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IMPORTANCE The risk of mental disorders is consistently associated with variants in CACNA1C
(L-type calcium channel Cav1.2) but it is not known why these channels are critical to
cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal
cortex that are especially vulnerable in cognitive disorders.

OBJECTIVE To examine the molecular mechanisms expressed in layer III pyramidal cells in
primate dorsolateral prefrontal cortices.

DESIGN, SETTING, AND PARTICIPANTS The design included transcriptomic analyses from
human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression,
physiology, and cognitive behavior in macaques. The research was performed in academic
laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral
prefrontal cortex only exists in primates, the work evaluated humans and macaques.

MAIN OUTCOMES AND MEASURES Outcome measures included transcriptomic signatures of
human and macaque pyramidal cells, protein expression and interactions in layer III macaque
pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial
working memory, and working memory performance following pharmacological treatments.

RESULTS Layer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of
calcium-related proteins, delineated by CALB1 (calbindin), and high levels of CACNA1C
(Cav1.2), GRIN2B (NMDA receptor GluN2B), and KCNN3 (SK3 potassium channel),
concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum.
L-type calcium channels influenced neuronal firing needed for working memory, where either
blockade or increased drive by β1-adrenoceptors, reduced neuronal firing by a mean (SD)
37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An
L-type calcium channel blocker or β1-adrenoceptor antagonist protected working memory
from stress.

CONCLUSIONS AND RELEVANCE The layer III pyramidal cells in the dorsolateral prefrontal
cortex especially vulnerable in cognitive disorders differentially express calbindin and a
constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C),
GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence
memory-related neuronal firing. The finding that either inadequate or excessive L-type
calcium channel activation reduced neuronal firing explains why either loss- or
gain-of-function variants in CACNA1C were associated with increased risk of cognitive
disorders. The selective expression of calbindin in these pyramidal cells highlights the
importance of regulatory mechanisms in neurons with high calcium signaling, consistent with
Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.
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G enetic studies of mental disorders consistently find in-
creased risk of cognitive deficits and mental illness with
variants in CACNA1C, the gene that encodes the α1 sub-

unit of the L-type calcium channel (LTCC) Cav1.2. Alterations in
CACNA1C are associated with impaired working memory and
function of the dorsolateral prefrontal cortex (dlPFC),1,2 and in-
creased risk of schizophrenia, bipolar disorder, posttraumatic
stress disorder, and Alzheimer disease (AD).1-7 All of these dis-
orders are worsened by stress exposure8,9 and involve dysfunc-
tion of the recently evolved dlPFC, which subserves working
memory, top-down control, and abstract reasoning.10 How-
ever, it is not known why this specific calcium channel is so im-
portant to dlPFC functioning. This question cannot be asked in
mouse models, as rodents do not have a dlPFC. The current study
addressed this key question in the dlPFC of humans and non-
human primates and found that the most vulnerable neurons
in dlPFC expressed a constellation of calcium-related proteins,
including high levels of CACNA1C/Cav1.2, that render them es-
pecially vulnerable to dysfunction and neurodegeneration.

Pyramidal cells in layer III of the dlPFC are of particular in-
terest, as this is the layer where reductions in spines and den-
drites are most evident in schizophrenia,11,12 and where tau pa-
thology and degeneration are prominent in AD.13 Layer III of the
dlPFC in primates contains the pyramidal cell microcircuits that
generate working memory and higher cognition through their
recurrent excitatory connections on dendritic spines.14 These
neurons are called delay cells, as they are able to sustain firing
across the delay period in a working memory task, represent-
ing information in mind without sensory stimulation, the foun-
dation of abstract thought.15 Delay cells rely on NMDA receptor
GluN2B (GRIN2B) neurotransmission, the NMDA receptor that
fluxes the highest levels of calcium to generate the persistent
neuronal firing needed for working memory.16 In humans,
GluN2B is associated with dlPFC function, schizophrenia, and
AD.17-20 Importantly, the layer III dlPFC pyramidal cells that are
most vulnerable to tau pathology and degeneration in AD ex-
press the calcium-buffering protein calbindin (encoded by
CALB1) when young,13 as calbindin is a likely indicator that a neu-
ron has high levels of calcium signaling. However, calbindin lev-
els diminish with age and inflammation,21-23 leaving these
neurons more vulnerable to calcium’s toxic effects.24,25

The current study performed transcriptomic analyses of
pyramidal cells in the dlPFC of humans and macaques to learn
why layer III CALB1-expressing pyramidal cells are especially vul-
nerable and to see if it relates to CACNA1C and calcium signal-
ing. The molecules identified were then examined in more depth
in macaques by examining the connections of these neurons, the
interactions and locations of these calcium-related proteins
within neurons, and their influence on neuronal firing and cog-
nitive abilities. As Cav1.2 channels have an important role me-
diating the stress response in the heart, where β1-adrenoceptor
(β1-AR) activation of Cav1.2 drives internal calcium release to
potentiate cardiac output,26 we also examined the role of
β1-AR–LTCC signaling in the loss of dlPFC function that occurs
with exposure to uncontrollable stress, to help explain why
CACNA1C variants are associated with deficits in dlPFC cogni-
tive function in patients and why layer III pyramidal cells are es-
pecially susceptible to toxic insults.

Methods

Transcriptomic Data in the dlPFC of Human and Macaques
All research was conducted according to National Institutes of
Health guidelines and approved by the Yale or University of
Pittsburgh Institutional Animal Care and Use Committee
(macaques) and the Partners Human Research Committee
(humans). The human tissue was from a database from a re-
cent study by Ling et al27; for further details, see the eMethods
in Supplement 1.

Postmortem human dlPFC tissue from 50 neurotypical
donors was processed for single-nucleus RNA sequencing
(10× 3′ v3). Parallel studies were conducted with tissue from
2 adult female rhesus macaques. Multiple-label immunofluo-
rescence and immuno-electron microscopy protein localiza-
tion was performed in layer III of the dlPFC from adult rhesus
macaque tissues using validated antibodies. Single-unit in vivo
physiological recordings coupled with highly localized, ion-
tophoretic drug application were performed in rhesus mon-
keys performing a spatial working memory task dependent on
the dlPFC.

Exposure to uncontrollable stress,28 including the
pharmacological stressor FG7142, impairs dlPFC working
memory function in macaques29 and humans.30 FG7142 is a
partial inverse agonist of the GABAA receptor that induces
a classic stress response in humans,31 monkeys, and rodents,32

including cortisol and corticosterone release31,33,34 and
increased norepinephrine release in the prefrontal cortex.35

It can be used to assess stress humanely, using a dose that im-
pairs accuracy but retains motivation to perform the task.
The stress response was challenged with pretreatment with
the β1-AR antagonist, betaxolol, or the LTCC antagonist
nimodipine.

Statistical Analyses
Repeated measures analyses of variance were used to
assess drug effects on neuronal firing and behavioral perfor-
mance. Two-tailed P values less than .05 were considered
significant.

Key Points
Question Why do genetic risk studies of mental disorders find
consistent associations with CACNA1C?

Findings In this study, the dorsolateral prefrontal cortical
pyramidal cells most affected in cognitive disorders express
elevated calcium-related signaling, delineated by CALB1
(calcium-buffering protein calbindin), and high CACNA1C (L-type
calcium channel [LTCC] Cav1.2), GRIN2B (NMDA receptor GluN2B),
and KCNN3 (SK3 channel) expression. These neurons require LTCC
actions to sustain memory-related firing, but excessive levels, such
as during stress, reduce firing via SK channel opening and induce
pathology, especially when calbindin is lost with age and/or
inflammation.

Meaning These data explain why both loss- and gain-of function
variants in CACNA1C are associated with an increase in risk of
cognitive disorders.
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Results

Transcriptomic Analyses
Glutamatergic (SLC17A7+; encoding the vesicular glutamate
transporter 1) pyramidal cells in the superficial layers of the
dlPFC can be identified by their expression of the transcrip-
tion factor CUX2. Single-nucleus RNA sequencing (eFig-
ure 1A in Supplement 1) of the dlPFC in humans (Figure 1A and
C) and macaques (Figure 1B and D) revealed 3 distinct subsets
of CUX2-expressing pyramidal cells, which showed higher lev-
els of CALB1 than in other excitatory neurons (Figure 1A and
B; eFigure 1B and C in Supplement 1; the data for calcium-
related KEGG pathways across all pyramidal cell subgroups are

shown in eTables 1 and 2 in Supplement 2). These cells ex-
pressed high levels of the LTCC Cav1.2 CACNA1C; GRIN2B, the
NMDA receptor (NMDAR) with GluN2B subunits that fluxes the
highest levels of calcium; KCNN3, the calcium-dependent SK3
potassium channel; and the calcineurin inhibitor CHP1 encod-
ing calcineurin homologous protein 1 (CHP1; Figure 1C and D).
These patterns were especially distinct in human dlPFC neu-
rons, where levels of CACNA1C, and especially KCNN3 and
CHP1, were generally higher than in other excitatory cell groups
(Figure 1C; eFigure 1B in Supplement 1; eTables 1 and 2 in
Supplement 2). They also expressed ADRB1, the β1-AR that
drives cardiac Cav1.2 actions during stress (Figure 1C and D),
and HCN1, encoding the hyperpolarization-activated and cy-
clic nucleotide–gated channel sensitive to cyclic adenosine

Figure 1. Transcriptomic Analyses of Excitatory Neurons in the Dorsolateral Prefrontal Cortex (dlPFC) of Humans and Macaques
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A, Transcriptomic analyses of human dlPFC pyramidal cells, showing expression
levels of CALB1 (encoding the calcium-binding protein calbindin) and KCNN3
(encoding the SK potassium channel opened by calcium, SK3). Population sizes
are expressed as number of nuclei out of 20 000. The CUX2-expressing cells
have higher CALB1 than other excitatory cells and very high levels of
calcium-related genes, including KCNN3. B, Bar graph quantification of CALB1,
CACNA1C, KCNN3, GRIN2B (encoding the GluN2B subunit of the NMDA receptor
that fluxes high levels of calcium), ADRB1 (encoding the β1-adrenoceptor
[β1-AR], which drives Cav1.2 actions in the heart during stress exposure),

CACNA1D (encoding the LTCC Cav1.3), HCN1 (encoding the hyperpolarization-
activated and cyclic nucleotide–gated channel opened by cyclic adenosine
monophosphate), and CHP1 (encoding the calcineurin inhibitor calcineurin
homologous protein 1), in the 3 CUX2 (CUX2 A-C) dlPFC populations in the
human dlPFC. C, Same as panel A but in the macaque dlPFC. D, Same as panel B
but in the macaque dlPFC. Note lower levels of CACNA1D vs CACNA1C in both
species. Expression values are normalized counts of the number of transcripts
per 100 000 in each cell type.
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monophosphate signaling (Figure 1). High levels of KCNN3 are
of particular interest, as the open state of these potassium
channels is increased by calcium, causing reductions in neu-
ral firing.

We assessed the connectivity of CALB1-enriched dlPFC
pyramidal cells in macaques, and confirmed their localiza-
tion in layer III, by reanalyzing published data, where ana-
tomical tracers had been used in tandem with laser-capture
microdissection of layer III pyramidal cells.36 These layer III
cells expressed high levels of CUX2 as expected, and showed
that CALB1-enriched cells preferentially projected to the con-
tralateral dlPFC and not the ipsilateral parietal association cor-
tex (1.4-fold enrichment in CALB1 for contralaterally project-
ing). Although projections cannot be identified in the human
brain, microarray data37 of laser-capture microdissected cells
that compared human layer III vs layer V dlPFC pyramidal neu-
rons found a 35.1-fold enrichment of CUX2 and 8.5-fold en-
richment of CALB1 in layer III pyramidal neurons compared to
layer V, consistent with CALB1 enrichment in macaque layer
III pyramidal cells.

Protein Expression at the Cellular and Ultrastructural Levels
The transcriptomic data indicate that calbindin-expressing
layer III dlPFC pyramidal cells should coexpress Cav1.2,
NMDAR GluN2B, and SK3 channels. This hypothesis was sup-
ported in layer III of the dlPFC of macaques using multiple-
label immunofluorescence, where almost all calbindin-
expressing pyramidal cells coexpressed these proteins
(Figure 2B-E; eFigure 2 in Supplement 1). Most layer III pyra-
midal cells expressing Cav1.2 also expressed β1-AR (eFigure 2
in Supplement 1), similar to cardiac muscle.

Immuno-electron microscopy was used to observe the lo-
cation of these proteins within layer III dlPFC pyramidal cells.
Previous research documented NMDAR GluN2B on layer III
dendritic spines within the postsynaptic density.16 Here we
found that Cav1.2, SK3 channels, and β1-AR were also concen-
trated in layer III dlPFC spines, as well as some expression on
dendrites and glia (Figure 3A-C; eFigures 3-6 in Supple-
ment 1). Cav1.2 channels were often within or near the post-
synaptic density (eg, Figure 3A and E; eFigures 3A and 4A and
D in Supplement 1), and were often found in the membrane
near the calcium-storing and -releasing smooth endoplasmic
reticulum, occasionally in extremely close proximity (eg,
SK3 = 28 nm; Cav1.2 = 44 nm) (Figure 3D-G). This is similar to
cardiac muscle, where Cav1.2 drives internal calcium release.38

Thus, Cav1.2 may play a comparable role in layer III dlPFC
spines (schematically illustrated in Figure 3H).

Effects on dlPFC Delay Cell Firing During Working Memory
It is already known that delay cell firing is dependent on
NMDAR neurotransmission, including NMDAR with GluN2B
subunits.16 However, the roles of Cav1.2, β1-AR, and SK chan-
nels on delay cell firing have not been known. Here we coupled
iontophoresis for local drug delivery with single-unit record-
ings in older macaques performing the oculomotor delayed re-
sponse test of spatial working memory, where the monkey must
remember a spatial location over a delay period of several sec-
onds and then make an eye movement to the remembered lo-

cation for a juice reward (eFigures 7 and 8 in Supplement 1; see
legend to eFigure 7A in Supplement 1 for a description of the
task). Middle-aged (12-16 years) and aged (≥17 years) macaques
have disinhibited cyclic adenosine monophosphate–calcium sig-
naling in the dlPFC39 and thus are especially helpful for testing
the effects of LTCC channel blockade. There are no compounds
selectiveforCav1.2orfortheSK3channelisoform;thus,thiswork
used LTCC compounds that target both Cav1.2 and Cav1.3, and
an SK channel blocker that targets all SK isoforms. The transcrip-
tomic data showed that there were much lower levels of
CACNA1D (Cav1.3) than CACNA1C in the CALB1-expressing py-
ramidal cells (Figure 1C and D), and Cav1.3 had a broader distri-
bution on neurons than Cav1.2, including expression on pre-
synaptic terminals (eFigure 9 in Supplement 1). However, Cav1.3
had effects similar to Cav1.2 in many locations40 and may con-
tribute to effects on delay cell firing.

We found a narrow inverted-U dose response, where either
inadequate (extensive LTCC blockade with high-dose dilti-
azem) or excessive (LTCC activation with S-Bay-K8644) LTCC ac-
tions caused a loss of delay-related neuronal firing, with low-
dose LTCC blockade actually enhancing delay cell firing
(Figure 4A and B; eFigures 10A and 11A in Supplement 1). Fur-
ther experiments tested the hypothesis that, as in muscle, β1-AR
may drive LTCC actions. We found that stimulation of β1-AR with
xamoterol, like LTCC channel opening, markedly reduced de-
lay cell firing, while the β1-AR antagonist betaxolol enhanced fir-
ing, and that the detrimental effects of β1-AR could be pre-
vented or reversed with LTCC blockade (Figure 5A-C; eFigures
10B, 11B, and 12A and B in Supplement 1). The loss of neuronal
firing involved the opening of SK potassium channels, since
blockade of SK channels with NS8593 enhanced delay cell fir-
ing (Figure 5D; eFigure 13A in Supplement 1) and reduced the det-
rimental effects of LTCC opening (Figure 5E; eFigure 13B in
Supplement 1). Hyperpolarization-activated and cyclic nucle-
otide–gatedchannelblockadewithZD7288alsoprotectedagainst
excessive LTCC activation (Figure 5F; eFigure 13C in Supple-
ment 1). These channels are expressed in CALB1-expressing py-
ramidal cells (Figure 1), and localize on layer III dlPFC spines.41

They are opened by cyclic adenosine monophosphate signal-
ing and can couple with slack potassium channels,42 consis-
tent with feedforward calcium–cyclic adenosine monophos-
phate signaling in layer III spines.

Cognitive Behavior
The physiological data suggest that β1-AR activation of LTCC
may contribute to dlPFC dysfunction during uncontrollable
stress. This hypothesis was tested in 6 rhesus macaques per-
forming the delayed response spatial working memory task,
using a low dose of a pharmacological stressor, FG7142, that
impairs accuracy (F1,5 = 49.0; P < .001 compared to vehicle;
eFigure 14A in Supplement 1; F1,6 = 40.4; P < .001 compared
to vehicle; eFigure 14B in Supplement 1) but allows comple-
tion of the task. Pretreatment with a dose of the β1-AR antago-
nist, betaxolol, or of the LTCC blocker, nimodipine, protected
working memory performance from the detrimental effects of
mild stress (F1,5 = 29.1; P = .003 compared to vehicle + stress;
eFigure 14A in Supplement 1; F1,6 = 25.8; P = .002 compared
to vehicle + stress; eFigure 14B in Supplement 1). These data
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are consistent with excessive Cav1.2 actions impairing dlPFC
cognitive function.

Discussion
This study identified a constellation of calcium-related sig-
naling proteins in the layer III pyramidal cells in the dlPFC

known to be most vulnerable in cognitive disorders. We found
that, in the dlPFC of both humans and macaques, these cells
had an especially high expression of CALB1, as well as
CACNA1C, GRIN2B, KCNN3, and CHP1, encoding the calcium-
buffering protein, calbindin, the LTCC Cav1.2 channel, the
NMDAR GluN2B that fluxes high levels of calcium into the neu-
ron, the SK3 potassium channel whose activation is in-
creased by calcium, and the calcineurin inhibitor CHP1,

Figure 2. Calbindin-Expressing Pyramidal Cells in Layer III of the Dorsolateral Prefrontal Cortex (dlPFC)
of Macaques and NMDA Receptor–GluN2B, Cav1.2 Channels, SK3 Channels, and β1-Adrenoceptor (β1-AR)
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column in the dlPFC of macaques. Pyramidal cells (examples in white
rectangles) are concentrated in layer III and have modest calbindin expression
(Aa-Ac; white arrowheads), while interneurons are throughout all layers,
especially in layer II, and have intense calbindin expression (Ad-Ae; yellow
arrowheads). B-E, Calbindin-expressing pyramidal cells coexpress the following
proteins: B, NMDA receptor (NMDAR) GluN2B; C, Cav1.2 (amplified with

biotin-streptavidin); D, β1-adrenoceptor (β1-AR) (amplified with
biotin-streptavidin); and E, SK3. The intensely labeled, bright red neurons (eg,
in E) are calbindin-expressing GABAergic interneurons, which have higher levels
of calbindin than pyramidal cells. The percentage of calbindin-expressing
pyramidal cells coexpressing each protein is shown on the right. Where present,
blue labeling is the Hoechst nuclear counterstain.
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Figure 3. Immuno-Electron Microscopy Ultrastructural Localization of Cav1.2 Channels, SK3 Channels, and β1-Adrenoceptor (β1-AR) in Layer III of the
Dorsolateral Prefrontal Cortex (dlPFC) in Macaques
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Cav1.2 (A, teal arrowheads), β1-AR (B, red arrowheads), and SK3 channels
(C, orange arrowheadss) can be seen in dendritic spines receiving asymmetric
(presumed glutamatergic) synapses, often localized on the plasma membrane near
the calcium-storing and -releasing smooth endoplasmic reticulum (SER; termed the
spine apparatus when it is elaborated in the dendritic spine). The SER spine appara-
tus is highlighted with pink pseudocoloring. Note that the Cav1.2 labeling can be
seen near the postsynaptic density (PSD) and near the SER; additional examples
can be seen in eFigures 3 and 4 in Supplement 1. Calbindin was not examined, as it
is a cytosolic protein with diffuse labeling. D-F, Examples of measurements from
center of membrane-associated diaminobenzidine (DAB) label to the SER spine
apparatus. G, Shortest distance measured from center of membrane-associated
DAB Cav1.2 (teal), β1-AR (red), and SK3 (orange) channel label to the SER spine ap-
paratus; each dot represents a spine, and the black bar depicts the mean, with error
bars indicating SEMs. Note that the DAB label may have obscured the SER spine
apparatus in some instances; thus, the proteins on the plasma membrane may have
been even closer than measured. H, A working model of calcium actions in layer III
dlPFC dendritic spines, showing a functional calcium-related interactome. Under
nonstress conditions, moderate Cav1.2 L-type voltage-gated Ca2+ channel actions,
including potential calcium-mediated calcium release through ryanodine receptors

(RYR) on the SER spine apparatus, are needed for strong working memory delay-
related firing, possibly by depolarizing the postsynaptic density (PSD) to permit
NMDA receptor (NMDAR) neurotransmission. Previous research has shown that
the PSD contains NMDA receptors with GluN2B subunits, and that delay cell firing
during working memory depends on NMDA receptor–GluN2B neurotransmission.
Under stressful conditions, high levels of norepinephrine stimulate β1-AR to acti-
vate a large number of L-type calcium channel (LTCC)/Cav1.2 calcium channels. This
may induce high levels of calcium-mediated calcium release from the SER, as oc-
curs with the stress response in the heart. High levels of calcium would open large
numbers of SK potassium (K+) channels, rapidly reducing neuronal firing. Feedfor-
ward, calcium–cyclic adenosine monophosphate signaling would also open cyclic
adenosine monophosphate–sensitive channels on spines (eg, hyperpolarization-
activated and cyclic nucleotide–gated slack [K+]) channels. As dlPFC delay cell firing
is needed for working memory, these intracellular signaling events lead to cognitive
impairment. Sustained reductions in neuronal firing or high levels of cytosolic cal-
cium would also lead to degeneration, especially when the protective effects of
calbindin are lost with age and/or inflammation. Black arrows indicate synapses. Ax
indicates axon terminal (pseudocolored blue); Mit, mitochondria; Sp, spine
(pseudocolored yellow). Scale bars = 200 nm.
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respectively. Additional macaque data showed that the layer
III pyramidal cells that project to the contralateral dlPFC were
enriched in CALB1, suggesting that increased calcium may be
needed to maintain firing across the corpus callosum to inte-
grate working memory across the hemispheres.43 Immuno-
electron microscopy demonstrated that Cav1.2, SK3 chan-
nels, and β1-AR were all concentrated on layer III dendritic
spines, similar to NMDAR GluN2B,16 with Cav1.2 on the plasma
membrane near the calcium-storing spine apparatus, posi-
tioned to further increase calcium actions via internal re-
lease. Physiological recordings from cognitively engaged ma-
caques showed that either inadequate or excessive LTCC
actions reduced delay cell firing, with excessive signaling driven
by β1-AR stimulation and the opening of SK potassium chan-
nels. Comparable effects were seen at the behavioral level, with
stress-induced working memory impairment rescued by LTCC
or β1-AR blockade. These data reveal a powerful mechanism
by which stress impairs dlPFC cognitive function, and also sug-
gest that either loss-of-function or gain-of-function variants

in CACNA1C would be harmful to dlPFC function and in-
crease risk of neuropsychiatric disorders. As LTCCs are often
found to have only excitatory effects on neuronal firing,44 the
loss of dlPFC neuronal firing with excessive LTCC actions via
SK potassium channel opening is particularly noteworthy, es-
pecially as KCNN3 SK3 channels are preferentially enriched in
dlPFC CALB1-expressing excitatory cells in the human dlPFC.
Thus, these cells may be especially vulnerable to loss of firing
under conditions of high calcium. The high levels of the cal-
cineurin inhibitor CHP1 may also make these cells more vul-
nerable to tau pathology, as calcineurin dephosphorylates tau.
Thus, the current data help to explain why variants that either
decrease or increase CACNA1C actions would be associated with
prefrontal cortex dysfunction and thus increased risk of men-
tal disorders, such as schizophrenia, and why loss of calbin-
din from these pyramidal cells with age and/or inflammation
would contribute to neuropathology in AD, where elevated cy-
tosolic calcium is known to contribute to tau pathology and
neurodegeneration.24 These findings are a rare example where

Figure 4. Recordings From the Dorsolateral Prefrontal Cortex (dlPFC) in Macaques During Working Memory: the Effects of Manipulating LTCC Activity
on Delay Cell Firing in the dlPFC of Macaques
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Figure 5. Roles of β1-Adrenoceptor (β1-AR), L-Type Calcium Channel (LTCC), and SK Channels in Dorsolateral Prefrontal Cortex (dlPFC) Delay Cell Firing
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The left subpanels show the mean (SEM) delay-related firing for all delay cells
under control vs drug conditions; the right subpanels show the mean (SEM) d’
measure of spatial tuning for all delay cells under control vs drug conditions.
A, The β1-AR agonist xamoterol (orange) was associated with reduced
delay-related firing of dlPFC delay cells for the neurons’ preferred direction but
not for nonpreferred directions (R 2-way analysis of variance, F1,19 = 12.99;
P = .002), leading to a significant reduction in the d’ measure of spatial tuning
(paired t test, t19 = 4.68; P < .001). B, Conversely, the β1-AR antagonist
betaxolol (green) was associated with enhanced delay-related firing (R 2-way
analysis of variance, F1,10 = 6.42; P = .03), and increased d’ measures of spatial
tuning (paired t test, t10 = 3.36; P = .007). C, The reducing effects of the β1-AR
agonist xamoterol were blocked by pretreatment with the LTCC antagonist,
diltiazem (R 2-way analysis of variance, F2,24 = 5.90; P = .008; Tukey multiple
comparisons: preferred direction, control vs diltiazem plus xamoterol; P = .16;
control vs xamoterol, P < .001; diltiazem plus xamoterol vs xamoterol,
P = .002). D, The SK channel blocker NS8593 was significantly associated with
increased delay firing for the neurons’ preferred direction, as well as a smaller

increase for nonpreferred directions (R 2-way analysis of variance, F1,17 = 12.13;
P = .003), leading to a significant increase in d’ measure of spatial tuning (paired
t test, t17 = 2.18; P = .04). E, The mean firing rate of 14 dlPFC delay cells,
showing that the reducing effects of the LTCC agonist S-Bay were blocked by
pretreatment with the SK channel antagonist NS8593 (R 2-way analysis of
variance, F2,26 = 5.89; P = .008). F, The mean firing rate of 12 dlPFC delay cells,
showing that the reducing effects of the LTCC agonist S-Bay were blocked by
pretreatment with the hyperpolarization-activated and cyclic nucleotide–gated
channel antagonist ZD7288 (R 2-way analysis of variance, F2,22 = 13.47;
P < .001).
aP < .001.
bP < .005.
cP < .0001.
dP < .05.
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transcriptomic and genomic data can be related to the dys-
function of a higher cortical circuit, illuminating how molecu-
lar insults give rise to symptoms of cognitive impairment.

It should be noted that the syndromes associated with vari-
ants in CACNA1C are complex, for example with a variety of
single-nucleotide variants causing variations of Timothy syn-
drome, a multisystem disorder typified by cardiac abnormali-
ties, which sometimes includes neurodevelopmental cogni-
tive delays relevant to the current data.45 How specific
CACNA1C variants alter channel function, and the functional
ramifications of these alterations to cardiac and neural physi-
ology, is an area of ongoing and future research, with the cur-
rent data highlighting the importance of these channels to the
cognitive functions of the dlPFC.

Limitations
An important caveat of the current research is the lack of phar-
macological agents to dissect Cav1.2 from potential Cav1.3
(CACNA1D) actions. It is likely that excessive opening of both
LTCC subtypes contribute to the loss of delay cell firing and work-
ing memory abilities, as Cav1.3 shares many properties with
Cav1.2, including interacting with ryanodine receptors on the
smooth endoplasmic reticulum to increase internal calcium
release.40 However, the predominant expression of CACNA1C
compared to CACNA1D in these dlPFC pyramidal cells, and their
concentration on dendritic spines, suggests that Cav1.2 may be
the more important isoform in dlPFC-related clinical disorders.

Figure3Hpresentsaworkingmodelbasedonthecurrentand
previous immuno-electron microscopy and physiology data, fo-
cusing on calcium actions in layer III dlPFC dendritic spines. It is
already known that NMDAR GluN2B (GRIN2B) neurotransmis-
sion is crucial at these synapses,16 consistent with current find-
ings.ThecurrentstudyalsofoundaconcentrationofLTCCCav1.2
on spines near the smooth endoplasmic reticulum spine appa-
ratus, where we hypothesize that calcium influx through LTCCs
could drive additional internal calcium release, as occurs in
muscle.Moderateamountsofcalciumnearthepostsynapticden-
sity may facilitate NMDAR neurotransmission and support recur-
rent firing across the hemisphere, as high-dose LTCC blockade re-
duced delay cell firing. However, high levels of Cav1.2 opening,
such as those driven by NE β1-AR actions during stress, reduced
delay cell firing via opening of SK channels. As norepinephrine
has low affinity for β1-AR,46 it would require high levels of nor-
epinephrine release, as occurs with stress, to engage this mecha-
nism, similar to the heart, where the fight or flight response in-
volves β1-AR activation of Cav1.2 inducing calcium-mediated cal-
cium release from the sarcoplasmic reticulum to increase muscle
contraction.26 Although it is not technically feasible to test this
hypothesis in dlPFC spines, the proximity of both Cav1.2 and SK3
channelstothesmoothendoplasmicreticuluminspinessuggests
similar actions may occur in layer III of the dlPFC. This working
model is consistent with human data showing that cognitive op-
erations dependent on the dlPFC are impaired by stress exposure
via β-AR stimulation.47 As stress exposure is a risk factor for mul-
tiple neuropsychiatric disorders, including schizophrenia48 and
AD,9,49,50 this working model may help to explain why increased
risk of neuropsychiatric disorders is consistently associated with
alterations in CACNA1C.

The dlPFC is profoundly altered in schizophrenia, such
as with a reduced dlPFC blood oxygen level–dependent
response during working memory highly correlating with
symptoms of thought disorder51 and shorter dendrites and
fewer spines preferentially in layer III, with intact spines in deep
layers.11 Alterations in CACNA1C are consistently associated
with an increased risk of schizophrenia, as well as other
neuropsychiatric disorders typified by prefrontal cortex
dysfunction.7 Variants in CACNA1C are numerous, and their im-
pact on channel function is complex and a topic of current
research.52 Current data suggest that the impact of a variant
may depend on where the channel is expressed, with distinct
molecular interactions in a tissue-specific manner.52

However, several alterations associated with schizophrenia and
impaired dlPFC function appear to be gain-of-function
variants,1,53,54 especially when LTCC blockade can normalize
dlPFC activity in these individuals.55 The current data show
that a gain in LTCC Cav1.2 actions would magnify stress-
induced prefrontal cortex dysfunction, resulting in a loss of
neuronal firing. As both loss of neuronal firing and/or sus-
tained increases in calcium signaling can induce dendritic
atrophy,25 this mechanism could also contribute to the selec-
tive changes in spines and dendrites in layer III of the dlPFC
in schizophrenia.11 It is not known if the layer III dlPFC pyra-
midal cells with altered dendrites in schizophrenia express cal-
bindin, prior to descent into illness for instance, an impor-
tant area for future research. Risk of schizophrenia has also
been associated with variants in GRIN2B,56 although altera-
tions in this receptor are more often associated with more gen-
eral neurodevelopmental intellectual impairment, consis-
tent with the key roles of this receptor in neuronal and circuit
development.57 It is likely that alterations in CACNA1C also con-
tribute to neurodevelopmental insults,58 including possible al-
terations in dendritic morphology59 and/or interneuron
migration.60 However, the current data emphasize that al-
tered CACNA1C LTCC function can also impact higher cogni-
tive abilities in the adult dlPFC.

AD pathology in the dlPFC is associated with impaired
executive functioning, working memory and abstract reason-
ing, and psychosis.61-63 Postmortem studies have shown
that tau pathology and degeneration especially targets layer
III dlPFC calbindin-expressing pyramidal cells but not
interneurons.13 Calbindin/CALB1 is lost from the dlPFC with
age and inflammation in macaques and humans21-23; calbin-
din loss is selective to dlPFC pyramidal cells and related to the
rise in tau hyperphosphorylation.21 The current data show that
calbindin-expressing pyramidal cells in the dlPFC express mag-
nified calcium signaling that would make them more vulner-
able to AD pathology when calbindin’s protective effects are
lost with age, especially within the context of elevated CHP1
inhibition of calcineurin-mediated dephosphorylation. Al-
though there are some genetic links between calcium chan-
nels and sporadic AD (CACNA1C × RYR33), it is likely that in-
flammatory insults to calbindin over a long life are a more
common contributor to AD risk in this subset of pyramidal cells.

Another study64 found that the most vulnerable cells in
AD entorhinal cortex express RORB. Thus, we examined RORB
expression in the CUX2A and CUX2C dlPFC subgroups and
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found they also coexpressed RORB (eFigure 15 in Supple-
ment 1). The current transcriptomic data also revealed a small
subgroup of pyramidal cells (PLD5+) with extremely high
CACNA1C and GRIN2B but little CALB1, CUX2, or RORB in both
humans and macaques. Future research could discern whether
this subgroup corresponds to the smaller number of pyrami-
dal cells that develop tau pathology in layer Va of the dlPFC,65

a sublayer that also has extensive local recurrent connections
in the dlPFC of macaques.66

Conclusions
The findings of this study indicate that the layer III dlPFC
pyramidal cells most vulnerable to pathology expressed a con-
stellation of functionally interacting, calcium-related pro-
teins, distinguished by CALB1 (calbindin), and including high

levels of LTCC Cav1.2 encoded by CACNA1C, GRIN2B encod-
ing GluN2B NMDAR, and KCNN3, encoding an SK potassium
channel that causes decreased neuronal firing under condi-
tions of high calcium, localized near the calcium-storing
smooth endoplasmic reticulum in dendritic spines. LTCC op-
ening is needed to sustain neuronal firing, but high levels, such
as with stress, reduce neuronal firing and impair working
memory, helping to explain why both loss- and gain-of-
function variants in CACNA1C were associated with impaired
cognition and increased risk of mental disorders. As toxic lev-
els of calcium are known to contribute to atrophy,25 and to tau
and amyloid pathology over a long time frame,24 these neu-
rons with increased calcium signaling would be at risk of neu-
ropathology when the calcium-buffering effects of calbindin
are lost with age and/or inflammation. Protecting these neu-
rons would be a helpful strategy to maintain healthy cogni-
tive function.
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