
Path-based Processing using In-Memory Systolic

Arrays for Accelerating Data-Intensive Applications

Muhammad Rashedul Haq Rashed∗, Sven Thijssen², Sumit Kumar Jha³, Hao Zheng∗, and Rickard Ewetz∗

∗Department of Electrical and Computer Engineering, University of Central Florida, Orlando, USA
²Department of Computer Science, University of Central Florida, Orlando, USA

³Computer Science Department, Florida International University, Miami, USA

{muhammad.rashed, sven.thijssen, hao.zheng, rickard.ewetz}@ucf.edu, jha@cs.fiu.edu

AbstractÐThe next wave of scientific discovery is predicated
on unleashing beyond-exascale simulation capabilities using
in-memory computing. Path-based computing is a promising
in-memory logic style for accelerating Boolean logic with
deterministic precision. However, existing studies on path-based
computing are limited to executing small combinational circuits.
In this paper, we propose a framework called PSYS to accelerate
data-intensive scientific computing applications using path-based
in-memory systolic arrays. The approach leverages path-based
computing for multiplying known constants with an unknown
operand, which substantially reduces the computational
complexity compared with general purpose multiplication of two
unknown operands. The systolic arrays minimize data
movement by storing the matrix elements using non-volatile
memory and performing processing in-place. The framework
decomposes unstructured computations to the systolic arrays
while considering the non-regular computational patterns of the
applications. Our experimental evaluations employ applications
from the domains of engineering, physics, and mathematics. The
experimental results demonstrate that compared with the
state-of-the-art, the PSYS framework improves energy and
latency by a factor of 101x and 23x, respectively.

I. INTRODUCTION

The availability of digital data has fueled the growth of

data-centric applications within computer vision [1], social

networks [2], and scientific computing [3]. The forthcoming

era of scientific exploration hinges on the expansion of

scientific simulations [4]. Numerous intricate systems are

replicated through digital twins [5], and simulations are

employed for intelligent decision-making processes [6].

However, current high-performance computing systems face

significant challenges in handling simulations beyond the

exascale level, primarily due to the separation of memory and

compute units in the traditional von Neumann

architecture [7]. In the relentless pursuit of faster and more

efficient computational systems, the industry is witnessing a

paradigm shift towards a more effective computing model.

This has sparked investigations into alternative computing

technologies and paradigms such as quantum computing [8],

optical computing [9], and in-memory computing [10]. One

notable area of interest in recent years has been processing

in-memory using emerging non-volatile memories, which has

garnered substantial attention due to its ability to achieve

energy-efficient in-situ processing [11].

This work was in part supported by NSF awards # 2319399, # 2113307, the
University of Central Florida, and Texas STARs award to Sumit Jha.

Fig. 1: Underlying matrix-vector multiplication kernels of four

scientific simulation problems from SuiteSparse [12].

In-memory computing has been investigated using logic

styles such as analog matrix-vector multiplication [13],

MAGIC [14], IMPLY [15], streaming-based computing [16],

flow-based computing [17±19], and path-based

computing [20]. Different in-memory logic styles offer unique

advantages and are subject to different limitations. While

analog matrix-vector multiplication is extremely efficient, it

lacks the deterministic precision provided by digital

in-memory computing paradigms [21, 22]. The digital

bit-wise-in-bulk paradigms MAGIC and IMPLY have been

the foundation for several in-memory computing

architectures [23±25]. The limitation is that the bit-wise

parallelism requires each multiplication operation to be

realized using a general purpose element-wise multiplication

operation. This paper focuses on path-based computing that is

capable of compiling arbitrary Boolean functions into

compact look-up tables [20]. The path-based computation is

(i) high-speed, (ii) extremely energy-efficient, (iii) in-situ

processing, and (iv) deterministic precision [20]. While

previous studies on path-based computing only focus on

realizing small Boolean functions, this paper aims to

accelerate full-blown scientific simulations using in-memory

computing. An overview of the underlying matrix kernels of

four scientific computing applications is shown in Figure 1.

The main advantage of path-based computing is that it allows

each element-wise multiplication with an operand and

constant to be compiled into an abstract look-up table, which

leads to substantial performance improvements compared with

general purpose element-wise multiplication due to the

reduction in computational complexity. On the other hand, the

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
36

22

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

path-based paradigm requires careful architecture design to

maximize parallelism and minimize data movement within the

system architecture.

Various types of systolic arrays have been proposed for the

acceleration of data-intensive applications [26, 27]. The

systolic array minimize data movement by keeping different

operands in-place and moving others systematically through

the architecture. Google’s tensor processing unit (TPU) was

for example based on systolic arrays that store matrix-values

in-place and pipeline the vector operands through the

architecture [28]. Systolic arrays have been used to accelerate

matrix-vector multiplication operations that are larger than the

maximum crossbar dimensions in [29]. The limitation of

systolic arrays is that they are customized for dense

matrix-vector, or matrix-matrix multiplication operations. The

hardware utilization quickly becomes prohibitively low if the

matrix kernel is sparse. Various blocking and decomposition

schemes have been proposed to improve the array

utilization [30±33]. The use of reconfigurable adder trees have

been demonstrated useful for sparse matrix

representations [34, 35].

In this paper, we propose a framework called PSYS to

accelerate data-intensive scientific computing applications

using path-based in-memory systolic arrays. Path-based

computing is used to efficiently accelerate element-wise

multiplications of operands and constants using compact

look-up tables. The LUTs realized using resistive random

access memory (RRAM) are combined with CMOS based

adders to form multiply-and-accumulate units within a

systolic array. The systolic array is designed using bit-slicing

decomposition schemes to maximize computational efficiency.

Unstructured computations are decomposed into the systolic

arrays while considering the non-regular computational

patterns of the applications, with the objective of maximizing

the utilization of the systolic arrays.

The main contributions of the paper are summarized, as

follows:

• Leverage path-based in-memory computing to realize

configurable LUTs. The LUTs realize constant and

operand multiplication instead of general purpose

multiplication of a pair of operands.

• The systolic arrays perform in-situ computation of dense

matrix-vector operation. The arrays leverage a hybrid of

crossbars and CMOS logic, with shift-and-add

decomposition for improved efficiency.

• The non-regular computational patterns are decomposed to

regular computational patterns. The approach maximizes

the utilization of the systolic arrays.

• The PSYS framework is evaluated using 20 applications

from the domains of engineering, physics, and

mathematics. Compared with the state-of-the-art, the

experimental evaluation demonstrate energy and latency

improvements of 101x and 23x, respectively.

The remainder of the paper is organized as follows:

preliminaries and the motivation are presented in Section II.

The PSYS framework is introduced in Section III. The

Fig. 2: Path-based in-memory computing using 1T1M crossbar.

(a) Programming of the crossbar to perform Boolean

function f (b1,b2,b3), and (b) execution of f for [1,0,0]

instances of variables (b1,b2,b3). (WL=wordline, BL=bitline

and SL=selector line.)

synthesis methodology of the framework is explained in

Section IV. Decomposition method of unstructured system is

discussed in Section V. The architecture and the experimental

evaluations are discussed in Section VI. The paper is

concluded in Section VII.

II. PRELIMINARIES

In this section, we first explain the operating principles of

Path-based in-memory computing. Next, we describe the

design of systolic array to accelerate MVM operations.

Finally, we discuss the motivation for designing path-based

in-memory systolic array architectures.

A. Path-based computing

Path-based computing is a READ-based digital in-memory

computing paradigm on 1T1M (one-transistor one-memristor)

crossbars [20]. The computing paradigm is READ-based

because it only requires the memristors to be programmed

once to a resistive state. Path-based computing consist of two

steps. First, a Boolean function is synthesized into a crossbar

design, which is subsequently mapped to a programmed

platform. For example, in Figure 2, the Boolean function

f = (b1 ∧ ¬b2) ∨ b3 is synthesized into the programmed

platform in Figure 2(a). In a programmed platform, the input

variables are assigned to the selector-lines, and the

memristors are programmed to either a low (ON) or high

resistive state (OFF). The next step is the execution where the

Boolean function is evaluated for a given input vector. In

Figure 2(b), we are provided the input vector b1 = 1, b2 = 0,

and b3 = 0. Based on these values, the corresponding selector

lines are charged accordingly. For example, when b1 = 1, the

transistors connected to this selector line are closed. For

b3 = 0, the selector line is open. Next, a high input voltage is

applied to the input bit line Vin. This will result in an

electrical current flowing through the crossbar. If the electrical

current from the input bit line to the output bit line through

memristors in the low resistive state, we conclude that the

function evaluates to true. Otherwise, if there is no such path

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

from input to output, then the function evaluates to false. In

Figure 2(b), we observe that there is a path from input to

output, and thus f evaluates to true.

B. Systolic Arrays

Systolic arrays are powerful parallel processors that can

accelerate matrix-vector multiplications (MVM) [36±38]. To

perform MVM operations within traditional architecture,

iterative data fetch from the main memory is required to

bring the MVM operands to the processor. This results in a

scenario where a piece of data may get repeatedly fetched

from and sent back to the main memory which imposes

significant load on the valuable data transfer bandwidth. On

the contrary, the systolic array processors are designed in a

way that when a piece of data for MVM is fetched from the

main memory, the utilization of the fetched data is maximized

before it is sent back to the memory. We explain the concept

of MVM operation using systolic arrays in Figure 3.

In Figure 3(a), we show a 2× 2 MVM operation. The

outputs of the MVM is achieved by sequential multiplication

and accumulation of operands. In Figure 3(b), we show the

assignment of the matrix operands into an architecture of

orthogonal systolic arrays [39]. Note that the matrix operands

are mapped in a transposed manner within the arrays. We

illustrate the MVM workflow of the systolic arrays in

Figure 3(c). Each of the arrays perform a multiplication and

accumulation operation. The computation within an array can

be generalized as follows:

out j = (ai j×b j)+out j−1

s.t. out j−1 = ai(j−1)×b j−1, out0 = 0, ∀(i, j) ∈ Z+

For Cycle 1 in Figure 3(c), the top-left systolic array performs

a multiplication on the stored a11 matrix operand with

incoming input-vector operand b1. In the following cycle, the

operand b1 is routed horizontally to the systolic array storing

a21. At the same time, operand b2 is introduced on the array

storing a12 in similar data-flow direction. In an orthogonal

direction of the data (bi) flow, the multiplication results

ai j × b j are routed. Within this data-flow, the input operands

Fig. 3: Matrix-vector multiplication (MVM) using systolic

arrays. (a) A 2×2 matrix-vector multiplication, (b) transposed

matrix weight mapping in systolic arrays and, (c) workflow of

MVM within systolic arrays.

(ai j,b j) and the output results are not returned to the main

memory until the entire MVM operation is concluded.

C. Motivation

In this section, we discuss the motivation behind designing

a path-based in-memory systolic array architecture.

Although traditional systolic array architectures highly

parallelize the MVM operation and reduce the repeated access

of same data from memory, they are still required to fetch

both the matrix and vector data from the memory. This large

amount of data movement requires localized buffers within

the array units which are costly in terms of energy and

area [40±42]. Large systolic array architectures, such as

Google TPU employ embedded memory units to reduce

off-chip data communications [36]. However, these embedded

memory are power hungry and they create a localized

memory-wall bottleneck due to the performance gap between

the memories and the processors [43]. In-memory computing

can be a promising solution to overcome this memory wall by

in-situ processing of computational operands.

Some recent works have explored the design of in-memory

systolic arrays [29, 44]. However, these works are based on

analog in-memory computing processors. Previous studies

have shown that analog in-memory computing is vulnerable

to various errors that result in limited precision

computation [21, 22, 45]. Therefore, an in-memory systolic

array capable of performing computation with deterministic

precision is still missing.

Path-based computing is a natural candidate for an

in-memory systolic array system due to its inherent

streaming-style computing capability and its ability to

perform deterministic precision computation. Additionally, for

fixed-weight matrix operands, the path based in-memory

computing only fetches the input-vector operands and thus

reduces memory fetch complexity from O(N2) to O(N).

III. THE PSYS FRAMEWORK

In this section, we introduce the PSYS framework. An

architectural overview of PSYS is illustrated in Figure 4.

The overall architecture consists of a CPU unit, a DRAM

memory unit and a series of systolic array based processing

elements (PEs) interconnected with high-speed bus. The

systolic array arrangement within a PE is shown on the

top-middle of the figure. Each of the array units within the

Fig. 4: Overview of the PSYS framework.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

PEs consists of a hybrid multiply and accumulate (MAC) unit

which is shown in the top-right of the figure. A path-based

ITIM crossbar architecture constitute the multiplier unit.

Multiplication operations are converted into kernels for

path-based computing and are bound to the crossbar. The

output of the multiplier unit is fed into a CMOS adder unit.

The adder also receives inputs from the previous systolic

array unit. The output of the MAC operation is collected from

the output side of the adder unit.

The overview of the synthesis operation is shown at the

bottom of Figure 4. The input to the synthesis tool is the

operands of the MVM operation. The output of the tool is the

configurations of the path-based multiplier units. The

synthesis process is described in the Section IV.

IV. SYNTHESIS

In this section, we explain the synthesis flow for the PSYS

framework. An overview of the synthesis flow is illustrated in

Figure 5.

Fig. 5: Synthesis flow for PSYS framework.

The synthesis process starts with an exhaustive

enumeration of multiplications of a p-bit known number a

with a p-bit unknown number b. The final output of the

synthesis process is a lookup table of crossbar designs for all

the enumerated multiplications. First, the multiplication

operations are converted into hardware description language

(HDL) verilog. Next, ABC [46] tool is used to convert the

verilog files into binary decision diagram (BDD) netlists.

Finally, BDDs are synthesized into path-based crossbar

designs using the PATH tool [20].

The synthesis problem consists of two major challenges:

1) Scaling: Our experimental evaluation shows that the

path-based design scale poorly for high precision

multiplication operation. In particular, the netlist size

tend to explode for high-precision of the unknown

operand b. However, the impact of the higher-precision

of the known operand a is not very significant as its a

constant value.

2) Enumeration: The exhaustive enumeration of

multiplication operations involve the enumeration of all

possible bit-patterns of the known operand. This

translates into an enumeration complexity of O(2p).

These two challenges are co-related. We solve the challenges

using an adaptive bit-slicing scheme.

A. Problem Formulation

To address the first challenge, the aim is to find a bit-slicing

width of the unknown operand b that minimizes the normalized

cost of the multiplication. Let m denote the bit-slicing precision

of b. To address the second challenge, we aim to maximize the

bit-slicing precision n of the known operand a while keeping

the enumeration complexity within an acceptable limit. This

can be formalized, as follows:

min
m

max
n

cost(Si).cost(Tj), ∀i, j ∈ Z+ (1)

where Si is the semi-perimeter (number of rows+column) of

the crossbar design for unknown operand precision of i and

Tj is the synthesis runtime for the exhaustively enumerated

multiplication operations for known operand precision of j.

B. Adaptive Bit-slicing

The concept of adaptive bit-slicing is explained with an

example in Figure 6.

Fig. 6: Adaptive bit-slicing of MVM operands.

On the top of the figure, we show two 8-bit operands a and

b where the value of a is known. Next, bit-slicing of a and b

with different bit-slicing width is shown in the middle of the

figure. For the known and the unknown operands, bit-slicing

width of 4-bit and 2-bit, respectively, are selected. As a result

of the bit-slicing, the original multiplication operation is now

partitioned into a series of multiplication and accumulation

operations. All the different multiplicand pairs are shown at

the bottom of the figure. During accumulation of the

partitioned multiplications, shifting operations are required to

align the multiplication results to their corresponding weight

locations. The entire multiplication operation can be

expressed as follows:

mult =
p/n

∑
i=1

p/m

∑
j=1

ai×b j×2(xi+y j−2), ∀(i, j) ∈ Z+

Here, p is the original bit-precision of the operands, (ai,b j)
are a pair of bit-sliced multiplicands, the LSB of ai is the xth

i

LSB of a and the LSB of b j is the yth
j LSB of b. For alignment,

each partial multiplication of ai & b j is shifted by (xi +y j−2)
bit-position to the left.

V. DECOMPOSING UNSTRUCTURED COMPUTATION

In this section, we develop a matrix compression algorithm to

decompose unstructured sparse matrices to PSYS framework.

In Figure 7(a), we show the sparsity pattern of a system

Si2 from the SuiteSparse matrix collection [12]. It can be

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 7: Bit-slicing of matrix operands. (a) Sparsity pattern of

the system Si2 from quantum chemistry domain [12], and (b)

bit-sliced matrices Si2 for 8-bit slicing width. nz denotes the

number of non-zeros within the matrix.

observed that the matrix is very sparse and a naive mapping

of matrix operands into crossbars will result in significant

under-utilization of hardware. Also, the sparsity pattern shows

that the distribution of operand weight is not uniform. The

more darker (lighter) parts of the sparsity pattern denote

higher (lower) valued operands. This results in that, when we

bit-slice the matrix operands, it generates several matrices

with different sparsity patterns. For instance, Figure 7(b)

shows the conversion of 32-bit Si2 matrix into four sparse

matrices, each with 8-bit operands. We target to develop an

algorithm to automatically decomposed the bit-sliced matrices

that can be efficiently evaluated within the PSYS framework.

Recent works have proposed a blocked-shifting based

compression of sparse matrices to decompose the original

matrix into a series of denser matrix blocks [47]. The concept

is illustrated with an example in Figure 8. Figure 8(a) shows

the bit-sliced matrix of Si2 system for the 8 most significant

bits (31:24). In the first step, the matrix is partitioned into a

number of rectangular blocks with a fixed number of rows as

shown in Figure 8(a). For the remainder of this paper, we will

use the term block-size to denote the number of matrix rows

within the blocks. Next, each column within a block that

contains a non-zero operand is selected and the zero values of

(a) (b) (c) (d)

Fig. 8: Shifted compression of sparse matrix for fixed block-

size of 128 [47]. (a) Original matrix, (b) padding of non-zero

columns, (c) shifting, and (d) cleaning of padded operands.

the selected columns are padded with dummy values. Next,

the non-zero columns within each blocks are shifted to the

left. The padding and shifting steps are shown in Figure 8(b)

and 8(c), respectively. Finally, the dummy values are cleared

and a set of relatively denser matrix blocks are achieved.

While this algorithm works for a few of the sparse systems,

it cannot guarantee dense partitioning for all sparse systems.

It is evident form Figure 8(d) that the blocks extracted by the

algorithm are not significantly dense. This is due to that the

density of the compressed blocks is highly dependent on the

localized data-pattern and the selected block-size. However,

the algorithm fixes a block-size for all matrices irrespective of

the data-arrangement of the system. We have already observed

in Figure 7 that each of bit-sliced matrices may have different

sparsity patterns. Therefore, the block dimension should be

dynamically updated for the target matrices. We present a

case study on the impact of using different block sizes for the

matrix(31:24) of Si2 in Figure 9. Figure 9(a)−(d) shows the

blocked matrices for block-size of 128, 64, 32 and 16,

respectively. The Figure shows that for smaller block-size, the

extracted matrix blocks become increasingly denser.

(a) (b) (c) (d)

Fig. 9: Matrix Compression of matrix[31:24] of Si2 for variable

block sizes of (a) 128, (b) 64, (c) 32, and (d) 16.

However, an exhaustive exploration of block sizes will pose

two challenges:

1) Complexity: The computational complexity of block

extraction will become O(MN).
2) Memoization: While extracting the blocks, we are

required to record (#rows/block-size) subsets of the

input vector indices. For very small block-size, this

bookkeeping can become expensive.

To overcome these challenges, we present Algorithm 1

where the block search complexity is O(log2(N)). We also

set a density threshold to run the algorithm until an

acceptable density is achieved. The inputs to the algorithm

are the original matrix A, matrix bit-slicing width n and the

block density threshold d. The algorithm returns a library (L)

of denser matrix blocks, and the lookup table (I) of the

corresponding input vector subset indices. First, the algorithm

decomposes the original matrix into bit-sliced matrices of

n-bit width. Next, for each of the bit-sliced matrices, an

iterative exploration of block-size is performed. In each

subsequent iteration, the block-size is halved from its previous

value, bringing the search complexity to O(log2(N)). For

each exploration of blocking, the blocks are compressed using

the algorithm in Figure 8. For all the compressed blocks, the

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Decomposing Sparse Matrices

Inputs: Matrix, A; bit-slicing width, n; block density

threshold, d

Output: Compressed matrix block library, L; look-up

table of input-vector subset indices, I
L, I ← φ ; \\initializing

[r,c] ← size(A); \\matrix dimensions

A ← Bitslice(A,n); \\Bitslicing original matrix

for all Ai ∈ A do
block size ← r; \\initial block size
Âd ← density(Ai); \\initial density

while Âd < d do
block size ← block size/2; \\downsizing block

{A⌈, ÂI} ← Compress(Blocking(Ai,block size));
\\matrix compression. A⌈ stores compressed

blocks, ÂI tracks corresponding column indices

for all compressed blocks A′j ∈ A⌈ do
Âd ← avg density(A′j); \\running average

end

if (Âd≥d) then
L ← L ∪ (A⌈, i); \\indexed matrix blocks

I ← I ∪ (ÂI, i); \\indices look-up table
end

end

end

return L, I;

running average density Âd is calculated. When the condition
Âd ≥ d is met, the block downsizing is stopped and the L and

I are updated with current matrix blocks and corresponding

input-vector indices, respectively.

The workflow of decomposition of sparse matrices for

Fig. 10: Sparse matrix conversion using Algorithm 1.

PSYS framework is illustrated in Figure 10. The figure shows

how the original matrix is first bit-sliced into several matrices

with different sparsity. Next, for each of the sliced matrices,

compression is performed using different block-sizes. Next,

the compressed blocks are transposed to align with the

operand mapping flow of the systolic arrays. Finally, the

transposed matrix blocks are hardware bound to the NVM

systolic arrays using the look-up table of Section IV.

VI. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate the performance

of the PSYS framework. We use an octa-core machine with

3.60 GHz Intel Core i9 processor with NVIDIA RTX 2070

and 64 GB RAM to conduct the experiments. We use a blend

of MATLAB and Python scripts to decompose the sparse

matrices and to generate the HDL codes. For synthesizing the

path-based computing kernels, we use the ABC tool [46] and

PATH [20] tool. For the evaluation of CMOS-based

architectural components, we use the Synopsis Design

Compiler tool. We couple the compiler with a gscl-45 nm

technology library [48] to evaluate the power, area and

latency overheads. To estimate the cross-architecture

data-transfer cost, we utilize the the CACTI 7 tool [49] on 45

nm technology node. The power and area performance of the

NVM crossbars are adapted from [50±52]. The operating

latency of NVM devices are obtained from [53].

We first present the architecture overview of the PSYS

framework in Section VI-A. Next, we evaluate the bit-slicing

step of the synthesis flow in Section VI-B. Subsequently, we

experimentally justify the NVM-CMOS hybrid design for the

MAC unit in Section VI-C. Finally, we evaluate the

performance of the PSYS framework for 20 sparse matrices

from different domains of scientific computation in

Section VI-D.

A. Architecture

In this section, we present the architecture of the processing

elements (PEs) within the PSYS framework. The components

of the PE architecture are illustrated in Figure 11.

Fig. 11: PSYS PE architecture.

The overview of the PE architecture is shown in

Figure 11(a). The PE consists of a collection of orthogonal

systolic arrays (A). Each of the arrays perform multiply and

accumulate (MAC) operation to process MVM applications.

Controller and global drivers are used to program the arrays

based on synthesized MVM operands. The components within

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

a systolic array is shown in Figure 11(b). Each array is

equipped with a NVM crossbar to perform multiplication and

a CMOS adder to accumulate the results. The figure shows

the incoming and the outgoing data flows within the array

unit. Each array within the same row of arrays share the same

set of input vectors. The vector is streamed side-wise

throughout the PE. After the multiplication within an array is

processed, the vector is streamed to the next row-parallel

array. Simultaneously, partial sums of the MVM operations

are streamed column-wise throughout the arrays. Each array

within a PE column receive a stream of running partial sum

from the previous array on top and streams the updated

partial sum downwards to the next array in the same column.

Each NVM crossbar performs several bit-sliced multiplication

operations. Input registers (IR) and output registers (OR) are

used to hold the input and output operands to enable

pipelining of bit-sliced computations. Shifters (Sh) are used to

perform shifting of bit-slices. The per-unit area-power costs

of the systolic array components are listed in Table I. The

dimensions for the NVM crossbars are selected to be

128× 256. This rectangular shape is deliberately selected as

the crossbar design of the bit-sliced multiplications assume a

rectangular shape. This is experimentally demonstrated in the

next subsection.

TABLE I: Area-Power Cost of Systolic Array Components

Component Parameter Specs Area Power

Crossbar size 128×256 50 µm2 0.6 mW

Adder resolution 16 b 186.31 µm2 0.08 mW

IR size 10 B 10.5 µm2 0.006 mW

OR size 2 B 5.86 µm2 0.003 mW

Sh # unit 1 23.43 µm2 0.02 mW

Local Bus #wires 64 0.0075 mm2 0.58 mW

B. Evaluation of Adaptive Bit-Slicing

In this section, we evaluate the adaptive bit-slicing step of

synthesis. The step begins with an exhaustive enumeration of

all possible multiplication operations of an unknown operand

with a known operand of p-bit. Due to the O(2p) order of

enumeration complexity, we make an engineering choice to

fix the bit-slicing width of the known operand to 8-bits. This

helps us to limit the enumeration size to 256 different

multiplication operations. Next, we generate the look-up table

of crossbar designs for different bit-slicing width of the

unknown operand. Each of the look-up table for different

bit-slicing width (1, 2, 4, etc.) contain 256 entries. Next, we

evaluate the worst-case semi-perimeter for each of the table.

The results of this experiment are presented in Table II. The

table presents the total semi-parameter overhead to perform

8-bit multiplication (8-bit known operand × 8-bit unknown

operand) for different bit-slicing width of the unknown

operand. The table shows that the overhead is least when the

unknown operand is sliced using a bit-width of 2-bits. It can

also be observed that the optimum crossbar design is

rectangular (24× 48). Based on this observation, we select

rectangular crossbars for the design the systolic arrays within

the PEs.

TABLE II: Overhead Comparison for Different Bit-slicing.

Worst-case Overhead Bit-slicing Width of Unknown Operand

for 8-bit Multiplication 1-bit 2-bit 4-bit 8-bit

#wordlines 8 24 100 414

#bitlines 72 48 84 327

Semi-perimeter 80 72 184 741

C. Evaluation of MAC Unit

In this section, we perform a comparative performance

evaluation of the proposed hybrid multiply-accumulate (MAC)

design. For the comparative study, we consider three different

MAC designs as shown in Figure 12. Figure 12(a)-(c) show a

purely CMOS-based MAC design, a purely NVM-based MAC

deign and the proposed hybrid MAC design, respectively.

Fig. 12: MAC architectures for comparative evaluations.

We present the comparative power and area performance of

the three MAC architectures in Figure 13(a) and (b). The

figures show that, CMOS-based multiplier are more power

hungry and incur more area overhead than the NVM-based

multiplier. On the other hand, the NVM adder is more

expensive in terms of power and area than the CMOS adder.

This is due to the fact that the adders in the MAC architecture

are general purpose and the path-based computing systems

scale poorly for general purpose operations. It can be

observed from the figures that, the hybrid MAC architecture

outperforms both the CMOS-only and NVM-only MAC

architectures in terms of power and area overhead. The

evaluation shows that, compared to the CMOS-only and

NVM-only MAC architectures, the hybrid MAC is 50% and

97% more power efficient, respectively. Also, the hybrid

MAC reduces area overhead by 78% and 30%, respectively,

over the CMOS-only and NVM-only MAC architectures.

D. Evaluation with MVM Applications

In this section, we evaluate the performance of the PSYS

framework on 20 applications from different domains of

scientific simulation. The selected applications are listed in

(a) (b)

Fig. 13: (a) Power, and (b) area comparison for CMOS-only,

NVM-only and hybrid MAC architectures.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 14: Comparison of latency, and energy for traditional CMOS-based systolic array architecture and the PSYS framework on

twenty benchmarks of the SuiteSparse Matrix Collection [12].

TABLE III: Overview of benchmarks from the SuiteSparse

Matrix Collection [12].

Applications Systems Matrix Dimensions #Non-zeros

mesh3em5 Structural 289×289 1377

bcsstk34 Structural 588×588 21418

Si2 Quantum Chemistry 769×769 17801

coater1 Fluid Dynamics 1348×1348 19457

Chem97ZtZ Mathematical 2541×2541 7361

mycielskian12 Undirected Graph 3071×3071 407200

raefsky1 Fluid Dynamics 3242×3242 293409

crystk01 Materials 4875×4875 315891

fxm3 6 Optimization 5026×5026 94026

EX5 Combinatorial 6545×6545 295680

fp Electromagnetics 7548×7548 834222

benzene Quantum Chemistry 8219×8219 242669

bcsstk33 Structural 8738×8738 591904

graham1 Fluid Dynamics 9035×9035 335472

net25 Optimization 9520×9520 401200

bundle1 Computer Vision 10581×10581 770811

Si10H16 Quantum Chemistry 17077×17077 875923

Goodwin 040 Fluid Dynamics 17922×17922 561677

Trefethen 20000b Combinatorial 19999×19999 554435

pkustk06 Structural 43164×43164 2571768

Table III. The systems are very sparse with an average data

density of only 1.4%. The systems are decomposed into

denser matrix blocks using the Algorithm 1. We select a

reasonable density threshold of d = 60% for the system

conversion. The performance of the PSYS is compared with

traditional CMOS-based systolic architecture. The

comparative latency and energy performance are illustrated in

Figure 14.

The results show that the PSYS framework achieves 23x

speedup on average compared to the traditional systolic array

architecture. This remarkable improvement is the result of

limited data-movement within the PSYS framework due to

that it only streams the input vectors. On the contrary,

traditional architecture streams both the system matrix and the

input vector elements, making the data movement complexity

in the order of O(N2). The PSYS system also achieves 101x

more energy-efficiency compared to the traditional

architecture. As shown in the previous subsection, the hybrid

MAC units of the PSYS framework are more power efficient

than the traditional MAC units. This improvement is

amplified by the speedup achieved by limited data movement,

bringing down the total energy consumption significantly.

VII. CONCLUSION

In this paper, we have introduced PSYS, a novel

framework that significantly accelerates data-intensive

scientific computing applications by leveraging path-based

in-memory systolic arrays. The core of the PSYS approach

lies in its application of path-based computing, which

facilitates efficient multiplication between known constants

and unknown operands, thus mitigating the inherent

computational complexity of traditional multiplication

methods involving two unknown operands. Additionally, the

systolic arrays in the PSYS framework store matrix elements

using non-volatile memory and conduct in-place processing,

drastically minimizing data movement. One of the strengths

of PSYS is its capacity to convert unstructured computations

into forms compatible with systolic arrays, exploiting the

unique non-regular computational patterns of the applications

being accelerated. In future research, we intend to explore the

use of machine learning methods for accelerating the PSYS

framework by avoiding the algorithmic construction of

libraries for matrix-vector multiplications. Instead, we will

seek to search and reason about the library by storing it in a

compact neural network representation.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, et al., ªDeep learning

for computer vision: A brief review,º Computational intelligence and neuroscience,

vol. 2018, 2018.

[2] T. A. Snijders, ªStatistical models for social networks,º Annual Review of Sociology,

vol. 37, no. 1, pp. 131±153, 2011.

[3] G. Wilson, D. A. Aruliah, C. T. Brown, N. P. Chue Hong, M. Davis, R. T. Guy,

S. H. Haddock, K. D. Huff, I. M. Mitchell, M. D. Plumbley, et al., ªBest practices

for scientific computing,º PLoS biology, vol. 12, no. 1, p. e1001745, 2014.

[4] N. Baker, F. Alexander, T. Bremer, A. Hagberg, Y. Kevrekidis, H. Najm, M. Parashar,

A. Patra, J. Sethian, S. Wild, and K. Willcox, ªBrochure on basic research needs

for scientific machine learning: Core technologies for artificial intelligence,º

[5] S. Niederer, M. Sacks, M. Girolami, and K. Willcox, ªScaling digital twins from

the artisanal to the industrial,º Nature Computational Science, vol. 1, pp. 313±320,

05 2021.

[6] L. Himanen, A. Geurts, A. S. Foster, and P. Rinke, ªData-driven materials science:

Status, challenges, and perspectives,º Advanced Science, vol. 6, no. 21, p. 1900808,

2019.

[7] A. Jaiswal, I. Chakraborty, A. Agrawal, and K. Roy, ª8t sram cell as a multibit dot-

product engine for beyond von neumann computing,º IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 27, no. 11, pp. 2556±2567, 2019.

[8] E. National Academies of Sciences, Medicine, et al., ªQuantum computing: progress

and prospects,º 2019.

[9] C. Qian, X. Lin, X. Lin, J. Xu, Y. Sun, E. Li, B. Zhang, and H. Chen,

ªPerforming optical logic operations by a diffractive neural network,º Light: Science

& Applications, vol. 9, no. 1, p. 59, 2020.

[10] A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, and E. Eleftheriou, ªMemory

devices and applications for in-memory computing,º Nature nanotechnology, vol. 15,

no. 7, pp. 529±544, 2020.

[11] A. Gebregiorgis, H. A. Du Nguyen, J. Yu, R. Bishnoi, M. Taouil, F. Catthoor,

and S. Hamdioui, ªA survey on memory-centric computer architectures,º J. Emerg.

Technol. Comput. Syst., vol. 18, oct 2022.

[12] T. A. Davis and Y. Hu, ªThe university of florida sparse matrix collection,º ACM

Transactions on Mathematical Software (TOMS), vol. 38, no. 1, pp. 1±25, 2011.

[13] C. Li, M. Hu, Y. Li, H. Jiang, N. Ge, E. Montgomery, J. Zhang, W. Song, N. DÂavila,

C. E. Graves, et al., ªAnalogue signal and image processing with large memristor

crossbars,º Nature Electronics, vol. 1, no. 1, p. 52, 2018.

[14] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny,

and U. C. Weiser, ªMagicÐmemristor-aided logic,º IEEE Transactions on Circuits

and Systems II: Express Briefs, vol. 61, no. 11, pp. 895±899, 2014.

[15] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.

Weiser, ªMemristor-based material implication (imply) logic: Design principles and

methodologies,º IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 22, no. 10, pp. 2054±2066, 2013.

[16] M. R. H. Rashed, S. Thijssen, S. K. Jha, F. Yao, and R. Ewetz, ªStream: Towards

read-based in-memory computing for streaming based processing for data-intensive

applications,º IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 2023.

[17] D. Chakraborty and S. K. Jha, ªAutomated synthesis of compact crossbars for

sneak-path based in-memory computing,º in Design, Automation & Test in Europe

Conference & Exhibition (DATE), 2017, pp. 770±775, IEEE, 2017.

[18] A. U. Hassen, D. Chakraborty, and S. K. Jha, ªFree binary decision diagram-based

synthesis of compact crossbars for in-memory computing,º IEEE Transactions on

Circuits and Systems II: Express Briefs, vol. 65, no. 5, pp. 622±626, 2018.

[19] A. Velasquez and S. K. Jha, ªParallel boolean matrix multiplication in linear time

using rectifying memristors,º in 2016 IEEE International Symposium on Circuits

and Systems (ISCAS), pp. 1874±1877, IEEE, 2016.

[20] S. Thijssen, S. K. Jha, and R. Ewetz, ªPath: Evaluation of boolean logic using

path-based in-memory computing,º in Proceedings of the 59th ACM/IEEE Design

Automation Conference, pp. 1129±1134, 2022.

[21] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang, S. Yu, and Y. Xie,

ªOvercoming the challenges of crossbar resistive memory architectures,º in 2015

IEEE 21st International Symposium on High Performance Computer Architecture

(HPCA), pp. 476±488, IEEE, 2015.

[22] M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma, C. Bekas,

A. Curioni, and E. Eleftheriou, ªMixed-precision in-memory computing,º Nature

Electronics, vol. 1, no. 4, pp. 246±253, 2018.

[23] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled, and

S. Kvatinsky, ªSimpler magic: Synthesis and mapping of in-memory logic executed

in a single row to improve throughput,º IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2434±2447, 2019.

[24] A. Zulehner, K. Datta, I. Sengupta, and R. Wille, ªA staircase structure for scalable

and efficient synthesis of memristor-aided logic,º in Proceedings of the 24th Asia

and South Pacific Design Automation Conference, pp. 237±242, 2019.

[25] D. Bhattacharjee and A. Chattopadhyay, ªSynthesis and technology mapping for in-

memory computing,º in Emerging Computing: From Devices to Systems: Looking

Beyond Moore and Von Neumann, pp. 317±353, Springer, 2022.

[26] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, ªAn fpga-based systolic

array to accelerate the bwa-mem genomic mapping algorithm,º in 2015 international

conference on embedded computer systems: Architectures, modeling, and simulation

(samos), pp. 221±227, IEEE, 2015.

[27] G. Peng, L. Liu, S. Zhou, S. Yin, and S. Wei, ªA 2.92-gb/s/w and 0.43-gb/s/mg

flexible and scalable cgra-based baseband processor for massive mimo detection,º

IEEE Journal of Solid-State Circuits, vol. 55, no. 2, pp. 505±519, 2019.

[28] J. J. Zhang, K. Basu, and S. Garg, ªFault-tolerant systolic array based accelerators

for deep neural network execution,º IEEE Design & Test, vol. 36, no. 5, pp. 44±53,

2019.

[29] N. Challapalle, S. Rampalli, M. Chandran, G. Kalsi, S. Subramoney, J. Sampson, and

V. Narayanan, ªPsb-rnn: A processing-in-memory systolic array architecture using

block circulant matrices for recurrent neural networks,º in 2020 Design, Automation

& Test in Europe Conference & Exhibition (DATE), pp. 180±185, IEEE, 2020.

[30] U. V. Catalyurek and C. Aykanat, ªHypergraph-partitioning-based decomposition

for parallel sparse-matrix vector multiplication,º IEEE Transactions on parallel and

distributed systems, vol. 10, no. 7, pp. 673±693, 1999.

[31] R. Dorrance, F. Ren, and D. MarkoviÂc, ªA scalable sparse matrix-vector

multiplication kernel for energy-efficient sparse-blas on fpgas,º in Proceedings of

the 2014 ACM/SIGDA international symposium on Field-programmable gate arrays,

pp. 161±170, 2014.

[32] A. Ashari, N. Sedaghati, J. Eisenlohr, and P. Sadayappan, ªAn efficient two-

dimensional blocking strategy for sparse matrix-vector multiplication on gpus,º in

Proceedings of the 28th ACM international conference on Supercomputing, pp. 273±

282, 2014.

[33] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye, Y. Chen,

et al., ªSparse-tpu: Adapting systolic arrays for sparse matrices,º in Proceedings of

the 34th ACM international conference on supercomputing, pp. 1±12, 2020.

[34] L. Zhuo and V. K. Prasanna, ªSparse matrix-vector multiplication on fpgas,º in

Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-

programmable gate arrays, pp. 63±74, 2005.

[35] J. Sun, G. Peterson, and O. Storaasli, ªSparse matrix-vector multiplication design on

fpgas,º in 15th Annual IEEE Symposium on Field-Programmable Custom Computing

Machines (FCCM 2007), pp. 349±352, IEEE, 2007.

[36] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, et al., ªIn-

datacenter performance analysis of a tensor processing unit,º in Proceedings of the

44th annual international symposium on computer architecture, pp. 1±12, 2017.

[37] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong,

ªAutomated systolic array architecture synthesis for high throughput cnn inference

on fpgas,º in Proceedings of the 54th Annual Design Automation Conference 2017,

pp. 1±6, 2017.

[38] S. Kundu, S. Banerjee, A. Raha, S. Natarajan, and K. Basu, ªToward functional safety

of systolic array-based deep learning hardware accelerators,º IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 29, no. 3, pp. 485±498, 2021.

[39] H. T. Kung and C. E. Leiserson, ªSystolic arrays (for vlsi),º in Sparse Matrix

Proceedings 1978, vol. 1, pp. 256±282, Society for industrial and applied

mathematics Philadelphia, PA, USA, 1979.

[40] V. Sze, Y.-H. Chen, J. Emer, A. Suleiman, and Z. Zhang, ªHardware for machine

learning: Challenges and opportunities,º in 2017 IEEE Custom Integrated Circuits

Conference (CICC), pp. 1±8, IEEE, 2017.

[41] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, ªEyeriss: An energy-efficient

reconfigurable accelerator for deep convolutional neural networks,º IEEE journal

of solid-state circuits, vol. 52, no. 1, pp. 127±138, 2016.

[42] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, ªA 64-tile 2.4-mb in-memory-

computing cnn accelerator employing charge-domain compute,º IEEE Journal of

Solid-State Circuits, vol. 54, no. 6, pp. 1789±1799, 2019.

[43] H. Amrouch, N. Du, A. Gebregiorgis, S. Hamdioui, and I. Polian, ªTowards reliable

in-memory computing: From emerging devices to post-von-neumann architectures,º

in 2021 IFIP/IEEE 29th International Conference on Very Large Scale Integration

(VLSI-SoC), pp. 1±6, IEEE, 2021.

[44] P. Bowen, G. Regev, N. Regev, B. Pedroni, E. Hanson, and Y. Chen,

ªAnalog, in-memory compute architectures for artificial intelligence,º arXiv preprint

arXiv:2302.06417, 2023.

[45] M. H. I. Chowdhuryy, M. R. H. Rashed, A. Awad, R. Ewetz, and F. Yao, ªLadder:

Architecting content and location-aware writes for crossbar resistive memories,º in

MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 117±130, 2021.

[46] A. Mishchenko et al., ªAbc: A system for sequential synthesis and verification.º

ºhttp://www.eecs.berkeley.edu/alanmi/abcº.

[47] M. R. H. Rashed, S. K. Jha, and R. Ewetz, ªLogic synthesis for digital in-memory

computing,º in Proceedings of the 41st IEEE/ACM International Conference on

Computer-Aided Design, pp. 1±9, 2022.

[48] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, et al., ªFreepdk: An

open-source variation-aware design kit,º in 2007 IEEE international conference on

Microelectronic Systems Education (MSE’07), pp. 173±174, IEEE, 2007.

[49] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V. Srinivas,

ªCacti 7: New tools for interconnect exploration in innovative off-chip memories,º

ACM Transactions on Architecture and Code Optimization (TACO), vol. 14, no. 2,

pp. 1±25, 2017.

[50] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,

R. S. Williams, and V. Srikumar, ªIsaac: A convolutional neural network accelerator

with in-situ analog arithmetic in crossbars,º ACM SIGARCH Computer Architecture

News, vol. 44, no. 3, pp. 14±26, 2016.

[51] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, ªVteam: A general

model for voltage-controlled memristors,º IEEE Transactions on Circuits and

Systems II: Express Briefs, vol. 62, no. 8, pp. 786±790, 2015.

[52] M. Imani, S. Gupta, Y. Kim, and T. Rosing, ªFloatpim: In-memory acceleration

of deep neural network training with high precision,º in Proceedings of the 46th

International Symposium on Computer Architecture, pp. 802±815, 2019.

[53] L. Song, X. Qian, H. Li, and Y. Chen, ªPipelayer: A pipelined reram-based

accelerator for deep learning,º in 2017 IEEE international symposium on high

performance computer architecture (HPCA), pp. 541±552, IEEE, 2017.

Authorized licensed use limited to: University of Central Florida. Downloaded on August 02,2024 at 13:22:45 UTC from IEEE Xplore. Restrictions apply.

