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ABSTRACT
Kangaroo Mother Care (KMC), involving chest-to-chest skin con-
tact between an infant and caregiver, is proven to be an e�ective
intervention for preterm and full-term infants. Accurate monitoring
of KMC duration and infant’s vital signs during KMC is clinically
important. Existing monitoring methods, however, rely on manual
e�orts and require rigid sensors or wires/electrodes on the infant’s
body. We propose Joey, a fabric-based approach to continuously
monitor KMC duration and two vital signs essential to an infant’s
well-being: heart rate and respiration rate. Joey is a soft fabric
necklace worn by the caregiver. It leverages the transmission of
electrocardiogram (ECG) signals across individuals during skin-
to-skin contact. With a minimalist fabric sensor structure, Joey
measures KMC duration via the presence of mixed ECG signals. It
then isolates the infant’s ECG from this mixture with a proposed
signal extraction algorithm and employs a di�usion-based denois-
ing model to mitigate motion artifacts, enabling reliable inference of
infant’s vital signs. We fabricate Joey prototypes with o�-the-shelf
hardware and evaluate its performance with user studies. Results
demonstrate that Joey achieves an average F1 score of 96% for KMC
duration measurement, and clinically-acceptable accuracy in in-
fant’s vital sign estimation with a mean absolute error of 2.3 beats
per minute and 2.9 breaths per minute in estimating heart rate and
respiration rate. Clinical interviews further con�rm the usability of
Joey’s sensing fabric for infant skin. A demonstration video of Joey
is available at:

mobilex.cs.columbia.edu/joey

CCS CONCEPTS
•Hardware→ Sensor devices andplatforms; •Human-centered
computing→Ubiquitous andmobile computing systems and
tools; • Applied computing → Health care information sys-
tems.

KEYWORDS
Computational Fabrics, Kangaroo Mother Care, Electrocardiogram,
Vital Sign Monitoring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06. . . $15.00
https://doi.org/10.1145/3643832.3661867

Figure 1: Practicing KMC with the Joey system. Joey is a fabric
necklace worn by the caregiver. Joey senses the ECG signals of the
caregiver and infant. Raw ECG signals are transmitted to a Joey app
on a smartphone, which computes the KMC duration, infant’s heart
rate, and respiration rate in real time.
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1 INTRODUCTION
Kangaroo Mother Care (KMC) is a low-cost, evidence-based inter-
vention with proven bene�ts to both infants and their families. It
refers to holding the infant with the infant’s chest skin against the
caregiver’s chest skin in an upright position [49]. The skin-to-skin
contact provides warmth and protection, and promotes bonding
between the caregiver and infant [22, 28, 33, 41, 67, 70, 103]. KMC
should be initiated immediately after birth and continued for as long
as the caregiver and infant desire [33, 49, 90, 102]. KMC improves
infant’s thermal regulation, enhances breastfeeding rates [10, 87],
reduces the risk of infections, and promotes cognitive and behav-
ioral development in infants [10, 28, 33, 103]. Based on a report from
the World Health Organization (WHO) [90], KMC bene�ts are evi-
denced by a 32% reduction in neonatal mortality, a 68% reduction in
hypothermia at discharge or by 28 days after birth, a 15% reduction
in severe infections or sepsis, and a 48% increase in the duration
of exclusive breastfeeding at facility discharge. More importantly,
KMC can be performed in diverse healthcare settings including
resource-constrained environments. It has been adopted as a stan-
dard of care for infants with low birth weights worldwide [90].

Continuous monitoring of KMC practices is clinically impor-
tant. In particular, the duration of KMC sessions and infant’s vital
signs during KMC hold signi�cant clinical values, as highlighted by
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prior studies [49, 90] and reinforced through our clinical surveys
with pediatricians (§5.4). Accurate tracking of KMC duration allows
pediatricians to better understand the correlation between KMC du-
ration and the infant’s recovery (e.g., weight gain [47]), which then
facilitates the adjustment of subsequent care plans [24]. Addition-
ally, for ongoing research studying KMC’s impact (e.g., heart rate
regulation during KMC [92]), it is essential to precisely quantify the
duration of each KMC session and its distribution throughout the
day. Furthermore, regular assessment of infant’s vital signs during
KMC is critical for nursing care. It enables early identi�cation and
management of potential life-threatening issues for infants and
indicates if the KMC practice is performed e�ectively [118].

Systematic KMC monitoring, however, faces multiple practi-
cal barriers. First, KMC duration is currently measured manually
through an independent observer (e.g., a caregiver or nurse). Such
manual e�orts not only are susceptible to errors and may be biased
by the Hawthorn e�ect [24], but also impose additional burdens on
caregivers and healthcare providers. Second, existing methods of
measuring infant’s vital signs require placing rigid sensors, wires,
and electrodes on the infant’s body [54, 98, 109]. This requirement
limits the caregiver’s activities and is highly undesirable consider-
ing the delicate nature of infant skin.

In this paper, we introduce Joey, a fabric-based approach to
continuous and accurate monitoring of KMC duration and two im-
portant vital signs (i.e., heart rate and respiration rate) of the infant.
As depicted in Figure 1, Joey eliminates the need for additional
infrastructure or rigid electrical sensors on either the infant or the
caregiver. Instead, it leverages a small necklace made of conductive
fabrics as a soft and natural sensing layer between the caregiver’s
and the infant’s chest. By exploiting the observation that electro-
cardiogram (ECG) signals can transmit between individuals under
speci�c skin-to-skin contact conditions, Joey senses mixed ECG
signals of the caregiver and infant. The mixed signals form the basis
for monitoring KMC duration and the infant’s vital signs.

Realizing this concept as a practical system poses several chal-
lenges. These challenges include the complex characteristics of
mixed ECG signals, the need of minimal/zero wiring given the frag-
ile skin of infants, as well as motion-induced noise that adversely
a�ects the quality of sensed ECG signals and degrades the accuracy
of vital sign inference. To address these challenges, we propose a
dual-sided design for Joey’s necklace pendant, where sensing fab-
rics are embedded in each side the pendant. This design leverages
the inherent skin contact between the infant’s and the caregiver’s
chests during KMC, eliminating direct sensor attachment to the
infant while ensuring optimal sensor-skin contact and KMC skin-
to-skin contact. Additionally, we incorporate another sensing fabric
on the caregiver’s neck to create two sensing channels, where one
channel senses caregiver’s ECG and the other senses the mixed
ECG from the caregiver and infant. We design an ECG separation
algorithm based on human body’s impedance properties to extract
infant’s ECG. We mitigate the impact of motion noise by adding a
noise-monitoring channel based on a conductive thread to detect
motion noise and employing a di�usion-based model for denoising
in the presence of motion.

To evaluate the performance of Joey, we fabricate prototypes
using o�-the-shelf hardware and conduct a user study with 11
infant-adult pairs and 10 adult-adult pairs. We also conduct clinical

interviews with pediatricians to examine Joey’s clinical usability.
Overall Joey achieves an average F1 score of 96.4% for KMC duration
estimation and a mean absolute error of 2.3 beats per minute and
2.9 breaths per minute in inferring the infant’s heart rate and res-
piration rate. Furthermore, Joey is robust against washing/drying
(>50 cycles), various skin conditions (e.g., sweating), and motion
noise. Pediatricians concur with the clinical usability of Joey’s fab-
ric pendant for infant skin. Participants also highlight Joey’s ease
of use and comfort to wear.

We summarize our contributions as follows:
• To the best of our knowledge, Joey is the �rst system capable
of simultaneously monitoring KMC duration, infant’s heart and
respiration rate, while maintaining comfort.

• Leveraging the observation that ECG signals can transmit be-
tween individuals, we propose a fabric-based physiological sens-
ing methodology to capture both the caregiver’s ECG and its
mixture with the infant’s ECG.

• We design and implement a signal separation algorithm using
discrete wavelet transform and adaptive �ltering techniques,
e�ectively extracting the infant’s ECG signals from the mixed
ECG signals.

• We leverage a conductive thread to detect motion-induced noise,
alongside a deep di�usion denoisingmodel. This hardware-software
co-design e�ectively mitigates motion noise while ensuring min-
imal computational overhead.

• We build a Joey prototype and validate its sensing performance
with both infant-adult and adult-adult pairs, its clinical usability
with clinical interviews, and its robustness under practical factors,
such as washing, di�erent skin conditions, and motion noise.

More broadly, while prior works of fabric sensing focus on sensing a
single user [13, 53, 62, 63, 65, 71, 114, 119, 121], this work pushes the
envelope of fabric-based human sensing by extending it to multi-
user scenarios and enabling the detection of human contact. Joey’s
sensing rationale of ECG transmission between humans paves the
way for the development of novel applications in multi-user fabric
sensing and interaction.

2 JOEY SENSING PRINCIPLE
An e�ective KMC monitoring system needs to meet three goals. (1)
It should place no rigid or adhesive sensors on infant’s body given
the dedicate nature of infant skin. Medical devices and adhesives
are a major iatrogenic cause of skin breakdown in hospitalized
neonates [74, 80, 108]. Up to 15% of a neonate’s skin surface area can
be traumatized daily, increasing with greater prematurity [99]. (2)
Given the intimate nature of KMC, the system needs to protect user
privacy. Traditional vision-based approaches [51] are inappropriate
for this context. (3) The system should entail minimal operation
overhead to enable continuous monitoring of KMC.

To meet above goals, we propose a fabric-based approach – Joey
– to monitor KMC duration and infant vital signs. Joey achieves
these goals by sensing ECG signals of the caregiver and infant
using conductive fabrics. Joey’s sensing principle stems from the
fact that ECG signals transmit over human skin when the sensing
path passes through the heart. As such, chest-to-chest skin contact
between two individuals leads to the observation of mixed ECG
signals of the persons in contact. Joey exploits the observation to
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Figure 2: (a) The QRS complex and the ECG depolarization direction (the numbers represent the depolarization sequence) (b) The study setup
and measured ECGs, when the path passes through two hearts or (c) passes through only one heart.

detect chest-to-chest skin contact. The mixed ECG signals also form
the basis for inferring an infant’s vital signs.

The fabric approach presents the following bene�ts. (1) Conduc-
tive fabrics are comfortable to wear and skin-friendly, posing no
harm to the delicate skin of infants, compared to rigid or adhesive
sensors. As the ECG signal is naturally generated by the human
body, our approach is passive and introduces no active current or
voltage to the infant, ensuring their safety. (2) The fabric sensor
exclusively collects ECG signals, preserving the privacy of both the
infant and the caregiver during KMC practice. (3) The fabric sensor
is durable (i.e., washable for repeated use) and easy to maintain,
introducing minimal operation overhead.

ECG Primer. ECG is a graphical representation of the electrical
potentials occurring between di�erent sites on the skin in response
to cardiac activity [2, 82]. The fundamental electrical event within
the heart is the depolarization and repolarization of cardiac cells.
Depolarization occurs when electrically polarized cardiac cells lose
their internal negativity, leading to a wave of depolarization that
spreads across the myocardium and encompasses the entire cardiac
muscle. This wave represents the �ow of electric current, which
can be detected through electrodes placed on the skin. As shown in
Figure 2(a), the primary origin of this current is the sinoatrial (SA)
node located in the right atrium, and it spreads in various directions
through the heart to the atrioventricular node [34, 40]. To measure
ECG, the electrode path needs to pass through the heart. A 12-lead
ECG con�guration is commonly used in clinical practice, providing
di�erent "views" of the heart by measuring electrical potentials
between di�erent electrode combinations [40, 81]. However, this
con�guration is challenging to set up due to the large number of
channels/wires needed. The QRS complex (Figure 2(a)) is typically
the largest amplitude waveform observed in an ECG. In most cases,
the QRS complex can be measured regardless of the lead used and
is directly related to the heart rate.

Body Transmission of ECG. ECG transmission within a human
body has been extensively explored [4, 16, 40]. Prior examples
demonstrated that the human body can act as a conductor for ECG
transmission from the heart to the hands [40]. Leveraging this e�ect,

an increasing number of wearable devices (e.g., Apple Watch [9],
KardiaMobile [58]) o�er one-lead ECG measurement.1

In this work, we are motivated by a novel observation that the
transmission of ECG signals can actually go beyond a single user.
When two users are in skin-to-skin contact, their mixed ECG signals
can be observed when the sensing path passes through their hearts.
A similar phenomenonwas observed in amedical report [64], where
it was characterized as a “mysterious ECG” and the report o�ered
limited explanation. In the KMC context, this observation naturally
allows the detection of direct skin-to-skin contact on the chest. It
eliminates false positives that can occurwith distance-based sensing
methods (e.g., acoustic or computer vision-based methods [61]),
as these methods have to assume spatial proximity equals actual
contact. Furthermore, the ECG transmission makes it possible to
sense an infant’s ECG signals with sensors on the caregiver’s body.
It eliminates the need for any sensor or hardware on the infant, which
is commonly required by previous ECG sensing methods [23, 31].

Experimental Validation. We conduct a controlled experiment
with two participants to validate this rationale and the use of con-
ductive fabrics to sense ECG signals. We fabricate two fabric sensors
as electrodes for a one-lead OpenBCI ECG sensing system [89]. We
test two setups to verify the condition of observing mixed ECG
signals. In the �rst setup (Figure 2(b) top), two participants (P1, P2)
each touch a fabric sensor with one hand while touching the other
participant with the other hand. In this case, two fabric sensors form
a sensing path (channel 1) passing through the hearts of P1 and P2.
We also add conventional sticky electrodes to each participant’s
hands to collect individual lead-I ECG signals as the ground truth.
We plot sensed ECG signals at the bottom of Figure 2(b). We ob-
serve that at channel 1, fabric sensors sense a weighted summation
of P1’s and P2’s individual ECG signals. When P1 and P2 are not
touching hands or not in direct skin-to-skin contact, we observe
that channel 1 remains at zero due to the in�nite impedance of the
open circuit. In the second setup, we move the fabric sensor to P2’s
hand that is touching P1 (Figure 2(c) top). As such, the resulting
channel (channel 2) passes through only P1’s heart. As shown in the

1These devices require the user to wear the device �rmly on one wrist, establishing
contact with one hand as one electrode side. The other electrode side is created by
placing a �nger from the other hand onto the device.
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Figure 3: Joey system overview. The mixed channel is established exclusively through skin-to-skin contact. The initial step is the detection
of mixed ECG to obtain the KMC duration. Subsequently, utilizing both the mixed and base channels, an adaptive �lter-based algorithm is
employed to extract the infant’s ECGs. In instances of motion noise identi�ed by our noise monitoring channel, we apply a deep di�usion
model for denoising the infant’s ECG. The resulting clean ECGs allow for accurate inference of the infant’s heart and respiration rates.

bottom of Figure 2(c), signals sensed by fabric sensors at channel 2
now contain only P1’s ECG.

Overall our experiment validates the ECG transmission across
humans. When the sensing path goes through the hearts of two
persons in skin-to-skin contact, the sensed ECG signals exhibit a
combination of both individuals’ cardiac activities. This experiment
also con�rms that fabric sensors can replace sticky electrodes due
to their high conductivity as mentioned in prior work [23, 72, 116].
We have further veri�ed experimentally that the size and shape of
the fabric sensor do not a�ect the quality of sensed ECG signals.

Challenges. To apply this rationale to KMC monitoring, a major
challenge lies in the handling of mixed ECG signals. Infants and
caregivers have distinct and dynamic characteristics in their ECG
signals due to di�erences in heart rate. Conventional approaches
to extracting individual ECG signals from mixtures require mul-
tiple measurement paths [12, 37, 117], which adds complexity to
the device and compromises wearability. Another challenge is to
avoid sensor attachment and wires to the infant and maintain good
contact between the fabric sensor and human skin. Obtaining the
mixed ECG signal of two individuals requires at least one fabric
sensing node to be in �rm contact with each individual. This leads
to complex wiring between the individuals, limiting the activities
of the caregiver. Additionally, ensuring contact between the fab-
ric sensor and human skin is also challenging, as the common
skin-tight fabric sensing design is unsuitable for the fragile skin
of infants. Finally, fabric sensors are prone to motion interference.
Fabric sensors are formed of �exible and stretchable conductive
threads, providing comfort. However, this �exibility can also lead to
mechanical deformations and movements of the conductive threads.
These deformations can cause changes in the electrical properties
of the conductive fabric [68], resulting in motion noise.

3 JOEY DESIGN
Joey addresses the above challenges via (1) a minimalist structural
design of fabric sensors that do not require any sensors worn by the
infant and enable multiple sensing channels, (2) an e�ective �ltering
algorithm to extract the infant’s ECG signals from the mixture, and
(3) a hardware-software co-design to enable motion noise detection
and removal to address motion interference for accurate vital signs
estimation. Figure 3 illustrates the fabric sensor design and the

system �ow. Overall, Joey consists of a fabric pendant, a fabric
band, and a micro-controller (MCU) attached to the back of the
caregiver’s neck. The MCU transmits signals from three sensing
channels to a Joey app on a smartphone, which computes KMC
duration and the infant’s vital signs in real time. Next we describe
each design component in detail.

3.1 KMC Duration Estimation

Necklace Design. We propose a minimalist structural design of
the fabric sensor to enable two ECG sensing channels. The primary
fabric sensor is the fabric pendant worn on the caregiver’s chest,
along with a sensing fabric and ground fabric attached to the MCU
in contact with the back of the caregiver’s neck. In particular, the
fabric pendant is dual-sided, with conductive sensing fabrics on
each side. During a KMC session, one sensing fabric layer contacts
the caregiver’s chest skin, while the other side contacts the baby’s
chest skin. These two sensing fabric layers are separated with an
insulation fabric in the middle. As such, the design enables two
ECG sensing channels (Figure 3):

• The mixed channel originates from the back fabric sensor on the
MCU, traverses caregiver’s heart, continues through skin-to-skin
contact to reach the infant’s heart, and �nally ends at the infant-
side sensing fabric on the pendant. By passing through both the
caregiver’s and infant’s hearts, it senses the mixed ECG signals
of the caregiver and infant.

• The base channel is formed from the back fabric sensor on the
MCU to the caregiver-side sensing fabric on the pendant, passing
through the caregiver’s heart. Hence it senses the caregiver’s
ECG signal alone, providing essential information to facilitate
the extraction of the infant’s ECG signals for vital sign inference.

It is important to note three key aspects of this design: First,
the mixed channel can only be established when there is chest-to-
chest skin contact between the caregiver and the infant. Second,
the sensing path of the base channel is part of the path of the mixed
channel. This ensures that ECG signals of the base channel align
with the caregiver’s ECG signals of the mixed channel, facilitating
subsequent extraction of the infant’s signals. Third, this design
capitalizes on the inherent chest-to-chest skin contact in KMC to
guarantee optimal contact between the human skin and the sensing
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fabric, which constitutes the foundation of fabric-based sensing
and is often challenging to ensure.

Estimating KMC Duration. With the fabric sensor design, KMC
sessions can be detected by monitoring the signals of the mixed
channel. When the caregiver and the infant establish a chest-to-
chest skin contact, signals from the mixed channel exhibit a com-
bination of two persons’ ECGs. Otherwise the mixed channel will
have no readings due to the open circuit. To detect the presence
of mixed ECGs, we continuously monitor signals from the mixed
channel, segmenting the signals into discrete two-second segments.
For each segment : , its power ⇢: is computed as the summation
of the squared ECGs. ⇢: is then compared to a prede�ned thresh-
old n to detect the skin-to-skin contact during a KMC session. n is
empirically con�gured to avoid random circuit noise. Based on the
detection results of all segments, KMC duration ) "⇠ (in seconds)
with # segments can be computed as below:

) "⇠ =
#’
:=1

2 ⇤ X (⇢: ), where X (⇢: ) =
⇢0 if ⇢:  n

1 else (1)

Here X (⇢: ) denotes the KMC detection result for segment : .

3.2 ECG Separation
The second key design element of Joey is its algorithm to extract
the infant’s ECG signals from the mixed channel for later vital signs
inference. The hardware design ensures that the sensing path of
the base channel is part of that of the mixed channel, providing a
consistent view of the caregiver’s heart. This guarantees that the
caregiver’s ECG signals in both channels have the same shape and
are synchronized. However, due to the impedance di�erence be-
tween the base channel (caregiver’s body impedance) and the mixed
channel (caregiver’s body impedance + infant’s body impedance +
contact impedance), the resulting signal strengths of the caregiver’s
ECG sensed at these two channels are di�erent. Consequently, a
simple subtraction of the base channel signal from the mixed chan-
nel is not su�cient.

To address this issue in ECG separation, we apply an online learn-
ing method called adaptive �lter [11, 113], which suppresses the
interference based on the input signals and the reference signals. In
contrast to batch learning methods that train models o�ine using
a �xed dataset, adaptive �lter updates its parameters incrementally
and continuously adapt to changes in input signals or the environ-
ment. Additionally, adaptive �lter does not require multiple mixed
ECG channels [12, 37, 117] or accurate R-peak locations information
for template construction [57, 76, 110]. These make it well-suited
for our applications where (1) the statistical properties of the mixed
ECG signals vary over time due to the �uctuation of two people’s
heart rates and the mismatch between their heart rates (2) the two
channels of ECG can be utilized as the input and reference signals,
with the caregiver’s ECG component in the mixed signal serving as
the interference. Consequently, the adaptive �lter’s objective is to
determine optimal weights that e�ectively eliminate interference
and ensure accurate signal separation.

We model the mixed signal ~ (C) as a combination of infant’s
ECGs B (C) and caregiver’s ECGs [ (C), expressed as~ (C) = B (C)+[ (C).
Due to the impedance di�erence, the caregiver ECGs in the mixed
channel are typically modeled as a scaled version of the caregiver

Figure 4: Visualization of the ECG separation process.

ECGs D (C) from the base channel, formulated as [ (C) = F · D (C).
With D (C) as the reference signal, the adaptive �lter estimates the
infant’s ECGs ˆB (C) by optimizing the weightF :

B̂ (C) = ~ (C) �F · D (C) (2)

Equation (2) assumes a uniform level of attenuation for all frequency
components of the caregiver’s ECG, represented by a single weight
F . However, the disparity between the caregiver’s ECG signals in
the base and mixed channels is primarily caused by the addition
of infant body impedance and contact impedance. In general, the
human body impedance exhibits frequency-dependent behavior,
which typically decreases with increasing frequency due to the
capacitive properties of cell membranes and interstitial �uid [30, 42].
Consequently, a single weight F cannot e�ectively capture this
frequency-dependent behavior of impedance.

Based on the above analysis, we propose to employ discrete
wavelet transform (DWT) [83, 94] to decompose the caregiver’s
ECG signals into �ve signals in di�erent frequency bands and then
apply non-uniform weights across frequency bands. Speci�cally,
DWT decomposes the caregiver’s ECG signal into a high-frequency
and a low-frequency signal, which are known as the detail (⇡)
and approximation components (�), respectively [94]. In the �rst-
level decomposition, the caregiver’s ECG signal D (C) undergoes
sub-band �ltering and sub-sampling, yielding detail coe�cient and
approximation coe�cient vectors. These vectors are subsequently
employed to reconstruct the �rst-level detail (⇡1) and approxima-
tion components (�1), which are constituents of the original sig-
nal [79]. For multi-level decomposition, this procedure iterates on
the approximation component. Our study reveals that a four-level
decomposition of the caregiver’s ECG signal achieves an optimal
balance between performance and complexity. Crucially, the DWT
preserves the linear relationship property, allowing the original
signal to be expressed as the sum of detail components and the
fourth-level approximation component:

D (C) = ⇡1 (C) +�1 (C)
= ⇡1 (C) + ⇡2 (C) +�2 (C)
= ...

= ⇡1 (C) + ⇡2 (C) + ⇡3 (C) + ⇡4 (C) +�4 (C)

(3)

Here ⇡8 and �8 denote the 8-th level detail and approximation com-
ponent at level 8 , respectively. Figure 4 demonstrates the whole sep-
aration pipeline. Following the DWT, we de�ne the reference input
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G (C) for the adaptive �lter as x (C) = [⇡1 (C),⇡2 (C),⇡3 (C),⇡4 (C),�4 (C)]) .
Using the reference signal G (C), we approximate the caregiver’s
ECG signals along with other noise components as:

[̂ (C) = w) (C � 1) · x (C) (4)

Here, w represents the weight vector updated through the Least
Mean Squares (LMS) algorithm [113] , which updates the weights
using the gradient of the MSE with respect to the weights. The
weight update process is given by:

42 (C) = [~ (C) � [̂ (C)]2 (5)

w (C) = w (C � 1) � `

2
· r42 (C) (6)

Here, ` is the step size, and 4 (C) is the residual signal representing
the estimation of the infant’s ECG signal. The algorithm proceeds
through two distinct phases. During the initialization phase, which
typically occurs within the �rst 20 seconds of the user wearing
Joey, the weight vector undergoes signi�cant alterations due to the
initial random weights. In the second phase after initialization, the
weight vector is stabilized but still updated and used in real-time
to output the infant’s ECGs, represented as B̂ (C) = 4 (C).

3.3 Vital Sign Inference
Based on the extracted infant ECG signals, we infer infant’s two vital
signs. Since motion-induced noise (e.g., user accidentally moving
necklace bands) a�ects ECG signal quality, we add a denoising
module before vital sign inference to improve inference accuracy.
We leverage a noise monitoring channel to detect motion noise,
and apply a deep di�usion model to mitigate the e�ect of motion
noise. We next elaborate on each component.

Deep Di�usion Model for Denoising. Motion-induced noises
usually appear as high-amplitude peaks that cannot be fully re-
moved by the ECG separation module due to its di�erent presences
on both channels. We set out to test several deep learning methods
recently proposed for ECG denoising. Among di�erent types of
network structures (e.g., LSTM [50], autoencoder [107], conditional
generative adversarial net [111]) we tested, a conditional di�usion
model (DeScoD-ECG [69]) works the best due to its ability to handle
severe motion distortion. Di�usion models function by deliberately
introducing noise into training data and subsequently learning to
reverse this process. A well-trained di�usion model can generate
data from random noise by iteratively removing the predicted noise.
Embeddings, such as text descriptions for image generation, can be
added to guide the content generation process.

In our scenario, we aim to recover clean ECG signals given
the noisy ECG observation as the embedding. The DeScoD-ECG
model, originally designed for ECG baseline wander and noise
reduction and trained with the QT database [66] (geared towards
adult ECGs), needs adaptation due to the distinct characteristics of
infant ECGs (e.g., higher heart rates). To this end, we retrain the
model using the PICS [45] database, which includes ECGs from 10
infants, and the MIT-BIH NST database [46, 85], including various
types of motion-induced noise in ECG recordings. An illustration
of the denoising e�ect is shown in Figure 5(a). The re�ned model
comprises 1.2 million parameters and achieves an average inference
time of 0.5 seconds for a 2-second ECG recording, tested on a
MacBook Pro 2022 (M2 Max, 64GB). In our current implementation,

Figure 5: (a) ECG before and after the deep di�usion model. (b) The
conductive thread acts as the noise monitoring channel, capturing
the noise whenever the necklace bands and pendant are moved.

this model is deployed on a computer, and the reconstructed signal
is transmitted to the Joey App on a smartphone viaWiFi. This setup,
while functional, introduces additional power consumption and
latency due to both the inference process and data transmission. To
mitigate these issues, we integrate a noise monitoring channel to
trigger the denoising module only when motion-induced noise is
detected. Next we will describe the design of the noise-monitoring
channel.

NoiseMonitoringChannel. Given the infrequency of signi�cant
motion noise during KMC, constant activation of the di�usion de-
noising model is unnecessary. To activate denoising only upon the
presence of motion noise, we incorporate an additional conductive
thread into the necklace bands, which serves as a dedicated noise
monitoring channel. This conductive thread as shown in Figure 5(b),
strategically placed alongside the signal transmission threads but
not connected to the sensing pendant, is exclusively dedicated to
detecting noise signals caused by the movement of the necklace
bands and pendant. §4 describes the implementation details of this
noise monitoring channel. The di�usion model is activated only
when the signal power from the noise monitoring channel exceeds a
prede�ned threshold, otherwise the signal after the ECG separation
module is utilized directly for vital signs inference. The reading
of the conductive thread channel is approximately zero upon the
absence of motion noise. Thus, the threshold is set empirically to
half of the average noise power. This hardware-software co-design
approach not only addresses motion noise challenges e�ectively
but also signi�cantly reduces required computational power and
data transmission bandwidth.

Vital Sign Inference. After denoising, we next infer infant’s two
vital signs as below.
(1) Heart Rate. To compute infant’s heart rate, we employ the Pan-
Tompkins algorithm [91] to identify R-peak locations in infant’s
ECGs. This involves �ltering the ECGs to emphasize the QRS com-
plex, di�erentiating and squaring the signal to enhance the peaks,
and integrating with a moving window to capture the full QRS com-
plex. Finally adaptive thresholding and decision rules are applied
for R-peak detection [91]. By measuring the time interval between
consecutive R-peaks, we calculate the instantaneous heart rate (� )
in beats per minute as below:

� =
1Õ5

8=1 38/5
, (7)

where 3 is the consecutive R-peak-to-R-peak intervals and 5 is the
empirical window size for averaging.
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Figure 6: Joey prototype. Four conductive fabrics are connected
to the MCU with conductive threads. The conductive threads are
embedded into the non-conductive fabric strip to form the necklace
band, whose length is adjustable through the rope lock stopper.

(2) Respiration Rate. Estimating the respiration rate from ECG sig-
nals has been investigated in previous studies [27, 55, 93]. The
rationale is that ECG signals are in�uenced by respiratory modu-
lations [25, 26], including baseline wander, amplitude modulation,
and frequency modulation (FM). Due to the sensitivity of the ECG
signal baseline and amplitude to factors such as sensor location and
individual di�erences, we leverage the FM property to estimate the
respiration rate. The physiological mechanism underlying FM is the
manifestation of spontaneous variations in heart rate during the
respiratory cycle, known as respiratory sinus arrhythmia [17, 25].
Speci�cally, heart rate increases during inhalation and decreases
during exhalation [59, 106]. Based on this FMmechanism, we utilize
the heart rate inferred in the previous step to compute the Heart
Rate Variability (HRV), which is the variation of time intervals be-
tween successive heartbeats. We then apply Fast Fourier Transform
to the HRV data. In the HRV frequency spectrum, we identify the
peak frequency within the frequency range corresponding to an
infant’s respiration rate, typically 20-60 breaths per minute. The
peak frequency is the estimated respiration rate.

4 JOEY IMPLEMENTATION
We have fabricated multiple Joey prototypes/necklaces using o�-
the-shelf hardware (Figure 6) and implemented the algorithms for
ECG separation and vital sign inference as an Android App. While
aiming to optimize sensing performance, we also guarantee that
the prototype is comfortable to wear, skin-friendly to infants, and
washable. Overall the Joey necklace is compact and lightweight,
measuring 6.4cm by 6.4cm for the MCU, 5.7cm by 6.4cm for the
pendant, and weighing 65 grams, of which 2.1 grams is the fabric
and 62.9 grams is the combinedweight of the board, case and battery.
Instead of inventing new high-cost materials, all the components
in the system are o�-the-shelf and at low prices (<$5), except the
computing unit ($499). The potential of optimizing the computing
unit for a more cost-e�ective implementation is discussed in §6.

Necklace Pendant. The pendant consist of conductive fabrics [5]
at each side as conducting electrodes, and an insulation middle
layer using two water-proof non-conductive fabric tapes [7] and
silk fabrics [6]. We cut the conductive fabric facing the baby into
a heart shape and that facing the caregiver into a kangaroo shape
using the Cricut smart cutting machine [36]. To prevent curling and
isolate the two sensing fabric layers, we glue them with waterproof

fabric tapes [7], and sew a 0.3cm overlock pattern along the edges
of the two layers to secure them (Figure 6).

Necklace Bands. Necklace bands connect the pendant to the
MCU on the back of the caregiver’s neck. The band wraps con-
ductive threads [3] with non-conductive fabric strips. We sew the
noise-monitoring conductive threads in parallel to the conductive
threads connecting the pendant and the MCU, maintaining a 0.7cm
gap between them. The strips are then folded along the middle
line, and the folded edges are stitched using a 5mm wide overlock
pattern. The necklace bands go into a Cord Rope Lock Stopper [8]
for adjusting the band length to a given user (Figure 6).

MCU. Weuse the commercially available OpenBCI Cyton Board [88]
as the MCU. Sensed signals sampled at 250 Hz are transmitted via
BLE to a phone for further processing and visualization. Channel
1, 4, 8 are dedicated to mixed ECGs, caregiver’s ECGs, and noise
monitoring, respectively and channel GND serves as the ground
reference. To establish a stable connection between the conductive
threads and the board’s pins, we designed a small printed circuit
board (PCB) with four rows of holes. The upper two rows are con-
nected, as are the lower two rows. We can connect the conductive
threads to MCU by tying them to the corresponding holes in the
�rst and last rows. To ensure insulation between the threads, we
carefully wrap the exposed sections with waterproof tape. TheMCU
is glued to the caregiver’s neck skin via two pieces of skin-friendly
hypoallergenic adhesives [105]. We utilize a 3D-printed case, to
hold the MCU, a Lipo battery, and accommodate the attachment of
the back patches.

Joey App. The Joey App is an Android application that receives
ECG signals from the MCU, processes them, and visualizes KMC
monitoring results. The app is implemented in Java and establishes
a connection between the smartphone and the OpenBCI board
using the OpenBCI Cyton Dongle [88], utilizing the Gazell high-
speed link layer protocol [100]. The data processing pipeline is
implemented in Python and is accessed through the Chaquopy
Software Development Kit [73]. Lastly, the calculated heart rate,
breathing rate, and the extracted infant ECG signal are presented
on the user interface, as depicted in Figure 1.

5 SYSTEM EVALUATION
We evaluate Joey with user studies and clinical interviews after ob-
taining the approval of our institution’s Institutional Review Board.
We aim to examine Joey’s sensing functionally, clinical usability,
and practical robustness.

5.1 Study Setup

Participants. We recruit participants in pairs (as the KMC prac-
tice involves two persons), through �yers distributed within our
institution. Each participant was compensated at the rate of $15 per
hour. A total of 4 newborns and 11 adults are recruited, forming
11 infant-adult pairs. The pairs include four newborns (a 30-day-
old male, a 34-day-old female, a 59-day-old female, and a 6-month
male) with 11 caregivers (5 males and 6 females; 8 in the age group
of 25-40 and 3 in the age group of 55-64). Given the di�culty in
recruiting newborns, we also recruit 20 additional adults to form
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(a) KMC (b) Clothes-on Session
Figure 7: (a) The caregiver and infant wear clothes for privacy while
leaving their chests bare for KMC. (b) Caregiver holds an infant
where both chests are covered in clothes.

10 adult-adult pairs (9 male-female pairs and 1 male-male pair; 4 in
the age group of 18-24 and 16 in the age group of 25-34), where one
acts as the infant while the other acts as the caregiver. It is impor-
tant to note that the adult-adult pairs present a more challenging
scenario for the ECG separation algorithm because measured ECGs
of newborns exhibit higher amplitudes than that of adults based
on our experiments2. Including both infant-adult and adult-adult
pairs allows us to comprehensively demonstrate the feasibility and
e�ectiveness of Joey. All participants are healthy with no reported
heart or breathing-related health issues.

Procedure. Before each study session, participant pairs receive
a comprehensive overview of the study, coupled with detailed in-
structions on how to wear the prototype device and use the Joey
app for data collection. It is important to note that the positioning
of the pendant on the caregiver’s chest is �exible; there is no re-
quirement for it to be in any speci�c location, ensuring ease of use
and comfort. After signing a consent form, participants are allowed
to take a Joey device home for the study. A study comprises three
types of sessions totaling 60-100 minutes:

• KMC session (>30 mins), where participants have chest-to-chest
skin contact. As shown in Figure 7a, caregivers practice KMC
with the infant while wearing Joey. Adult pairs mimic the same
practice, with one adult acting as the caregiver and embracing the
other, maintaining chest-to-chest skin contact. KMC is suggested
to be 30 minutes at minimum, but the actual duration depends on
participant conditions, especially for infants. Both participants
can move freely during the KMC session although infant mobility
is limited due to their age.

• Clothes-on session (5-10 mins), where participant’s chest is cov-
ered by clothes while having chest-to-chest contact with the
other, hence there is no skin contact on the chest (Figure 7b).
This session represents scenarios where infants are in a similar
posture as during KMC, but with clothing, such as breastfeeding
or sleeping, aiming to verify that Joey detects only chest-to-chest
skin contact and does not produce false positives when two users
in contact have clothes on the chest. In comparison, it is hard for
distance-based methods to di�erentiate these two scenarios.

• Play session (5-10 mins), where participants have skin contact
(e.g., touching hands) but no chest-to-chest skin contact. This

2Based on our consultation with pediatricians, this is potentially because newborns
have a larger heart size relative to the chest cavity than adults.

Table 1: User Study Session Duration

Session Type KMC Clothes-on Play Total

Duration
(minutes)

Infant-Adult 413 116 100 629
Adult-Adult 382 97 94 573

scenario can happen when the caregiver and infant interact with
each other.

Participants participate in multiple sessions (at least one for each
session). All raw ECG data along with inferred vital signs and
KMC duration are collected by the Joey app and transmitted to
a database. In total, we have collected 1202 minutes of data from
all participants, corresponding to 36060 samples, where a sample
is a two-second data segment. The duration breakdown for each
session type is in Table 1.

Ground Truth. We collect ground truth for KMC duration and in-
fant’s vital signs. (1) The ground truth of KMC duration is collected
manually via the Joey app. Recognizing potential inaccuracies in
manual recordings, we have developed the Joey app to include
buttons to click at the beginning and end of KMC sessions. In all
user studies, we ensure that a third person is nearby to click the
buttons to record KMC duration. The timestamps of these actions
are recorded and used to compute KMC duration. (2) The ground
truth of heart rate (HR) and respiration rate (RR) are collected by
an FDA-approved pulse oximeter [78] for adult pairs. The device’s
accuracy [77], as quanti�ed by the Root Mean Square (RMS) error, is
reported to be 3 beats per minute (bpm) for HR and 2-4 respirations
per minute (rpm) for RR. This device, however, is not applicable
for infants whose �ngers are too short. Thus, we opt for wrapping
an Apple Watch [9] around the infant’s ankle. We do not consider
medical-grade adhesive sensors because of their potential harm to
an infant’s dedicated skin. We validate the use of the Apple Watch
by conducting a separate study, where we apply both an Apple
Watch and the FDA-approved pulse oximeter on a user for vital
sign measurements. Results reveal that measurements from these
two devices di�er by less than 1%. It aligns with previous studies
comparing Apple Watches and medical-grade devices [44].

Evaluation Metrics. Joey estimates KMC duration by checking
whether each two-second segment is in a KMC session. Thus, dura-
tion estimation can be framed as a binary classi�cation problem.
Using the self-reported session types as the ground truth labels, we
assess the accuracy of KMC duration estimation via measures of
recall, precision, and F1 score. Additionally, we present a detailed
analysis of the actual duration error measured in seconds. We eval-
uate the sensing accuracy of HR and RR using the mean absolute
error (MAE). As our estimated HR and RR have a higher sampling
rate than ground truth devices, we align each estimation to the
ground truth value with the closest timestamp.

5.2 Sensing Performance

KMC Duration Estimation. We assess the accuracy of KMC
duration estimation across participant pairs and individual sessions.
As shown in Figure 8(a), Joey achieves an F1-score of 96% for infant-
adult pairs and 95% for adult pairs in detecting each two-second
segment as KMC or not. Out of 795minutes of labeled KMC sessions,
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Figure 8: (a) The KMC duration detection performance across dif-
ferent sessions. (b) The confusion matrix.

Table 2: Vital Signs Estimation Results

Heart Rate [bpm] Respiratory Rate [rpm]

Range MAE Range MAE

Infant 92-169 2.3 23-57 2.9
Adult 65-98 1.6 13-19 2.6
Overall 65-168 1.9 13-57 2.8

35.6 minutes are detected as non-KMC, and 22.1 minutes labeled
as non-KMC sessions are detected as KMC. Figure 8(b) shows the
confusion matrix.

Upon closer examination, segments of the 4.5% false negatives
predominantly occur around the start and end of each session.
Signal analysis reveal that during these segments, there are indeed
no ECG signals present (and mostly no signals on the mixed ECG
channel), indicating potential human labeling errors during the
study. Further interviews with participants con�rm that the need
to press a start and end button in the app often introduces a few
minutes of o�sets. Consequently, it underscores the necessity of an
automated KMC monitoring system such as Joey.

On the other hand, the 5.7% false positives primarily come from
two pairs. In one adult-infant pair, they recall that during the last
session labeled as KMC with clothes, the caregiver’s chest (along
with the sensing patch) likely touched the infant’s head, resulting
in signals similar to a KMC session. The false positives observed in
another adult-adult pair are attributed to signals that appear similar
to tapping on the sensing patch, causing peaks similar to the ECG
readings. While this constitutes an edge case that the current KMC
detection algorithm cannot handle, it is also highly unlikely to
occur in actual KMC practices. Overall, these �ndings demonstrate
the reliability and accuracy of Joey in estimating KMC duration.

Vital Signs Inference. Wenotice that the ground truth device and
Joey employ di�erent time window lengths for data processing. As
such, the ground truth HR measurements exhibit a delay compared
to that in Joey. Figure 9(a) shows an example of the delay (mean 6.8
seconds across the study) between the inferred and ground truth
HR. We compensate for this delay by shifting the inferred HR by a
�xed delay speci�c to each participant. Table 2 presents theMAE for
inferred HR and RR after the compensation3, which are 2.3 bpm and
2.9 rpm, respectively. The accuracy levels are comparable to those

3Without compensation for the delay, the MAE for HR and RR are 2.9 bpm and 3.3
rpm, respectively.
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Figure 9: (a) The estimated HR is always ahead of the ground truth
HR measurement. (b) The extracted (acted) infant ECGs align well
with the ground truth (acted) infant ECGs.

of FDA-approved clinical devices [1, 78]. Throughout the analysis
of 1202 minutes of data, our di�usion-based denoising module is
activated 1770 times, each for a two-second segment. This amounts
to an activation duration of 59 minutes, accounting for 5% of the
total processing time. Focusing speci�cally on these 59 minutes,
we observe a notable improvement in inference accuracy, where
the HR MAE decreases from 5.2 bpm to 3.1 bpm, and the RR MAE
reduces from 5.1 rpm to 3.3 rpm. These improvements highlight
the e�cacy of the denoising module in mitigating the impact of
motion noise on HR and RR inference.

It is noteworthy to mention that within our study involving
adult pairs, some scenarios featured an adult-acted infant with
weaker heartbeats compared to the adult acting as the caregiver.
Remarkably, we did not detect any degradation in accuracy under
these conditions. This observation can be attributed to the fact that
R-peaks, crucial for ECG analysis, remain prominent even in ECG
traces with lower amplitude.

Motion Tolerance. We also conduct a detailed study to examine
Joey’s tolerance of motion noise. We instruct an infant-adult pair to
practice KMC in four scenarios: (1) the caregiver and infant staying
stationary, (2) the caregiver moving and performing daily tasks
with a sleeping infant on the chest, (3) the caregiver staying sta-
tionary with an active, moving infant on the chest, and (4) both the
caregiver and infant moving during KMC. Each scenario is roughly
20 minutes. Analysis of the collected data shows that the activation
rate of the denoising module is 2.2%, 4.2%, 40.2%, and 51.2%, respec-
tively in each scenario. The resulting F1 score of KMC duration
estimation is 96.1%, 96.5%, 92.1%, and 92.9%, respectively. The MAE
(bpm/rpm) of HR/RR inference is 1.9/2.2, 2.1/2.4, 2.5/2.7, and 2.5/2.8,
respectively. Overall, caregiver’s movement has minimal impact
on Joey’s performance. However, infant movement causing pen-
dant shifts leads to slight degradation of accuracy as the denoising
module is unable to completely counteract the induced spikes. It is
worth noting though that signi�cant infant movement is less likely
during KMC, particularly with preterm infants.

5.3 Sensing Micro-benchmarks

ECG Validity. To demonstrate the validity of the ECGs measured
by the Cyton board in conjunction with Joey’s fabric sensors, we
conduct simultaneous measurements of lead-I ECGs from a partici-
pant using both a clinical ECG device (COSMED Quark C12x[35])
and the Joey prototype for 30 minutes. These two devices are syn-
chronized by an injected small current that induces a synchronized
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Figure 10: ECG signals from the clinical device and Joey.

�uctuation in both recordings. The COSMED data is downsampled
from 1000Hz to 250Hz to match Joey’s sampling rate. Figure 10 plots
ECGs measured by both devices for an example two-second seg-
ment. The average HR inferences from the COSMED and Joey are
found to be 91.15 and 90.99 bpm, respectively. Additionally, a t-test
(C (998) = �0.0096, ? = 0.992) conducted on the R-peak locations
from these two measurements reveal no statistically signi�cant
di�erence. These �ndings indicate that Joey is capable of providing
ECG recordings that are statistically consistent with those from a
medical-grade ECG monitoring device. These results are consistent
with the literature on Cyton board’s ECG sensing validity [21].

Separation Accuracy. Due to concerns about attaching adhesive
electrodes on infants’ skin, measuring ground truth ECG signals of
the infant is not feasible. To evaluate our ECG separation algorithm
(§3.2), we conduct additional experiments with 3 adult pairs, where
one adult wears Joey as the caregiver, while the other acts as the
infant. We utilize an additional channel on the Cyton board, along
with adhesive electrodes, to measure the ECG of the adult-acted
infant as the ground truth. Figure 9(a) plots the extracted infant’s
ECGs and the ground truth ECGs. We evaluate the separation accu-
racy by comparing the detected peak locations of the ground truth
ECGs and extracted ECGs. We consider peak locations within 5
samples as correct detections since they correspond to a window
of 20 ms, which is smaller than the threshold in prior work (e.g.,
50ms [48] and 30ms [84, 120]). The measured F-1 score for peak
detection with extracted ECGs is 98.2%. The observed errors are
primarily false negatives, occurring when the peaks of the infant
overlapped with those of the caregiver and the adaptive �lter fails
to learn appropriate weights in the previous iteration. Overall, the
ECG separation algorithm performs exceptionally well, establishing
a reliable foundation for HR and RR inferences.

5.4 System Usability
We conduct interviews with pediatricians for clinical feedback and
with users for system general usability.

Clinical Interview. To examine Joey’s clinical usability with
infants, we conduct clinical interviews with eight pediatricians.
In each interview, a Joey prototype is demonstrated with adult
participants. Pediatricians touch the necklace pendant to assess
the softness and smoothness of the fabrics and stitches. They also
examine other parts of the prototype and interact with the Joey
app. Based on their evaluation, they later complete a questionnaire,

Figure 11: Users’ ratings on the usability and comfort level.

where they are asked to provide clinical feedback on the necklace’s
usability on the infant’s skin, comparing Joey to the fabrics of
hospital swaddles, infant clothes, and standard medical-grade vital
sign sensors. Pediatricians are also asked to answer open-ended
questions on the clinical signi�cance of KMC, the need and clinical
uses of KMC duration and infant vital signs. In summary, they
all conclude that Joey’s sensing fabrics are clinically usable for
infants (including preterm) who can wear clothes. The comfort
level of Joey’s fabrics matches or surpasses that of the newborn
fabric cover and is substantially better than existingmedical sensors.
Regarding potential allergy concerns, pediatricians emphasize the
importance of fabric’s washability. This requirement is crucial for
ensuring hygiene and reducing the risk of allergic reactions. §5.5
systematically evaluates Joey’s washability.

User Interview. We also ask participants of our user study to eval-
uate Joey’s usability and comfort level using a short questionnaire.
The questionnaire asks participants to rate on the standard 5-point
Likert scale (i.e., 1: Strongly Disagree, 2: Disagree, 3: Neutral, 4:
Agree, 5: Strongly Agree) to the following statements:

• Q1: I found the system was easy to use.
• Q2: I thought the system was comfortable to wear.
• Q3: I thought this systemwould be helpful for supporting infants’
development.

• Q4: I like the experience of the device overall.

Participants also write down their comments and suggestions. Fig-
ure 11 presents the mean scores from all participants, indicating
a positive user experience overall. Caregivers in the infant-adult
group have a lower rating on ease of use and comfort level than
adult groups. Analysis of written comments reveal two main rea-
sons. First, both groups mention that the MCU attached to the
caregiver’s back tends to fall during vigorous movements, which
is more problematic in the infant-adult group due to the need for
soothing a crying infant. Solutions to address this limitation will be
discussed in §6. Second, half the caregivers in the infant-adult group
�nd it inconvenient to press buttons in the Joey app for ground
truth during KMC. It is important to note that the ground truth
labeling is for performance analysis and does not occur in actual
use cases. Despite these challenges, both groups report high levels
of comfort. They also highly rate the system’s e�ectiveness in sup-
porting infant development, with the infant-adult group assigning
almost the full score.
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Figure 12: (a) The ECGs after di�erent washing cycles. (b) The
similarity to the unwashed fabric measured ECGs.

5.5 Practical Considerations

Durability over Washing. Washability is a critical factor to con-
sider when designing fabric sensors [15]. To evaluate the washa-
bility of Joey, we prepare four identical fabric pendants of Joey. A
pendant serves as the control with no washing/drying, while the
other three undergo 50 washing and drying cycles. These pendants
are washed in a washer [95] (medium-soil, hot-temperature, perm-
press cycle) for 34 minutes/cycle and then dried in a dryer [96]
(high-temperature mode) for 45 minutes/cycle. After each washing
and drying cycle, we measured the resistance changes of these three
fabric pendants compared to the control/unwashed pendant.

We observe that even after 50 washing and drying cycles, fabric
resistance change is minimal, ranging from an average of 1.9 � to
11.7 �. We also measure the same participant’s (male, 24 years
old) ECG signals for 10 minutes using the two sides of the fab-
ric pendant. Since we cannot synchronize the 51 measurements
(they are not measured at the same time), to assess the variation
in sensed ECG signals, we calculate the Pearson correlation coe�-
cient [32] between average ECG cycles obtained from the control
pendant and other washed pendants. The average cycle, similar to
that in [12], is determined as the median of all ECG cycles within
the recording. Figure 12a illustrates the average ECGs obtained
after 0 to 50 washing cycles. Visually, there is no discernible dif-
ference in these measured ECGs. Figure 12b plots the computed
similarity for all 50 cycles. All similarity scores are above 96%. These
results demonstrate the superior durability of our fabric sensors.
The tight adherence of the sensing fabric to the adhesive tape pre-
vents stretching of the conductive threading during washing and
drying, therebyminimizing the degradation of sensing performance.
We acknowledge that this study is conducted with a single user.
Future research involving a larger set of participants will further
strengthen and validate these conclusions.

Skin Conditions. To evaluate Joey’s robustness across di�erent
skin conditions, we conduct a study with a single participant (male,
24 years old). The participant wears Joey in the same location
to measure ECG signals under three skin conditions: normal skin
without preparation, sweating skin after running, and prepared skin
following scraping and cleansing with a lotion cleaner (i.e., after a
shower). Each skin condition is measured for ten minutes. An FDA-
approved Pulse Oximeter [78] is used concurrently to obtain the
ground truthHR and RR. The average peak-to-peak ECG amplitudes
are 2.0 <+ , 2.1 <+ , and 1.9 <+ for these three skin conditions,
respectively. Fabric resistance slightly decreases on sweating skin,

leading to slightly higher ECG signals. However, MAEs of HR and
RR inferences are comparable in these three conditions. Speci�cally,
the MAEs for HR are 1.9, 1.6, and 1.8 bpm, while the MAEs for RR
are 2.4, 2.4, and 2.6 rpm for three skin conditions, respectively. These
outcomes a�rm Joey’s reliability across varying skin conditions
without necessitating prior skin cleaning. Given the limitation of
the study with one user, broader participant involvement in future
research will reinforce and con�rm these �ndings.

Power Consumption. We measured the power consumption of
Joey prototype using a Monsoon Power Monitor [39]. Overall the
MCU consumes 170.2<, power with a 3.6-V voltage. Joey app can
run for approximately 26 hours on a 3.7-+ 1200-<�⌘ lithium-ion
battery. It implies that the system can continuously monitor KMC
for a day and require a daily change of battery. To further reduce
power consumption, we can replace the current 8-channel ADC
with a 4-channel model [52], since the system only needs data from
three channels. It can reduce ADC power consumption from 41
<, to 5 <, . We can also replace the current processor with a
lower-power version. We defer power optimization to future work.

6 DISCUSSIONS AND FUTUREWORK

User Study. We recognize that our current user study is limited by
the small user group and short-term user experiences because of the
di�culty of recruiting newborn participants. We are establishing
collaborations with hospitals to expand our user group and include
more newborns and real preterm infants through clinical studies.
Additionally, our current ground truth device for collecting infant’s
vital signs is not medical grade given its potential harm to delicate
infant skin. Upcoming clinical studies will address this issue, as
preterm infants involved in these studies will already be using
medical-grade devices. We also value the importance of collecting
a more extensive and longer-term ground truth dataset. By re�ning
our ground truth collection procedure, we hope to obtain accurate
and reliable measurements of KMC duration and infant vital signs
over an extended time period.

Hardware and Denoising Module Optimization. Feedback
from participants highlighted the need for hardware optimization
to reduce MCU size and improve the comfort and reliability of
MCU attachment on the neck. A customized MCU can address this
concern by eliminating unnecessary channels and modules from
the OpenBCI board. This optimization will result in a signi�cantly
smaller and cheaper MCU, improving the overall ergonomics and
a�ordability of the system. Furthermore, the use of a �exible PCB
can be explored to enhance comfort and �exibility, allowing the
MCU to conform better to the caregiver’s neck. Secure neck attach-
ment of the MCU will also ease continuous, long-time wear of Joey
and allow us to conduct longer-term user study. Additionally, the
current denoising module necessitates the use of a dedicated laptop,
which may not be feasible for all users. Future research can consider
the development of lightweight models capable of operating on
resource-constrained MCUs or smartphones.

Continuous Temperature and Oxygen Saturation Sensing.
Temperature and oxygen saturation measurements during KMC
are also clinically valuable [49]. While it is not mandated to monitor
temperature continuously according to the WHO guidelines [49],
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continuous temperature and oxygen saturation sensing will pro-
vide insights into the e�cacy of KMC practices [14, 19, 38, 118].
Unobtrusive temperature measurement can be achieved using in-
frared thermometers. Integrating this technology into KMC prac-
tices needs to be explored further to avoid burdening the infant and
caregiver. Monitoring oxygen saturation generally involves contact
sensors, which are not suitable for infants’ sensitive skin. Recent
advances have suggested the possibility of using camera-based,
remote photoplethysmography for non-contact measurement of
SpO2 levels [101, 122], representing a promising direction. However,
signi�cant challenges remain in addressing issues related to motion
interference and privacy concerns speci�c to the KMC context.

Other Applications. While Joey design has been tailored to the
KMC application, Joey’s sensing principle can be explored to en-
hance the monitoring of physiological synchronization, which is
essential for examining interactions and dynamics in �elds requir-
ing collaboration and communication (e.g., dance performances [56,
86]). Additionally, Joey design can be simpli�ed to enable continu-
ous ECG monitoring for a single user. Speci�cally, Joey’s necklace
pendant can be simpli�ed to a single-side sensing fabric to establish
the base channel (§3.1) and monitor wearer’s QRS waves. In com-
parison, current wearable ECG sensors (e.g., Apple Watch) require
user cooperation and consequently cannot provide continuous mon-
itoring. QRS detection is critical as it yields key metrics like QRS
duration, essential for the diagnosis andmanagement of various car-
diac conditions, including coronary artery disease, bundle branch
block, and cardiac hypertrophy [60, 75].

7 RELATEDWORK

KMCMonitoring. Prior studies on KMC monitoring have pri-
marily focused on sensing vital signs [20, 31, 54, 98, 115]. Bouwstra
et al.[20] incorporated textile electrodes into a jacket to monitor
the neonate’s ECG during KMC. Rao et al.[98] focused on the de-
velopment of wearable sensors capable of measuring the skin tem-
perature of both infants and caregivers. Joglekar et al. [54] utilized
capacitive electrodes to sense skin contact between the caregiver
and the device, facilitating temperature sensing. However, it re-
quires a rigid device directly against the infant’s chest, undermining
its suitability for long-term wear. Furthermore, this device cannot
monitor the heart rate and respiration rate. Chung et al. [31] de-
vised a binodal, wireless system to record infants’ ECGs and PPGs.
The binodal and wireless nature of the system e�ectively supported
KMC. Xu et al. [115] developed wireless, skin-like sensors to moni-
tor the physiological signs of infants, including heart rate via ECG,
respiratory rate, and chest temperature. Although above works
show promise in monitoring infant’s vital signs, they cannot sense
KMC duration. To sense KMC sessions, prior studies have examined
infant’s body position for KMC inference, using either accelerom-
eter [109] or gyroscope [98]. However, these approaches require
placing a rigid sensor on the infant skin. Weber et al. [112] devel-
oped a proof-of-concept conductive thread stitch sensor coupled
with a pair of magnets functioning as a switch. However, no user
study was conducted with caregiver-infant pairs and this approach
is prone to false positives. In comparison, Joey detects both KMC
duration and infant vital signs without rigid sensors on the infant
and is evaluated with infant-adult pairs.

Textile-based ECG Sensing. Textile ECG electrodes o�er several
advantages over wet electrodes (e.g., Ag/AgCl electrodes [72, 116]),
such as suitability for long-term monitoring [18] and prevention
of skin irritation caused by adhesive materials [29]. Textile-based
ECG sensing systems can be divided into two main categories:
contact-based and non-direct contact approaches. Contact-based
systems employ highly conductive fabric materials to acquire ECG
signals [23, 97]. Conversely, non-direct contact systems [43, 97, 104]
utilize variations in capacitance between the textile electrodes and
the skin to ascertain ECG signals, thereby negating the necessity
for direct skin engagement. This approach eliminates the need for
direct skin contact, enabling non-contact measurements. However,
capacitance-based ECG sensing necessitates speci�c conditions
regarding insulating layers (for example, thickness and moisture
levels), which complicates its practical application. Since our goal
is to detect the skin-to-skin contact between the caregivers and the
infant during KMC, capacitance sensing can trigger false positives.
Therefore, we apply the contact-based sensing rationale in our
design. Previous fabric-based physiological sensing techniques have
primarily focused on monitoring the physiological signals of an
individual user. To the best of our knowledge, our study represents
the �rst attempt to sense and analyze physiological signals between
individuals using fabric sensors.

8 CONCLUSION
We designed, implemented, and evaluated Joey, a fabric-based wear-
able system for KMC monitoring. Exploiting the ECG transmission
across human bodies, it e�ectively monitors KMC duration and
the infant’s heart rate and respiration rate. Prototype experiments
with 35 participants demonstrated its accuracy in estimating KMC
duration with an average F1-score of 96% and vital sign inference
with clinically acceptable accuracy. Clinical interviews further con-
�rm the usability of Joey’s sensing fabric for infant skin. This work
extends the application of fabric-based sensing to multi-user sce-
narios and opens possibilities for new developments in multi-user
fabric sensing and interaction.
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