
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024 1387

PATH: Evaluation of Boolean Logic Using
Path-Based In-Memory Computing Systems
Sven Thijssen , Muhammad Rashedul Haq Rashed , Sumit Kumar Jha, Senior Member, IEEE,

and Rickard Ewetz , Member, IEEE

Abstract—In-memory computing using nonvolatile memory is
a promising pathway to accelerate data-intensive applications.
While substantial research efforts have been dedicated to exe-
cuting Boolean logic using digital in-memory computing, the
limitation of state-of-the-art paradigms is that they heavily rely
on repeatedly switching the state of the nonvolatile resistive
devices using expensive WRITE operations. In this article, we
propose a new in-memory computing paradigm called path-based
computing (PATH) for evaluating Boolean logic. Computation
within the paradigm is performed using a one-time expensive
compilation phase and a fast and efficient evaluation phase. The
key property of the paradigm is that the execution phase only
involves cheap READ operations. First, we define an analogy
between binary decision diagrams (BDDs) and one-transistor one-
memristor (1T1M) crossbars that allows Boolean functions to
be mapped into crossbar designs. When such crossbar design
becomes too large to be physically realizable, we propose to
synthesize the Boolean function into a PATH system. A PATH
system consists of a topology of staircase structures. A staircase
structure is a cascade of hardwired crossbars, which mini-
mizes intercrossbar communication. We evaluate the proposed
paradigm using ten circuits from the Revlib benchmark suite,
eight control circuits of the EPFL benchmark suite, and eight
ISCAS85 benchmarks. Compared with state-of-the-art digital
in-memory computing paradigms, PATH improves energy and
latency with 1006× and 10× on average, respectively.

Index Terms—Design automation, logic design, reconfigurable
logic.

I. INTRODUCTION

T
HE GROWTH of digital data accelerates at a high pace.
In 2025, the total amount of digital data is expected to

be 175ZB [1]. This growth is driven by a variety of factors,
one being the collection of sensor data using IoT devices [2].
The development of 5G and 6G networks will only accelerate
the amassment of this data further [3]. Another contributing
factor is the emergence of data-driven technologies, such as

Manuscript received 17 March 2023; revised 28 June 2023 and 5 October
2023; accepted 25 November 2023. Date of publication 19 December 2023;
date of current version 23 April 2024. This work was supported in part by
NSF under Grant 2319399, Grant 2404036, and Grant 2408925. This article
was recommended by Associate Editor A. Gamatie. (Corresponding author:

Sven Thijssen.)

Sven Thijssen is with the Department of Computer Science, University of
Central Florida, Orlando, FL 32816 USA (e-mail: sven.thijssen@ucf.edu).

Muhammad Rashedul Haq Rashed and Rickard Ewetz are with the
Department of Electrical and Computer Engineering, University of Central
Florida, Orlando, FL 32816 USA (e-mail: muhammad.rashed@ucf.edu;
rickard.ewetz@ucf.edu).

Sumit Kumar Jha is with the Department of Computer Science, Florida
International University, Miami, FL 33199 USA (e-mail: jha@cs.fiu.edu).

Digital Object Identifier 10.1109/TCAD.2023.3344523

TABLE I
COMPARISON OF IN-MEMORY LOGIC STYLES IN TERMS OF UNDERLYING

OPERATION AND EVALUATED LOGIC COMPLEXITY

deep neural networks [4] and foundational AI models, which
require Internet-scale amounts of digital data for unsupervised
pretraining [5]. Unfortunately, these data-intensive techniques
suffer from the Von Neumann bottleneck [6]. The bottleneck
denotes the energy-inefficiency of a bus to transfer data
between a computer’s memory and computing units. Several
other factors, such as the End of Moore’s law [7] and the End
of Dennard Scaling [8], are challenging the performance of
these data-intensive applications.

Processing in-memory using nonvolatile memory has
recently attracted significant attention to mitigate the
aforementioned limitations [17]. Nonvolatile memory tech-
nology includes memristors, resistive random access memory
(ReRAM) [18], phase change memory (PCM) [19], and
spin-transfer torque magnetic random access memory (STT-
MRAM) [20]. Analog in-memory computing is well-known
for performing matrix-vector multiplication at high speed
and with low-energy consumption. These computations are
carried out in dense crossbar arrays. Unfortunately, analog in-
memory computing is limited to matrix-vector multiplication,
and related arithmetic operations [21]. Some efforts have been
made to improve accuracy while maintaining these energy and
latency advantages [22]. Unfortunately, despite these efforts,
analog in-memory computing cannot deliver the deterministic
precision required for high-assurance applications. However,
digital computing is more robust due to the clear distinct states
for a logical zero and one [23]. For comprehensive reviews on
in-memory computing, we refer to [24], [25], and [26].

Several noteworthy digital in-memory computing paradigms
are IMPLY [9], MAGIC [11], MAJORITY [13], and
FLOW [15]. These in-memory computing paradigms more or
less have the following in common: the paradigms consist
of two broad phases. First, there is a one-time compilation
phase and, second, an execution phase that is performed
for each function input. In Table I, we show the READ
and WRITE operations performed in each phase for the
different logic styles. It can be observed that all previous
paradigms use WRITE operations in the execution phase.

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

WRITE operations are orders of magnitude more expensive
than READ operations [27]. Further, WRITE operations are
detrimental to the endurance of the memristor’s lifetime [28].
In contrast, the proposed path-based computing (PATH)
paradigm evaluates Boolean logic using READ operations in
the execution phase, mitigating the high-energy consumption
for the WRITE operations and thus extending the system’s
lifetime.

Further, design automation tools are essential to map
computation into hardware designs. Hardware-software co-
design is a trending approach in a variety of novel computing
schemes, including photonic computing [29], [30], quantum
computing [31], [32], and in-memory computing [33], [34],
to optimize the hardware resources. In this work, we explore
a tight hardware-software co-design for 1T1M crossbars and
Boolean functions. To achieve this strong relation between
hardware and software, we base ourselves on an anal-
ogy between binary decision diagrams (BDDs) and 1T1M
crossbars.

Lastly, in previous works [12], [16], little or no attention
is made to the underlying architecture. Many of these rely
on a simple computing architecture consisting of multiple
crossbars connected to a bus. Unfortunately, such bus-crossbar
architecture is not energy- and latency-efficient. In our work,
we target staircase architectures where a staircase is a hard-
wired collection of crossbars. The main idea is that the bus
utilization will be reduced, which translates into energy and
latency improvements of the overall computing system.

In this article, we propose a new computing paradigm called
path-based in-memory computing. The paradigm is capable
of evaluating Boolean functions using 1T1M crossbar arrays.
We also propose a framework called PATH to automatically
map computation to 1T1M crossbars or PATH systems with
staircase structures. The main innovations of this article are
summarized, as follows.

1) A new computing paradigm, called path-based in-
memory computing, is introduced. The paradigm
executes Boolean functions fast and efficiently using
only READ operations instead of using slow and energy-
consuming WRITE operations.

2) We introduce a framework, called PATH, to synthesize
Boolean functions into a single crossbar design. The
PATH framework exploits an analogy between BDDs
and 1T1M crossbars to map Boolean functions into
crossbar designs. A BDD with |V| nodes and |E| edges
can be mapped into a to a crossbar of dimensions
|V| × |E|.

3) We further introduce an equivalent bipartite graph data
structure for the BDD. By means of node merging, this
bipartite graph can be further compressed into a smaller,
equivalent graph. This compression results in an area
reduction of 16%.

4) When the crossbar design becomes too large to be
physically realizable, the PATH framework provides
a partitioning algorithm to map Boolean functions to
staircase structures. The objective is to minimize the
bus utilization by minimizing the hardware resources in
terms of the number of staircases.

5) The experimental evaluation is performed on ten circuits
from the Revlib benchmark suite, eight control circuits
from the EPFL benchmark suite, and eight ISCAS85

benchmarks. Compared with the state-of-the-art in-
memory paradigm COMPACT [16], PATH improves
energy and latency with 1006× and 10× on average.

The remainder of this article is organized as follows: pre-
liminaries are provided in Section II. The PATH paradigm is
introduced in Section III. In Section IV, we review some state-
of-the-art digital in-memory computing paradigms. Problem
formulation and a high-level overview of the PATH framework
are given in Section V. The crossbar-level synthesis framework
is detailed in Section VI, and the partitioning algorithm is
provided in Section VII. Optimization steps are introduced
in Section VIII. The experimental evaluation is performed in
Section IX. This article is concluded in Section X.

II. PRELIMINARIES

A. Binary Decision Diagrams

A BDD is a graph representation of a Boolean function.
The directed acyclic graph (DAG) consist of internal decision
nodes and two leaf (terminal) nodes. The terminal nodes
represent the output “0” and “1”, respectively. The internal
decision nodes are assigned a Boolean variable, and each
internal decision node has a positive and negative output edge.
The positive edge corresponds to the positive literal, and the
negative edge corresponds to the negative literal. A BDD
is evaluated by traversing the graph from the root nodes to
one of the leaf nodes based on an instance of the Boolean
variables. BDDs commonly refer to reduced order binary
decision diagrams (ROBDDs) where nodes and edge have
been eliminated to reduce the size of the representation [35].
When a BDD is used to represent a multioutput function, the
BDD will have a separate root node for each output of the
Boolean function [36].

B. Memristor Crossbar Arrays

In this section, we will review one-transistor one-memristor
(1T1M) crossbars [37]. A model for a 1T1M crossbar is
illustrated in Fig. 2(c). A 1T1M crossbar array consists of
wordlines, bitlines, and selectorlines. Each wordline is con-
nected to each bitline using a series-connected memristor
and access transistor. The vertically aligned access transistors
share a single selectorline. Both the memristors and the access
transistors act functionally as switches that can be turned ON

and OFF. The switch corresponding to a memristor is ON (or
OFF) based on if the memristor is programmed to have low
(or high) resistance. The switch corresponding to the access
transistor is turned ON (or OFF) based on if the selectorline is
charged (or discharged, depending on the type of transistor).

C. In-Memory Computing Architecture

Traditionally, bus architectures have been leveraged for
in-memory computing [38], [39], [40]. In this computing
architecture, the crossbars are connected to a bus. An example
of a bus architecture with six crossbars is illustrated in
Fig. 1(a). However, in our work, we target a PATH system
with staircase structures. A staircase structure is a collection of
crossbars that have hardwired interconnections. In Fig. 1(b),
we illustrate a staircase architecture of six staircases where
each staircase consists of five hardwired crossbars.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1389

Fig. 1. Comparison of a traditional bus architecture and a staircase
architecture. Each staircase is a collection of hardwired crossbars. (a) Bus
architecture. (b) Staircase architecture.

III. PATH-BASED COMPUTING

PATH aims to evaluate Boolean functions using in-memory
computing. An example of the flow for the synthesis and
evaluation of PATH is shown in Fig. 2. The flow for PATH
consists of a one-time slow and expensive compilation phase
and a fast and efficient execution phase. The input to the
compilation phase is a Boolean function specified in a
hardware descriptive language (Verilog, VHDL), which is
shown in Fig. 2(a). The input is first synthesized into an
abstract crossbar design D, which is shown in Fig. 2(b). The
1T1M crossbar design specifies the state of each nonvolatile
memory device (0/1) and the Boolean variable assigned to each
selectorline. Here, the Boolean literals a, b, and c are assigned
to the first, second, and third selectorline, respectively. The
input and output assignment to the wordlines are also specified.
Next, the memory devices within a nanoscale crossbar are
programmed ON (LRS) or OFF (HRS), which is shown in
Fig. 2(c). The state of the devices are programmed to LRS
or HRS by applying a voltage with appropriate polarity and
magnitude [41]. We use a write-and-verify scheme to ensure
the correct programming [42].

In the execution phase, an instance of Boolean variables
is provided to the selectorlines. The selectorlines control the
switches represented by the access transistors. The state of the
switches controlled by the memory devices are also shown in
Fig. 2(d). Next, an input voltage is applied to the top-most
wordline and an output voltage is measured across a resistor
connected to the bottom-most wordline. If the output voltage
is high, the Boolean function evaluates to true. Otherwise,
the function evaluates to false. For the input instance (a, b,
c) = (1, 1, 0), the function evaluates to true because there
exists a path from the input to the output, as illustrated in
Fig. 2(e). In contrast, the function evaluates to false for the
input instance (1, 0, 0). Observe that the memristors must not
be reprogrammed to evaluate the same Boolean function for
different input vectors. In Fig. 3, a more detailed example is
shown for the Boolean function f = a∨¬b. More specifically,
we show the state of the crossbar for all four input vectors.
Again, the crossbar must not be reprogrammed for different
input vectors.

The one-time compilation phase is both slow and expen-
sive. Mainly, due to the expensive WRITE operations used
to program the platform. On the other hand, the cost is
amortized across each execution of the Boolean function. The
execution phase is fast and efficient because it only involves
charging/decharging the selectorlines and performing READ

operations. The advantageous properties compared with other
in-memory paradigms comes from the novel use of the access
transistors. No previous paradigms have used the access
transistors to perform logic.

IV. COMPARISON OF DIGITAL IN-MEMORY

COMPUTING PARADIGMS

In this section, we compare and review some of the
most prevalent state-of-the-art digital in-memory computing
paradigms and our proposed path-based in-memory com-
puting paradigm PATH. These digital in-memory computing
paradigms are IMPLY [45], MAGIC [11], MAJORITY [13],
and FLOW [44]. In Fig. 4, we illustrate the steps dur-
ing execution for each of the logic styles to evaluate the
Boolean function f = (a ∧ b) ∨ ¬c for the input vector
a = 1, b = 1, c = 1. For consistency, we employ the following
basic operations among these logic styles: 1) READ; 2)
WRITE; and 3) COPY (READ+WRITE). The definitions are
provided in the legend at the top of Fig. 4.

A. IMPLY

IMPLY logic is based on the Boolean operation material
implication (IMP) [43], [45]. The IMP operation P → Q

can be realized in hardware using two memristors P and Q.
By applying voltages over the memristors P and Q, the
result is obtained in the memristor Q. Thus, IMPLY logic is
destructive in terms of its inputs [43]. Further, extensive design
automation tools for IMPLY-based in-memory computing have
not been developed, usually requiring manual labor to design
circuits [46]. One of the few automation tools for IMPLY
is described in [47]. In Fig. 4(a), we observe that IMPLY
requires many intermediate steps of READ and WRITE
operations to realize the Boolean function f . The required IMP
operations are also provided in Fig. 4(a).

B. MAGIC

The MAGIC logic style [11] is based on the Boolean
operation NOR, and can be considered the successor of IMPLY.
The NOR operation can be realized using three memristors.
The NOT operation is a NOR operation where one input is
always “1”. In contrast with IMPLY, MAGIC is not destructive
for its inputs [11] when applying the appropriate voltage.
Further, there is an additional memristor for the output to be
realized. Over the years, many papers have been proposed
using the MAGIC logic style [12], [46], [48]. In Fig. 4(b), we
show the steps to realize the Boolean function f using READ,
WRITE, and COPY operations.

C. MAJORITY

The majority operation is a Boolean function that evaluates
to true when half or more of its inputs evaluate true. For in-
memory computing, the majority operation with three inputs
is primarily interesting due to its one-to-one correspondence
with a single memristor [13]. We define the majority operation
as Z′ = M(X,¬Y, Z) = (X∧Z)∨(¬Y∧Z)∨(X∧¬Y). Then let
X and Y be the inputs to the two terminals of the memristor,
and let Z be the resistive state of the memristor. By applying
the appropriate voltages to the inputs and programming the
memristor to the appropriate resistive state, the majority

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 2. Flow for the synthesis and evaluation of Boolean functions for PATH. (a) Program in Verilog code. (b) Abstract crossbar design obtained through
synthesis. (c) Physical crossbar with the nonvolatile memory devices programmed and Boolean variables assigned to the selectorlines. (d) State of the switches
(open/closed) with respect to the state of the nonvolatile memory devices (ON/OFF) and the instance (a, b, c) = (1, 1, 0) of the Boolean variables. (e) Boolean
function f evaluates to 1 because there is a path from the input to the output.

Fig. 3. Execution of all four input vectors on a crossbar for the Boolean
function f = a∨¬b. Observe how the state of the memristors does not change
for different input vectors, but only the state of the access transistors changes
using the selector lines.

function can be executed in-situ. The resulting value Z′ is
then stored as a resistive value in the memristor [49]. Several
synthesis methods have been proposed in recent years [14],
[49], [50], [51], [52], many of which rely on majority inverter
graphs (MIGs) as data structure. In Fig. 4(c), we illustrate the
steps using READ and WRITE operations for the majority
logic style.

D. FLOW

FLOW (flow-based computing) is a digital in-memory
computing paradigm which relies on the absence/presence of
electrical current to perform its computations [16], [44], [53].
Initially, the input variables, their negations, and the Boolean
truth values (0/1) are assigned to the memristors. Program
execution consists of two steps. In the first step, the memristors
are programmed to their resistive states (0 for high, 1 for low),
as shown in the first step of Fig. 4(d). In the second step,
a high-input voltage is applied to the input wordline (Vin),
and the Boolean function is read out as follows: if there is a
path from the input wordline to the output wordline through
memristors in a low-resistive state, then the Boolean function
evaluates to true. Otherwise, the Boolean function evaluates
to false.

E. PATH

In our proposed PATH, the program execution solely relies
on READ operations, and the application of an input voltage to
perform computations. WRITE operations are only performed
once during the previous step, i.e., the compilation phase, for
a given Boolean function. In the first step of Fig. 4(e), we are
show the crossbar design. The memristors are in their resistive
states, which were programmed only once prior, during 1T1M
crossbar reconfiguration (see previous Section III). During
program execution there are no WRITE operations, and thus

these resistive states do not change. However, the selectorlines
are charged accordingly to open/close access transistors. The
memristors are programmed to their resistive states only once
for a given Boolean function. Given another input vector
a = 0, b = 1, c = 0, the crossbar design in Fig. 4(e), would
remain, and is thus invariant to the input vector. Then, in
the second step, the evaluation is read out by sensing the
presence/absence of electrical current. The crossbar invariancy
makes PATH a strong contender for repeated computations.

V. PATH FRAMEWORK

First, we outline the problem formulations in Section V-A.
Then, we give a high-level overview the PATH framework in
Section V-B.

A. Problem Formulation

Our overall objective is to synthesize a Boolean function
φ into a PATH system. We approach this larger problem by
solving two smaller problems, as follows.

1) Problem I: We propose a synthesis method to construct
a crossbar design D for a Boolean function φ. The
algorithm is based on an analogy between a BDD
for the function φ and a 1T1M crossbar. We further
improve the synthesis method by transforming the BDD
into an equivalent graph-based data structure such that
we can reduce its graph size by merging nodes. This
transformation results in smaller crossbar designs, and
subsequently power and latency improvements.

2) Problem II: Based on the analogy of Problem I, we
propose a synthesis method to construct a topology T

for a PATH system of staircase structures Sj. A staircase
structure Sj is an ordered set of crossbars Xi. Between
each Xi and Xi+1, there are hardwired intercrossbar
connections from the wordlines of crossbar Xi to the
selectorlines of crossbar Xi+1.

B. Overview of Framework

In this section, we give an outline of the PATH framework.
An overview of the synthesis flow is shown in Fig. 5. First, in
Section VI, we discuss synthesis for a single crossbar. Then,
in Section VII, we discuss the staircase partitioning. For the
crossbar synthesis, we introduce an algorithm to construct a
single crossbar design D based on an analogy between a bipar-
tite graph, derived from a BDD for the Boolean function(s),

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1391

Fig. 4. Comparison of the last step of the compilation phase and the steps during the execution phase for digital in-memory logic styles (a) IMPLY [43],
(b) MAGIC [11], (c) MAJORITY [13], (d) FLOW [44], and the proposed (e) PATH. For a given Boolean function, the compilation phase is only performed
once and the execution phase is performed many times. For the compilation phase, either a series of instructions or a crossbar is provided. The Boolean
function f = (a ∧ b) ∨ ¬c is computed for the input vector a = 1, b = 1, c = 1. Intermediate variables are denoted by a dollar sign ($). For each logic
style, the operations READ, WRITE, and COPY (= READ + WRITE) are provided, as defined in the legend at the top of the figure. The WRITE operation
writes the required resistive state to a memristor or executes the primary Boolean function for IMPLY/MAGIC/MAJORITY by applying the required input
voltages. The READ operation reads the resistive state of a memristor or evaluates the Boolean function for FLOW/PATH. The COPY operation performs
both a READ and WRITE operation. Observe how PATH does not require any WRITE operations during the execution phase.

and a 1T1M crossbar. This algorithm consists of four steps:
1) graph preprocessing; 2) graph transformation; 3) node
merging; and 4) crossbar realization. Then, in Section VII,
we introduce a partitioning algorithm. The main steps for
the partitioning are the graph partitioning, and the realization
of staircase intra- and interconnections. The framework is
illustrated with an example in Fig. 6.

VI. CROSSBAR SYNTHESIS

The input to the framework is a BDD, and the output is a
crossbar design. The BDD is obtained using CUDD [54] which
is subsequently pruned into a graph G. The details are provided
in Section VI-A. In the next step, the graph transformation
step in Section VI-B, the pruned graph G is converted into
a bipartite graph B. This graph is then compressed into a
new bipartite graph B′ in Section VI-C. The last step is the

crossbar synthesis step, which constructs a crossbar design D

for the given bipartite graph B′. The details are provided in
Section VI-D.

A. Graph Preprocessing

The input to the graph preprocessing step is a BDD. In
Fig. 6(a), a multioutput BDD for a full adder is provided. The
Boolean functions are cout = (a0 ∧ b0)∨ (a0 ∧ cin)∨ (b0 ∧ cin)

and s0 = a0 ⊕ b0 ⊕ cin, respectively. The graph preprocessing
involves removing the zero output node and all the edges
connected to the zero terminal node. The zero terminal node
can be removed because it corresponds to ¬cout and ¬s0. The
one terminal node will be connected to the input, which we
label in. The edges in the BDD are labeled with their respective
decision variables. The positive (negative) edge connected to
node with the decision variable xi will be labeled xi (¬xi).

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 5. Overview of the PATH framework, including the crossbar synthesis
and staircase partitioning.

Finally, we reverse the edges and we label the nodes from 1
to |V| where |V| is the number of nodes. The resulting graph
of the BDD in Fig. 6(a) is shown in Fig. 6(b).

B. Graph Transformation

In this step, the resulting pruned graph is converted into
a directed bipartite graph. This graph transformation is intro-
duced as an intermediary data structure for the node merging
step. Let G = (V, E) be the pruned graph where V is a set
of nodes and E is a set of edges, and let B = (U1, U2, F)

be a bipartite graph where U1 and U2 are sets of nodes and
F is a set of edges. The sets U1 and U2 are disjoint and
independent [55], and F is a new set of edges between nodes
from U1 and U2. Let v ∈ V correspond to a node u1 ∈ U1,
and let e ∈ E correspond to a node u2 ∈ U2. For each node
v ∈ V , we introduce a node u1 ∈ U1. For each edge in the
BDD, we introduce a node with two edges. More specifically,
for an edge e = (v1, v2, l) ∈ E where v1 ∈ V , v2 ∈ V

and l is a literal, we create a new node u2 = (u1
1, u2

1, l) ∈ U2

where u1
1 is the image of v1 and u2

1 is the image of v2.
Then, we realize the connections between nodes and edges
by introducing two new edges in F for each node u2 ∈ U2

such that F = {(u1
1, u2), (u2, u2

1) | u2 = (u1
1, u2

1, l), u2 ∈ U2}.
An example of the transformation of the pruned graph G into
a bipartite graph B is illustrated in Fig. 6(c). Note that we
represent the nodes in U2 with their literals l instead of the
triple (u1

1, u2
2, l) for clarity.

C. Node Merging

In the bipartite graph, we observe that a node u1 ∈ U1 may
have outgoing edges to more than one node u2 ∈ U2 with
the same literal l. For example, in Fig. 6(c), we observe that
node 2 in the bipartite graph B has two outgoing edges to two
distinct nodes with both label ¬b. In this section, we propose
to merge such nodes with the same label into a single node.

More formally, let B = (U1, U2, F) be the bipartite graph
and let u1 ∈ U1 be a node with outgoing edges to nodes ui

2 =

(u1, ui, l) and u
j

2 = (u1, uj, l) where i 	= j, and u1, ui, uj ∈

U1. Then we define a mapping B = (U1, U2, F) → B′ =

(U′
1, U′

2, F′) as follows:

U1 → U′
1 : u1
→ u1

U2 → U′
2 : u2 = (u1, ui, l)
→ u′

2 = (u1, l)

F → F′ : f = (u1, (u1, ui, l))
→ f ′ = (u1, (u1, l)) and

f = ((u1, ui, l), u1)
→ f ′ = ((u1, l), u1).

Based on the aforementioned mapping function, we can
merge the two nodes with label ¬b into one node such that
we obtain a compressed bipartite graph B′ as illustrated in
Fig. 6(d). This operation is valid due to that the nodes u2 ∈ U2

represent literals l, and the edges between u1 ∈ U1 and
u2 ∈ U2 represent conjunctions between u1 and u2. Thus, for
two such edges (u1, ui) and (u1, uj), we have the following:
u1 ∧ ui = u1 ∧ l = u1 ∧ uj.

D. Crossbar Realization

The outlined crossbar realization is based on an analogy
between the bipartite graph B′ = (U′

1, U′
2, F′) and 1T1M

crossbars. The nodes u1 ∈ U′
1 correspond to wordlines and

the nodes u2 ∈ U′
2 correspond to bitline-selectorline pairs. The

path-based paradigm is based on creating paths by turning on
and off connections in the crossbar design. The connections
correspond with the edges f ∈ F′, which are realized using
the memristors. The crossbar mapping consists of a node
assignment step and an edge assignment step.

1) Node Assignment: The node assignment involves
assigning the nodes u1 ∈ U′

1 to the wordlines of the crossbar
design D and the nodes u2 ∈ U′

2 to the bitline-selectorline
pairs of crossbar design D.

2) Edge Assignment: Next, for each edge f = (u1, u2) or
f = (u2, u1), u1 ∈ U1, u2 ∈ U2, f ∈ F, we program the
corresponding memristor at the intersection of wordline u1

and selectorline u2 to a low-resistive state (ON). Further, the
input and output are assigned to the respective wordlines. The
resulting crossbar design D for the Boolean functions f1 and
f2 is shown in Fig. 6(e).

VII. PARTITIONING FOR STAIRCASE STRUCTURES

In this section, we propose a partitioning algorithm to
synthesize the Boolean function φ into a topology T of stair-
case structures. A topology is a DAG of staircase structures
with potentially multiple edges between different staircase
structures where each staircase structure is an ordered set of
crossbars with intercrossbar connections between two consec-
utive crossbars. An overview of the partitioning scheme is
illustrated in Fig. 7.

The input of the partitioning algorithm is a bipartite graph
B = (U1, U2, F) and the output is a topology T of staircase
structures. The bipartite graph B is obtained by means of
the preprocessing steps described in Sections VI-A and VI-B.
The idea of the partitioning scheme is that the given bipartite
graph B is partitioned into smaller bipartite graphs Bi =

(U1,i, U2,i, Fi), |U1,i + U2,i| ≤ |U1 + U2|. For each Bi, a
crossbar design Di is constructed, which is part of a staircase
structure. Unfortunately, it is not straightforward to partition
the graph B into Bi such that the size of Bi is maximized while
meeting the dimensions of crossbar Xi. The partitioning makes
that intermediate evaluations must be propagated to other

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1393

Fig. 6. Example of the synthesis flow (a) Multioutput BDD for a full adder with Boolean functions cout and s0. (b) Nodes of the BDD are relabeled and the
edges are assigned a Boolean literal based on their shape (positive literal for solid edges and negative literal for dashed edges). Further, the negative terminal
node 0 is removed. (c) Bipartite graph B = (U1, U2, F) is constructed from the pruned graph G. (d) Bipartite graph B is compressed into an equivalent
bipartite graph B′ = (U′

1, U′
2, F′) using node merging. (e) Crossbar design D is constructed with dimensions |U′

1|×|U′
2| where each node u1 ∈ U′

1 is assigned

to a wordline and each node u2 ∈ U′
2 is assigned to a bitline-selectorline pair. For each edge f = (u1, u2) or f = (u2, u1), u1 ∈ U′

1, u2 ∈ U′
2, a memristor is

programmed to a low-resistive state (ON) to realize the connections.

Fig. 7. High-level overview of the partitioning scheme. (a) Input of the partitioning scheme is the compressed bipartite graph B′ and the user-defined
parameter T = 2. (b) Using the graph partitioning algorithm explained in Section VII-A, the bipartite graph is decomposed into smaller bipartite subgraphs
Bi. (c) Individual subgraphs Bi are each synthesized into crossbar designs Di using the crossbar realization in Section VI-D. (d) Finally, a staircase topology
T is constructed by realizing the intrastaircase and interstaircase connections, as explained in Section VII-B.

crossbars and/or staircases. Further, only the first crossbar X1

in a staircase structure is connected to the bus, which brings
that the intermediate results and literals can only be fed to
this first crossbar. To address these constraints, we propose
the following: a user-defined parameter defines the maximum
dimensions which may be used to synthesize a bipartite
graph Bi. Here, we assume the number of wordlines and the
number of bitline-selectorline pairs is equal for a crossbar.
An algorithm to construct such topology T is provided in
Section VII-A. Next, staircase intra- and interconnections must
be realized for the aforementioned constraints. These are
discussed in Section VII-B.

A. Graph Partitioning

In Algorithm 1, we provide the first part of the partitioning
scheme. We are given a bipartite graph B = (U1, U2, F) as
input, and a user-defined threshold Ti for the amount of logic
that will placed within each crossbar Xi. The output of the
algorithm is a topology T of staircase structures S where each

S is an ordered set of crossbars Xi such that Xi precedes Xi+1.
The partitioning algorithm has two auxiliary variables Vi,1 and
Vi,2 which will contain the nodes assigned to the wordlines
and selectorlines, respectively. The nodes that are assigned to
Vi,1 are in U1, and the nodes that are assigned to Vi,2 are
in U2.

The algorithm iterates in a topological sort over the nodes
u2 ∈ U2. In each iteration, node u2 is assigned to a crossbar,
together with its neighboring nodes. Recall that the nodes u2

are the edges e ∈ E in our original graph G = (V, E). When
assigning a node u2 ∈ U2 to a crossbar Xi, we want each
neighboring node u1 to be assigned to Xi as well. This is due
to that u2 represents an edge e = (v1, v2) ∈ E between two
nodes v1, v2 ∈ V . Thus, we want both its endpoints to be
present in the crossbar Xi.

When assigning a node u2 to the wordlines of a crossbar
Vi,2, we must not exceed the logic threshold Ti we have
set. Similar for its neighboring nodes u1 when assigning to
the selectorlines Vi,1 (condition of if statement on line 7).
If the condition fails, we create a bipartite subgraph Bi =

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1394 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Algorithm 1 Partitioning Algorithm for Staircase Structures

Input: B = (U1, U2, F), T = {T0, . . . , TL}
Output: T // Set of staircase designs

1: function TOPOLOGICALSTAIRCASEPARTITIONING(B, T)
2: i = 1, Vi,1 = ∅, Vi,2 = ∅, S ← ∅
3: T ← ∅
4: for u2 ∈ TOPOLOGICALSORT(U2) do
5: V ′

i,1 ← Vi,1 ∪ {u1|f = (u1, u2) ∨ f = (u2, u1),∀f ∈ F}

6: V ′
i,2 ← Vi,2 ∪ {u2}

7: if |V ′
i,1| ≤ Ti ∧ |V ′

i,2| ≤ Ti then

8: Vi,1 ← V ′
i,1

9: Vi,2 ← V ′
i,2

10: else
11: Fi ← {f |∃u1 ∈ Vi,1, u2 ∈ Vi,2:

f = (u1, u2) ∨ f = (u2, u1), f ∈ F}
12: Bi ← (Vi,1, Vi,2, Fi) // Create bipartite subgraph
13: S ← S ∪ {Bi}
14: i ← i + 1
15: Vi,1 = {u1|f = (u1, u2) ∨ f = (u2, u1),∀f ∈ F}
16: Vi,2 = {u2}
17: if |S| = L then
18: T ← T ∪ {S}
19: i ← 1, S ← ∅
20: end if
21: end if
22: end for
23: return T

24: end function

(Vi,1, Vi,2, Fi) (lines 11 and 12), and we add Bi to the current
staircase S (line 13). When the current staircase S has reached
its maximum depth L (line 17), then we will add the current
staircase S to the topology T (line 18), and we create a new
staircase S (line 19). The algorithm stops when all nodes
u2 ∈ U2 have been processed.

In Fig. 7(a), we take the compressed bipartite graph B′ and
the user-defined parameter T = 2 as input for the partitioning
algorithm. In Fig. 7(b), we illustrate the partitioning of the
bipartite graph into multiple subgraphs Bi. Each subgraph Bi

is delineated by a dashed line, and all its nodes have the same
number i. These subgraphs are subsequently synthesized into
crossbar designs Di, as explained in Section VI-D and grouped
into staircase structures.

B. Realization of Staircase Intra- and Interconnections

While the algorithm partitions the bipartite graph B into
bipartite subgraphs Bi, which are mapped to crossbars,
the hardware architecture imposes additional constraints on
the design. We have identified three staircase intra- and
interconnections that must be made to realize the crossbar
mapping to a partitioning over staircase structures: 1) edge
preparation; 2) node propagation; and 3) literal propagation.
In Fig. 7(c), we take the crossbar designs Di as input. The
output is a topology T of staircases by realizing the staircase
intra- and interconnections, as illustrated in Fig. 7(d).

1) Edge Preparation: For each crossbar Xi, i > 1, the
selectorlines are connected to the wordlines of previous cross-
bar Xi−1. In the mapping algorithm in Section VI-D, the nodes
u2 ∈ U2 are assigned to the selectorlines. This entails that
the nodes must be prepared in crossbar Xi−1. In Fig. 8(a), is
illustrated how the nodes u2, j for crossbar X1 (in black) are
prepared in crossbar X0 (in gray).

Fig. 8. Example of the intraconnections. (a) Edge prep. (b) Node prop.
(c) Literal prop.

Algorithm 2 Binary Search Over the Threshold

Input: B = (U1, U2, F), D
Output: T // Set of staircase designs

1: function BINARYSEARCH(T)
2: low ← 0, high ← D
3: T ← ∅
4: T ← ⌊(low + high)/2⌋
5: while low 	= high do
6: T ′ ←TOPOLOGICALSTAIRCASEPARTITIONING(B, T)
7: if T ′ 	= ∅ then // Solution found
8: T ← T ′

9: low ← T // Increase lower bound
10: else // No solution found
11: high ← T // Decrease upper bound
12: end if
13: T ← ⌊(low + high)/2⌋
14: end while
15: return T

16: end function

2) Node Propagation: A node u1 ∈ U1 may appear in
multiple crossbars Xi among multiple staircases Sj. From the
structure of a pruned graph G, we know that each node v ∈ V

has at most two outgoing edges. At some point, the node will
be realized, i.e., its two outgoing edges have been assigned.
Let that point be denoted as Xr. From this point Xr forward,
any other occurrence of v is to realize incoming edges of v.
When v occurs at some later point in the same staircase Xi, i >

r, we must propagate v to that crossbar Xi. This is illustrated
in Fig. 8(b) where node v is realized in crossbar X1 and
propagated to crossbar X4. The intermediary nodes v′ are in
gray, and the start and end point are in black. Similarly, when
v occurs in multiple staircases, then node v must be propagated
from its point of realization Xr to all other staircases.

3) Literal Propagation: A literal l may appear in a crossbar
Xi, i ≥ 2. For each such literal l, we must propagate the literal
up to layer Xi−2. For example, in Fig. 8(c), the literal l appears
in crossbar X4, and is thus propagated from the first crossbar
X1 to the last crossbar X4.

VIII. ADDITIONAL OPTIMIZATION

In this section, we introduce two additional optimization
steps. In Section VIII-A, we propose a method to improve
the search over the user-defined threshold T , and in
Section VIII-B, we propose an optimization to have a more
fine-grained exploration of the search space.

A. Partitioning Search

The partitioning algorithm presented in Section VII requires
a user-defined parameter T , which is a threshold for the
amount of logic that will be placed in a crossbar X. As this

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1395

variable is unknown in advance, we propose a binary search
over T . Let all crossbars Xi in a staircase structure have the
same dimensions D×D. In Algorithm 2, we provide the binary
search algorithm for the topological staircase partitioning.
The input is the bipartite graph B = (U1, U2, F), and the
dimensions D of the crossbars. The output is a topology T .
The idea is that when for a given threshold T , no solution can
be found, we decrease the threshold T . Potentially, no solution
is found due to the intra- and interconnections explained in
Section VII-B. The node propagations, literal propagations,
and edge preparations may result in that a crossbar exceeds its
dimensions while constructing, and consequently the partition-
ing algorithm fails to find a solution for the given constraints.
In the other case, when for a given T , a solution can be found,
we retain this solution and attempt to find a better solution by
increasing the threshold T .

B. Node Splitting

In this section, we provide an optimization step to improve
the overall synthesis. Due to the node merging optimization
laid out in previous Section VI-C, the node degree for all
nodes u2 ∈ U2 may increase. The partitioning algorithm in
Algorithm 1 assigns such nodes u2 and its neighboring nodes
u1 ∈ U1 to a single crossbar in a staircase. When the node
degree of u2, δ(u2), is greater than the logic threshold T , such
node cannot be assigned to a crossbar. A solution would be
to increase the threshold T , but this brings with it that there
is less room for node propagations, literal propagations, and
edge preparations. Hence, there is a fine balance which must
be sought between the threshold T and the node degree δ(u2).
Therefore, we propose to split nodes u2 ∈ U2 for which
δ(u2) > T into two nodes u1

2 and u2
2.

In Algorithm 3, we present an algorithm to cope with
such nodes. The algorithm can be used in combination with
Algorithm 2. More specifically, line 6 in Algorithm 2 can be
replaced with T ′ ←SPLITWRAPPER(B, T).

Algorithm 3 consists of two parts: 1) SPLITWRAPPER(B, T)
and 2) an auxiliary function SPLITNODE(B, T). The former
continues to split nodes u∗

2 ∈ U2 with maximum degree δ(u∗
2)

as long as a node in B is changed (line 16). We use the
auxiliary function SPLITNODE(B, T) to perform this operation.
On line 2, we seek such a node u∗

2 ∈ U2 with maximum
node degree δ(u∗

2). When this node degree is smaller than
the threshold, we do not need to split. Hence, we return our
current bipartite graph B (lines 3–5). Otherwise, we create a
new bipartite graph B′ where u∗

2 is replaced by two new nodes

u1
2, and u2

2 such that its number of edges is equal, or differs
at most by one edge (lines 6–12).

IX. EXPERIMENTAL EVALUATION

The experiments are conducted on a machine with 20
Intel Core i9-9900X and 128GB RAM. The framework
is implemented in Python 3.8 and the source code is
publicly available on GitHub.1 We use the ABC [56] bind-
ing for CUDD [54] to construct the BDDs with dynamic
variable reordering based on symmetric sifting [57]. In
Table II, an overview is provided of ten benchmarks from
the Revlib benchmark suite [58], eight control benchmarks

1https://github.com/sventhijssen/path

Algorithm 3 Node Splitting Algorithm

Input: B = (U1, U2, F), T
Output: T // Set of staircase designs

1: function SPLITNODE(B, T)
2: u∗

2 ← arg max δ(u2),∀u2 ∈ U2
3: if δ(u∗

2) ≤ T then
4: return B
5: end if
6: X ← {u1|(u1, u∗

2) ∈ F}

7: Y ← {u1|(u∗
2, u1) ∈ F}

8: U′
1 ← U1

9: U′
2 ← U2 \ {u∗

2} ∪ {u1
2, u2

2}

10: F′ ← {(u1, u1
2)|u1 ∈ X} ∪ {(u1, u2

2)|u1 ∈ X} ∪

{(u1
1, u1

2), (u2
1, u2

2)|u1
1 ∈ Y1, u2

1 ∈ Y2,

Y1 ⊆ Y, Y2 ⊆ Y, ||Y1| − |Y2| ≤ 1|}
11: B′ ← (U′

1, U′
2, F′)

12: return B′

13: end function

14: function SPLITWRAPPER(B, T)
15: B′ ← ∅,T ← ∅
16: while B′ 	= B do
17: T ←TOPOLOGICALSTAIRCASEPARTITIONING(B, T)
18: if T 	= ∅ then
19: return T

20: else
21: B′ ←SPLITNODE(B, T)
22: end if
23: end while
24: return T

25: end function

Fig. 9. High-level overview of the architecture. (a) Bank consists of multiple
tiles T . (b) Each tile T contains multiple staircases S. The topology of the
staircases is according to a H-Tree. (c) Each staircase S contains a series of
crossbars X.

from the EPFL benchmark suite [59], and eight ISCAS85
benchmarks [60]. We report the number of inputs, outputs for
each benchmark, as well as the number of nodes and edges
for the respective BDD.

We evaluate the PATH systems by building an architectural
model. In Fig. 9, we illustrate the high-level architecture. The
architecture consists of several tiles T on a bank, as illustrated
in Fig. 9(a). Each tile T has a H-Tree of staircases S as
topology [61], [62], as shown in Fig. 9(b). Four staircases with
an I/O of 128 bits are connected to a Wide-I/O bus. Each
staircase S is a series of crossbars X, as illustrated in Fig. 9(c).

In our experimental evaluation, we will compare the
performance of the proposed PATH framework with
COMPACT [16], ArC [50], and CONTRA [12]. The
performance is compared in terms of energy, latency, and
area. The parameters for the comparisons are given below. To
evaluate our architecture, we set the power consumption for
the bus and 128 × 128 crossbar to 13 mW, 0.3 mW [38]. For

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1396 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

TABLE II
OVERVIEW OF TEN REVLIB BENCHMARKS, EIGHT EPFL CONTROL

BENCHMARKS, AND EIGHT ISCAS85 BENCHMARKS. FOR EACH

BENCHMARK, THE NUMBER OF INPUTS AND OUTPUTS IS GIVEN.
FOR THEIR RESPECTIVE BDDS, THE NUMBER

OF NODES AND EDGES IS GIVEN

our design, we have a 4-channel 128-bit Wide-IO bus with a
rate of 400 MHz [63]. The area for the respective components
are 0.2 µm2, 15.7 mm2 [38]. For COMPACT, we extrapolate
the area. The latency for the bus and crossbar components are
15 ns and 100 ns, respectively.

In Section IX-A, we first evaluate the crossbar synthesis.
Then, in Section IX-B, we evaluate the proposed PATH frame-
work, including the proposed node merging and partitioning
algorithm. Finally, in Section IX-C, we make a comparison of
the PATH framework with other digital in-memory computing
paradigms.

A. Evaluation of Crossbar Synthesis

In this section, we will evaluate the crossbar synthesis.
For the evaluation, we do not impose any restrictions on the
crossbar dimensions, such that the number of wordlines (rows),
and the number of bitline-selectorline pairs (columns) can be
infinitely large. We evaluate the crossbar synthesis first without
and then with the proposed node merging. In Table III, we
provide the number of nodes and edges for the pruned graph G,
as well as the hardware resources for both approaches. For the
synthesis without node merging, we observe that the number
of rows and the number of columns correspond to the number
of nodes and edges of the pruned graph, respectively. This
is due to the analogy between BDDs and 1T1M crossbars.
Next, we report the number of rows and columns for the
approach with node merging. We observe that the number
of columns (selectorline-bitlines pairs) reduces by 16% on
average, resulting in an area reduction of 16% on average.

TABLE III
NUMBER OF NODES AND EDGES FOR THE PRUNED GRAPH G, AND THE

CORRESPONDING HARDWARE RESOURCES FOR A CROSSBAR DESIGN

USING THE UNCOMPRESSED AND COMPRESSED BIPARTITE GRAPH

From this, we conclude that it is advantageous to work with
the compressed bipartite graph B′, and we will use this graph
in subsequent sections. Thus, a BDD with |V| nodes and
|E| edges can be synthesized into a crossbar of dimensions
|V| × |E|, which is an upper bound. Empirically, we conclude
that on average a BDD with |V| nodes and |E| edges can be
synthesized into a crossbar of dimensions |V| × 0.84|E|.

B. Evaluation of the PATH Framework

In this section, we evaluate the PATH framework. In our
first experiment, we evaluate the hardware resources for
varying staircase depth L, i.e., the number of crossbars in a
staircase structure. These hardware resources are the number
of staircases, the number of staircase interconnections, and the
critical path length. In Table IV, we give an overview of these
hardware resources as well as the synthesis time for varying
staircase depths L ∈ {1, 2, 4, 6}.

We observe that the number of required staircases decreases
when the staircase depth L increases, with a reduction of 24%
on average for a staircase structure of six layers compared with
a single crossbar. For example, for the benchmark arbiter of
the EPFL benchmark suite, the number of staircases reduces
from 889 for L = 1 to 691 for L = 6. The number
of interconnections may increase or decrease, depending on
the benchmark. For example, for arbiter, the number of
interconnections increases from 49, 973 to for L = 1 to 51, 035
for L = 6. This is due to that the logic threshold tends to
be lower for larger staircase structures, requiring more node
splits, and consequently more node propagations. However, for
the majority of the benchmarks (17 out of 26), the number of
intercrossbar connections decreases, with a reduction of 8%

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1397

TABLE IV
COMPARISON OF THE HARDWARE RESOURCES AND SYNTHESIS TIME (T) FOR VARYING PATH ARCHITECTURES. THE HARDWARE RESOURCES

ARE EXPRESSED IN TERMS OF NUMBER OF STAIRCASES (S), NUMBER OF INTERCONNECTIONS (I), AND CRITICAL PATH LENGTH (C)

Fig. 10. Number of staircases in terms of BDD size for eight ISCAS85
benchmarks.

on average for six layers compared with a single crossbar. For
example, for benchmark cavlc of the Revlib benchmark suite,
the number of staircase interconnections decreases from 610
for L = 1 to 566 for L = 6. Finally, we observe that the critical
path length reduces by 17% on average for L = 6 compared
with L = 1. The reduction of the number of staircases brings
with it that the critical path length decreases. This is because
the critical path length is at most the number of staircases, and
the number of staircases for L = 6 is lower than the number
of staircases for L = 1. From these results, we conclude it is
best to utilize a PATH system with larger staircase structures.

Next, we make an analysis of the hardware utilization in
terms of the intermediate data structure. More specifically, in
Fig. 10, we show the number of required staircases in terms
of the number of BDD nodes for different staircase depths.
The crossbar dimensions are 128 × 128, and the BDDs are

Fig. 11. Number of (a) Staircases and (b) Interconnections for the EPFL
benchmark arbiter for varying dimensions D.

Fig. 12. Percentage for each of the components in a staircase topology using
the PATH framework. These components include logic, node propagation,
edge preparation, and literal propagation. The percentages are the averages
over the ten Revlib, eight EPFL benchmarks, and eight ISCAS85 benchmarks.

collected from the eight ISCAS85 benchmarks. From this
figure, we clearly observe there is a linear trend between
these two dimensions. Further, we observe at first glance that
the number of required staircases decreases for increasing

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1398 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

Fig. 13. Normalized energy, latency, and area for PATH, COMPACT [16], ArC [50], and CONTRA [12] for ten Revlib benchmarks, eight EPFL benchmarks,
and eight ISCAS85 benchmarks. (a) Energy consumption. (b) Latency. (c) Area.

staircase depth (the line for L = 2 lies higher than for L = 4,
and L = 4 lies higher than for L = 6). This corresponds with
the results in Table IV. For L = 2, L = 4, and L = 6, the
trendline is described by the following equations, respectively:
0.0285x − 0.0126, 0.0268x − 0.02782, and 0.0255x − 0.3139
where x is the number of BDD nodes.

Now, we will evaluate the PATH framework in terms of the
crossbar dimensions. We evaluate on the benchmark arbiter
using a staircase depth of six crossbars. In Fig. 11(a), we
show the trendline for the number of staircases in function
of the crossbar dimensions. We observe that for increasing
crossbar dimensions, the number of staircases decreases. This
is expected as there is more room in a crossbar for both
logic and node propagations. In Fig. 11(b), we observe that
the number of interconnections decreases as the crossbar
dimensions increase. This is also expected as more logic can
be realized within a single staircase, and thus less interstaircase
communication is required.

In Section VII-B, we have highlighted that the partitioning
method requires some intra- and interconnections in order to
be a functional computing paradigm. We make an analysis of
the components that constitute to the overall synthesis using
partitioning. These components are logic, edge preparation,
node propagation, and literal propagation. This analysis may
give further insight in the synthesis method with the objective
to improve any future work on our proposed framework.

In Fig. 12, we show the percentages for each of the com-
ponents for varying number of layers L where L ∈ {1, 2, 4, 6}.
We observe that the percentage of logic, which is defined by
the threshold T , decreases for increasing number of layers L.
This is due to that the number of node propagations increases
when the number of layers L increases, which can also be
seen in the figure. As mentioned earlier in Section VIII-B,
there is a fine balance between the threshold T and the node
degree δ(u2). When the node degree decreases, the number of
node propagations increase, and vice versa.

C. Comparison With Other Digital In-Memory

Computing Paradigms

In this section, we make a comparison of the PATH
paradigm with other digital in-memory computing paradigms.
More specifically, we compare with COMPACT [16],
ArC [50], and CONTRA [12]. COMPACT is the state-of-
the-art synthesis method for flow-based computing, ArC for
MAJORITY, and CONTRA is the state-of-the-art MAGIC-
based general-purpose synthesis method. No comparison is
provided with IMPLY-based logic [9], [43] as recent papers
have shown that IMPLY-based logic is inferior to MAGIC-
based logic [46], [64].

In Fig. 13, a detailed comparison is given for the normalized
energy consumption, latency, and area for all benchmarks
(except spla and pdc as CONTRA failed to generate a result)
using PATH, COMPACT, and CONTRA. For ArC, only the
ISCAS85 benchmarks are reported based on the results in [12].
Note that the latency only reflects the execution time, i.e., the
runtime to evaluate Boolean functions, and does not include
the synthesis time as reported in Table IV nor the crossbar
programming. Compared with PATH, COMPACT requires
approximately 1006× more energy, and has approximately
10× longer latency on average. The advantageous performance
mainly stems from that COMPACT is a flow-based comput-
ing framework where the devices are continuously switched
for each evaluation, resulting in many expensive (in terms
of energy and latency) WRITE operations. No partitioning
scheme exists for COMPACT, so we extrapolated the crossbar
size of a 128 × 128 crossbar to the required dimensions. For
COMPACT, some benchmarks require more area than PATH,
so we have truncated the plot at unity for clarity (e.g., arbiter
has 4× area). On average, COMPACT requires 5.8× of the
area of PATH. Further, we observe that CONTRA consumes
approximately 2166× more energy and is approximately 15×

slower than PATH on average. Similarly to previous argument,
CONTRA is much less energy-efficient and slower than PATH

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

THIJSSEN et al.: PATH: EVALUATION OF BOOLEAN LOGIC USING PATH-BASED IN-MEMORY COMPUTING SYSTEMS 1399

due to the large number of write operations. The path-based
paradigm only utilizes WRITE operations in the compilation
phase, which is amortized across many function evaluations.
On average, CONTRA requires only 2% of the area of PATH.
Lastly, ArC requires on average 175.96× more energy than
PATH and is 8.30× slower than PATH due to the many WRITE
operations.

X. SUMMARY AND FUTURE WORK

In this article, we have introduced a new READ-based in-
memory computing paradigm, called PATH, by leveraging
access transistors to perform logic. We have introduced a
framework, called PATH, to automatically synthesize Boolean
circuits to PATH systems. The PATH framework relies on an
analogy between bipartite graphs and 1T1M crossbars. The
bipartite graphs are derived from BDDs, and serve as an
intermediate data representation. Further, we have introduced
an optimization technique wherein these bipartite graphs are
compressed, resulting in an area reduction of 16%. Finally, we
have introduced a partitioning algorithm to map Boolean func-
tions to a topology of staircase structures, where a staircase
structure is an ordered set of crossbars, which have hardwired
connections between them. By introducing staircases, the bus
utilization diminishes, which results in high energy and latency
improvements. Our experimental results demonstrate that the
paradigm is orders of magnitude faster than state-of-the-art
in-memory computing paradigms with energy improvements
of 1006× on average. The latency improvements are 10×

on average. For future work, we envision that leveraging
alternative intermediate data structures may improve the
overall synthesis method. Further, alternative or orthogonal
approaches to our proposed partitioning algorithm are an
interesting trajectory for further research.

REFERENCES

[1] D. Reinsel, J. Gantz, and J. Rydning, The Digitization of the World From

Edge to Core, Int. Data Corp., Framingham, MA, USA, 2018, p. 16.
[2] S. Li, L. D. Xu, and S. Zhao, “The Internet of Things: A survey,” Inf.

Syst. Front., vol. 17, pp. 243–259, Apr. 2015.
[3] I. Tomkos, D. Klonidis, E. Pikasis, and S. Theodoridis, “Toward the

6G network era: Opportunities and challenges,” IT Prof., vol. 22, no. 1,
pp. 34–38, 2020.

[4] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi,
“A survey of deep neural network architectures and their applica-
tions,” Neurocomputing, vol. 234, pp. 11–26, Apr. 2017.

[5] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[6] J. Backus, “Can programming be liberated from the von Neumann
style?” Commun. ACM, vol. 21, no. 8, pp. 613–641, 1978.

[7] T. N. Theis and H.-S. P. Wong, “The end of Moore’s law: A new
beginning for information technology,” Comput. Sci. Eng., vol. 19, no. 2,
pp. 41–50, Mar./Apr. 2017.

[8] H. Esmaeilzadeh et al., “Dark silicon and the end of multicore scal-
ing,” in Proc. ISCA, 2011, pp. 365–376.

[9] E. Lehtonen, J. Poikonen, and M. Laiho, “Implication logic synthesis
methods for memristors,” in Proc. ISCAS’12, 2012, pp. 2441–2444.

[10] S. Shirinzadeh, M. Soeken, and R. Drechsler, “Multi-objective BDD
optimization for RRAM circuit design,” in Proc. IEEE DDECS, 2016,
pp. 1–6.

[11] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” IEEE Trans.

Circuits Syst. II, Exp. Briefs, vol. 61, no. 11, pp. 895–899, Nov. 2014.
[12] D. Bhattacharjee et al., “CONTRA: Area-constrained technology map-

ping framework for memristive memory processing unit,” in Proc.

ICCAD, 2020, pp. 1–9.
[13] P.-E. Gaillardon et al., “The programmable logic-in-memory (PLiM)

computer,” in Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE),
2016, pp. 427–432.

[14] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast
logic synthesis for RRAM-based in-memory computing using majority-
inverter graphs,” in Proc. Design, Autom. Test Europe Conf. Exhibit.

(DATE) 2016, pp. 948–953.
[15] A. Velasquez and S. Jha, “Automated synthesis of crossbars for

nanoscale computing using formal methods,” in Proc. NANOARCH,
2015, pp. 130–136.

[16] S. Thijssen, S. K. Jha, and R. Ewetz, “COMPACT: Flow-based com-
puting on nanoscale crossbars with minimal semiperimeter,” in Proc.

DATE, 2021, pp. 232–237.
[17] R. Ronen et al., “The bitlet model: A parameterized analytical model

to compare PIM and CPU systems,” ACM J. Emerg. Technol. Comput.

Syst., vol. 18, no. 2, pp. 1–29, 2022.
[18] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)

based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251,
Dec. 2010.

[19] G. W. Burr et al., “Phase change memory technology,” J. Vac. Sci.

Technol. B, vol. 28, no. 2, pp. 223–262, 2010.
[20] Y. Huai et al., “Spin-transfer torque MRAM (STT-MRAM): Challenges

and prospects,” AAPPS Bull., vol. 18, no. 6, pp. 33–40, 2008.
[21] M. Hu et al., “Memristor-based analog computation and neural network

classification with a dot product engine,” Adv. Mater., vol. 30, no. 9,
2018, Art. no. 1705914.

[22] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “FloatPIM: In-memory
acceleration of deep neural network training with high precision,” in
Proc. 46th Int. Symp. Comput. Archit., 2019, pp. 802–815.

[23] M. R. H. Rashed, S. K. Jha, and R. Ewetz, “Hybrid analog-digital
in-memory computing,” in Proc. IEEE/ACM Int. Conf. Comput. Aided

Design (ICCAD), 2021, pp. 1–9.
[24] D. Ielmini and H.-S. P. Wong, “In-memory computing with resistive

switching devices,” Nat Electron., vol. 1, no. 6, pp. 333–343, 2018.
[25] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A

modern primer on processing in memory,” in Emerging Computing:

From Devices to Systems: Looking Beyond Moore and Von Neumann.
Singapore: Springer, 2022, pp. 171–243.

[26] W. Haensch et al., “Compute in-memory with non-volatile elements for
neural networks: A review from a co-design perspective,” Adv. Mater.,
vol. 35, no. 37, 2022, Art. no. 2204944.

[27] C. Xu et al., “Overcoming the challenges of crossbar resistive memory
architectures,” in Proc. HPCA, 2015, pp. 476–488.

[28] Z. Liao, J. Fu, and J. Wang, “Ameliorate performance of memristor-
based ANNs in edge computing,” IEEE Trans. Comput., vol. 70, no. 8,
pp. 1299–1310, Aug. 2021.

[29] Z. Zhao et al., “Hardware-software co-design of slimmed optical neural
networks,” in Proc. 24th Asia South Pacific Design Autom. Conf., 2019,
pp. 705–710.

[30] C. Feng et al., “A compact butterfly-style silicon photonic–electronic
neural chip for hardware-efficient deep learning,” ACS Photon., vol. 9,
no. 12, pp. 3906–3916, 2022.

[31] F. Arute et al., “Quantum supremacy using a programmable supercon-
ducting processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.

[32] G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “On the
co-design of quantum software and hardware,” in Proc. 8th Annu. ACM

Int. Conf. Nanoscale Comput. Commun., 2021, pp. 1–7.
[33] H. Kim, Y. Kim, S. Ryu, and J.-J. Kim, “Algorithm/hardware co-design

for in-memory neural network computing with minimal peripheral
circuit overhead,” in Proc. 57th ACM/IEEE Design Autom. Conf. (DAC),
2020, pp. 1–6.

[34] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz, “Stream:
Towards read-based in-memory computing for streaming based data
processing,” in Proc. 27th Asia South Pacific Design Autom. Conf. (ASP-

DAC), 2022, pp. 690–695.
[35] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation

of a BDD package,” in Proc. DAC, 1990, pp. 40–45.
[36] S.-I. Minato et al., “Shared binary decision diagram with attributed

edges for efficient Boolean function manipulation,” in Proc. DAC, 1990,
pp. 52–57.

[37] M. Wang et al., “A selector device based on graphene–oxide heterostruc-
tures for memristor crossbar applications,” Appl. Phys. A, Solids Surf.,
vol. 120, no. 2, pp. 403–407, 2015.

[38] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.

Archit. News, vol. 44, no. 3, pp. 14–26, 2016.
[39] A. Ranjan, S. Jain, J. R. Stevens, D. Das, B. Kaul, and A. Raghunathan,

“X-MANN: A crossbar based architecture for memory augmented
neural networks,” in Proc. 56th Annu. Design Autom. Conf., 2019,
pp. 1–6.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

1400 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 43, NO. 5, MAY 2024

[40] Z. Zhu et al., “MNSIM 2.0: A behavior-level modeling tool for
memristor-based neuromorphic computing systems,” in Proc. Great

Lakes Symp. VLSI, 2020, pp. 83–88.
[41] J. Solanki, K. Beckmann, J. Pelton, N. Cady, and M. Liehr, “Effect

of resistance variability in vector matrix multiplication operations of
1T1R ReRAM crossbar arrays using an embedded test platform,” in
Proc. IEEE 32nd Microelectron. Design Test Symp. (MDTS), 2023,
pp. 1–5.

[42] M. Liehr, J. Hazra, K. Beckmann, S. Rafiq, and N. Cady, “Impact of
switching variability of 65nm CMOS integrated hafnium dioxide-based
ReRAM devices on distinct level operations,” in Proc. IEEE Int. Integr.

Rel. Workshop (IIRW), 2020, pp. 1–4.
[43] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.

Weiser, “Memristor-based material implication (IMPLY) logic: Design
principles and methodologies,” IEEE Trans. Very Large Scale Integr.

(VLSI) Syst., vol. 22, no. 10, pp. 2054–2066, Oct. 2014.
[44] D. E. Rodriguez, J. E. Van Nostrand, S. Jha, and A. Velasquez,

“Computation of Boolean formulas using sneak paths in crossbar
computing,” U.S Patent 9 319 047, 2016.

[45] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “‘Memristive’ switches enable ‘stateful’ logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[46] R. B. Hur et al., “SIMPLE MAGIC: Synthesis and in-memory mapping
of logic execution for memristor-aided logic,” in Proc. ICCAD, 2017,
pp. 225–232.

[47] S. Chakraborti, P. V. Chowdhary, K. Datta, and I. Sengupta, “BDD
based synthesis of boolean functions using memristors,” in Proc. 9th

Int. Design Test Symp. (IDT), 2014, pp. 136–141.
[48] R. Ben-Hur et al., “SIMPLER MAGIC: Synthesis and mapping of in-

memory logic executed in a single row to improve throughput,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2434–2447, Oct. 2020.

[49] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler,
“Logic synthesis for RRAM-based in-memory computing,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 7,
pp. 1422–1435, Jul. 2018.

[50] D. Bhattacharjee, R. Devadoss, and A. Chattopadhyay, “ReVAMP:
ReRAM based VLIW architecture for in-memory computing,” in Proc.

Design, Autom. Test Europe Conf. Exhibit. (DATE), 2017, pp. 782–787.
[51] D. Bhattacharjee, L. Amaŕu, and A. Chattopadhyay, “Technology-

aware logic synthesis for ReRAM based in-memory computing,” in
Proc. Design, Autom. Test Europe Conf. Exhibit. (DATE), 2018,
pp. 1435–1440.

[52] D. Bhattacharjee, Y. Tavva, A. Easwaran, and A. Chattopadhyay,
“Crossbar-constrained technology mapping for ReRAM based in-
memory computing,” IEEE Trans. Comput., vol. 69, no. 5, pp. 734–748,
May 2020.

[53] D. Chakraborty and S. Jha, “Automated synthesis of compact crossbars
for sneak-path based in-memory computing,” in Proc. DATE, 2017,
pp. 770–775.

[54] F. Somenzi, CUDD: CU Decision Diagram Package—Release

2.4.0, Univ. Colorado, Boulder, CO, USA, 2012.
[55] D. B. West et al., Introduction to Graph Theory, vol. 2. Upper Saddle

River, NJ, USA: Prentice Hall, 2001.
[56] R. E. Bryant, “Symbolic Boolean manipulation with ordered binary-

decision diagrams,” ACM Comput. Surveys, vol. 24, no. 3, pp. 293–318,
1992.

[57] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and
dynamic variable ordering of decision diagrams,” in Proc. IEEE/ACM

Int. Conf. Comput.-Aided Design, 1994, pp. 628–631.
[58] R. Wille et al., “RevLib: An online resource for reversible functions and

reversible circuits,” in Proc. ISMVL, 2008, pp. 220–225.
[59] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL combi-

national benchmark suite,” in Proc. 24th Int. Workshop Logic Synth.

(IWLS), 2015, pp. 1–5.
[60] F. Brglez, P. Pownall, and R. Hum, “Accelerated ATPG and fault grading

via testability analysis,” in Proc. IEEE Int. Symp. Circuits Syst., 1985,
pp. 695–698.

[61] S. Gudaparthi, S. Narayanan, R. Balasubramonian, E. Giacomin,
H. Kambalasubramanyam, and P.-E. Gaillardon, “Wire-aware architec-
ture and dataflow for CNN accelerators,” in Proc. 52nd Annu. IEEE/ACM

Int. Symp. Microarchit., 2019, pp. 1–13.
[62] G. Krishnan, S. K. Mandal, C. Chakrabarti, J.-S. Seo, U. Y. Ogras, and

Y. Cao, “Interconnect-aware area and energy optimization for in-memory
acceleration of DNNs,” IEEE Design Test, vol. 37, no. 6, pp. 79–87,
Dec. 2020.

[63] T. Zhang, C. Xu, K. Chen, G. Sun, and Y. Xie, “3D-SWIFT: A high-
performance 3D-stacked wide IO DRAM,” in Proc. 24th Great Lakes

Symp. VLSI, 2014, pp. 51–56.
[64] P. L. Thangkhiew, R. Gharpinde, and K. Datta, “Efficient mapping

of Boolean functions to memristor crossbar using MAGIC NOR

gates,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65, no. 8,
pp. 2466–2476, Aug. 2018.

Sven Thijssen received the bachelor’s degree in
informatics from KU Leuven, Leuven, Belgium, in
2018, and the master’s degree in computer sci-
ence from the University of Central Florida (UCF),
Orlando, FL, USA. in 2021, where he is currently
pursuing the Ph.D. degree in computer science.

His research interests are in-memory computing
and beyond von Neumann computing.

Mr. Thijssen has received the ORCGS Doctoral
Fellowship from UCF in 2020 and in 2021 he has
received a Best Paper Nomination at DATE.

Muhammad Rashedul Haq Rashed received the
bachelor’s degree in electrical and electronics engi-
neering from Bangladesh University of Engineering
and Technology, Dhaka, India, in 2015. He is
currently pursuing the Ph.D. degree in computer
engineering with the University of Central Florida,
Orlando, FL, USA.

His research interests include EDA for emerging
computing paradigms, computer-aided design, and
artificial intelligence.

Mr. Rashed has received a Best Paper Nomination
at ICCAD 2022.

Sumit Kumar Jha (Senior Member, IEEE) received
the B.Tech. degree (Hons.) in computer science and
engineering from the Indian Institute of Technology
Kharagpur, Kharagpur, India, in 2004, and the Ph.D.
degree in computer science from Carnegie Mellon
University, Pittsburgh, PA, USA, in 2010.

He is a Professor of Computer Science with
the Florida International University, Miami, FL,
USA. He has worked on Research and Development
Problems with Microsoft Research, India; General
Motors; INRIA France; and the Air Force Research

Lab Information Directorate. His research has been supported by the National
Science Foundation, DARPA, the Office of Naval Research, the Air Force
Office of Scientific Research, the Oak Ridge National Laboratory, the Royal
Bank of Canada, the Florida Center for Cybersecurity, the Air Force Research
Laboratory, and the National Nuclear Security Administration.

Dr. Jha is a recipient of the IEEE Orlando Engineering Educator Excellence
Award. He was awarded the prestigious Air Force Young Investigator Award
and his research has led to four Best Paper Awards. He is a Full Member of
the Sigma Xi.

Rickard Ewetz (Member, IEEE) received the M.S.
degree in applied physics and electrical engineering
from Linkopings Universitet, Linköping, Sweden,
in 2011, and the Ph.D. degree in electrical and
computer engineering from Purdue University, West
Lafayette, IN, USA, in 2016.

He is currently an Assistant Professor with the
Electrical and Computer Engineering Department,
University of Central Florida, Orlando, FL, USA.
His research interests include physical design and
computer-aided design for in-memory computing

using emerging technologies.
Dr. Ewetz has Best Paper Nominations from ASP-DAC 2019 and DATE

2021.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:05:24 UTC from IEEE Xplore. Restrictions apply.

