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This paper introduces a new 2D representation of the orientation distribution
function for an arbitrary material texture. The approach is based on the
isometric square torus mapping of the Clifford torus, which allows for points on
the unit quaternion hypersphere (each corresponding to a 3D orientation) to be
represented in a periodic 2D square map. The combination of three such
orthogonal mappings into a single RGB (red-green—blue) image provides a
compact periodic representation of any set of orientations. Square torus
representations of five different orientation sampling methods are compared
and analyzed in terms of the Riesz s energies that quantify the uniformity of the
samplings. The effect of crystallographic symmetry on the square torus map is
analyzed in terms of the Rodrigues fundamental zones for the rotational
symmetry groups. The paper concludes with example representations of
important texture components in cubic and hexagonal materials. The new RGB
representation provides a convenient and compact way of generating training
data for the automated analysis of material textures by means of neural
networks.

1. Introduction

The texture of a polycrystalline material is typically described
by an orientation distribution function (ODF), which repre-
sents the volume fraction of the sample with a particular
orientation with respect to an external reference frame. In the
materials field, this is usually the sample frame described by
the RD-TD-ND directions (reference, transverse and normal
directions, respectively), whereas the geological community
typically selects a sample reference frame associated with the
growth history of the sample. Traditionally, the orientations
are parameterized by means of three Euler angles; in the
Bunge Euler convention, those angles are represented by the
triplet (¢, ®, ¢,) corresponding to rotations around the
Cartesian z, x' and 7" axes, respectively. There are several
other frequently used rotation representations, including the
set of neo-Eulerian representations (Rodrigues—Frank,
homochoric or 3D stereographic vectors) and the quaternion
representation; for details of each of these we refer the
interested reader to Morawiec (2004). Details of the conver-
sions between the representations can be found in the work of
Rowenbhorst et al. (2015).

Given the 3D nature of orientation space, the human brain’s
ability to interpret 3D structures correctly, and the widespread
availability of high-end computer graphics, several new
orientation visualization techniques have been proposed in
recent years (Berestova et al., 2018; Krakow et al, 2017,
Callahan et al., 2017a,b). In these articles, several orientation
representations, in particular the neo-Eulerian representa-
tions, are combined with graphical rendering software to
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produce 3D visualizations of textures as point clouds and
clusters, density functions, and emission maps, either
displaying the full orientation space or applying restrictions to
the Rodrigues fundamental zone for textures and to the
disorientation fundamental zone for multi-phase textures
(Callahan et al., 2017b).

Despite the elegance and widespread availability of these
3D renderings (e.g. in MTEX; Bachmann et al., 2010), they are
typically restricted to interactive environments where the user
can manipulate the viewing direction, zoom in on particular
regions of orientation space or change the orientation repre-
sentation mode, e.g. from Rodrigues—Frank vectors to homo-
choric or 3D stereographic vectors. Furthermore, none of
these 3D visualizations lend themselves to being analyzed with
machine learning techniques. The main goal of this paper is to
propose a 2D visualization of a texture that can be formatted
as a periodic RGB (red—green-blue) color image and is hence
suitable as training data for a classification neural network to
recognize texture components and/or texture fibers auto-
matically.

From a numerical point of view, the quaternion repre-
sentation provides an efficient and powerful way of working
with 3D rotations, for instance in combining rotations or
finding a geodesic path between two different orientations
(Hanson, 2006). In the following section, we will thus start
from the three-sphere, S*, i.e. the unit quaternion sphere, to
derive a 2D representation of 3D orientation space that can
potentially be used for the training of neural networks.

2. Mathematical background
2.1. Definitions

Following the original description in Section 4.4 of Alexa
(2022), we define the Clifford torus, also known as the
Euclidean two-torus, as the Cartesian product of two unit
circles which results in an object embedded in R*. Consider
the unit circle S' parameterized by the angle 6 and defined as
the set of all points of the form (cos 6, sin 8) with

SY ) = {(cos 8, sinb) | 0 < 6 < 27}. (1)

Scaling the circle to a radius of p and taking the Cartesian
product of two such circles results in the Clifford torus,

C(0. ¢ p) =pS'(6) x pS'(p)
={p(cos b, sin O, cos @, sin @) |
0<0<2m0<¢p<2m}. 2)

For the special choice p=1/+/2, the Clifford torus
C(0, ¢; 1/+/2) becomes a sub-manifold of the unit three-
sphere, S°, because the norm of each point on the torus is
equal to 1. Putting x; = p cosf and x; = p sinf, we have
x% + x% = %; similarly, for x3 = p cos¢ and x4 = p sing, we
have x% —i—xi :%, so that x% —l—x% —i—x% +xi =1.

The Clifford torus has the special property that it is flat, i.e.
there exists an isometry from the torus to a 2D square with
periodic boundaries; the edges of the square have length 27

and cover the interval [—z, 7]. The isometric mapping, which

can be shown to have a unit Jacobian, consists of taking the
ratios

X X

Z—tanf and —*=tang

X1 X3
and inverting the relations to the coordinates (X, Y) = (6, ¢) in
the square,

(X,Y)= [atan2(x2, x,), atan2(x,, x3)].

Here we use the traditional numerical two-argument version
of the arctangent function atan2(y, x) = arctan(y/x) which
produces angles in the range [—m, 7].

In materials texture analysis, it is common practice to
perform computations involving 3D orientations by means of
unit quaternions, ¢ = (qo, q) € S° C H, with g, the scalar part
and q the vector part of the quaternion. Since unit quaternions
reside on S* and the Clifford torus is a sub-manifold of the
three-sphere, the following question arises naturally: What
role can the Clifford torus play in the description of sets of 3D
orientations/rotations and, thus, the description of 3D materials
textures?

2.2. Projection of unit quaternions onto the Clifford torus

For a unit quaternion g with components (g, 41, 2, q3), the
projection on the Clifford torus C(6, ¢; 1/+/2) results in the
point x with coordinates

X — L ( 9o q: 9> a3 ) 3)
V2\V@+at Vi +a Vi +a Vi +d
The projected coordinates in the square torus are then readily
shown to be given by

X X
X,Z,) = (arctan —2 arctan 4) = (arctanch, arctan 613).
X1 X3 90 9>

4)
The reason for the use of the symbol Zy will become clear

below. For a 3D rotation with unit rotation axis n and rotation
angle w, the unit quaternion is given by

w .. w
q:(cos—,nsm—).
2 2

Substitution of the quaternion components g; into equation
(4) then results in

(X, Zy) = |:arctan (nx tan %) arctan &i| 5)

ny

This can be converted to the Rodrigues—Frank representation
by noting that R = q/qo = n tan(w/2), so that

(X, Zy) = (arctan R, arctan %) (6)

y
The notation Zy reflects the fact that the ratio R./R, is used to
determine the second square torus coordinate. Note that this
relation is not invertible, since there are only two degrees of
freedom on the square torus and 3D rotations require three
degrees of freedom. The representation in terms of the
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Rodrigues-Frank vector R suggests that the loss of informa-
tion during the projection onto the square torus occurs due to
the ratio of the R, and R, components in the Zy coordinate.
This, in turn, suggests that two other projections can be
defined by cyclic permutation of the vector components (q;,
q», q3) of the quaternion in equation (3); starting from this
equation, we can derive two additional square torus projec-
tions via the relations

(Y, X,) arctan— arctan 1t )
3

z

(arctan R, arctan 2—) , (7)

(Z,Yy) = arctan— arctan @)
q,

R
= (arctan R_, arctan Ry> (©)]

X
We can think of the three coordinate pairs as three different
isometric projections of an orientation onto three orthogonal
square tori. We will label the square tori by their coordinate
symbols; when no coordinate label is present, the (X, Zy)
projection will be assumed. In terms of the Rodrigues—Frank
vector components, the cyclic permutations correspond to
120° rotations about the principal diagonal axis of the

Rodrigues reference frame.

Fig. 1 shows the square torus (X, Zy) in the range [—m, 7]
along both horizontal and vertical axes; the left and right
vertical edges connect to each other, as do the top and bottom
edges. The shaded areas correspond to different sign combi-
nations of the quaternion components, with regions -1V

/2

—7/2

=T

| |
- /2 0 /2 n

Figure 1

A square torus diagram, delineating regions with different sign combi-
nations for the unit quaternion components. Rectangular regions with
identical gray shading are translationally identical but have opposite sign
for all quaternion components. Periodic boundary conditions apply in
both horizontal and vertical directions.

corresponding to quaternions with a positive scalar part (the
default convention for 3D rotations) and a negative scalar part
for the outer regions. Rectangles with the same gray level are
exact copies of each other due to the double-cover nature of
S®.

2.3. Relation between the square torus map and the Euler
angle representation

The (Z, Yx) square torus map is related to a projection of
Euler space along the @ axis. The transformation relations
from the Rodrigues vector components to the Bunge Euler
angles are given by (Callahan et al., 2017a)

¢, =atan2(—R, + R.R_, —R, — R,R.),

P :atanz[z\/(R,% +R2)(14+R2),1—R; — R, + R?}, ©)
@, = atan2( 2R, 1 — ) (O

For the (Z, Yx) map, we have R, = tan Z and R, /R, = tan Yy
and, using the sum and difference formulas for the tangent
function, it is easy to show that

o =Yy—Z
v, =-Yy—Z,
so that

7 — ‘P1+¢2’

2
Y1 — P
Y, = .

X 2

This means that the (Z, Yy) square torus map is identical to a
projection of Euler space along the ® axis followed by a 45°
rotation, bringing the ¢; = ¢, diagonal parallel to the Y axis
of the square torus map. The two other maps, (X, Zy) and
(Y, Xz), do not appear to have simple interpretations in terms
of linear projections through Euler space; they are more
complicated nonlinear projections.

2.4. Zone-plate function representation

For a given set O ={q; |i=1,..., N} of N unit quater-
nions, one can represent each quaternion by a narrow
symmetric normalized 2D Gaussian function at the position
(X,Zy) and add all Gaussians together to obtain a 2D
‘intensity’ landscape S(O) representing the set O. Several
versions of this landscape can be generated:

(i) S(O). All orientations in the set are represented visually,
without application of symmetry or conversion to quaternions
with a positive scalar part.

(ii) SRF%(0). All orientations are reduced to the Rodrigues
fundamental zone (RFZ) for the rotational point group
corresponding to the crystal structure (this implies that they
have a positive scalar part).

(iii) ST(O) or S7(0). All symmetrically equivalent orien-
tations are computed but only those with either a positive or a
negative scalar part are visualized on the square torus.
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(iv) SE(O). All symmetrically equivalent orientations with
both positive and negative scalar quaternion parts are repre-
sented.

For each of these cases, one can apply a zone plate to the
square torus, ie. the intensity at each point is multiplied by a
modulation function with spatially varying frequency content
(Ogztireli, 2020). For orientation sets that are supposed to be
uniform in SO(3), the application of a zone plate sometimes
facilitates the interpretation of the intensity distribution and
makes it easier to spot non-uniformities. When a zone-plate
function is applied, we represent this by a subscript on the
intensity landscape, e.g. SgZ(O) or S%P(O). In the following
section we will explore what these representations look like
for uniform samples of orientations, as well as for a number of
well known textures. It should be noted that application of a
zone-plate function in general destroys the equivalence of
regions with equal shading in Fig. 1.

Alexa (2022) suggested the following zone-plate function:

2lg) =5 {1 + coslicdla. )} (10)

where « is a constant that determines the number of oscilla-
tions of the zone-plate function in the interval [—z, 7] and
d(p, q) is the natural metric on S,

d(p, q) = arccos |(p, q)], (11)

with (p, g) the standard dot product between two quaternions
projected onto the Clifford torus. g;is an arbitrary point on the
torus, so that the zone-plate function uses the geodesic
distance between g and g¢ along the surface of the torus. In this
paper, we select the reference point

1
qf=—2[1,071,0]

5

which is clearly located on the Clifford torus C(6, ¢; 1/+/2) and
causes z(g) to be symmetric with respect to the point

/2

-/2

T R R T E T !

|
- —n/2 0 /2 T

Figure 2
The zone-plate function [equation (10)] superimposed on the square
torus diagram. Parameters are defined in the text.

(X, Zy) = (0, 0), as shown in Fig. 2; in this figure, we have set
k = 40 and subdivided the interval [—m, ] into an equidistant
grid of 1001 points along both axes.

3. Uniform and random samplings of SO(3)

In this section, we explore a number of different orientation
sampling approaches and their representation on the square
torus using a zone-plate function. The following sampling
approaches are used to generate orientation sets:

(i) Oy. Each quaternion is composed of four components,
each uniformly sampled on the interval [—1, 1] using the
Mersenne twister algorithm (Matsumoto & Nishimura, 1998),
and the quaternion is subsequently normalized.

(i)) Oym. Each unit quaternion is generated using the
Marsaglia sampling approach (Marsaglia, 1972). Draw two
uniform random numbers x; and y; from [—1, 1] until s; =
x? +y? < 1. Repeat for x,, y, until s, = x +y3 < 1. Then
replace s, by /(1 — s1)/s> and form the unit quaternion g =
[x1, y1, X252, y252]-

(iii) Os. In the Shoemake algorithm (Shoemake, 1992),
three random numbers are generated using the Mersenne
twister algorithm: u; is selected uniformly from the interval
[0, 1] and u, and us are selected uniformly from the interval
[0,27]. Setting a = 4/1 —u; and b = ,/u;, the random unit
quaternion is then generated as g = [asinuy,acosuy,
bsin us, b cos us].

(iv) Oc. Cubochoric sampling (Rosca er al., 2014) is used to
generate a uniform 3D grid of points inside a cube of edge
length 7%/3. Each of these points is then mapped using an
equal-volume mapping onto the northern hemisphere of S°
(the northern hemisphere corresponds to quaternions with
positive scalar part), resulting in a uniform sampling of SO(3).

(v) Osp. Super-Fibonacci sampling (Alexa, 2022) is a rela-
tively new sampling approach that relies on two irrational
numbers (¢, ). One potential choice is related to the golden
ratio (positive root of =0+ 1) and the super-golden ratio
(positive root of ¥ = 1* + 1). Another choice, producing a
uniform set of quaternions with a lower dispersion, sets
¢ =+/2 and ¢ as the positive root of ¥* = ¢ + 4 —
Y = 1.53375117. To generate N uniformly distributed quater-
nions, the algorithm is as follows: for i € [0, ..., N — 1], set
s=i+12,t=s/n,d=2ms,r=+/t, R=~1—1, a=dl¢and
B = d/y. The quaternion ¢; is then formed as g; =
[rsina, rcosa, Rsin B, R cos f].

For each of these five sampling approaches, an orientation
set of 10° samples was generated and represented using the
zone-plate function approach. For each orientation in the set,
the quaternion was projected onto the Clifford torus and, at
the corresponding point (X, Y) in the square torus, a narrow
unit-amplitude 2D Gaussian kernel was added to the intensity
plot and multiplied by the zone-plate function value for that
point. The resulting intensity plots are shown in Fig. 3. Due to
the discrete grid nature of cubochoric sampling, the number of
sampling points for the set O¢ in general cannot be set arbi-
trarily; however, in the absence of crystal symmetry, a
sampling of the cubochoric grid with 100 equidistant points on

J. Appl. Cryst. (2024). 57, 638-648
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Figure 3

Zone-plate representations of samples of 10° orientations using (a)
uniform sampling S(Oy), (b) Marsaglia sampling S(Oy), (¢) Shoemake
sampling S(Os), (d) cubochoric sampling (northern hemisphere of §°
only) S(Oc) and (e) super-Fibonacci sampling S(Osp).

the side results in a sampling of orientation space with
precisely 10° points.

For the set Oy, the zone-plate function S(Oy) shown in
Fig. 3(a) shows a regular pattern of excess intensities corre-
sponding to (X, Y) values close to /4 and 37/4, indicating that
the uniform sampling approach based on the Mersenne twister
does not produce a uniform orientation sampling. For the
Marsaglia generator, the function S(Oy;) shown in Fig. 3(b)
shows a better uniformity than the uniform sampling
approach, but there is an excess intensity for orientations near
X = £n/2. The Shoemake algorithm produces a smoothly
varying zone-plate representation [Fig. 3(¢)], indicating that
the sampling is uniform. The cubochoric sampling approach
shows a relatively smooth zone-plate function S*(Oc)
[Fig. 3(d)], but there are highly localized excess intensities
(arrowed) for Y = £m/4 and Y = +3n/4. These are probably
due to the fact that the cubochoric sampling algorithm relies
on sampling of six pyramidal volumes that together make up
the cube [see Fig. 1 in the report by Rosca et al. (2014)]; where
the pyramids meet (along the body diagonals of the cube) the
sampling is apparently not as uniform as elsewhere inside the
cube. However, the overall zone plate for the cubochoric
sampling approach is significantly smoother than that for the
uniform and Marsaglia sampling methods, indicating that the
orientation set Oc¢ represents a more uniform sampling of
SO(3). Finally, the zone-plate function S(Ogp) in Fig. 3(e)
shows that the super-Fibonacci sampling approach produces a
smooth intensity profile with no obvious non-uniformities.

The uniformity of a sampling of points on the sphere S" can
be quantified using the concept of Riesz energy (Hardin &
Saff, 2004). For a set O of N orientations represented by unit
quaternions, the Riesz energy E(O) is defined as

1

E(0) =2 .
l<i<j=N [Zi:(}(qi.k - q];k)z]

Table 1
Riesz energy ratios for the five orientation sampling sets of Fig. 3.

Each set contains 2 x 10° samples (both ¢ and —q are included in the Riesz
summations). The first row shows the actual energies E, for the optimal
sampling. The ratios r, are equal to unity for the optimal sampling.
Sampling ry (E;) r2 (E2) rs (E3)

Optimal 3 395 305 452 627.101 4 000 000 000 000.000 12 315 331 182 477.914

Oy 1.007 179 463 867 1.052 447 214 340 2.966 778 018 561
Om 1.011 244 456 259 1.051 526 042 008 2.474 120 685 576
Os 0.999 999 863 775 1.000 006 692 433 1.969 498 539 602
Oc 0.999 946 255 258 0.993 015 676 166 1.019 190 812 726

Ogp 0.999 957 141 142 0.994 310 813 958 1.063 893 792 814

This expression can be interpreted as a generalized Coulomb
energy for a collection of points on the sphere S* and reduces
to the standard Coulomb energy for s = 1. The sum covers the
entire three-sphere, not just the northern hemisphere S*j_. The
optimal Riesz energies for uniform coverage of any hyper-
sphere are well known (Hardin & Saff, 2004); the values for
the three-sphere for an orientation set with N elements are
given by

2N*InN

FoP 8SN?
3

1T = s

3T EF =N,

E =

Table 1 lists the optimal values for an orientation data set of
2 x 10° unit quaternions (counting g and —q as distinct
points) along with the relative values r, = E (O)/E" for each
of the orientation sets of Fig. 3; for an optimal sampling, all
three ratios should be equal to unity. Both uniform and
Marsaglia sampling have ratios that are significantly different
from unity, in particular the r; value, which is more sensitive
than the other two in terms of local sampling non-uniformities.
The Shoemake algorithm produces r; and r, ratios that are
very close to unity, but has an r5 value nearly twice the optimal
value; this indicates that globally this sampling has excellent
uniformity but on a local scale the sampling is not as optimal
as the cubochoric and super-Fibonacci sampling approaches.
The latter two are comparable in their r; values, which are all
relatively close to unity, indicating that there is no significant
over-sampling of sub-regions of orientation space. The visua-
lization of the orientation data sets in terms of the zone-plate
function is qualitatively consistent with the Riesz energy
ratios, so the zone-plate images can be used as a visual
substitute for the more accurate computation of the Riesz
energies.

4. Material textures and the square torus representation
4.1. Fundamental zone representations

In this section we review how orientation information
restricted to an RFZ is represented in the square torus. The
example orientation data sets used in Sections 4.2 and 4.3 are
taken from the supplementary material of Callahan et al
(2017b). In the context of material textures, the two additional
square tori (Y,X,) and (Z, Yy) become relevant since
they project the orientation data along different directions.
One can think of a texture representation as an intensity

642 Marc De Graef - Applications of the Clifford torus to material textures
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distribution on three adjacent faces of a cube with edge length
27w, or as a periodic RGB color image.

4.1.1. Cyclic point-group symmetry. For the cyclic rota-
tional point groups 2 (C5), 3 (Cs), 4 (C4) and 6 (Cg), the RFZ
corresponds to the region between two parallel planes normal
to the R, axis [for the monoclinic point group 2 (C,), with b as
the unique axis, the planes are normal to the R, axis] at a
distance of = tan(;r/2n) from the origin, where n is the order
of the rotation axis. Points inside this region are of the form

R
(X,Zy) = <arctan R_, arctan R_Z) (12)
v

with R, € [—tan(r/2n), tan(r/2n)] for n = 3, 4 and 6, and of
the form

R
(X, Zy) = <arctan R,, arctan R_Z) (13)
y

with R, € [—1, 1] for n = 2. Producing a uniform sampling of
these RFZs results in non-uniform distributions in the square
torus because there are more points far away from the origin
than nearby.

The zone-plate functions for the cyclic rotational point
groups are shown in the top row in Fig. 4. The orientation sets
were generated by the super-Fibonacci algorithm and subse-
quently reduced to the Rodrigues fundamental zone, i.e. the
intensity plots are of the type S*F4(Ogg). Note that for 2 (Cs),
the denser (brighter) regions are shifted up by half a unit due
to the selection of the b axis as the unique monoclinic axis.
Along the horizontal axis, orientations span the range
[—7/2, /2], whereas in the vertical direction the entire range
[—m, 7] is used. As the order of the rotation axis increases, the
intensity becomes more focused near the points (f7/2, 0).

4.1.2. Dihedral, tetrahedral and octahedral point-group
symmetry. For the dihedral point groups 222 (D,), 32 (D5),
422 (D,) and 622 (D) and for the two cubic groups 23 (7) and
432 (0), the RFZs are finite and bounded by planar facets.
Fig. 5 shows the projections of the RFZ edges onto the square
torus along with a volume rendering of the RFZ; all inset
images have the same scale and the R, axis is vertical in all
cases. The corresponding zone plates SR¥4(Ogp) for these
point groups are shown in the bottom row of Fig. 4.

A(((Cw)) ()

u));((umu

622

(s

Figure 4

Zone-plate representations (Osk) of uniform samplings of the
Rodrigues fundamental zone for the rotational point groups. Thin white
lines represent the projections of the edges of the RFZ onto the square
torus, as shown more clearly in Fig. 5.

SRFZ

A few general trends can be observed in the zone plates for
the four dihedral groups:

(i) The projected RFZ outlines in Fig. 5 have the same
horizontal width and stretch across the entire vertical
dimension for all four dihedral groups. One can think of the
projected outline as a distorted 2D net corresponding to the
polyhedral RFZ shape. For instance, for point group 422 (D,)
the central square in the outline corresponds to the square
face normal to the x axis in Rodrigues space and the entire
polyhedron is ‘unfolded’ in the vertical (z) direction to
produce the distorted octagons above and below (labeled ‘top’
and ‘bottom’ in Fig. 5). The other vertical facets give rise to the
curved areas at the Y = 0 line as well as the top and bottom Y =
=+ regions of the square torus. The RFZ facets perpendicular
to the y axis are projected onto the vertical X = £ /2 edges of
the outline.

(ii) The zone-plate plots in Fig. 4 show that the intensity
becomes more concentrated along the Y =0 and Y = £ lines
as the rotational order increases. This is because the ‘thick-
ness’ of the RFZ along the z axis (Fig. 5) decreases [recall that
the top and bottom facets are at a distance tan(z/2n) from the
origin] and this results in fewer projected orientations near the
Y = £7/2 lines.

For the cubic rotational groups 23 (7) and 432 (O), the
width of the zone plate corresponding to the RFZs is narrower
than that for the dihedral groups. For the tetrahedral group 23
(T), the vertical edges of the region with non-zero intensity
correspond to the single intersection points of the octahedral
RFZ (Fig. 5) with the y axis; those orientations are completely
degenerate in the square torus representation. For both cubic
groups, the zone-plate intensity shown in Fig. 4 reaches a
maximum near the horizontal projections of the RFZ edges.

4.2. Basic texture-type representations

In this section, we use two basic texture components, the
cube or {100}(001) texture and the Goss texture {110}(001), to

32 : 422

3 ———top
g Y - X N /

I
Figure 5
Outlines of the projections of the finite Rodrigues fundamental zones
(shown as volume renders in the insets) for the rotational point groups

indicated in the top left. Each square has coordinate ranges [—, 7] along
both axes. The RFZ renderings use a common length scale.

J. Appl. Cryst. (2024). 57, 638-648
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Cube Texture

Figure 6

Cube (top row) and Goss (bottom row) textures represented on the
square torus. The left-most column shows the two textures represented as
point clusters in the cubic Rodrigues fundamental zone. The second
column shows the square torus projections for the RFZ only, whereas in
the third column the cubic symmetry operators, including the equivalence
of g and —q, have been applied to the orientation data set. In the final
column, three square torus map projections are combined into an RGB
image.

demonstrate how these orientation sets are represented using
the square torus and/or the zone-plate intensity map.
Synthetic cube and Goss textures were generated using the
EMsampleRFZ program which is part of the EMsoft open
source package for electron scattering simulations (Singh et
al., 2017). Each orientation set contains 1000 000 unique
orientations clustered around the respective texture compo-
nent mean orientations, i.e. the origin of Rodrigues space for
the cube texture and the point [tan(r/8), 0, 0] for the Goss
texture {i.e. texture component (100)[011]}. The orientations
were generated using von Mises—Fisher sampling with half-
widths of 5° for the Goss texture and 10° for the cube texture.

Fig. 6 shows the two orientation distributions represented as
point clouds in the cubic RFZ (left-most column); note that
the cluster spans the RFZ boundaries for the Goss texture.
Figs. 6(a) and 6(c) show the square torus (ST) representations
for both textures, ST4(Ocupe) and STF2(Ogoss), along with
the RFZ outlines. All orientations were reduced to the
fundamental zone before being projected onto the square
torus. In both cases, the representations contain vertical lines
due to the ‘unfolding’ of the fundamental zone along the
vertical direction of the ST map. In Figs. 6(b) and 6(d) the
cubic rotational symmetry operations were applied to the
orientation set (including the equivalence of quaternions g
and —q) before projection; the resulting ST maps correspond
to Si(OCHbC) and Si(OGOSS). Note that the Goss map is
identical to the cube map, but is shifted diagonally by a vector
(X,Y) = (7/8, —n/8).

Figs. 6(e) and 6(f) show RGB representations of the three
square torus maps, with (X, Zy) mapped onto the red channel,
(Y, X,) onto green and (Z, Yx) onto blue. For the cube
texture in Fig. 6(e), the three maps are identical so that the
RGB image becomes a grayscale image. For the Goss texture
in Fig. 6(f), on the other hand, the three projections differ
from each other and the resulting RGB image shows distinct
clusters in each color.

Figure 7

(a) [0, tan(7r/8), 0] and (b) [0, 0, tan(rr/8)] Goss textures represented on
the square torus. An equally weighted mixture of the Goss texture along
the three coordinate directions results in the superposition shown in
panel (c¢). Each component corresponds to a Watson sample with
1 000 000 orientations and a concentration of x = 262.8, corresponding to
A =5°.

Because of the asymmetric way in which the R, and (R,, R.)
components of a Rodrigues vector contribute to the coordi-
nates (X, Y) in the square torus [equation (6)], different
symmetrically equivalent texture components will have
different ST representations. Figs. 7(a) and 7(b) show the ST
representations of the Goss texture components centered on
the points [0, tan(xr/8), 0] and [0, 0, tan(;r/8)], respectively,
and Fig. 7(c) shows the sum of all three Goss maps for equal
weights.

Fig. 8 shows the square torus representations for several
common rolling texture components for face-centered cubic
(f.c.c.), body-centered cubic (b.c.c.) and hexagonal close-
packed (h.c.p.) crystal structures, as indicated in the figure
caption. For cubic symmetry, both f.c.c. and b.c.c., the intensity
distributions show three different basic components: a nearly

Figure 8

Example square torus representations of common texture components
for the f.c.c., b.c.c. and h.c.p. crystal structures. F.c.c.: (a) (110)[112] (brass),
(b) (112)[111] (copper), (c) (123)[634] (S). B.c.c.: (d) (001)[110] (rotated
cube), () (112)[110] (inverse brass), (f) (111)[112]. H.c.p.: (g) (00.1)[10.0],
(h) (00.1)[11.0], (i) (11.3)[10.0].
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AD =20°% k = 16.6

AB =5°% K =262.8 A6 =10° k = 65.8

Figure 9

Square torus representation of the cubic (112)[111] copper texture
component as a function of the concentration parameter « of the Watson
distribution. Af is the corresponding angular spread of the distribution.

circular peak [colored red in Fig. 8(a)] or a circular peak [red
in Fig. 8(d)], a horizontally elongated peak (horizontal ellipse,
green) and a vertically elongated peak (vertical ellipse,
yellow). The texture components differ in the relative posi-
tioning of these three basic elements. In Fig. 8(d), the ellipses
overlap, giving rise to a cross-like appearance (blue).

The size of the intensity peaks increases nonlinearly with
the angular range A@ (or, equivalently, the concentration
parameter « of the Watson distribution used to generate the
samples). This is illustrated in Fig. 9, which shows the f.c.c.
(112)[111] (copper) texture component for Af = 5°, 10° and
20°; the corresponding concentration values « for the Watson
distribution are shown below the intensity maps.

4.3. Experimental texture representations

In this section we consider several experimental data sets
obtained using the electron backscatter diffraction (EBSD)
technique. The first data set consists of three separate EBSD
scans of a polycrystalline sample of the orthorhombic mineral
forsterite (Mg,SiOy, space group No. 62, Pbnm, also known as
olivine). The three data sets (courtesy of Dr K. Marquardt,
University of Oxford, UK) were acquired at a beam energy of
20 keV and have a combined total of 7 039 154 sampling points
covering an area of about 7 mm? with a step size of 1 pm. The
zone-plate and square torus representations of this orientation
data set are shown in Figs. 10(a) and 10(b), respectively. The
intensity distributions are very nearly uniform with a few
higher-intensity clusters (one is circled in the square torus
map), indicating that the texture of this sample is nearly
random. There are eight equivalent higher-intensity cluster
regions due to the order of the rotational point group (4) and
the equivalence of g and —q (2).

To quantify the slight non-uniformity of this orientation set,
a maximum likelihood estimation was performed of the mean
orientation quaternion p and concentration parameter « for
the Watson distribution on the three-sphere S, under appli-
cation of the rotational symmetry group 222 and the double-
cover property; the details of the fitting algorithm are
described by Chen et al. (2015). The fitted mean orientation is
given by the unit quaternion,

© = [0.60487215, 0.56496267, —0.38239564, 0.41075593],

corresponding to the Rodrigues vector

Figure 10

(a) Zone-plate and (b) square torus representations of the combined
orientations from three EBSD scans (7 039 154 scan points in total) of a
polycrystalline forsterite sample with random texture. The small white
dot in the upper right portion of the RFZ outline represents the
projection of the mean orientation quaternion p for a Watson distribu-
tion fit to the orientation set (see text). The circled area in panel ()
highlights a cluster of higher intensity. (Data sets courtesy K. Marquardt,
University of Oxford.)

R =1[0.93401998, —0.63219249, 0.67907894],

and square torus coordinates (X,Y) = (0.75129592,
2.3204532); this point is indicated by a small white dot in
Fig. 10(b). This corresponds to a rotation of 105.56° around
the [0.70946461, —0.48020196, 0.51581597] axis in the (RD,
TD, ND) sample reference frame. The Watson concentration
parameter is given by x = 2.1 (or 58.4°), indicating a very weak
and broad clustered texture. This is in agreement with a 7-
matrix analysis (Mardia & Jupp, 2009), which results in the
eigenvalues A; = [0.613515, 0.142532, 0.126213, 0.117740]; the
largest eigenvalue is only about four times larger than the
others, which indicates a weakly clustered distribution.

For the synthetic orientation sets from Section 4.2 (and also
in Fig. 9), the concentration parameters are one to two orders
of magnitude larger than for the forsterite data set and the
clustering around the mean orientation is clearly observed in
the square torus representation. For the cube texture of
Fig. 6(a), the eigenvalues of the T-matrix are A; = [0.983452,
0.005506, 0.005516, 0.005525]; the ratio of the first two
eigenvalues is 178.6, indicating a strongly clustered texture,
in agreement with the Watson distribution « value of 91.2.
These results indicate that simple visual observation of the
square torus representation can reveal even very small non-
uniformities in the orientation distribution function.

The second experimental example is based on a Ti-6Al-4V
rolled-plate textured sample containing both « (h.c.p.) and S
(b.c.c.) phases (Callahan et al., 2017b). An EBSD scan of a
2.25 mm? region with step size 0.5 um acquired at 20 keV
beam energy resulted in an orientation data set of 9 x 10°
sampling points. As reported by Callahan et al. (2017b), the
microstructure shows microtextured regions along the rolling
direction with similar grain orientations, with a strong
preference for [11.0] directions to be aligned along the sample
normal direction. Fig. 11 shows the square torus RFZ repre-
sentations for the « [panel (a)] and B [panel (d)] phases, as
well as the fully symmetrized versions of the orientation data
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Figure 11

Ti-« (top row) and Ti-g (bottom row), (a) and (d) square torus repre-
sentations using the respective fundamental zones, (b) and (e) symme-
trized with (¢, —q) double-cover equivalence and (c¢) and (f) RGB
representations.

sets [panels (b) and (e)]. Note the two red lines superimposed
on features of the maps; the lines are perpendicular to each
other, which suggests that there may be a preferred orienta-
tion relation between the two phases. This is indeed the case
and Callahan et al. (2017b) showed that the two phases have
the Burgers orientation relation between them. Figs. 11(c) and
11(f) show the RGB torus maps for the two phases.

4.4. Fiber textures

4.4.1. F.c.c. fibers. Consider the « fiber in an f.c.c. material.
Its orientations are located around the line (¢y, /4, 7/2) in
Euler space, with ¢; € [0,7/2]. The corresponding unit
quaternions are obtained by setting

T LT
c=cos—, §=sin—,

U:l((lerz), 8:1<¢1—E)v 8 8

2 2 2 2
and then forming the quaternion as ¢ = [ccoso, —scos§,

—ssin §, —csin o], resulting in
b4 Lo 4 T
q= cosgcos T, — smgsm T, s1n§cos T, — cosgsm 7),

with t = (2¢; + m)/4. Conversion to the square torus coordi-
nates (X, Y) using equation (4) results in

(X,Y) = [— arctan (tangtan 1:), — arctan (cot g tan ‘L’)]

The square torus coordinates for the Goss point (0, 45°, 90°)
are then (X, Y) = (—0.392699, —1.1781), and for the point
where the S fiber branches off (¢; = 35.26°) we have (X, Y) =
(—0.674817, —1.35956); these points are indicated on the
schematic diagram in Fig. 12(a).

For the B fiber, the S and C texture components are
(213)[364] and (112)[111], respectively, leading to the square
torus coordinates

(X, Y)s = (—0.602717, —1.55608)
and
(X, Y)e = (—0.654502, —1.70169).

Fig. 12(a) shows these points, along with curved line segments
corresponding to quaternion spherical linear interpolation
(SLERP) between pairwise end points B-S and S-C. Note that
the line (¢y, 7w/4, 7/2) in Euler space maps onto the sigmoidal
line from lower left to upper right shown in Fig. 12(a).
Superimposed on the line are the locations for which ¢, is a
multiple of m/2. Note that the range of ¢; is equivalent to
[0, 47], in agreement with the fact that the true periodicity of

/2

—1/2

T =
/2~ —
] e e e L (s -
(0, /4, 7/2) oo e
- —n2 _
\\\ n
PR TR ST S I (e TN ST SN S AN SN S AN SO SN S NN S W
/2 n -1 -m/2 0 /2 T

Figure 12

(b)

(a) A square torus representation of the line (¢q, 7/4, 7/2) in Euler space; the f.c.c. « fiber is highlighted in orange and the two segments of the g fiber in
red. (b) In inverted contrast, all cubic symmetry operators are applied, as well as the (g, —g) double-cover property, for the « and B fibers. See text for
additional explanation.

646 Marc De Graef - Applications of the Clifford torus to material textures J. Appl. Cryst. (2024). 57, 638-648



research papers

Euler space in the context of a quaternion mapping has all
three Euler angles in the range [0, 4] (Callahan et al., 2017b).

Application of the cubic symmetry elements and the (¢, —q)
double-cover property to the o and g fiber segments results in
the square torus map shown in inverted contrast in Fig. 12(b);
there are 48 equivalent locations for the fiber segments. Note
that in some cases the « fiber maps onto a single point instead
of a line segment.

4.4.2. B.c.c. fibers. Consider the «, y and € fibers in a b.c.c.
material. In Euler space, all orientations lie along the
following lines:

o fiber — (0, ®, 7/4), @ € [0, 7/2], (14)

y fiber — [gol,arccos(l/\/g), n/4], ¢, €[0,7/2], (15)
€ fiber — (7/2, ®,/4), @ €]0, /2] (16)

After conversion to the square torus coordinates, we find
that the « fiber is represented by the curve

) ) (O
(X,Y) = |atan2(—sin—, cos— |, atan2{ — cos —, sin —
2 2 2 2

between the points (X, Y) = (0, —m/2) for ® = 0 and (—7n/4,
—m/4) for ® = m/2.
For the € fiber we find

) o)
(X,Y) =|atan2 —coszsin—,sinzcos— ,
8 2 8 2

T (O] A
atan2| — cos —cos —, —sin—sin— | |.
8 2 8 2

This curve intersects the X = 0 axis at the point (0, —n/2) and
curves downwards towards the point (—37/8, —57/8) for & =
/2.
The y fiber sits in between the two curves and is represented
by
(X,Y)= [atanZ(—p, COS T_, p, COS r+),

atanZ(—,oJr sint,, p_sin ‘LL)],

where py = /(3 £ +/3)/6 and 7. = (7 % 4¢,)/8.

o

«a fiber

/2|

-2 —

P IR S SRR

¢ fiber

-2

e |
I I T N O S

O
(a) - -2 0 (b) -n -2 0 /2 k3

Figure 13

(a) A square torus representation of the «, y and € b.c.c. fiber textures in
the lower left quadrant of the square torus map. (b) The full angular
ranges of ¢; and @, as well as the (¢, —¢g) double-cover property, are
applied to the three fibers. See text for additional explanation.

The intersection points of the y fiber with the « and € fibers
have coordinates

1 1

[— —arcsecv 3, — <arcsec«/§ — n)]
2 2
= (—0.477658, —1.09314)

for the « fiber and

|: — arctan \/(3 + 2«/5) 2- \/§),

arctan \/(3 +2vV2) (2 +/3) — n]
= (—0.895934, —1.78201)

for the € fiber. All the relevant points for the «, y and € b.c.c.
fibers are shown in Fig. 13(a), which displays the lower left
quadrant of the square torus map. The full square torus map
for these b.c.c. fiber textures is shown in Fig. 13(b). In these
plots, the free angle, ¢; or @, is swept through the entire range
[0, 47] to cover both g and —g quaternions.

4.5. Experimental fiber texture example

As an example of a square torus representation of an
experimental fiber texture, we consider a strong y fiber in an
electric steel; the data set consists of 28 306 orientations. When
projected onto the (P, ¢,) plane, the resulting distribution is a
sharp nearly symmetric Gaussian with an FWHM of 2.1°
around the point (®, ¢,) = [arccos(1/+/3), w/4]. Fig. 14(a)
shows the RGB square torus map for this data set after
application of the (g, —g) double-cover property; the intensity
along the curves is nearly constant, in agreement with the
nearly uniform distribution of the ¢; angle in the interval
[0, 2]. After application of the cubic rotational symmetry
elements, the resulting RGB map is shown in Fig. 14(b).

5. Discussion and conclusions

In this paper, we have introduced a new 2D representation of
material textures in terms of three isometric projections from

(a) (b)

Figure 14

(a) An RGB square torus map representation of a strong y fiber in an
electrical steel [(g, —q) double-cover applied]. (b) All cubic rotational
symmetry operators are applied to the experimental data. There are
28 306 data points in this data set.
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the Clifford torus C(6, ¢; 1/+/2), a sub-manifold of the three-
sphere S°, onto square torus maps which are subsequently
arranged in the red, green and blue channels of a periodic
RGB image. Two of the maps are nonlinear projections
involving the components of the Rodrigues—Frank vector. The
third projection, which also involves Rodrigues—Frank vector
components, was shown to be equivalent to a linear projection
through Bunge Euler space along the @ direction onto the
(91, ) plane. Each 3D orientation, which has three degrees
of freedom, is projected onto three periodic square torus maps
and is represented in these maps by a narrow Gaussian peak;
the superposition of all these peaks generates an intensity map
that can optionally be modulated by a zone-plate function.

The zone-plate function representation is particularly useful
to determine visually whether or not a set of orientations
uniformly covers orientation space. For the orientation
sampling algorithms of Section 3, the analysis in terms of the
Riesz s energies provides some insight into the quality of the
samples, i.e. how close to optimal the orientation sample is. For
the Shoemake sampling, which has r; and r, values that are
closer to unity than any of the other sampling methods, the
value of r3, for s = 3, is nearly twice the optimal value. For
increasing values of s, the Riesz energies become increasingly
more sensitive to the local arrangements of sampling points,
with only the nearest neighbors contributing in the limit s —
oo. For the orientation sampling Os, the Riesz energies indi-
cate that, on a global level, the sampling is very close to
optimal, but at the local level there are some deviations from
optimal. Whether or not these deviations are important
depends on the application of the sampling. If the orientation
set is to be used as an initial sampling for dictionary indexing,
for instance (Singh & De Graef, 2016), then the local non-
optimality is unimportant, since the indexing will typically be
followed by an orientation refinement step where the orien-
tations are allowed to wander away from the initial orienta-
tions.

Different from more conventional 3D representations of
material textures, the RGB square torus map representation
opens a unique path to the use of neural networks to automate
the analysis of material textures, in particular to determine the
mixture of texture components that are present in the orien-
tation distribution. The use of ST maps in this context is the
topic of ongoing investigations.
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