Posti et al. 2019; Mancera Pifia et al.
2022a), implying that our sample might include LSBGs beyond
the virial radius. We also compare different SHMRs (e.g.,
Moster et al. 2013) and do not find significant differences in the
distribution of Ry;,.

» https: / /halotools.readthedocs.io/en/latest/index.html
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Then we identify any LSBG that falls inside the projected
virial radius of a host. About 40% of LSBGs are matched with
2 hosts and about 15% of them are matched with 3 or more
hosts. If an LSBG is matched to multiple hosts, we assign it to
the nearest host based on the separation normalized by the host
virial radius. There are 922 MW-like hosts and 10,579 LSBG
candidates associated with them. These MW analogs occupy a
sky area of 89.19 deg2 (out to 1 Ry;p).

As described in Section 3.2, we perform a deblending step to
effectively remove spurious objects. There are 2673 objects left
after the deblending cuts. Next, we model these remaining
objects using the Spergel profile as described in Section 3.3 and
obtain their photometry and structural parameters from the
best-fit models. We also remove duplicate objects. In the final
catalog, we are left with 2510 LSBG candidates associated with
689 MW analogs (out of 922) as our final LSBG sample. The
host number drops from 922 to 689 because many hosts in the
prior sample have no true positives as their satellites. We note
that these LSBGs are matched to MW hosts in projection but
do not have direct distance measurements, and we have not
applied any statistical background correction at this stage.

We apply the measurement bias correction (Section 3.4) and
assign completeness after bias correction. Lastly, we correct for
the effect of Galactic extinction on colors based on Schlegel
et al. (1998) and Schlafly & Finkbeiner (2011). The stellar
masses of cross-matched LSBG are derived from the Spergel
model fitting and the relation between color and mass-to-light
ratio M, /L from Into & Portinari (2013):

log (M, /Lg) = 1.774(g — r) — 0.783,
log (M, /Ly) = 1.297(g — i) — 0.855.

Kado-Fong et al. (2022) show that the UDG population can be
well described by the color-M,/L relation from Into &
Portinari (2013), which is also used in ELVES (Carlsten
et al. 2022a). We note that the stellar mass derived using the
color—-M, /L relation from Herrmann et al. (2016) and Du et al.
(2020) is ~0.2 dex lower than the one derived using the Into &
Portinari (2013) relation. In our case, because we have both the
g —rand g — i colors available from the model fitting, we use
the average M, /L derived from the two colors to calculate
stellar mass. We assume the solar absolute magnitude in the g
band to be 5.03 (Willmer 2018).

4.2. Mass—Size Outlier Sample

The concept of UDG was proposed to describe galaxies with
unusually large sizes (r, > 1.5 kpc) and low central surface
brightnesses (1,(g) > 24.0 mag arcsec™2 ; van Dokkum et al.
2015). Although UDGs are large in size, the constant size cut
does not account for the fact that the galaxy size is strongly
correlated with its mass, known as the mass—size relation (e.g.,
Graham & Guzmén 2003; Trujillo et al. 2007; van Dokkum
et al. 2013; Cappellari 2013; Lange et al. 2015). For example, a
galaxy with r, = 1.5kpc is very extended if its stellar mass is
10" M., but is normal-sized if its stellar mass is 105 M.
Thus, a more physically useful definition of puffy dwarf
galaxies (i.e., mass—size outliers) would be based on a mass—
size relation and its scatter. Following this thread, we propose a
new definition of mass—size outliers, dubbed UPGs.

It is worth noting that in several works (e.g., Lim et al. 2020;
Venhola et al. 2022), UDGs in galaxy clusters are defined as
outliers in the scaling relations between size, surface
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brightness, and total luminosity. A UDG definition based on
the mass—size relation is also used in simulation studies where
the absolute sizes were uniformly too large such that size
outliers could only be selected relative to the simulated mass—
size relation (e.g., Benavides et al. 2021, 2023). In this work,
we are proposing such a definition of mass—size outliers to be
used universally, not limited to cluster environments or
simulations.

In this section, we describe the definition of UPG and
contrast it with UDG. Then we select UDGs and UPGs from
our LSBGs matched with MW hosts. The catalogs and mosaic
images of UDGs and UPGs are available online”.

4.2.1. UPGs

To select mass—size outliers, a mass—size relation and its
scatter are needed. In general, the slope of the mass—size
relation in the nearby Universe has been shown to be color- and
morphology-dependent for galaxies above M, > 10° M, blue
star-forming galaxies have a shallower mass—size relation than
do red quenched galaxies (e.g., Lange et al. 2015). In the dwarf
galaxy regime (10°° < M, /Mg < 10%), Carlsten et al. (2021)
derive the mass—size relation from the satellites of MW analogs
in the Local Volume and show that the average mass—size
relation is quite universal: the slope and intercept are not
sensitive to the color or morphology of dwarf galaxies.
Residuals from the mass—size relation follow a log-normal
distribution reasonably well. This fact allows us to define a
subset of dwarf galaxies that are outliers with respect to the
average mass—size relation.

Taking the measured average mass—size relation from Carlsten
et al. (2021) log(r./pc) = 0.25log(M, /M) + 1.07 and a
scatter of 0 =0.18 dex, we define a population of UPGs to be
galaxies that are >1.50 above the average mass—size relation. We
note that the mass—size relation in Carlsten et al. (2021) is derived
for a mass range of 10°° M, < M, < 10*> M., so the mass—size
relation is extrapolated to M, ~ 10° M. to define our UPG
sample. We choose 1.50 because it gives us a statistically
significant sample. One can certainly select >2¢ or >30 UPGs if
a larger LSBG sample is available. The UPGs are not absolutely
large in size or absolutely faint in surface brightness, but they are
outliers in size for their stellar masses. For example, a UPG with
M, = 10" M., has a size larger than 1.2 kpc and surface brightness
fainter than Tz (g) > 25.5 mag arcsec™2 for g —i=04 and
Terr(g) > 26.8 mag arcsec ™2 for g—i=08. A UPG with
M,=10%M. has a size larger than 2.7kpc and surface
brightness fainter than T ¢ (g) > 23.7 mag arcsec™2 for g —i=
04 and Ti(g) > 25.0 mag arcsec > for g—i=0.8. The
definition of UPG based on the observed mass—size relation is
physically motivated, and better allows us to study size outliers at
a given stellar mass. We further discuss the advantages and
disadvantages of UDG and UPG in Sections 5.1 and 6.

There are 362 LSBG candidates that fall 1.50 above the
ridge line of the mass—size relation. After removing spurious
objects (e.g., shredded galaxy outskirts, cirrus, tidal feature,
blends) by another round of visual inspection and removing
objects with completeness less than 0.1, we have 337 galaxies
in our UPG sample.”” These UPGs are associated with 239
hosts. The total sky area occupied by UPG hosts (out to 1 Ry;,)

26 hitps: //astrojacobli.github.io /research/BeyondUDG/

For context, there are 155 (39) galaxies being 20 (30) above the average
mass—size relation.
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is 32.37 deg®. The catalogs are available online in machine-
readable format,”® and we demonstrate the catalog format in
Table 3.

4.2.2. UDGs

We also select a UDG sample from our LSBGs in order to
compare it with existing observations and simulations in
different environments. The UDG sample is usually defined
based on the surface brightness and physical size of the galaxy.
However, there are many different criteria in the literature: van
Dokkum et al. (2015) define UDGs to have effective radii
r, larger than 1.5kpc and central surface brightness p(g)
fainter than 24.0 mag arcsec2; other groups also use the
surface brightness at r, (e.g., Di Cintio et al. 2017; Cardona-
Barrero et al. 2020) or the average surface brightness within
r. to define UDGs (e.g., Koda et al. 2015; Yagi et al. 2016; van
der Burg et al. 2016; Leisman et al. 2017; Mancera Pifia et al.
2018, 2019a; Martin et al. 2019; Karunakaran & Zaritsky
2023). The size criterion also varies from r,>1kpc to
r.> 1.5kpc. Van Nest et al. (2022) explore these definitions
in simulations and find that different definitions of “UDG” can
drastically change the selected subset of dwarfs, therefore
affecting our understanding of the UDG population.

In practice, the measured central surface brightness might be
biased by nuclear star clusters (Neumayer et al. 2020; Carlsten
et al. 2022b; Somalwar et al. 2020) or other contaminants.
Therefore in this work, we use the average surface brightness
within the effective radius fi(g) to define UDGs. The
difference between the average surface brightness and the
central surface brightness can be analytically calculated for a
Sérsic profile: Ti — pg = 1.124 for n=1 and 0.796 for
n = 0.8 (Graham & Driver 2005; Yagi et al. 2016). As dwarf
galaxies and UDGs typically have Sérsic indices of 0.8 <n <
1.2 (e.g., van Dokkum et al. 2015; Carlsten et al. 2021), we
take T — fto = 1.0 as an average value to convert (g tO L.
In this work, we define UDGs to be galaxies with r, + o(r,) >
1.5kpe and fiy () + 0 (Fig(g)) > 25 mag arcsec 2 to take
the 10 measurement errors into account. As a result, there are a
few objects with nominally smaller sizes but large uncertainties
that scatter into our UDG sample. This definition maximizes
the consistency with the definition in van Dokkum et al. (2015)
while not losing UDGs harboring nuclear star clusters.

Among the 2510 LSBG candidates around MW analogs,
there are 432 objects satisfying the UDG definition. We did a
final visual inspection for these objects and excluded 16 objects
that are false positives including blends and Galactic cirrus. We
also removed another 4 objects having completeness less than
0.1. In the end, we obtained our UDG sample with 412 objects
(associated with 258 hosts) after searching around 689 MW
analogs. The total sky area occupied by UDG hosts (out to
1 Ry is 32.71 degz. We describe the properties of the mass—
size outliers (including UPGs and UDGs) in Section 5.1.

4.3. Background Contamination Fraction

Although we have matched LSBGs to MW analogs by
proximity in projection, the physical affiliation of LSBGs to the
host is not guaranteed. As a result, a certain fraction of galaxies
in our mass—size outlier samples are foreground or background
galaxies that fall within the virial radius of the host by chance.

8 https:/ /astrojacobli.github.io /research/BeyondUDG/
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Given the volume and the surface brightness range of our
search, contamination is most likely to be dominated by
background galaxies. In this section, we try to estimate the
contamination fraction empirically by randomly matching
LSBGs to our MW hosts and measuring the number density
of apparent UPGs and UDGs.

We randomly selected a continuous patch of sky of 24 deg?
in HSC PDR2 regardless of whether it contains MW
analogs,”®. Then we performed the same deblending and
modeling steps for the 2707 LSBG candidates detected in this
region. We also removed objects that are already in our mass-—
size outlier samples and objects with completeness less than
0.1. We also performed the same visual inspection as for UDGs
and UPGs to remove false positives. In the end, we obtained
480 LSBGs (excluding false positives) representing a popula-
tion of possible contaminants for the UDG and UPG samples.
Next, because both UDG and UPG are defined based on the
physical size, we randomly associated the 480 LSBGs with the
922 MW analogs that are surveyed in this paper. Then we
calculated the physical size of each LSBG and classified an
LSBG as an “artificial” UDG or UPG if it satisfied the
corresponding definition. We repeated such random matching
200 times. In the end, we obtained 7625 artificial UDGs and
8267 artificial UPGs. These UDGs and UPGs are “artificial”
only in the sense of being artificially associated with random
MW hosts.

In this way, the number density of artificial UDGs is
estimated to be Sypg=1.60+0.25 deg_z, and the number
density of artificial UPGs is Sypg =1.72 £0.23 degfz. The
catalogs of artificial UDG and UPGs are also available
online.* Using the number densities and the probed area of
our survey (89.19 deg® occupied by 922 hosts), we calculate
the contamination fraction for both the UDG and UPG samples.
For the UDG sample, we find fY°° ~ 35% =4 5%; for the

contam
UPG sample, the contamination fraction is f ‘éﬁg‘m ~ 45% +
6%. We take the contamination fraction into account when
calculating the abundances in Section 5.

5. Results

In this section, we compare the distributions of UDGs and
UPGs on the size—surface brightness and mass—size planes to
gain intuition on the differences between UDG and UPG
definitions. Then we present the abundances of UDGs and
UPGs and compare them with the literature.

5.1. Properties of Mass—Size Outliers

We show UDGs and UPGs on the mass—size plane in
Figure 5. To orient the reader to the mass—size plane, we first
show a schematic diagram in the left panel where regions
relevant to the definitions of UDG and UPG are highlighted. The
light blue shade shows the survey limit; we cannot effectively
probe LSBGs fainter than fi.;(g) = 27.5 mag arcsec™> (see
Section 3.4). For defining UDGs, a physical size cut and a
surface brightness cut are needed. We show the r, = 1.5 kpc cut
as a horizontal gray band (spanning from 1.1to 1.5 kpc) to
acknowledge the fact that smaller galaxies with large size
uncertainties are included in the UDG sample. The slanted

% 345° < R. A. < 351°, —1°5 < decl. < 2°5, which is not dominated by
Galactic cirrus and stars. Such a patch of sky with 24 deg” is already enough
for us to derive a background contamination fraction with small Poisson noise.
30 https: / /astrojacobli.github.io /research/BeyondUDG/
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Figure 5. Left panel: schematic diagram showing the UDG size cut (gray band), survey limit (blue shade), average mass-size relation (dark green dashed line), and
1.50 above it (light green line). The solid lines are constant surface brightness cuts at 7z (g) = 25 mag arcsec—2 for two different colors g — i = 0.4 (blue) and
g — i = 0.8 (red). The constant surface stellar mass density line is in purple, which is parallel to the solid lines. The dotted part of the green lines indicates where we

linearly extrapolate the mass—size relation to define UPGs. Right panel: The distributions of UDGs and UPGs on the mass—size plane. UDGs that are also classified as
UPGs are shown as orange squares, while UDGs that do not satisfy the UPG definition are marked as red stars. Conversely, blue triangles are UPGs that are not
classified as UDGs. The UDG sample includes a significant number of galaxies that are not mass—size outliers (falling below the 1.5¢ line), which are red in color
because the surface brightness cuts are different on the mass—size plane for blue and red galaxies.

solid lines show constant surface brightness lines with i (g) =
25.0 mag arcsec™> for two different colors (g —i=0.4 and
g —1=0.8). For our redshift range, the cosmological dimming
effect is negligible and the surface brightness is constant with
distance. The constant surface brightness lines depend on color
because of the color—M, /L relation. We also show the constant
surface stellar mass density (u.,) line, which is parallel to the
constant surface brightness lines because the surface mass
density is proportional to surface brightness multiplied by the
mass-to-light ratio. Therefore, at a given size and surface
brightness, blue UDGs are less massive than red UDGs; at a
given stellar mass and surface brightness, blue UDGs are larger
than red UDGs in size. Such a constant surface brightness cut
leads to a UDG population that is inhomogeneous in surface
mass density.

In the left panel of Figure 5, the green dashed lines show the
average mass—size relation and the 1.5¢ line above the average
relation. UPGs would lie above the 1.5¢ line by construction,
and there will be an overlap between UDGs and UPGs. The
mass—size relation is shallower than the constant surface
brightness and surface mass density lines.

We highlight the similarities and differences between the
UDGs and UPGs in the right panel. UDGs that are also
classified as UPGs are shown as orange squares, whereas
UDGs that do not satisfy the UPG definition are marked as red
stars. Blue triangles correspond to UPGs that are not classified
as UDGs. Limited by the detection limit and the fact that our
hosts lie beyond the Local Volume, our mass limit is
M, ~10°°M_, which is ~1 dex higher than ELVES.
Compared with the UPG sample, we find that the UDG sample
(orange squares + red stars) comprises a number of galaxies
below the 1.5¢ line, but also loses several low-mass galaxies
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that are above the 1.5¢ line but have sizes smaller than 1.5 kpc.
For the UDG sample, the stellar mass range only reaches
M, ~ 10%* M, because galaxies with higher stellar mass are
too bright to satisfy the UDG surface brightness criterion. On
the contrary, as the UPG definition does not have a hard surface
brightness cut, it includes many galaxies that are more massive
than UDGs provided they have an extraordinarily large size.
We also note that the mass—size relation from Carlsten et al.
(2021) is extrapolated to define UPGs in the mass range
10%° M., < M, < 10° M., where about 10% of our UPGs are
located (dotted green lines in Figure 5). However, the mass—
size relation might show color and morphology dependence for
M. >10*°M_.. As a consequence, disk galaxies might
contribute to the UPG sample at the high-mass end. We
visually checked the UPG sample and did find some blue UPGs
resembling disk galaxies at the high-mass end. A spectroscopic
follow-up would be required to confirm whether they are just
blue background galaxies. We also note that 7% of our UDGs
and 3% of our UPGs have Sérsic indices n > 1.5. We believe
these galaxies with large Sérsic indices are mostly interlopers
given the fact that ~40% of UDGs and UPGs are interlopers
(see Section 4.3). We do not consider these galaxies to derive
our conclusions given their small contribution to the whole
sample.

We also show the UDG and UPG samples on the size—surface
brightness plane in Figure 6. The galaxies are split into two color
bins and are shown in blue (g — i < 0.8) and red (g —i > 0.8),
respectively. We do not apply any background contamination
correction in Figure 6 because such corrections can only be done
in a statistical sense. The error bars correspond to 1omeasure-
ment uncertainties (Section 3.4). The two marginal plots show
the unnormalized histograms of galaxies in the two color bins.
The numbers of red and blue galaxies are similar in the UDG
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Figure 6. Distribution of UDGs (left) and UPGs (right) on the size—surface brightness plane. The UPGs are defined to be galaxies that are 1.50 above the average
mass—size relation in Carlsten et al. (2021). The samples are split into two color bins and shown in red (g — i > 0.8) and blue (g — i < 0.8). The marginal histograms
are not normalized to highlight the relative number of red and blue galaxies. Compared with the UDG sample, the UPG sample includes blue galaxies with surface
brightness higher than the UDG cut (Fi(g) < 25 mag arcsec™2 ) and excludes red galaxies at 25 < T ¢(g) < 26 mag arcsec™2, due to the color-M, /L dependence.

sample, but there are more blue galaxies than red ones in the
UPG sample. As there is no hard surface brightness cut for
UPGs, the UPG sample includes many blue galaxies with
brighter surface brightness (23 < T g (g) < 25 mag arcsec™2).
For blue UPGs (shown as blue dots), the apparent correlation
between [z (g) and r, is merely due to the fact that blue UPGs
pile up around the 1.5¢ line above the mass—size relation. Due to
the surface brightness cut (fZ.;(g) > 23.0 mag arcsec™2) in the
deblending step, there is little chance for an LSB disk galaxy
with a bright bulge to scatter into the UPG sample. The UPG
sample also loses a significant fraction of red galaxies at
25 < Jig(g) < 26 mag arcsec 2 because their stellar masses
are high but their sizes are too small to be mass—size outliers
(i.e., red stars in Figure 5).

5.2. Abundance of Mass—Size Outliers

As demonstrated by many previous studies (e.g., van der
Burg et al. 2016, 2017; Roman & Trujillo 2017b; Karunakaran
& Zaritsky 2023), the average number of UDGs per host scales
with host halo mass. While much literature focuses on finding
UDG:s in clusters and large groups, there are fewer constraints
on the UDG abundance at the lower halo-mass end. In this
section, we calculate the UDG and UPG abundances of MW
analogs and compare them with other surveys.

We define the UDG (UPG) abundance as the average
number of UDGs (UPGs) per host galaxy. We searched 922
MW analogs. In our UDG sample, there are 412 UDGs
associated with 258 hosts. After correcting for background
contamination (see Section 4.3) and completeness (see
Section 3.4), the UDG abundance of MW analogs is
Nupg =0.44 £0.05 per host. The UPG abundance in our
sample is Nypg =0.31 4+ 0.04 per host. Here we neglect the
fact that the number of satellites contained within the virial
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sphere is different from the number of satellites within a
projected cylinder with virial radius (the so-called deprojection
factor; van der Burg et al. 2017).

We compare our UDG abundance with other surveys
focused on MW analogs. In the SAGA survey (Mao et al.
2021), 6 satellite galaxies (out of 127 spectroscopy-confirmed
satellites around 36 MW analogs) satisfy the definition of
UDG. Therefore the UDG abundance in Mao et al. (2021) is
about NJASA ~ 0.17 + 0.07. In the ELVES survey (Carlsten
et al. 2022a), there are 13 UDGs out of 351 satellites with
secure distances (Pg, > 0.8) in 30 MW analogs, leading to a
UDG abundance of NS5AES ~ 0.43 4+ 0.12. If we only take
UDGs more massive than our detection limit M, > 1007 M.,
we obtain slightly lower UDG abundances of Njsitss =
0.36 £ 0.11. Because both SAGA and ELVES select satellites
based on distance measurements and do not correct for
completeness, we interpret their UDG abundances as lower
limits. Roman & Trujillo (2017a) identified 11 UDGs around
three galaxy groups in the IAC Stripe 82 Legacy Survey (Fliri
& Trujillo 2016), but it is hard to calculate a UDG abundance
due to small-number statistics. Our UDG abundance is
consistent with the value in the ELVES survey, but higher
than the value from SAGA. This might be explained by the
different photometric depths of data used. As pointed out by
Carlsten et al. (2022a) and Font et al. (2022), the SAGA
survey reaches a surface brightness depth of i (r) ~
25 mag arcsec™2, which is ~2.5 mag arcsec™> shallower than
the ELVES survey and this work. It is probable that SAGA
missed some fraction of red and lower surface brightness
galaxies. On the other hand, ELVES includes several more
massive hosts than our search and SAGA do, and consequently
bias the UDG abundance.



THE ASTROPHYSICAL JOURNAL, 955:1 (22pp), 2023 September 20

LA e o e e o e e e
4 - H+ Koda+15 4 Roman+17a -
r % Munoz+15 Roman+17b T
sk HH  LaMarca+22 Mao+21 '{;// 1
L Janssens+15 Carlsten+22 Pr ]
r W@ This work /@/ ]
o 2k ’,/.’/’ -
= i _ T ]
= T
1F — 7 .
o0 i LI
o 7 R
—_— - 7
0F =ty 7z _
"
s 4 — = vdB+17 ]
—lr = - ---- MP+18 ]
E e NUDG x M}(B.96i0.04 ]
—2 R S R S S B
12 13 14 15 16
log M}, [M)]

Li et al.
LN L R L R LN N N B B L L LN BN L |
0.5 L @  Whole UDG sample ]
0.0 F P
L é Q
& ——
—05F —@— = 5
L /_/
1.0} - .
rT ' Host log M), /M, > 12.2 ]
b Host log M, /M, < 12.2 1
—15F N}* Host g —4 < 1.2 ]
' ¥ Hostg—1i>1.2
TR TR T ST SN [N TN TN T SN NN TN S T SN [N TN ST SN T [N TN S SN N MNNY
11.75 12.00 12.25 12,50 12.75 13.00
log M), [Mc)

Figure 7. Abundance of UDGs as a function of the host halo mass. Left: We compile the UDG abundance measurements from the literature covering a wide range of
host mass. The UDG abundance from our work Nypg = 0.44 + 0.05 is shown as a red square, and the power-law relations from van der Burg et al. (2017) and
Mancera Pifia et al. (2018) are shown in gray and blue respectively. Our fitting result is shown in pink. Our UDG abundance is consistent with ELVES but
significantly higher than that in SAGA. After including more measurements at the lower halo-mass end, the power law is shallower than the relation reported in van
der Burg et al. (2017). Right: We split the UDG sample into bins based on the host halo mass (circles) and g — i color (diamonds). The UDG abundance is higher for

more massive hosts and redder hosts.

We plot the UDG abundances from these surveys in the left
panel of Figure 7, together with the results for larger galaxy
groups and clusters (Koda et al. 2015; Muiioz et al. 2015;
Roman & Trujillo 2017b, 2017a; Janssens et al. 2017; van der
Burg et al. 2017; La Marca et al. 2022). The power-law
regression result from van der Burg et al. (2017)
Nupg X M,l'”iom is shown in gray. We also show the result
from Mancera Piiia et al. (2018) Nypg M,?'S“O'm as a blue-
dashed line where they homogeneously combined the samples
in van der Burg et al. (2016) and Romdn & Trujillo (2017a).
The UDG abundance of this work is highlighted as the red
square. As shown in Figure 7, the scatter in the Nypg—M,
relation gets larger at the lower halo-mass end, but this might
be due to the small statistics in prior studies and the differences
in completeness. Our UDG abundance is marginally higher
than the prediction from van der Burg et al. (2017) but is still
consistent considering the large scatter of the power law.

Taking all data points from the literature (as shown in
Figure 7), we use the orthogonal distance regression (ODR) to
fit a power-law between Nypg and host halo mass M, and find
Nupg X M,?'%iom, shown as the red solid line in Figure 7. The
slope of the power law is shallower than that in van der Burg
et al. (2017; = 1.11 £ 0.07) but steeper than that in Romén &
Trujillo (2017a; 8= 0.85 £ 0.05). Mancera Pifia et al. (2018)
surveyed eight clusters and found a sublinear power law.
Recently Karunakaran & Zaritsky (2023) performed a similar
analysis including SAGA, ELVES, and Nashimoto et al. (2022)
data and found a slightly shallower power law of
(5=0.87+0.07. We note that their surface brightness cut for
UDGs is brighter than ours and thus they include more
“UDGs” for MW-like hosts and have a shallower power law.
One should be aware of the fact that literature results are of
different depths, often not completeness corrected and back-
ground subtracted, and UDG definitions also vary across
different studies. These effects could significantly bias the
results when combining them. Therefore we caution that the
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UDG abundance and the power-law index here should not be
overinterpreted.

In the right panel of Figure 7, we split the UDG sample into
different bins based on their host halo mass (shown as circles)
and host color (shown as diamonds). We find that the UDG
abundance is slightly higher for hosts with higher halo mass
and redder color, but the trend is stronger with host color.

Because there is little literature on UPGs, we only compare
our UPG abundance with ELVES. In ELVES, we take the 351
satellites with secure distances in 30 MW analogs and identify
36 UPGs associated with 20 hosts. Thus the UPG abundance
fraction in ELVES is NESYES = 1.20 £ 0.20. When only
selecting UPGs with M, > 10°° M., we obtain 23 UPGs in 30
MW analogs, thus Nty ss = 0.77 £ 0.16, which is slightly
higher than our UPG abundance.

Another interesting quantity is the fraction of satellites that
are mass—size outliers in a group or cluster. This fraction
represents how efficient an environment is at producing puffy
satellites. We denote this quantity as the UDG (UPG) fraction
hereafter, which characterizes the tail of the size distribution of
satellites. In order to calculate this fraction, we assume that
MW analogs have ~64+ 1 satellites with M, > 10°° M,
(Carlsten et al. 2022a). This lower limit in stellar mass is
roughly our detection limit (see Figure 5). Then for our
samples, the UDG (UPG) fraction is fypg ~ 0.07 £0.02 and
fupg =~ 0.05+0.02. In ELVES, among 351 satellites with
secure distances in 30 MW analogs, we identify 13 UDGs
associated with 10 hosts and 36 UPGs associated with 20 hosts.

Thus the UDG fraction in ELVES is f°5YES ~ 0.04 & 0.01,

and the UPG fraction in ELVES is £/ ~ 0.10 £ 0.02. We
further only select ELVES galaxies with M, > 10°° M, and
find the same UDG and UPG fractions. We also compare our
results with results in the Virgo cluster. Taking the data from
the Next Generation Virgo Cluster Survey (NGVS; Ferrarese

et al. 2020) and only considering satellites with M, > 10%° M,
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there are 14 UDGs and 17 UPGs out of 218 identified satellites
(with no completeness correction). Thus their UDG (UPG)
fraction is f)UE a2 0.06 & 0.02 and £} ~ 0.08 =+ 0.02.
However, we note that Ferrarese et al. (2020) only survey the
central 4 deg” of the Virgo cluster, which probably biases the
UDG (UPG) fraction. We interpret our UDG and UPG
fractions to be consistent with ELVES and NGVS. However,
we emphasize that it is challenging to compare across various
searches due to the differences in the host sample selection,
depth, completeness, and contamination estimation. In the
future, a more systematic and careful comparison of UDG
(UPG) fractions in different environments is needed.

6. Robust Identification of Mass—Size Outliers

In Figure 5, we find that combining a hard physical size cut
with a surface brightness cut carves out an interesting region of
the mass—size plane that is complicated in two ways. On the
one hand, there are many galaxies classified as UDGs that are
not size outliers at M, ~ 10”> M, (highlighted as red stars in
Figure 5). On the other hand, the hard surface brightness cut
corresponds to very different surface mass densities between
red and blue UDGs, making it hard to directly compare them,
as they occupy different regions on the mass—size plane. For a
given stellar mass and size (e.g., at M, ~ 10> M, and r, =
1.5 kpc), the hard surface brightness cut in the UDG definition
preferentially removes blue galaxies because their surface
brightnesses are higher and their M, /L ratios are lower. Thus,
red UDGs are overrepresented. If one calculates the quenched
fraction of UDGs as a function of the stellar mass, it will be
biased high because of this constant surface brightness cut in
the UDG definition (see Li et al. 2023). These limitations of the
original UDG definition are also discussed in Trujillo et al.
(2017) and Mancera Pina et al. (2018).

It is worth emphasizing that the concept of UDG was
originally proposed in a cluster context (e.g., van Dokkum et al.
2015) where UDGs are far less diverse in stellar populations
compared with field UDGs, hence the sample selection suffers
less from the effect of color—M, /L relation. However, UDGs
are not all red and quiescent. Blue UDGs are found in less
dense environments and fields. Therefore, the concept of UDG
might not be optimal for systematic studies outside of a cluster
environment; more specifically, to study diffuse dwarf galaxies
with a range of colors in different environments, a more stellar-
population agnostic criterion must be adopted to select
samples. The UPG is defined based on the average mass—size
relation and thus alleviates some of the issues in the UDG
definition. UPGs are defined to lie 1.50 above the average
mass—size relation of the satellites in MW analogs in the Local
Volume. The specific value above the average mass—size
relation can be varied to probe different parts of the size
distribution. We advocate studying the UPG population in both
observations and simulations to explore samples with different
“puffiness” (e.g., comparing UPG at 1.5¢ and 20 from the
mass—size relation).

Because the UPG is a physically motivated selection, to use
the UPG criteria, one needs to know the distance, color, a
color—M, /L relation to convert observed magnitudes to stellar
mass, and a mass—size relation and the scatter therein. None of
these are easy to obtain or free from systematic errors. Both
size and stellar mass could have large uncertainties in the LSB
regime. One also needs to apply a surface brightness cut (such
as o (g) > 23.0 mag arcsec™?2 in this work) to make sure that
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the UPG sample is not dominated by disk galaxies with high
surface brightness due to the bulges. In Section 4.3, we find
that the UPG sample has a higher contamination fraction than
the UDG sample. As the UPG definition does not preferentially
exclude blue LSBGs, many background disk galaxies can be
misidentified as UPGs. Based on our tests, a UPG sample with
a more aggressive cut (e.g., >20 above the average mass—size
relation) would have a higher purity, but building a significant
sample of these is only possible when one has a much larger
and deeper LSBG sample.

Our definition of UPG greatly benefits from the well-
measured mass—size relation in Carlsten et al. (2021) and the
fact that this mass—size relation is independent of galaxy color
and morphology. However, such mass—size relations are not
always available for all galaxy mass ranges and environments
(in the field or in groups and clusters). Carlsten et al. (2021)
derive the mass-size relation of satellite galaxies of MW
analogs below M, ~ 10%> M and find it similar to the mass—
size relation of field late-type dwarfs in Karachentsev et al.
(2013). Lange et al. (2015) have relativelg good constraints on
the mass—size relation above M, ~ 10° M.. However, the
mass—size relation at 10%° M. <M, < 10}"5 M., has been
shown to be very shallow for red galaxies (Smith Castelli
et al. 2008; Misgeld et al. 2008; Misgeld & Hilker 2011;
Eigenthaler et al. 2018), and its dependence on color,
morphology, or environment is still unclear. In this work, we
simpl%f extrapolate the Carlsten et al. (2021) mass—size relation
to 10° M. However, it is not clear whether the mass—size
relation at 10*° M. < M, < 10° M, is sensitive to color or
morphology. Future work should revisit the mass—size relation
in this regime.

At the same time, whether the size distribution for a given
mass can be well-described by a Gaussian distribution is still a
question. Figure 9 in Carlsten et al. (2021) shows the residual
in log(r,) after fitting the mass—size relation, where the
distribution of residuals is roughly Gaussian but skewed
toward the large-size end. With enough statistics in the future,
one might be able to characterize the shape of the large-size tail
and define UPGs based on the percentiles of the size
distribution (Greene et al. 2022). However, there are also
other size definitions that may help reduce the scatter in the
mass—size relation (e.g., Miller et al. 2019; Mowla et al. 2019;
Trujillo et al. 2020; Chamba et al. 2022) and can further refine
the UPG definition proposed in this work.

In the right panel of Figure 5, we also plot the lines of
constant average surface mass density, which are steeper than
the mass—size relation but have the same slope as constant
surface brightness lines. Hence, a possible improvement to the
selection of diffuse galaxies could be to select galaxies with
low-surface mass density. Similar to the method proposed in
this work, this method also alleviates the artifacts introduced by
the color—M, /L relation on the mass—size plane. We defer the
exploration of this definition to future work.

7. Summary

In this work, we perform a search for low surface brightness
galaxies in HSC PDR2 data and construct samples for mass—
size outliers around MW analogs at 0.01 < z < 0.04. Besides
the UDGs, we define ultra-puffy galaxies (UPGs) to be 1.5¢
above the average mass—size relation. We calculate the
abundances of mass—size outliers and compare them with
literature. We also argue that UPGs better represent the large-
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size tail of the dwarf galaxy population. Our main findings and
prospects are summarized below.

1. Using the HSC PDR2 data (~300 degz), we conduct a
systematic search for LSBGs using the method in Greco
et al. (2018) complemented by our new deblending and
modeling methods. Utilizing the nonparametric models
generated by scarlet, we design a metric based on
morphological parameters to effectively remove false
positives in the initial LSBG sample. We measure the
structural properties of LSBGs using parametric model-
ing and carefully characterize the measurement biases
and uncertainties. The completeness of the search is also
derived by injecting mock galaxies. Our LSBG search
achieves high completeness compared with other
searches and demonstrates the power of HSC (and future
LSST) data for LSB science.

2. By matching LSBGs with MW analogs in the NSA
catalog, we construct samples of mass—size outliers
including UDGs and UPGs. We display their distribu-
tions on the mass—size plane (Figure 5) and the size—
surface brightness plane (Figure 6). The UPG sample
contains more blue and higher surface brightness galaxies
than the UDG sample. In contrast, the UDG sample
includes many red galaxies below 1.5¢ from the average
mass—size relation.

3. After correcting for background contamination and
completeness, the UDG abundance in MW analogs is
Nypg = 0.44 £ 0.05 per host and the UPG abundance is
Nypg =0.31 £0.04 per host. Our UDG abundance
agrees with ELVES quite well but is much higher than
that in SAGA. We obtain a UPG abundance lower than
that in ELVES.

4. Combining data from studies in denser environments, we
find that the UDG abundance follows a sublinear power
law with the host halo mass. The power-law slope agrees
with other studies considering the errors. We caution that
each study adopts different UDG definitions and may or
may not correct for completeness, which could bias the
results.

5. For an MW analog, on average, about 7% =+ 2% of its
satellites are UDGs and about 5% £ 2% of its satellites
are UPGs. Our UDG and UPG fractions are consistent
with ELVES and NGVS.

6. We advocate the concept of UPG, which is physically
motivated, does not introduce artifacts in the mass—size
distribution, and better represents the large-size tail of
dwarf galaxy population.

This paper presents the UDG and UPG samples and explores
their abundances. In our Paper II (Li et al. 2023), we study their
size and spatial distributions and their star formation status.
This study is focused on a small subset of LSBG candidates
matched with MW analogs. In future work, we would like to
exploit the full sample to study interesting topics on LSBGs
including their redshift distributions, nucleation fractions, and
intrinsic shapes. We will also explore machine-learning
techniques to help us classify LSBGs and estimate structural
parameters. With the upcoming LSST (Collaboration et al.
2009; Ivezi¢ et al. 2019), we will be able to study the LSBG
population with much greater statistical power and gain new
insights into the formation and evolution of mass—size outliers.

Li et al.
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Appendix A
LSBG Detection

In this appendix, we provide a more detailed description of
our LSBG search method and how it is different from G18.
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A.l. Bright Source Removal

Bright sources and their associated LSB outskirts can mimic
objects of interest and obstruct the detection of LSBGs. In this
step, we replace pixels related to bright sources and small
compact sources with sky noise. The bright sources and their
diffuse outskirts are detected in the i band by applying a high
thresholding and a low thresholding to the image, respectively.
We associate a diffuse light component with a bright source if
more than 15% of its pixels are above the high threshold. In
this way, we generate a footprint of bright sources and their
associated LSB components. Then for the gri bands, we replace
every pixel within this footprint with Gaussian noise, where the
noise level is determined by masking out all detected sources in
the image.

In G18, the thresholds are set based on the noise level of the
local sky. Thanks to the global sky subtraction in HSC PDR2,
LSB features are well conserved after subtracting the sky and
the sky noise level varies less than in prior reductions. We
therefore set the thresholds based on the characteristic surface
brightness instead of a certain sigma value above the sky
background. In this work, we set the high threshold to
Ihigh = 22 mag arcsec™> to capture all bright sources above
this surface brightness, and the low threshold to
Hiow = 24.5 mag arcsec ™ to capture the associated diffuse
light. Unlike in G18, we find it unnecessary to smooth the
image prior to the thresholding based on our completeness tests
(see Section 3.4, Appendix D).

After this step, there are still a number of small and compact
LSB objects, which are typically marginally resolved galaxies,
blended sources, or just pixels standing out because of noise
fluctuation. We add an extra step to detect and remove them as
our main goal is to detect extended LSBGs. We run sep on the
“cleaned” images as described above. Based on the segmenta-
tion map, we generate a mask for sources smaller than
min = 2", and pixels within this mask are also replaced by sky
noise. This step significantly improves the purity of LSBG
search. The values of (1tp;gn, 110y Tmin) are chosen by trial and
error, but guided by the completeness tests.

A.2. Source Extraction

We use SourceExtractor to detect sources on the
“cleaned” images where the bright sources and small compact
sources are replaced by sky noise. This step remains largely the
same as in G18. The images are convolved with a Gaussian
kernel of FWHM = 1” to enhance the contrast between
LSBGs and sky background (e.g., Irwin 1985; Akhlaghi &
Ichikawa 2015; Greco et al. 2018). We take a mesh size of 43"
(double the mesh size used in G18 to allow bigger galaxies in
our sample) to measure the local background and detect objects
that are 0.7¢ per pixel above the local sky background. We also
require the object to contain at least 100 contiguous pixels
(equivalent to a square box with 1”7 on a side) to further
remove small compact objects. We perform the detection in the
g band, but require that all sources are also detected in the r
band to exclude spurious detection and artifacts.

A.3. Initial Sample Selection

We take the output catalog from SourceExtractor and
remove those objects that are not likely to be LSBGs based on
their sizes and colors. To be specific, we require objects to have
g-band half-light radii (measured by SourceExtractor)
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greater than r,,;, = 2.0”. We also require the measured colors to
satisfy —0.1<g—i<1.4 and |[(g—r) —0.7-(g—1i)|<04.
This color box is relatively conservative with respect to the
color distribution of discovered LSBGs (e.g., Geha et al. 2017;
Greco et al. 2018; Zaritsky et al. 2019; Tanoglidis et al. 2021).

Compared with G18, we add a new metric based on the
morphology of sources to further remove compact point-like
sources. For each source, we compute the ratio between the 2D
autocorrelation function (ACT) within an aperture of 5 pixels
and the ACT within an annulus between 5 pixels and 9 pixels
from the center. The ACT ratio essentially characterizes the
peakiness of the source. We expect extended LSBG to have a
strong correlation across a large number of pixels, making the
ACT less peaky than point-like sources. Thus we apply a cut on
the ACT ratio a.., < 2.5 to remove point sources. This step
helps to improve the purity of our sample.

Appendix B
Deblending details

In Section 3.2, we briefly introduce how we use scarlet
to model the LSBG candidates in a nonparametric fashion and
filter out false positives based on the structural and morpho-
logical parameters. In this appendix, we describe details of the
implementation of vanilla scarlet to help interested readers
better understand the technique.

B.1. Peak Detection

We generate cutout images with a size of 1’ in the griz bands
for each LSBG candidate in our initial sample. We then
construct a detection image by taking an average of the four
bands weighted by the inverse variance of each band. This
detection image is considered to be deeper than the single-band
images. Next, we run sep on the detection image using a
threshold of 40 above the sky, a mesh size of 48 pixels (8”),
and a kernel size of 3 pixels. This step identifies extended
sources in the detection image. However, there are still faint
and compact peaks not detected. We apply a wavelet
decomposition to the detection image (Starck et al. 2015) and
only keep the high spatial frequency components (also see
Zaritsky et al. 2019 for an example of using wavelet filtering in
the context of LSBGs). Another round of sep is run on this
high-frequency image using a detection threshold of 2.50, a
mesh size of 24 pixels, and a kernel size of 3 pixels. This step
detects many compact sources that were not included in the
previous step. In the end, we combine the two detection
catalogs and remove duplicates.

B.2. Model Initialization and Optimization

After the peak detection step, we need to decide which peaks
to model. It is not necessary to model all detected peaks
because the deblending step is designed to model the sources
only in the vicinity of the target LSBG candidate. Therefore,
the size of the target object determines which peaks are
relevant. Nevertheless, it is also important to choose the
appropriate model for each source and initialize them as best as
possible. In practice, we draw a square bounding box around
the target object and model all the peaks inside this box. The
bounding box is in turn determined as we initialize the model
for the target object. We describe the procedures as follows.
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First, in vanilla scarlet, objects can be modeled with
different types of models* including a point source, single-
extended source, multi-extended source, compact source, and
flat-sky source. The morphology image of a point source is
simply the normalized PSF model. The single-extended source
has a morphology image that follows positivity and mono-
tonicity constraints. The multi-extended source is a combina-
tion of two or more co-centered single-extended sources,
making it possible to model galaxies with more complex
structures and capture any color gradients. The compact source
is a single-extended source initialized using the morphology
image of a point source, which encourages the model to be
compact, but still allows the morphology image to be extended.
The flat-sky source has uniform color and morphology within
the bounding box.

For modeling the LSBG candidates, we use an extended
source model with two components such that the model is able
to capture the galaxy structure and color gradient. The target
source is initialized in the following way. We convolve the
detection image with a circular Gaussian kernel with o=
1.5 pixels to boost the contrast between the signal and the sky
noise. After smoothing, the LSB outskirts of the target galaxy
become more prominent, which helps in determining the
bounding box and initializing the morphology image. We take
the smoothed image and threshold it with 0.10 to remove the
sky noise. The initial morphology image S; is determined by
constructing a symmetric and monotonic approximation to the
smoothed image around the target object. The initial SED
vector A; is set to be the sum of the morphology matrices S; in
each band. As a byproduct of initialization, we get a bounding
box from S; which indicates the extent of the target object.
Consequently, the size of the bounding box depends on the
smoothing kernel and the threshold. We choose the above
values by trial and error such that the box is not so large as to
include many irrelevant peaks, but not so small as to lose a
significant fraction of LSB outskirts of the target galaxy.

Then we take all peaks within the bounding box of the target
galaxy and initialize them in the same way as described above.
Recall that we have two rounds of peak detection
(Appendix B.1), focusing on extended and compact sources
respectively. Extended objects detected in the first peak
detection step are modeled as single-extended sources.
Compact objects that are only detected in the second peak
detection are modeled as point sources if their FWHM <
5 pixels, otherwise as compact-extended sources. We also add
a flat-sky source to model the local sky around the target. This
is helpful for situations where an object overlaps with the LSB
outskirts of a bright galaxy (e.g., the bottom panel in Figure 1).
We note that adding a flat-sky source could significantly
change the size and total magnitude of the scarlet model.

Although we only model peaks within the bounding box of
the target, the scattered light from nearby bright stars and
galaxies could bias the modeling of the sources within the
bounding box (e.g., the yellow star in the top left panel of
Figure 1). We match our field with the Gaia catalog (Gaia
Collaboration et al. 2016, 2018) and mask out stars outside of
the bounding box. As we have already detected peaks
throughout the whole cutout image, we also generate a mask
for objects outside the bounding box to reduce the impact of

40 https: //pmelchior.github.io/scarlet/ 1-concepts.html#Source
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scattered light from bright galaxies on the modeling of the flat-
sky source.

The optimization process uses the adaptive proximal gradient
method (Melchior et al. 2019), which is a robust method for
optimization with constraints. The model is considered to be
converged when the relative changes of parameters are smaller
than e_rel=2e-4. Typically, convergence is achieved after
~50 steps of optimization and the whole modeling process takes
about 40 s for a typical LSBG. It takes longer when the target
galaxy has a large angular size as more peaks are modeled. We
note that scarlet only finds the maximum likelihood
estimation of the model instead of deriving the full posteriors,
thus a good initialization becomes especially important for fast
convergence.

Appendix C
Spergel profiles

In this appendix, we demonstrate that the Spergel profile can
approximate the Sérsic profile and provide a lookup table for
the correspondence between the Sérsic index n and Spergel
index v.

The surface brightness of a Spergel profile has the form
(Spergel 2010):

62L0 cr
L(r) = 2220 | 2|, Cl1
(r) 27”02)? ( " ) (&)
where
uY K,(u)
== — C2
1, () (2) T(w+1)° €2

and K,(u) is the Modified Bessel function of the second kind.
The half-light radius is ry, the total luminosity is Ly, and c,
satisfies the equation (1 + v)f,. (c,) = 1/4. The Spergel profile
has a simple analytical expression in Fourier space, making it
easy to convolve with a PSF.

The surface brightness of a Sérsic profile follows (Sérsic 1963;
Graham & Driver 2005):

1/n
1(r) = Ieexp{—b,,l(i) - 1]}
Te

where r, is the half-light radius, I, is the surface brightness at
r=r, and n is the Sérsic index. The value of b, satisfies
I'(2n) = 2v(2n, b,), where ~(a, x) is the incomplete gamma
function. According to Graham & Driver (2005), the total
luminosity of a Sérsic profile is given by

Lo = L2 27tn e (b,) 2T (2n). (C4)

To study the correspondence between Sérsic and Spergel
profiles, we generate Sérsic 1D profiles with different Sérsic
indices using astropy,*! and try to fit the Sérsic profiles
using the Spergel model. The Sérsic index ranges from n =0.5
to n=4.5, and both profiles are normalized at the half-light
radius (see the right panel in Figure 8). For each Sérsic profile,
we calculate the total luminosity L, according to Equation (C4)
and plug it into the Spergel profile (Equation (C1)) as a fixed
value. Therefore, only the Spergel index v is allowed to vary
during the fitting. The fitting uses the least-squares fitting with

(C3)

*! heps: //docs.astropy.org/en/stable /api/astropy.modeling.functional
models.Sérsic1D.html
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Figure 8. Correspondence between the Sérsic profile (Equation (C3)) and the Spergel profile (Equation (C1)). We fit a Spergel profile to each Sérsic while fixing the
total luminosity and half-light radius. The black line in the left panel shows the best-fit Spergel index v as a function of the Sérsic index n. We also provide a symbolic
approximation to this relation in Equation (C5), shown as the gray dashed—dotted line. In the right panel, two Sérsic profiles (solid) and their best-fit Spergel profiles
(dashed—dotted) are shown. The Spergel profile approximates the Sérsic profile well at a small Sérsic index.

Levenberg—Marquardt algorithm implemented in astropy.
modeling. fitting,* which is a commonly used robust
algorithm to solve nonlinear least square fitting problems. The
best-fit Spergel index v as a function of the Sérsic index n is
shown in the left panel of Figure 8. A Spergel profile with
v=0.5 is exactly an exponential profile with n=1. The de
Vaucouleurs profile (de Vaucouleurs 1948) with n =4 can be
approximated by a Spergel profile with v=—0.74. As two
examples, we show two Sérsic profiles (solid) and their best-fit
Spergel profiles (dashed—dotted) in the right panel. Overall, the
Spergel profile provides a good approximation for the Sérsic
profile.

As shown in Figure 8, a Sérsic profile with a small Sérsic
index (0.5 <n < 1.5) can be well-approximated by a Spergel
profile, although the Spergel profile seems to be more extended
than Sérsic in the outskirts. For a Sérsic profile with a high
Sérsic index, the approximation gets worse at both small and
large radii. Overall, the Spergel profile is a good approximation
to Sérsic from n=~<0.5 to n~4.5. Using the symbolic
regression package PySR (Cranmer 2023), the best-fit relation
between n and v for 0.5 <n < 4.5 is given as follows:

v = 1.06 =23 cos(sin(3.74/n))!/2 — 0.365 n!/2.  (C5)

It is well-known that the light profiles of low-mass galaxies
are quite flat and can be described using Sérsic profiles with
0.5 <n < 1.5 (e.g., van Dokkum et al. 2015; Lange et al. 2015;
Greco et al. 2018; Zaritsky et al. 2021; Carlsten et al. 2021). It
is thus reasonable to use Spergel profiles to model the LSBGs
(Section 3.3) and enjoy its convenience in Fourier space.

Appendix D
Completeness and Measurement Uncertainty
D.1. Completeness

The total completeness is a multiplication between the
detection completeness and deblending completeness. Below

42 https: //docs.astropy.org/en/stable /api/astropy.modeling.fitting.
LevMarLSQFitter.html#astropy.modeling.fitting. LevMarLSQFitter
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we describe how we generate mock galaxies and derive the
recovered fraction.

To estimate the detection completeness, we inject ~700,000
mock galaxies with single-Sérsic light profiles into the co-
added images. The mock galaxies are generated using GalSim
(Rowe et al. 2015) and are injected after being convolved with
HSC PSF generated by hscPipe. We directly inject the mock
galaxies into the co-added images without adding extra noise.
The galaxies are placed randomly on the image but we require
all mock galaxies to be separated by at least 80" from each
other to minimize the impact of mock galaxies on the image
noise properties. We have also done extensive tests on injecting
mock galaxies into the raw images, adding Poisson noise, and
going through the entire data reduction pipeline using
SynPipe (Huang et al. 2018b). This is very expensive in
terms of both CPU time and disk space as we must run the full
hscPipe. However, we find no noticeable difference in the
completeness between this method and the direct injection to
co-added images.

To resemble the real LSBG population in G18, we generate
mock galaxies following uniform distributions in size 2" <r, <
21"), surface brightness (23 < fi.;(g) < 28.5 mag arcsec™2),
Sérsic index (0.8 < n < 1.2), and ellipticity (0 < € < 0.6). They are
randomly assigned to have a blue (g —i=047, g—r=0.32),
medium (g—i=0.64, g—r=043), and red (g—i=0.82,
g —r=0.56) color with equal chance. The ranges spanned by
these colors and Sérsic indices cover most of the observed LSBGs
in G18. Then we run the detection step described in Section 3.1
and cross-match the detection catalog with the input mock galaxy
catalog to calculate completeness. We split the size and surface
brightness range into 15 bins with Ar,=0786, Al (g) =
0.33 mag arcsec™2, and interpolate over bins using an isotropic
Gaussian kernel with o =0.5. We note that the size and surface
brightness shown in Figure 3 are all the intrinsic values for the
mock galaxies, which are different from the measured ones. We
find negligible dependence of detection completeness on the Sérsic
index, color, and ellipticity. Therefore, we neglect the dependence
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Figure 9. Distribution of UPGs (blue) and mock galaxies (red) in g — i color, ellipticity, and Sérsic index n. We translate the Spergel index to the Sérsic index using
Equation (C5). The mock galaxy population represents the real UDG/UPG population well.

of detection completeness on parameters other than size and
surface brightness hereafter.*’

For the deblending completeness, we inject 5000 mock
Sérsic galaxies into the co-added images and run vanilla
scarlet on them. The mock galaxies follow the same
uniform distribution in size, surface brightness, ellipticity, and
Sérsic index as for deriving the detection completeness, but
follow a Gaussian distribution in color: g — i ~ N(0.6, 0.22),
g—r 0.7 - (g — i) + MN(0, 0.03%). We show the distri-
bution of mock galaxies and UPGs in Figure 9. This mock
galaxy population represents the real UDG/UPG population
well. To be specific, the Gaussian color prior covers 86% of the
UPGs within 1.50, the ellipticity prior covers 98% of them, and
the Sérsic index prior covers 60% of them. We measure the size
and surface brightness on the scarlet models of the mock
galaxies, then we apply the deblending cuts. We also find that
the deblending cut mainly depends on the size and surface
brightness.

D.2. Measurement Bias and Uncertainty

Due to the low-surface-brightness nature of LSBGs, their
size, magnitude, surface brightness, and shape are hard to
characterize and are typically associated with large uncertain-
ties. Haussler et al. (2007) used mock single-Sérsic galaxies
and parametric fitting codes to demonstrate that the estimated
size and total magnitude are sensitive to local sky estimation
and masking of neighboring objects. In the low-surface-
brightness regime, the measured size and total magnitude can
be quite biased and have large uncertainties. Therefore,
measurement bias and uncertainty must be considered when
studying the properties of LSBGs. Zaritsky et al. (2021, 2022)
characterized their measurement bias and uncertainty by
injecting mock Sérsic galaxies into co-added images and
compared the recovered properties with the truth. Tanoglidis
et al. (2022) recently proposed a new method to estimate the
measurement error using a Bayesian neural network. In this

3 We performed a smaller set of image simulations where we extended the
ellipticity range and also simulated galaxies with additional structures (such as
star-forming clumps). We find the completeness declines for ¢ > 0.6,
suggesting that edge-on disk galaxies may be missing from our sample. Please
see Greene et al. (2022) for more details.
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paper, we simply take the former method because of its
simplicity.

In order to test how well we recover the photometric and
structural parameters in our measurements (Section 3.3), we
take the 5000 mock Sérsic galaxies used for computing the
deblending completeness and model them using the Spergel
light profile. We model the bias and uncertainty in size, surface
brightness, total magnitude, and color as a function of other
parameters including size, surface brightness, and shape.
However, we do not find any significant dependence of the
bias on color, ellipticity, and the Spergel index. Thus we just
model the bias and uncertainty as a function of the measured
angular size r, and surface brightness 7i g (g).

Given the size and surface brightness of our simulated
galaxies, we set the range of the observed size and surface
brightness to be r, € [1”, 15"], T (8) € [23, 29] mag arcsec 2.
We then split the observed 7, — Ji(g) plane using an 8 x 8
grid, and calculate the mean bias AX = Xy — Ximeas Within each
bin, where X = {fi(g), g — i, g — r}. For r,, we calculate the
relative bias Ar,/r, instead because it is less dependent on the
angular size. Then we interpolate over the grid using a multi-
quadratic kernel** with epsilon=0.5, smooth=1. Unlike
Zaritsky et al. (2021) where they fit models in the 4D space, we
find that interpolation works well enough in 2D and we do not
use polynomial fitting to avoid meaningless results outside of
the fitting range. We emphasize that the bias and uncertainty
are modeled to be functions of the measured properties, not
intrinsic ones, such that we can correct for bias based on our
measurements.

For LSBGs in our sample, we apply corrections for the bias
using the interpolated bias terms. We first correct for the bias in
size, g-band average surface brightness, and g —r and g —i
colors. Then we calculate the g-band total magnitude following
me = T(8) — 2.5 log(27rrez). The magnitudes and surface
brightnesses in other bands are derived using g-band
magnitude, surface brightness, and colors. In this way, we
apply a self-consistent correction for the measurement biases to
the data. The measurement uncertainty consists of a statistical
uncertainty, which is determined by the shape of the likelihood

a4 https: //docs.scipy.org/doc/scipy /reference /generated /scipy.interpolate.
RBFInterpolator.html



THE ASTROPHYSICAL JOURNAL, 955:1 (22pp), 2023 September 20

(posterior) surface, and a systematic uncertainty, which is
related to various factors including sky subtraction, neighbor
contamination, etc. Unlike other parametric modeling codes
such as imfit (Erwin 2015) and the Tractor (Lang et al.
2016), scarlet does not explore the full posterior space but
rather finds one optimal solution. Thus we have no access to
the statistical error on the measured properties from scarlet.
Fortunately, by comparing the recovered properties of mock
galaxies with the truth, we can empirically estimate the
measurement uncertainty without knowing the impact of each
factor. Following the same method as that of calculating the
bias, in each bin we compute the 1o standard deviation of the
difference between the truth and the bias-corrected measure-
ment, then we interpolate over the grid. The measurement
errors o(X) are shown in Figure 4 as contours, and they have
the same units as the biases. We set minimum uncertainties to
be o) = 0.3, o(fi) = 0.05, 0(g — i) > 0.05 to avoid
meaningless uncertainty due to small statistics.
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