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ARTICLE INFO ABSTRACT
Keywords: We investigate the coarsening dynamics of the three-phase eutectic Al-Ag,Al-Al,Cu at 723 K via in situ
Coarsening transmission X-ray nano-tomography. Unlike previous investigations that compared observations between
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Real-time imaging

X-ray nano-tomography
Crystallography

different samples annealed for different times, our three-dimensional measurement shows at nanoscale
resolution the microstructural changes occurring in the same field-of-view, enabling new insight on the
capillary-driven evolution of a ladder-like pattern. With the aid of a new reconstruction algorithm and machine
learning segmentation, we trace the interfaces of the eutectic and observe significant structural changes within
4 hr. of aging. Even though the average length-scales of the eutectic solids follow a temporal power law, the
microstructure is not self-similar. Instead, it evolves (in part) through the coalescence of neighboring Ag,Al
solids at the expense of the intervening Al,Cu. By combining our X-ray data with electron diffraction to identify
the common planes at the interphase boundaries, we show that coalescence leads to a decrease in lattice misfit,
and hence, interfacial energy. At longer times, the interphase boundaries with low misfit compete for surface

area, resulting in a ‘locking’ of the interfacial shape.

1. Introduction

Naturally occurring, multi-phase eutectic alloys have composite-like
properties [1,2], beneficial for many technological applications. This
has sparked renewed scientific interest in understanding how they nu-
cleate and grow [3-6]. However, we currently have limited knowledge
on how the increased number of solid phases in these multi-phase
alloys influences the coarsening process after eutectic solidification.
Many of these materials operate at elevated temperatures wherein
their microstructures and properties change over time, often to the
detriment of reliability [7-13]. Likewise, in additive manufacturing,
the transient thermal gradients in the heat-affected zone may lead to a
microstructural evolution via coarsening that may influence the load
transfer between phases [14-17]. Therefore, it is crucial to have a
thorough understanding of the coarsening process in these materials
to predict how they might evolve during their life-cycle.

In the absence of a chemical driving force for precipitation, solid-
state microstructural evolution is driven purely by a reduction of
interfacial free energy. Depending on the material system and char-
acteristic coarsening length, this process can cause changes in both

morphology and bicrystallography, resulting in different features at
different stages. When annealed below the eutectic temperature, eutec-
tic microstructures coarsen continuously in the solid-state via Ostwald
ripening, Rayleigh instabilities, and fault migration [18]. The eutectic
may also undergo discontinuous coarsening, in which the original eu-
tectic cells or grains are replaced by new ones with larger interphase
spacing [19].

Elementary mechanisms of coarsening in two-phase systems. The mech-
anism of continuous coarsening depends on the interfacial structure. If
the Wulff shape is isotropic, the interfaces are curved and the eutectic
coarsens via curvature reduction, as depicted in Fig. 1(a). In contrast,
some eutectic alloys have faceted rods or plates due to their anisotropic
solid-solid interfacial free energy [20,21]. Examples of such alloys
include Bi-In-Sn [22,23], Zn-Mg-Al [24], and Al-Ag-Cu [25,26]. Facets
on rods may form to reduce their interfacial surface energy by aligning
with a low energy crystallographic plane during annealing [9,27], see
Fig. 1(b). In such a scenario, we may also expect that the faceted
rods are resistant to Rayleigh instabilities since any perturbation would
require the creation of surfaces with higher interfacial energies. As
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Fig. 1. Four elementary mechanisms of solid-state coarsening, as depicted in the schematics. a Curvature reduction dissipates surface energy by removing regions of high curvature
(see arrows). b Interfacial energy anisotropy drives a particle or grain to align along low energy crystal orientations (oftentimes producing facets). ¢ Coalescence enables two
particles/grains to fuse into a single entity, thereby removing the high misfit boundaries in the channel between them. d Grain rotation reconfigures grains to a lower energy state
with their surrounding neighbors by aligning to lower misfit planes. The two phases are « and # throughout; the black color gives the initial state, while the red shows the final

state.

such, faceted phases tend to coarsen through 2D Ostwald ripening or
through fault migration [27]. It is also possible for faceted eutectic rods
to reduce their interfacial energy by coalescing along relatively high
energy planes (Fig. 1(c)) [28,29] or rotating to align with a low energy
orientation (Fig. 1(d)) [12,30].

Role of multiple solid phases on the coarsening dynamics. Beyond
the interfacial structure, we must also account for the effect of other
dispersed solid phases in a multi-phase system. For example, consider a
material consisting of  and y phase ‘particles’ embedded in an a phase
matrix. The growth of each particle depends on the solute sources and
sinks. Holmes [31,32] describes three possible scenarios for particle
interaction based on their so-called cross coupling coefficients, I}, ,,
defined as
o D;Ac]" Ac"? + D;Ac]" AT

P D;(Ac[™") + Dy(Ac]™")?
where D; and Ac/"" are the diffusivities and equilibrium concentra-
tion differences of component i, respectively, in which the subscript
indicates the solute, m is the matrix phase, and n and p are the
dispersed solid precipitates. If I, , — 0, the particles experience a weak
coupling. This means that the # and y produce small or non-existent
solute depletion zones, leading to a spatial correlation of f and y
particles. When I, , > 1, the particles display a strong positive coupling.
In this case, g particles have greater interaction with neighboring y
particles than with other g particles. This leads to a highly segregated
microstructure, wherein large regions of f are broken up by veins of
y. Finally, strong negative coupling occurs when I, < 0. In this
scenario, f and y particles act as solute sources, resulting in growing f
particles neighboring growing y particles, and large regions devoid of
precipitates appear within the material as particles of both phases are
consumed through bulk diffusion.

Allen et al. conducted a study on the time-evolution of a Sn-Ag—-Cu
eutectic alloy that consisted of three phases: Sn (matrix), CugSns (rods),
and Ag,;Sn (plates) [7,8]. The overall eutectic coarsened according to
an 17 « t relationship, which they attributed to bulk Cu diffusion. That
said, the two intermetallic phases, CugSn; and Ag;Sn, coarsened at
different rates and independently from one another (i.e., r,,— 0, such
that the rate-controlling mechanism is the same in ternary and binary
systems: Ostwald ripening for CugSns and spheroidization for Ag;Sn,
mediated by interface diffusion of Ag along the Ag;Sn/Sn interphase
boundary. This study provided support for the above model, which

@

predicted weak coupling between CugSns; and Ag;Sn phases due to the
low mutual solubilities.

The above results suggest that, in order to predict how the mi-
crostructure in multi-phase and multi-component eutectic alloys will
coarsen, we must follow the evolution of three or more solid—solid
interfaces and map an even more complex diffusion field in space
and time. Previous studies on multi-component systems have mostly
focused on the coarsening of dispersed particles [7,8,31-34], rather
than the evolution of eutectic alloys (particularly in symmetrical phase
diagrams), with a few exceptions [5,35]. Importantly, one cannot nec-
essarily assume infinite dilution for eutectics, since the solid phases are
separated by a characteristic spacing that is on the order of a few mi-
crometers. Due to the increasing demand for multi-phase eutectics [22,
36,371, and recent improvements in real-time imaging capabilities [38—
41], the time is ripe to understand the dynamics of coarsening in such
morphologically and topologically complex systems. For this purpose,
the Al-Ag,Al-Al,Cu eutectic is ideal: it has well-established thermo-
physical properties [25,26,42-49], and a relatively low eutectic tem-
perature (7,) of 773.15 K; in addition, there has been preliminary work
on post-solidification microstructural evolution [35,50]. Lastly, the
Al-Ag,Al-Al,Cu eutectic forms multiple unique eutectic patterns [43,
45,51] depending on the alloy composition and growth velocity in
directional solidification. This provides different initial conditions that
may lead to different end-products upon coarsening.

Despite the extensive research on the Al-Ag,Al-Al,Cu three-phase
eutectic, many questions remain unanswered about its solid-state evo-
lution. Specifically, what mechanism(s) drive solid-state coarsening in
the system, and do multiple rate-limiting mechanisms coexist, as seen
in the aforementioned Sn-Ag-Cu eutectic alloy [7,8]? Additionally, how
does the interfacial anisotropy influence the solid-state evolution? For
example, do established low energy interphase boundaries compete
with curvature reduction to slow or stop coarsening?

With the aim of answering these questions, we used synchrotron-
based X-ray nano-tomography to obtain a three-dimensional (3D) view
of the microstructural evolution and EBSD to track crystallographic
evolution in Al-Ag,Al-Al,Cu. The former imaging technique allows
all three solid phases to be distinguished readily [26,52,53], owing
to the differences in attenuation contrast, and at high resolution (45
nm/pixel). Conventional micro-tomography is not suitable since the
lamellar spacing is on the order of a few micrometers in directional
solidification (DS), i.e., approaching the pixel size (0.69 pm) [54].
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Fig. 2. Experimental setup for synchrotron TXM, at elevated temperatures at APS beam-line 32-ID. At left is a photograph of furnace used for in situ viewing. Red arrows indicate
the X-ray port and direction of the X-ray beam. The sample is placed inside this furnace and rotated to capture images from different views, see schematics at right.

Instead, our multimodel nano-imaging study focuses on characterizing
the morphological and crystallographic evolution in a pseudo-ladder
three-phase eutectic pattern [44,45], and the correlation of the two.
Our efforts are made possible thanks to new hardware developments
(a resistive heater at the synchrotron beam-line, enabling in situ ex-
perimentation) and new opportunities for multimodal characterization
(the integration of X-ray absorption and electron diffraction data [54]).
These advances enable us to obtained detailed insight on the coarsening
mechanism, interfacial anisotropy, and time-dependent bicrystal lattice
mismatch.

2. Methods
2.1. In situ synchrotron X-ray nano-tomography

An alloy of composition Al-42.2 wt%Ag-17.6 wt%Cu (correspond-
ing to the three-phase eutectic point [47]) was produced using high
purity elements (99.999% Al, 99.999% Ag, and 99.999% Cu), vacuum
arc remelted at the Materials Preparation Center at Ames Laboratory
(Ames, IA, USA). A cylindrical rod 1 mm in diameter and 10 mm
in length was cut from the ingot using electron discharge machin-
ing (EDM). The rod was then placed into an alumina crucible and
solidified within a vertical three-zone Bridgman directional furnace
(MTI Corporation EQ-SKJ-BG). Since the sample diameter was small,
radial convection is negligible in DS [55]. In practice, the sample was
directionally solidified via the ‘gradient freeze’ method by imposing a
cooling rate, %, of ~0.9 K/min on each zone under a fixed thermal
gradient, G, of ~1.5 K/mm anti-parallel to gravity. Under these condi-
tions, the sample was expected to grow at a velocity, V, of ~10 pm/s.
Following DS, we turned off the furnaces and removed the sample,
allowing it to cool in air to room temperature.

Following DS, we hand polished and radially sectioned the sam-
ple, hereafter referred to as ‘as-cast’, approximately halfway along
its length. With scanning electron microscopy (SEM), we identified
a pseudo-ladder three-phase eutectic morphology [44,45]. Using Xe
plasma focused ion beam (FIB) milling, we milled a ~45 pm diameter
pillar of this material for in situ synchrotron X-ray nano-tomography
with the Transmission X-ray Microscope (TXM) instrument. The ex-
periments were performed at beamline 32-ID at the Advanced Photon
Source of Argonne National Laboratory (Lemont, IL, USA) [56,57].
We secured the sample onto an alumina rod with boron nitride spray
and placed it on the kinematic mount (see Fig. 2). Subsequently, we
heated our sample to a homologous temperature of 0.97, (with respect
to the three-phase eutectic temperature of 773.15 K) and annealed it
isothermally for 4 hr. To capture the transient eutectic microstructure
during coarsening, we took six intermittent TXM scans of the sample

at 0.5, 0.75, 1, 2, 3, and 4 hr. time-steps at temperature, i.e., without
quenching the sample, in addition to an initial or O hr. scan at room
temperature. For the TXM measurements we used a 50 nm outer-
zone width Fresnel Zone plate (FZP) coupled with a mono-capillary
condenser. The detector had 2448 x 2048 pixels, with 45 nm pixel size
after magnification. 1004 tomographic projections were acquired while
rotating the samples over 180 degrees. X-ray exposure time per each
projection was 0.5 s, resulting in 8.4 min. time per scan. We attempted
a continuous or uninterrupted scan between the 0 and 30 min. scans.
To prevent blurring artifacts in the reconstruction domain associated
with fast-moving features [54], we reduced the exposure time to 0.1 s.
Unfortunately, however, this resulted in a poor spatial resolution such
that we were not able to distinguish the solid—solid interphase bound-
aries. For this reason, we do not analyze this particular dataset further.
Throughout, we used a monochromatic beam of 8.4 keV to achieve
reasonable contrast between the three phases.

That said, the high-temperature environment caused significant
vibrations that were detrimental to the image resolution. This led to
thermal radiation-induced deformations in the X-ray projection images.
As a result, when we employed a standard algorithm to reconstruct
our tomographic data, the data irregularities propagated into the re-
constructed domain, making it difficult to separate phases and trace
interfaces. To address this challenge, we used a new technique for
compensating sample deformation artifacts and reducing the noise
level [58]. In the following section, we will provide a brief description
of this technique.

2.2. Optimized tomographic reconstruction

With a conventional method such as Gridrec implemented in the
Tomopy package [59], a 3D object x can be reconstructed from its
projection data d, according to

x=R*Wd, 2)

where R* is the adjoint Radon transform operator and W is a filter,
see [60] for details. The method has the property of amplifying noise
in images due to the filter structure. Therefore, reconstruction in many
cases is performed by solving the following optimization problem,

min ||[Rx — d|? 3)
X

using iterative schemes and without the filtering operation. Commonly
used iterative schemes for solving Eq. (3) include the conjugate gradi-
ents method and simultaneous algebraic reconstruction technique [61].
In order to compensate for sample nano-drifts and decrease the noise
level, we followed the method in Ref. [58] and modified Eq. (3)
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Fig. 3. Reconstruction slices provide snapshots of the microstructural evolution, at a 0, b 1, ¢ 2, d 3, and e 4 hr. of annealing. A magnified view of pseudo-ladder pattern in b is
shown in yellow boxed region. This particular, representative slice (see coordinate system in a) is located ~ 6.5 pm below the top of the micropillar sample. In a, the dark gray
color represents Al, the light gray Al,Cu, and white Ag,Al. In b-e, the light gray color is instead Al saturated with Ag, the dark gray is Al,Cu, and white is again Ag,Al. For ease
of viewing, Ag,Al and Al,Cu are outlined in red and blue, respectively, on the left-hand side.

by adding the total variation (TV) regularization term ||Vx||; and
local deformation estimation operator D, that map functions to new
coordinates according to local shifts s,

min | D,Rx = dll + 41| Vx|, Q)

where the parameter A corresponds to a trade-off between the data
fidelity term and the regularization term. Higher values of 4 lead to
more intense noise suppression in reconstructions. Correct estimation
of variable s in Eq. (4) leads to compensating sample drifts that, in
turn, results in better quality reconstruction. The proposed optimization
problem is solved in [58] by using the alternating direction method of
multipliers [62]. A GPU-accelerated implementation of the method is
publicly available in the TomoAlign package.!

A comparison between Gridrec and TomoAlign reconstructed slices
is shown in Fig. S1. The final reconstructions are shown in Figs. 3(a-d),
which display the same intermediate slice of the 3D reconstruction as
a function of time (in hours).

2.3. Segmentation of eutectic phases

We faced another complication due to our decision to capture TXM
scans at elevated temperature, which was the increased solubility of
Ag in a-Al [26,35,44-46,48,50,63,64]. At 723 K, Ag can dissolve up to
~12wt% in a-Al before Ag,Al starts to form (at equilibrium), compared
to the <1wt%Ag solubility at room temperature (RT). Consequently,
the Al phase, which is the least attenuating phase at RT, is now more
attenuating than the Al,Cu phase in subsequent in situ reconstructions
at the anneal temperature. In addition, the Ag,Al rods shrink in size and
some dissolve completely into the Al matrix. Thus it is challenging to

1 https://github.com/nikitinvv/tomoalign

apply a generic segmentation routine to partition the phases and track
their evolution from the RT scan to those done at temperature.

To overcome this issue, we used a machine-learning based program,
ZEN Intellesis developed by Carl Zeiss AG [65], which utilizes a neural
network to classify each pixel in a designated image to one of three
solid phases. We hand-segmented 20 randomly selected images, which
were then used to train the model. Note that we needed two separate
training sets to segment the as cast data (at RT) and those captured at
elevated temperature. To verify our segmentations, we computed the
average recall, precision, and F1-score [66,67] for each phase over all
seven time steps. Each phase had an average score greater than 0.9 of
1 for all metrics, where 1 corresponds to a perfect segmentation. This
confirms the high degree of reliability of the segmentation procedure.
Refer to Appendix A for more details.

We also employed a watershed algorithm to improve the detection
of the solid—solid interfaces, specifically those of the Al,Cu phase.
Then, the digitized interfaces of the eutectic solids were meshed (i.e.,
represented by a series of triangles and associated vertices). To remove
any spurious staircasing artifacts, we smoothed the mesh by mean
curvature flow [68]. We present our final 3D renderings of the evolving
sample in Fig. 4 where the Al, Ag,Al, and Al,Cu phases are consistently
depicted in green, red, and blue, respectively. Similar to Figs. 3, 4
shows the time-evolution of the microstructure over 4 hr.

2.4. Electron backscatter diffraction

Our next objective was to evaluate the crystal orientations of the
eutectic phases as well as the orientation relationships between them.
However, the as-cast microstructure of our TXM sample was no longer
available. So, we obtained a fresh sample with the same composition
and geometry as the original and recreated the growth conditions
in DS. As expected, we found a similar pseudo-ladder three-phase
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Fig. 4. A cubic subvolume of Al-Ag,Al-Al,Cu three-phase eutectic, annealed at 90% T, (723 K). Data shown for a 0, b 1, ¢ 2, d 3, and e 4 hr. Al, Ag,Al, and Al,Cu phases are
designated in the colors green, red, and blue, respectively. The gray and black encircled regions highlight regions-of-interest within the evolving microstructure (see text). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

eutectic structure, which we then characterized via electron backscatter
diffraction (EBSD). For this purpose, we polished the sample with 1200
grit paper and then reduced the surface roughness further with FIB.
We captured Kikuchi patterns of a 23.5x 15.0 pm? transversal region of
as-solidified microstructure, nearly parallel to the thermal gradient G,
using a 0.04 pm step size in a square grid.

Due to the unique mechanical properties of each phase and the
< 5 pm lamellar spacing, we were not able to index the blurry Kikuchi
patterns via traditional algorithms. Instead, we turned to dictionary
indexing, which has demonstrated robustness against noise [69]. In
short, the backscatter electron yield is simulated for a hypothetical
single crystal of a specific phase viewed in a geometrical model of
our sample-detector configuration. The simulated and experimental
patterns are then transformed into Rodrigues-Frank vectors in the
fundamental zone. Finally, a dot product of the two vectors is taken and
a similarity metric is computed. The simulated pattern most similar to
the actual is identified as the crystal orientation [69]. This automated
procedure allowed us to index our EBSD data. We used MTEX open
source software [70] in the Matlab [71] computing environment to
process the indexed data and visualize the crystallographic information
for each phase (vide infra).

2.5. Combining TXM and EBSD data

To determine the crystallographic orientations of the solid—solid
interfaces during the coarsening process, we must align the TXM and
EBSD frames-of-reference, as a first step. Since we conducted TXM and
EBSD scans on two different samples, it is nontrivial to register features
in one dataset with those in the other. A second confounding issue is
that the Ag,Al rods are tilted 30° with respect to the thermal gradient
(taken as the specimen z-axis); meanwhile, it is impossible to identify

the angle and direction of any similar tilt within the 2D transversal
section imaged by EBSD.

To circumvent these issues, we must make two simplifying assump-
tions to align the data sets: Firstly, we assume that G in both samples is
identical and parallel to the specimen z-axis, which is itself antiparallel
to gravity. This assumption is based on the fact that both samples
were solidified under identical conditions and held in-place in alumina
crucibles, which prevented any macroscopic specimen tilt during DS.
Secondly, we assume that the Al,Cu growth direction is [001], which
is also parallel to G and therefore z. This assumption is supported by
several past studies [25,26,44,46,49,72], which altogether demonstrate
that within the Al-Ag,Al-Al,Cu eutectic, Al,Cu grows in the [001]
direction, regardless of its incipient growth morphology. With these
assumptions in hand, we reoriented our tomography specimen into the
EBSD frame-of-reference, as shown visually in Fig. 5(a-b).

To transform the interfacial orientations from the EBSD specimen
to the crystallographic frame-of-reference, we follow the procedure
outlined in Refs. [73,74]. We begin by computing local orientations
(normal vectors) along patches of solid-solid interface, in the specimen
frame. By convention, the normal vectors with respect to a given solid
phase point outward, i.e., towards its neighbors. The interface unit
normal, A;, of mesh triangle i is given as

= ©)
lle; 1 X €l
where ¢;, and ¢;, are the edge vectors or triangle i, measured in the
specimen s frame.

To convert the normals in Eq. (5) from specimen coordinates, Cg,
into crystallographic coordinates, C., we must specify a rotation ma-
trix, g, such that C. = gCg [75]. Each eutectic phase requires a single,
unique g matrix (retrieved from EBSD), assuming the phases are single
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Fig. 5. Reorientation of reconstructed TXM volume into the crystallographic frame and computation of the Ag,Al-Al and Ag,Al-Al,Cu bilateral common planes. In a, the original
specimen frame-of-reference is shown with the eutectic phase data, as depicted in Fig. 4(b), where again Al, Ag,Al, and Al,Cu are in green, red, and blue, respectively. In b,
the phase data is rotated to align with the EBSD map presented in Fig. 9. In ¢, the crystallographic orientations of Ag,Al rods are displayed (referenced to the Ag,Al frame, see
standard triangle). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

crystals (proved later). Furthermore, for each crystal structure, such
as face-centered cubic, hexagonal, and tetragonal for Al, Ag,Al, and
Al,Cu, respectively, there is a set of point group symmetry operators,
T;. These operators represent the 48, 24, and 16 symmetry elements
for 432, 6/mmm, and 4/mmm, respectively. Since Ag,Al is hexagonal,
we converted its indices to an orthonormal coordinate system, fol-
lowing Ref. [76]. Ultimately, we obtain all crystallographically-related
solutions of the interfacial orientation, #; ., as

ﬁi,c = Tjgﬁi,s (6)

This transformation is shown visually for the Ag,Al phase in Fig. 5(c).

After obtaining #; . for all mesh triangles and all phases, we dis-
play the results on a stereographic projection (inverse pole figure),
hereby referred to as a crystallographic interface normal distribution
(CIND) [6,73]. For interfaces between phases a and g, the CIND gives
the probability of finding a given crystallographic orientation #; . (mea-
sured with respect to either « or #). Due to crystal symmetry, we restrict
the CIND to the fundamental zone. By plotting CINDs as a function
of time (holding g fixed for each phase throughout the anneal), we
can track the development of preferred interfacial orientations during
coarsening.

3. Results and discussion
3.1. Interaction between Ag, Al and Al,Cu

As mentioned in the introduction, the coarsening dynamics in multi-
phase, multi-component systems differs from their two-phase, binary
counterpart. This is because the coarsening behavior of one phase can
impact the others, depending on the solubilities and diffusivities ac-
cording to Eq. (1) [31]. Thus, to determine the cross-phase interaction
between Ag,Al and Al,Cu, we calculate I'pg aja,cu @nd Iap,cuag,al
using the thermophysical parameters given in Table 1. We obtain
Tag,a1aLcy = —0.014(1) and Ty, cyag,a1 = —0.018(1). Since these values
are well below unity, we can suppose that the two phases will coarsen
independently of each other and can examine the evolution of each
separately, for sake of simplicity.

Indeed, this analysis appeals to our need to organize complex infor-
mation into smaller units. Yet the theory assumes that the two phases
are embedded randomly in a matrix, and interact only through con-
centration fields in that matrix [31,32]. This assumption is reasonable
if the two phases occupy minor volume fractions. Otherwise, we must
consider the role of the initial microstructure, namely the spatial cor-
relations [77] and topological arrangements [43,44] of phases. Below,
we show that this effect cannot be fully neglected.

Table 1
Thermophysical parameters. We estimate the diffusivity D, of component i in the Al
matrix at T = 723 K using an Arrhenius relationship, D; = D, exp (-Q,/ (RT)).

Phase n Ag,Al Al,Cu Reference
Acy i (at%%) 0.039(7) -0.55(1) TCALS [78]
AcEA (at%) -0.31(1) -0.013(1) TCALS [78]
Component i Ag Cu Reference
D, (m*/s) 118X 1075 647 x 107 [79]

0; (kJ/mol) 116 + 0.594 135 + 1.13 [791

3.2. Evolution of Ag,Al morphology

Initial condition. In Fig. 4, we examine the reconstructed volumes
and focus on the Ag,Al phase (shown in red). This phase is comprised
of long fibers tilted at 30° with respect to the z-axis (parallel to G).
In the as-cast state at RT, the eutectic pattern can be described as
single rods [3,44,45]. The two intermetallic phases (Ag,Al and Al,Cu)
alternate back-and-forth within narrow channels in the Al matrix. Yet
unlike a regular ladder structure [43,46,72], in this case, Al,Cu par-
tially or completely encases several Ag,Al rods. As such, Al,Cu forms
an interconnected, bicontinuous structure rather than discrete rods in
DS.

Time evolution. In Fig. 4(b), we observe the dissolution of Ag,Al
rods into the Al matrix, as we bring the sample from RT to 723 K.
Consequently, the entire eutectic pattern undergoes a realignment of
Ag,Al-Al,Cu chains, as small rods of Ag,Al disappear. The Al,Cu phase
does not undergo a similar change in volume fraction, resulting in
a complete encasement of the newly shrunken Ag,Al rods by Al,Cu.
Dissolution of Ag,Al is rapid and has long-lasting effects on the eutectic
microstructure. Even so, after the 1-h mark, the newly established
volume fractions remain relatively stable for the rest of the anneal.

As coarsening progresses, smaller Ag,Al rods gradually disappear
while adjacent rods grow in size. One example can be seen in the
gray circled region of Fig. 4. Here, two of the initial three Ag,Al rods
disappear over time-steps (a-e), while the third rod is growing at its
neighbors’ expense. Meanwhile, in the black circled region, we see
three separate rods in (a) that coalesce in (b) to form an irregularly
shaped rod. During (c-e), we see the elongated structure undergo
curvature reduction and become much less peninsular. By virtue of the
3D data, we do not identify any faults along the Ag,Al rods, which are
characterized by pairs of terminations and branches. Moreover, we see
no evidence of discontinuous coarsening [19].

Kinetics of rod growth. To determine the operative coarsening mech-
anism, we used the PolyProc function package [80] to assign order
parameters to all discrete rods in the reconstructed volume, and track
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the evolution of each rod across multiple time steps. We computed
the equivalent radius r for every identified rod over six time steps ¢
at 723 K; of course, some rods were consumed within the 4-h experi-
ment. For the coarsening of fibers with a cylindrical geometry (i.e., 2D
Ostwald ripening), it can be shown [19,81] that

3 3 _
r—=r, =kt

)

where k is the rate constant for coarsening and r, is the radius at the
onset of steady-state ripening. Assuming the relevance of Eq. (7), we
plot in Fig. 6 the radius cubed, 3, versus time, t, for each rod. We color
the corresponding {r,t} datasets by k. The average coarsening rate for
all the rods, (k), was found to be 1.27 +0.0756x 10~% pm?/s. This rate
constant is notably lower than that reported by Ref. [82] for Ag,Al
precipitates in a binary Al-10 wt% Ag alloy at 473 K, k = 8 x 107
um?3 /s, which would suggest a non-negligible influence of Al,Cu on the
coarsening dynamics of Ag,Al. A closer inspection of the data reveals
that many rods have a negative r* value at later time-steps since they

disappear before the final time-step. In addition, rods with negative
values are shrinking in time. In contrast, other rods appear to have little
to no change in r during coarsening, while eleven Ag,Al rods display a
dramatic increase in size with k > 1 x 1075 pm?/s.

As a robustness check, we estimate from our data the equilibrium
volume fraction of Ag,Al, f,, noting that the instantaneous volume
fraction f should decay slightly with time ¢ [83]. Thus, we plot f
against 1~1/3, see Fig. 7(a). By extrapolating the data to 1 — oo, we
obtain f, = 0.159 + 0.0037. Notably, this value is very close to f, = 0.16
reported by Ref. [43] for an alloy of equivalent composition.

Kinetics of rod evanescence. As a system undergoes 2D Ostwald
ripening, the number of rods or fibers per unit area, N 4, decreases with
time, 7, as

fE

N A=fl
~ ﬂﬂk2/3

-2/3 _
(uympPAc,k

®)

Ny

n)?

where § is o [ is the capillary length, (u) is % in Lifshitz-Slyozov-

Wagner theory [84,85] and 4c, is the equilibrium solubility of the
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Fig. 9. EBSD phase map of as-cast Al-Ag,Al-Al,Cu three-phase eutectic, solidified at G ~ 1.5 K/mm and % ~ 0.9 K/min. Al, Ag,Al, and Al,Cu phases are depicted in green, red, and
blue, respectively. Inverse pole figure for each phase shown at right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)

dispersed phase. With Eq. (8) in mind, we plot N >3 vs. r~1/3, see
Fig. 7(b). The y-intercept gives #, which we find to be 351 + 15.9
s723um=2, Using f, = 0.16 from Ref. [43], (k) from Fig. 6, and
calculating g using the list of r at t+ = 4 h, we directly compute W—fm
as 359 + 14.3 s72/3 ym~2. The extrapolated and computed values agree
within 1%, and it is this self-consistency between the parameters in Egs.
(7)-(8) that indicates the Ag,Al phase evolves via 2D Ostwald ripening.
At first glance, the conformation of our data to the scaling relations
may appear somewhat surprising. This is because power law scaling
implies the presence of a self-similar microstructure [86]. Instead, we
observe that several Ag,Al rods changed shape and developed faceted
features with long, flat interphase boundaries; we also observe several
Ag,Al rods coalesce with neighboring rods, as mentioned previously.
Nevertheless, the scaling relations are robustly observed in many other
systems without a self-similar morphology, for example, at high volume
fractions in a binary system (where coalescence is inevitable) [87].
Rod coalescence. To understand the effect of coalescence on the
interfacial morphology, we collected the area-to-circumference ratios in
2D sections for all Ag,Al rods at the 1 hr. mark. See Fig. 8(a). The black
line indicates the ‘ideal’ relationship between area and circumference
if the domains would be circular in cross-section. Clearly, the largest
domains display the lowest area-to-circumference ratio, deviating from

the ideal (see red trend-line) and hence corresponding to coalescence
events. Following Ref. [29], in Fig. 8(b) we scaled the axes by the mean
area and mean circumference. From this data it can be seen that the
black and red lines intersect around the mean values, indicating that
the domains with radii larger than ~ 1x the equivalent mean radius
are most likely to coalesce.

3.3. Evolution of Al, Cu morphology

Graham and Kraft [88] reported that the lamellar eutectic Al-
Al,Cu evolves through fault migration. According to Weatherly [89],
these fault lines correspond to subgrain boundaries. However, it is
uncertain if fault migration is necessarily responsible for coarsening of
Al,Cu within a three-phase eutectic microstructure. As a first step to
understanding the morphological evolution of Al,Cu, we examine the
crystallography of the system. Fig. 9 shows a phase map of the three-
phase eutectic with corresponding inverse pole figures (IPF) for each
phase. We observe that data for Al,Cu are densely packed into three
regions, with the cluster of data-points nearest to {001} accounting for
the majority of orientations. The low orientation spread (within 2°)
indicates that Al,Cu has a low incidence of subgrain boundaries, and
hence a low fault density, i.e., it is a single crystal.
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Fig. 10. Coarsening evolution of all Ag,Al-Al,Cu and Ag,Al-Al interphase boundaries, shown over three time steps: 0, 2, and 4 hours. The top row displays Ag,Al rods colored
according to the interphase boundary type, where green is Ag,Al-Al and blue is Ag,Al-Al,Cu. The middle row shows interphase boundaries for Ag,Al-Al (left) and Ag,Al-Al,Cu
(right). Each interfacial patch is illuminated according to its crystallographic orientation within the standard triangle at left. The bottom row gives corresponding CIND plots in
the Ag,Al frame. All plots have been scaled to the same color-bar limits to facilitate comparison between them. Black squares identify the habit plane orientations reported in
Ref. [47], namely (OOOT)Agz A and (]TOO)AgZ a1~ (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In the absence of faults, it remains to be determined how Al,Cu
coarsens. Unlike Ag,Al, identifying the underlying mechanism for
Al,Cu is somewhat challenging since it does not show an equiaxed
shape. In Fig. 4, it can be seen that Al,Cu is highly interconnected and
forms a pseudo-ladder structure. For this reason, we replace r in Eq. (7)
with the inverse surface area per unit volume ' as an appropriate
length-scale [90,91], see Fig. S2. Since S;! « ¢!/ asymptotically, Al,Cu
coarsens via 3D Ostwald ripening.

3.4. Evolution of interfacial bicrystallography

The lack of self-similarity from the above analysis (particularly for
Ag,Al) raises important questions about the changes in interfacial crys-
tallography over time and how they relate to morphological changes.
Given the preferential crystal orientations for Al, Ag,Al, and Al,Cu
(cf. Fig. 9), we can determine not only the orientation relationships of
the three phases, but also the common planes (CPs) of their interphase
boundaries (so-called bilateral CPs).

Orientation relationships. From the EBSD data of the as-cast mi-
crostructure, we determine the epitaxial relations: we identify the
common directions as [101], || [2110] ag,Al Il [001]51 ¢y, and the com-
mon planes as (TST)AI I (OITO)Agz Al I (110)acu- By transforming the
TXM data to the crystallographic frame (see Section 2.5), we find the
bilateral CP between the two intermetallics (Fig. S3a-c) in the RT data
as (0001)ag a1 |l (TlO)AlZCu. Similar ORs for this three-phase eutectic
have been reported elsewhere [47,49,72]. Additionally, EBSD data was
collected from another region of the sample, coarsened for 4 hr. The
OR does not change with time (Fig. S3d-f), indicating there is no grain
rotation.

Interfaces of Ag;AL We calculated the crystallographic normals (7; .
in Eq. (6)) along all solid-solid interfaces over the course of the anneal,
beginning with those bounding the Ag,Al phase. Fig. 10 illustrates the
time-evolution of the bilateral CPs for the ensemble of Ag,Al rods at
three representative time steps. In the top row, we distinguish between
Ag,Al-Al and Ag,Al-Al,Cu boundaries in green and blue, respectively.
The middle row displays the same solid-solid interfaces such that each
patch of interface is colored according to its local orientation, see the

standard triangle at left. In the bottom row, we provide the correspond-
ing CIND for each interphase boundary. The color-bar limits are fixed
throughout to allow for comparison. Similar to past reports by Ref. [47]
and others (black points), there is a relatively high probability of
finding Ag,Al-Al and Ag,Al-Al,Cu aligned to the basal plane, prismatic
plane, or both in its as-cast state. However, upon annealing, the rods
appear to evolve into less frequently reported interfacial orientations
(e.g., Ag,Al-Al,Cu approaches {2203} after 4 h). This suggests that the
reported bilateral CPs of {0001} and {1100} may not necessarily be the
lowest energy interphase orientations.

To disaggregate the above statistics, we focus on a small subset of
Ag,Al rods and tracked their development over 4 h, see Fig. 11. The
top row shows a classification of interphase boundaries, the middle row
the crystallographic orientation of each boundary referenced to Ag,Al,
and the bottom row the corresponding CINDs normalized to the same
range. We notice in the top row that the Ag,Al rods coalesced over
time. At the 2 hr. mark, the center and right rods completely fused
into a single misshapen rod. Additionally, we observe the beginning
of a similar coalescence event involving the center and leftmost rod.
Note that the Ag,Al rods were separated by a narrow ~250 nm thick
region of Al,Cu. Thus the coalescence of Ag,Al could only take place
because of the elimination of the Al,Cu phase, i.e., the consolidation of
one phase is the direct consequence of the evolution of the other.

According to the bottom row of Fig. 11, the bilateral CPs of Ag,Al
align with {0001} and {1100} in the as-solidified structure, consistent
with past reports [47]. After the first hour, these planes continue
to dominate the CIND. However, after 2 hr. (when coalescence be-
gins), the distribution of interfacial orientations is markedly different:
the most probable orientation of the Ag,Al-Al,Cu boundary shifts to
{0001}, while the Ag,Al-Al boundary moves to {2203}. This shift
occurs in less than 2 hr. before the interfaces appear to ‘lock’ into the
faceted, convex structure seen at the end-state. On closer inspection, we
notice that the rods coalesce along {1100} boundary with Al,Cu, which
explains why this orientation becomes less probable in comparison to
{0001}. We can also compare the {5203} plane against that of other
studies. For example, {5203} differs by 10.7° from the {7101} plane
reported by Friess et al. [49]. Therefore, it is not unreasonable that
Ag,Al displays these interfaces before locking in place. In the case of
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Fig. 11. Coarsening evolution of three adjacent Ag,Al rods which coalesce into a single domain. Ag,Al-Al,Cu and Ag,Al-Al interphase boundaries are shown over five time steps: 0, 1,
2, 3, and 4 hr. The top row shows the isolated Ag,Al rods colored according to the interphase boundary type, where green is Ag,Al-Al and blue is Ag,Al-Al,Cu. The middle row
displays the interphase boundaries for Ag,Al-Al (left) and Ag,Al-Al,Cu (right), where interfacial patches are illuminated according to their crystallographic orientation within the
standard triangle at left. The bottom row displays corresponding CIND plots in the Ag,Al frame. All plots have been scaled to the same color-bar limits to facilitate comparison
between them. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the Ag,Al-Al boundary, we observe that the peak in the CIND value has
shifted by 35.4°, but we have no information about the kinetics that led
to this transformation, only the final product.

To quantify the above behavior, we calculate the area fractions
that belong to each interphase boundary as a function of time. Fig.
S4(a) illustrates the evolution of the Ag,Al-Al boundary and indicates a
53% reduction in {0001} planes and a 49% increase in {2203} planes.
The rate of change of the area fractions drops quickly after 2 hr. of
coarsening. In Fig. S4(b), we observe the transformation of the Ag,Al-
Al,Cu boundary, where we again see rapidly changing area fractions
before stagnating after the 2 hr. mark.

Interfaces of Al and Al,Cu. Figs. S5-S6 illustrate the changes in
morphology and interfacial orientation of Al,Cu and Al phases in the
same, bulk volume as in Fig. 10. We also give a similar set of plots
for the smaller field-of-view as in Fig. 11, see Figs. S7-S8. According to
the CINDs therein, the Al,Cu-Ag,Al interface has a slight preference
for {110} (referenced to the Al,Cu crystal) in the as-cast state and
evolves to {130} during coarsening. In contrast, the Al-Ag,Al interphase
boundaries do not show a clear progression (when referenced to the
Al crystal), starting near {122} and then shifting towards {011} before
moving towards {111} in the later stages of coarsening. It is possible
that this evolution is part of a larger change that reduces the overall
interfacial energy, but this will be proved later in Section 3.5. Taken
altogether, the coalescing Ag,Al rods initially have the bilateral CPs
{0001}Ag2Al || {122}, and {lloo}Ag2A1 I {110}A12Cu, which give way
to {2203} ag,a1 II {111} and {0001}5g a1 Il {113}41,cy OVer the 4 hr.
anneal.

3.5. Selection of interfaces during coarsening

To understand why certain orientations dominate as time proceeds,
we compute and compare the lattice misfits for the different interphase
boundaries from above. Since the interfaces are semicoherent [35,47,
92], the orientations with the lowest misfits should correspond to the
lowest interfacial energies, neglecting thermal and chemical effects.
Misfit, 6, is found as

5=2||py—ﬂﬂ|| ©

(py + pp)
where p; represents the atomic density of phase i. In general, the atomic
density of a lattice plane is expressed as p = %, where » is the number
of atoms per unit cell in the plane, d is the interplane spacing, and

Q is the volume of the unit cell. However, this definition often leads

10

to varying p (and hence §) since it requires the selection of a specific
atomic layer. To overcome this limitation, we adopt the ‘puckered’
interface description [30,91], which calculates p by taking into account
additional atoms that are slightly above and slightly below a given
plane. This enables us to determine a minimum & for a set of bilateral
CPs.

Fig. 12 shows the planar density p as a function of the thickness
of a given layer wherein the ‘puckered’ atoms may be located. Each
line represents the contribution of additional atoms to p. For each
type of interphase boundary, the smallest difference in planar density
for the same plane thickness give us the minimum lattice misfit. Ta-
ble 2 summarizes the results for both the initial (as-cast) and final
(4-h) states. It can be seen that the lattice misfits for both Ag,Al-Al
and Ag,Al-Al,Cu interfaces reduce over time, from 8.12% to 5.50%
and 10.2% to 3.55%, respectively. This apparent shift suggests that
coalescence drives the overall reduction in interfacial energy, for the
field-of-view so considered. To lend credence to this idea, in Fig. 13
we plot the surface areas for {0001}, |l {113} ALcu (in blue) and
{2203} AgAl (111} a1 (in green) vs. time, together with snapshots of
the Ag,Al rod cross-sections. The colors of the interfaces match the
corresponding data-points. Clearly, consolidation of Ag,Al leads to the
expansion of the {0001} 4,4 interface with Al,Cu and also a broaden-
ing of {2203} Ag,al With Al We measure the dihedral angle ¢ between
these two interfaces and find ¢ ~ 60.3° + 13.9°; the actual interplanar
angle of 51° between {0001} g 4 and {2203} Ag,Al is clearly within this
standard deviation. Since both Ag,Al interfaces have comparable and
low misfit, it follows that neither plane can expand further without
sacrificing the other. As a result, the morphological evolution appears
to stagnate, and the two planes ‘lock’ to form a faceted geometry at long
times. The competition between the two interfaces may also explain
why Ag,Al never attains its equilibrium shape with Al (a hexagonal
plate [82]), at least within the finite duration of our experiment.

We caution that the above puckering analysis provides only a
preliminary assessment and does not consider the solubility of Ag in
a-Al nor lattice expansion at elevated temperature. It will be necessary
to carry out molecular dynamics simulations (akin to Ref. [93]) to
determine the interphase boundary energies and correlate them to the
experimental observations. In addition, the high index planes of Ag,Al
at the later time-steps may display a regular array of steps and kinks.
Such an effect would only be visible through high resolution imaging
techniques such as TEM. This is an avenue of current research.

In the future, we also intend to develop a clearer picture of the early-
stage dynamics, during which fault migration may dominate coarsen-
ing [27]. Although we found limited faults along the Ag,Al rods in
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and {0001} 4 Il (130} Alcu- Al, AgyAl and Al,Cu are in green, red, and blue, respectively. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)

Table 2
Interfacial bicrystallography, at initial and final time-points of the anneal process.
As cast 4 hr.

Interphase boundary Ag,Al || Al Ag,Al || Al,Cu Ag,Al || Al Ag,Al || Al,Cu
Bilateral CPs {0001} || {122} (1100} || {110} (2203} || {T11} {0001} || {130}
Number of atoms in plane 33 202 11 36
Planar density (atom/nm?) 13.3) || 12.3) 8.5(9) || 9.5(6) 13.(4) || 14.(1) 13.3) || 12.8)
Planar misfit (%) 8.12% 10.2% 5.50% 3.55%

the as-cast structure, terminations and branches have been previously
reported for the Ag,Al phase [46], and therefore fault migration cannot
be necessarily ruled out. Finally, we aim to investigate the influence of
the initial condition: the Al-Ag,Al-Al,Cu three-phase eutectic produced
several distinct patterns during DS [43,44,46,64,77], and the arrange-
ment of phases and the ORs between them may impact the coarsening
pathway.

4. Conclusions

We probed the coarsening dynamics of a model three-phase eutectic
via in situ 4D X-ray nano-imaging coupled with EBSD. This investigation
led to the following conclusions:

11

We demonstrated a method to reconstruct X-ray micrographs cor-
rupted by noise from thermal vibrations. Using TV-regularized re-
construction with deformation compensation and machine learn-
ing segmentation, we characterized the three eutectic phases and
their respective interphase boundaries.

Based on this data, we found that two of the phases (Ag,Al
and Al,Cu) obey a temporal power law for their average length-
scales, matching the predictions of theory. Even so, the eutectic
microstructures are not self-similar in time.

One reason for the absence of self-similarity is the coalescence
of neighboring Ag,Al rods, which involves the elimination of an
intervening Al,Cu channel. This demonstrates that the coarsen-
ing of one phase (Ag,Al) is limited by the other (Al,Cu), in a
multi-phase system with comparable volume fractions.

By correlating our absorption and diffraction data, we identified
the common planes at the solid-solid interfaces. In this way, we
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Fig. 13. Evolving surface area of Ag,Al interfaces. Surface area of {2203} ag,al and {0001}, o habit planes vs. time. A 3D mesh of Ag,Al rod surfaces at each time step is shown

inset, in gray, viewed along the long axis of the rods. Planes which align with {2203} ag,al and {0001}, 4 have been colored to match the data points. For display purposes only,
the Ag,Al rod mesh is pre-processed to prevent any gaps from smoothing. This leads to a small misalignment between the mesh and the labeled habit planes.

determined that coalescence leads to a selection of interfaces that
possess low misfit, and by extension, low energy.
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Appendix A. Segmentation performance

To ascertain the reliability of our segmented data, we compare a
digitally segmented image to one that is hand-segmented, taken as
ground truth. All pixels are divided into four classes: true positives
(T P), true negatives (T N), false positives (FP), and false negatives
(FN). Mapping the pixels in this manner allows us to computed the
average recall (R), precision (P), and Fl-score for each of the three
phases [66,67]. Sometimes called sensibility, recall describes the ca-
pability of a segmentation to identify all instances of a designated
class (i.e., R = TP/(TP + FN)). Meanwhile, precision, or sensitivity,
describes the ability to identify only the designated class (i.e., P
TP/(TP + FP)). Finally, the Fl-score, otherwise known as the Dice
loss score, gives the harmonic mean of the precision and recall (ie.,
F 2(P % R)/(P+ R) = 2TP/Q2TP + FN + FP)). The recall,
precision, and F1-score range from zero to one, with values closer to
one indicating a higher accuracy.

To perform these calculations, we selected the central-most recon-
structed slice for each of our time-steps and segmented it by hand,
i.e., tracing over the solid-solid interfaces as best as possible. We then
compared each ground truth slice to the respective one automatically
segmented and computed the precision, recall, and F1-score. In order
to account for human error in the hand segmentation, we selected a
tolerance threshold of 4 pixels (i.e., 2% of image width and height).
Table 3 gives the results. We find that the average recalls for Al, Al,Cu,
and Ag,Al are 0.92 + 0.02, 0.92 + 0.01, and 0.99 + 0.01, respec-
tively. Average precisions for Al, Al,Cu, and Ag,Al are 0.90 + 0.03,
0.92 + 0.02, and 0.97 + 0.1, respectively. Finally, the average F1-scores
for Al, Al,Cu, and Ag,Al are 0.91 + 0.02, 0.92 + 0.01, and 0.98 + 0.01,
respectively. All of these values display a high level of similarity and
accuracy (comparable to other works [95,96]), confirming that our
automated segmentation is reliable.

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.actamat.2024.119684.
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Table 3

Contour matching scores. Recall, precision, and F1-score of the Al, Al,Cu, and Ag,Al phases computed by comparing automated and hand segmented images.
Time (hr.) Recall Precision Fl-score

Al Al,Cu Ag,Al Al Al,Cu Ag,Al Al Al,Cu Ag,Al
0 0.8846 0.9113 0.9885 0.8528 0.9256 0.9841 0.8684 0.9184 0.9863
0.5 0.9164 0.9226 0.9872 0.9355 0.9485 0.9819 0.9258 0.9354 0.9846
0.75 0.9311 0.9196 0.9989 0.9181 0.9419 0.9750 0.9246 0.9306 0.9868
1 0.9266 0.9209 0.9994 0.9067 0.9333 0.9803 0.9165 0.9271 0.9898
2 0.9226 0.9256 0.9932 0.8789 0.9004 0.9461 0.9002 0.9128 0.9691
3 0.9282 0.9300 0.9842 0.9022 0.8927 0.9628 0.9150 0.9110 0.9734
4 0.9330 0.9303 0.9987 0.9032 0.8886 0.9620 0.9178 0.9090 0.9800
Avg. 0.9203 0.9229 0.9929 0.8996 0.9187 0.9703 0.9098 0.9206 0.9814
Std. 0.067 0.0066 0.00631 0.0268 0.0245 0.0139 0.0201 0.0104 0.0076
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