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ARTICLE INFO ABSTRACT

Keywords: Understanding why some species are more susceptible to extinction than others is critical for implementing
IUCN Red List effective conservation strategies. Phylogenetic comparative methods (PCMs) have been used to understand the
Phylogenetics

drivers of extinction risk, and are most effective when applied to an entire lineage. Lemurs are a monophyletic
group that evolved in Madagascar in relative isolation over millions of years, representing a unique and diverse
lineage that provides an excellent case study for the drivers of extinction risk. We investigated the drivers of
extinction risk in lemurs using intrinsic (species' traits) and extrinsic (environmental) variables related to ecol-
ogy, life-history, and biogeography. We evaluated the tempo and mode of trait evolution and used PCMs to
examine correlations between traits and extinction risk. We used models of trait evolution and historic and future
climate data to predict how lemurs will fare under climate change. The predominant drivers of extinction risk in
lemurs were diurnal activity and longevity, which were positively and negatively associated with extinction risk,
respectively. Body size, as well as temperature mean and temperature variance across a species' range, were also
predictors of risk. We found no evidence for evolution punctuated by short periods of rapid change in response to
environmental shifts or other factors (punctuated equilibria), suggesting that traits will not evolve to track
Madagascar's changing climate. These results may inform conservation strategies in Madagascar by differenti-
ating the role of intrinsic vs. extrinsic traits in extinction risk. Moreover, findings may contribute to preventing
declines in other endangered and endemic taxonomic groups.

Primate evolution
Climate change
Trait evolution
Brownian Motion

1. Introduction

There is mounting evidence that the Earth is in the midst of a global
biodiversity crisis. Estimates suggest that vertebrate species population
sizes have halved in the past 40 years (McLellan et al., 2014), and that, at
present, more than one million species face extinction (Montanarella
et al., 2018). Determining why some species are more susceptible to
extinction is critical for implementing effective conservation strategies
to preserve biodiversity. Both evolutionary and ecological factors can
influence the degree of threat that species face, and these factors can
generally be categorized as intrinsic (species' traits and evolutionary
history) or extrinsic (relating to the external environment) (Blackburn
and Gaston, 2002; Fisher et al., 2003; Purvis et al., 2000a).

Common intrinsic factors include traits such as body size, longevity,
and group size. Large body size is often cited as the prepotent intrinsic
predictor of extinction risk (McKinney, 1997; Rapacciuolo et al., 2017).
Studies have found that for species below 3 kg, extinction risk is
generally driven by external threats, whereas in larger species it is

driven by a combination of external and intrinsic factors, and vulnera-
bility to most threats increases sharply (Cardillo et al., 2005; Davies
et al., 2008). Larger species tend to exhibit slower life histories than
smaller species, meaning they reach sexual maturity later, have longer
gestation periods and interbirth intervals, as well as smaller litter sizes.
These factors reduce resilience, making it more difficult for them to
offset high mortality with high fecundity, thus rendering them more
vulnerable to extinction (McKinney, 1997). Intrinsic factors also
comprise aspects of the ecology of large species that may increase their
extinction risk, such as trophic level, activity cycle, habitat breadth, and
home range size. For example, Atwood et al. (2020) found a corelation
between body size and herbivory. Both these factors independently in-
fluence threat status in mammals, yet because of their shared evolu-
tionary history they are not completely independent. When this is
controlled for, some of this effect disappears, meaning that herbivory
may be a spurious driver in such groups. Furthermore, diurnal species
display a host of attributes that may predispose them to extinction, such
as large body size, high predation rates, and vulnerability to hunting
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(Purvis et al., 2000a).

Extrinsic factors, such as biogeographic and climatic variables as
well as anthropogenic disturbance, also drive species towards extinc-
tion. Human activities have likely contributed to species extinctions
since the late Pleistocene, as evidenced by a mean body mass decline in
taxa (Barnosky et al., 2004). Currently, the primary human-caused
drivers that threaten biodiversity are habitat loss and fragmentation,
hunting, invasive species, disease, pollution, and climate change (Baillie
et al., 2004; Koch and Barnosky, 2006). While habitat loss is regarded as
the primary threat, some analyses indicate that climate change is
already affecting many species (Parmesan and Yohe, 2003) and may
soon be the predominant driver of extinction (Thuiller, 2007; Urban,
2015). Thus, understanding species' climate niches and tolerances is
necessary for predicting their responses to changing temperatures.

Extinction risk analysis is used to assess the probability of species'
extinction, calculated as a function of their intrinsic biological charac-
teristics and extrinsic factors. Over the last several decades, phyloge-
netic comparative methods (PCMs) have emerged as a powerful
framework to model how threat status is affected by such factors
(Garamszegi, 2014), with the goal of identifying the causes of species
declines and predicting how changes in stressors will affect threat status
(Fisher and Owens, 2004; Purvis, 2008). PCMs can be used to elucidate
the evolution of biological traits, the intrinsic and extrinsic factors that
contribute to speciation and extinction, and to account for the phylo-
genetic non-independence of taxa (Cornwell and Nakagawa, 2017).
These methods can also be used to examine the “tempo” (speed) and
“mode” (manner) of evolution in traits (Simpson, 1984), informing us
how traits are evolving. A popular model of trait evolution is Brownian
Motion (BM), which can be described as a ‘random walk’ through time
(Revell et al., 2008). This model is often used due its application to a
wide range of evolutionary scenarios, as well as being relatively
straightforward to statistically fit to data (discussed in Harmon, 2019).
In this model, trait values change randomly over time and descendent
species drift away from each other following a speciation event (Fel-
senstein, 1985). A modification of this model is the Ornstein—-Uhlenbeck
(OU) model, which posits that trait values are being “pulled” towards an
optimum (Butler and King, 2004). We can also evaluate evolution using
metrics such as Pagel's A, a measure of phylogenetic signal (Pagel, 1999),
which measures the extent to which closely related species resemble
each other, as approximated by BM. Additionally, Pagel's k can signal
whether evolution is occurring in a more punctuated manner, i.e. trait
change is concentrated at speciation events, rather than constant over
time. This may signify a case of adaptive radiation, in which diversifi-
cation of lineages is associated with diversification of traits (Gavrilets
and Losos, 2009).

PCMs are most effective when dealing with a complete monophyletic
clade within which a single process is operating, such as when species
evolved in relatively remote and circumscribed ranges. An example of
this is the lemurs of Madagascar. Madagascar is the world's fourth-
largest island, and an ideal natural laboratory for exploring evolu-
tionary processes (Vences et al., 2009). It is home to an exceptional
number of endemic species, making it one of the greatest biodiversity
hotspots (Myers et al., 2000). Several entirely endemic clades have been
evolving across the landscape in relative isolation for millions of years,
including lemurs, carnivores, tenrecs, reptiles, and amphibians, which
are 92-100 % endemic (Antonelli et al., 2022; Goodman and Benstead,
2005). Thus, conservation in Madagascar is important not only for
safeguarding living species, but also for preserving deep lineages and
important pieces of evolutionary history (Davies et al., 2013).

As Madagascar's endemic primates, lemurs have been a predominant
target of evolutionary theory and research. Lemurs belong to the
Strepsirrhini suborder of primates, comprising over 100 known extant
species, approximately 94 % of which are vulnerable to extinction
(Davies et al., 2013). Indeed, lemurs have been cited as the most en-
dangered vertebrates (Davies et al., 2013). Lemurs are widely distrib-
uted throughout the forested habitats of Madagascar, including eastern
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rainforests, western tropical dry forests, and southern arid spiny forest.
This steep geographic and climatic gradient of the landscape may have
had a considerable impact on the evolution of lemur traits (Dewar and
Richard, 2007; Wright, 1999). Consequently, lemurs are taxonomically
and phenotypically diverse. Body size in extant species ranges from 30 g
(Microcebus berthae, the smallest living primate) to nearly 10kg (Indri
indri), while recently extinct lemurs have been recorded as weighing up
to 160 kg (Archaeoindris fontoynontii) (Godfrey and Jungers, 2003). Le-
murs also exhibit wide interspecific variation in dietary preferences,
habitat breadth, and activity patterns which likely coevolved with body
mass (Herrera, 2017a). Concerning activity patterns, some species are
classified as strictly nocturnal/diurnal, whereas others are cathemeral,
meaning their activity occurs at irregular times (Santini et al., 2015).
Climate change over deep time may play a role in how lemurs have
evolved and diversified (Godfrey et al., 2020; Herrera, 2020). This is
relevant because temperature continues to rise across Madagascar,
causing hotter dry seasons, wetter rainy seasons, and increases in
number and severity of cyclones and droughts (Nematchoua et al.,
2018).

Although many of the intricacies of lemur origins and evolution
remain unknown, there is evidence that this clade has been evolving in
relative isolation for approximately 50-60 million years (Herrera and
Davalos, 2016; Yoder and Yang, 2004). To date, there have been no
analyses of the drivers of extinction risk across a nearly complete lemur
phylogeny that considers both biological and environmental factors. In
fact, lemurs have been excluded from research to ensure results would
not be driven by this extremely threatened and unique group (Verde
Arregoitia et al., 2013). Discerning the factors that predispose lemur
species to greater extinction risk will help fill these research gaps, allow
for more effective planning of conservation action in Madagascar, and
aid our understanding and prevention of declines in other endemic or at-
risk taxonomic groups. Thus, the fundamental goal of this project was to
investigate the various drivers of extinction risk in these endemic pri-
mates. First, using extensive phenotypic data on species traits related to
their intrinsic biology, as well as environmental data related to the
external environments they live in, we investigated the tempo and mode
of trait evolution across the entire lemur phylogeny. We then investi-
gated the drivers of extinction risk by regressing extinction risk against
intrinsic and extrinsic factors. Additionally, we used climate forecasts
and rates of trait evolution to predict how lemurs will respond to
anticipated climate change. Based on existing studies of extinction risk
and evolution, we made the following hypotheses:

1) With respect to trait evolution, we expected to find evidence of high
phylogenetic signal in life-history traits, consistent with past
research in lemurs and other primates (Kamilar et al., 2012; Kamilar
and Cooper, 2013).

2) We hypothesized that both intrinsic and extrinsic factors will predict
extinction risk. The former would be consistent with past research in
other mammals (Purvis et al., 2000b), whereas the latter is based on
more recent studies that concluded narrow climate niches and
human pressure were positively correlated with extinction risk
(Chichorro et al., 2020; Di Marco et al., 2018).

3) Based on recent projections of rapid climate change, we predicted
that climate niches, along with all other intrinsic and extrinsic fac-
tors, are evolving at a slower rate than the climate in Madagascar is
changing.

The results of this study should advance the understanding of the
factors contributing to lemurs' vulnerability to extinction and serve as a
case study for other endangered or endemic island species.

2. Methods

We evaluated the drivers of extinction risk in lemurs using a dataset
of intrinsic and extrinsic factors. We examined collinearity among
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variables to select which traits to incorporate in analyses, and then fitted
statistical models to test the tempos and modes of trait evolution. To
determine how these traits relate to extinction risk, we conducted a
phylogenetic regression analysis to examine correlations between traits
and extinction risk, defined as IUCN Red List Status. Finally, we esti-
mated rates of lemur trait evolution and projected forward to predict
how lemurs will fare under climate change. All analyses were conducted
using R version 4.0.2 (R Core Team, 2020); R package names are given
in ‘single quotes’ while function names are in italics.

2.1. Trait data and phylogeny

This study included traits compiled from the literature (Table 1),
based on two datasets to encompass the range of traits across species.
The primary dataset was compiled from original literature sources
(Table B1). We filled in some missing data from this dataset using a
secondary dataset, Razafindratsima et al. (2018), which was a compi-
lation of traits representing the ecological and geographical diversity of
all extant mammal and bird species of Madagascar. As an index of
extinction risk, we used data from the IUCN Red List of Threatened
Species (IUCN, 2021), which includes 107 lemur species. The Red List is
comprised of categories (ranging from least concern to extinct) that
classify risk of extinction based on five criteria: population reduction,
geographic range, small population size and decline, very small or
restricted population, and probability of extinction (IUCN, 2012).
Following Atwood et al. (2020), we incorporated all lemurs' IUCN Red
List extinction statuses as data (IUCN, 2012). To incorporate phyloge-
netic information into the models, we used a time-calibrated maximum
clade credibility phylogeny of 114 lemur species (Herrera and Davalos,
2016).

2.2. Geographic range and environmental data

To extract environmental variables from within lemur geographic
distributions, we used polygon shapefiles of extant lemur distribution
maps (IUCN, 2021) and obtained climate data from WorldClim (Hijmans
et al., 2005). Using extract in ‘raster’ (Hijmans, 2022), we extracted
climate data (collected from 1970-2000) for all species. We calculated
the mean and variance of annual temperature (BIO1), as well as the
means for temperature range (BIO7), annual precipitation (BIO12) and
precipitation seasonality (BIO15). We included precipitation variables
to capture climates that may not vastly differ in temperature alone. We
also retrieved WorldClim future climate projections. We extracted the
projected mean temperature for the years 2061-2080 under the best
case (rcp 2.6) and worst case (rcp 8.5) climate change scenarios and
calculated the mean for each species (Taylor et al., 2012; van Vuuren
et al., 2011). We used data from the ‘IPSL-CM5A-LR’ model, with a
spatial resolution of 10 min of a degree of longitude and latitude
(approximately 320 km?). Lemur distributions ranged from around 20
km? to 101,442 km?. Lastly, to measure anthropogenic pressures within
species' ranges, we obtained the 2009 Human Footprint index (HFP)
data which measures cumulative human pressures, such as population
density, and the spatial extent of railways, roads, and electrical infra-
structure (Venter et al., 2016).

Missing values are common in trait data, and excluding species on
the basis of missing data not only reduces sample size and thus statistical
power, but risks introducing bias into analysis (Little and Rubin, 2002).
To account for gaps in the datasets, we imputed missing values for all
continuous trait data based on ancestral character reconstruction using
phyEstimate in ‘picante’ (Garland, and Ives, 2000; Kembel et al., 2010).
In total, 29.6 % of the data was missing and imputed. Refer to the Ap-
pendix for the percentage of imputed data for each trait (Table A1) and
the pre- and post-imputation data tables (Tables C1 and C2, respec-
tively). Since imputing using phylogeny would introduce obvious biases
in our analyses of the tempo and mode of trait evolution across phy-
logeny (Section 2.3 below), we did not use such imputed estimates in
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Table 1
A description of all traits included in the dataset that were deemed as possibly
important to extinction risk. * = Predictor variables used for regression analyses.

Trait Description Range Units

Intrinsic traits

Brain size Estimates of the cranial capacity 1.7-135.6 cm®
* Body mass Body mass averaged across sexes. 30.6-161,200 g
Midpoints used if averages were
unavailable
*IBI Interbirth interval. The length of 210-1460 days

time between successive births of
the same female(s) after a
successful or unspecified litter

* AFR Average age of first reproduction 321.4-1964.4  days

Gestation length Length of time of fetal growth 52-321.2 days
from conception to birth

Weaning days Age at which infants are weaned 37.8-1095 days

* Longevity Maximum adult longevity 103-472.6 months

* Litter size Average number of offspring per 1-4.4 #
female per litter

Mean size of the area in which
daily activities are generally

restricted for a social group

* Home range 0.0019-13.3 km?

* Group size Average number of individuals in 1-17 #
a social group

* Trophic level Based on diet: (0) herbivore; (1) N/A
omnivore

*Habitat breadth ~ Number of habitat layers used by N/A

each species. Layers include
above-ground dwelling, aquatic,
fossorial and ground dwelling.
Coded as single habitat layer (0) or
multiple layers (1)

Activity cycle of each species. N/A
Activity cycles include: (1)
nocturnal only; (2) nocturnal/
crepuscular, cathemeral,
crepuscular or diurnal/
crepuscular and (3) diurnal only

* Activity cycle

Extrinsic traits

* Mean Mean annual temperature (BIO1) 17.4-26.8 °C
temperature across each species' geographic
range
* Temperature Variance in mean annual 0.003-106.3 °C
variance temperature across each species'
geographic range
Maximum Max Temperature of Warmest 25.7-35.5 °C
temperature Month (BIO5)
Minimum Min Temperature of Coldest 8.3-19.8 °C
temperature Month (BIO6)
Temperature Mean annual temperature range 11.4-24.4 °C

range (BIO7) across each species'

geographic range

Mean annual precipitation

(BIO12) across each species'

geographic range

Precipitation Coefficient of

Variation (BIO15). A measure of

the variation in monthly

precipitation totals over the course

of the year across each species'

geographic range

* HFP Human Footprint Index of
cumulative pressures on the
environment in 2009 across each
species' geographic range

* Annual 507.2-2770.6 mm

Precipitations

* Precipitation 41.6-124.2 mm

seasonality

3.3-10.1 N/A

those analyses, but only in our regression analyses (Section 2.4 below).
All trait-evolution analyses were conducted using the original data
without imputation.

2.3. Trait evolution

The ultimate goal of this study was to understand the factors that
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render lemur species to be more susceptible to extinction, part of which
includes understanding the evolution of these factors. A fundamental
goal in PCM involves determining the model, or mode, of evolution
under which traits are evolving (Hernandez et al., 2013). To test the
most likely mode of trait evolution, we fit several models. We estimated
62 — a measure of the variance in a macroevolutionary time scale under
the BM model. 6> measures the tempo of evolution by evaluating the rate
at which trait values of related species will diverge from each other. We
also estimated o, a parameter of the OU model that measures the
strength of return towards a theoretical optimum (Hansen, 1997).
Larger values of a signify a faster approach towards the optimum and
constraint around the optimal trait value. When « is 0, the OU model is
equivalent to the BM model. Lastly, we fit a white-noise (null) model
that assumes no phylogenetic relationship.

Evaluating the extent to which closely related species resemble each
other, or their ‘phylogenetic signal’, is another fundamental part of
PCMs (Miinkemdiller et al., 2012). We estimated Pagel's A, a metric for
measuring patterns of phylogenetic signal (Pagel, 1999), on continuous
traits across the entire lemur phylogeny. A is measured on a scale of 0-1,
where traits with a value closer to 1 exhibit strong phylogenetic signal
consistent with a BM model of evolution, and values closer to O are
consistent with a white-noise model. For binary traits, we measured
phylogenetic signal using D statistic (Fritz and Purvis, 2010). D and A are
conceptually linked, although D is anchored with O reflecting the
expectation under BM (unlike A, where the expectation is 1), and so we
follow Diaz et al. (2013) in reporting 1-D for ease of comparison with A.
We also estimated Pagel's x, a metric of mode that reflects a punctua-
tional versus gradual mode of evolution. Like A, a k value of 1 refers to
gradual evolution under a BM model, while a value of 0 signals that
character change may be more concentrated at speciation events,
consistent with adaptive radiation, for example.

We used Akaike Information Criterion (AIC) scores to assess models'
fit (Burnham and Anderson, 2004; Richards, 2005) and determined the
best model as the one with the lowest AIC score. We conducted likeli-
hood ratio tests to determine if A and « values differed significantly from
0. Prior to analyses, we log-transformed all values to reduce skew. All
models of continuous traits were fit using fitContinuous in ‘geiger’
(Pennell et al., 2014) and binary traits were measured using phylo.d in
‘caper’ (Orme et al., 2018).

2.4. Phylogenetic regression

We constructed a Phylogenetic Generalized Least Squares (PGLS)
model to determine what factors best predict extinction risk in lemurs.
We calculated variation inflation factors (VIF) to assess collinearity
among continuous predictor variables (Kock, 2015), and thus removed
all variables with a VIF greater than three: temperature range, maximum
temperature, minimum temperature, weaning days, brain size, and
gestation length. We used Red List statuses as a measure of extinction
risk. Following Purvis et al. (2000a), we converted these ratings into an
ordinal index. We chose not to include species that fell under Least
Concern or Near Threatened, as these groups only included 3 species in
total (2.5 % of our data) and were insufficient for analyses. We also
excluded Extinct species, due to insufficient trait data, and Data Defi-
cient species, reducing the sample size to 97 species. Our final index
used for the regression analysis was: Vulnerable (VU) = 1, Endangered
(EN) = 2, Critically Endangered (CR) = 3.

We modeled Red List status as a continuous measure of threat status
following Purvis et al. (2000a). While there is the potential for this to
introduce type I errors, Matthews et al. (2011) found that these error
rates did not increase when ordinal data were used for PGLS. Using the
pgls function in ‘caper’ (Orme et al., 2018), we tested the relationship
between Red List status and predictor variables. PGLS corrects for
phylogenetic nonindependence during model-fitting using the
maximum likelihood estimate of Pagel's A (Pagel, 1999). We first con-
structed a maximal PGLS model, with 12 continuous predictor variables
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and three discrete variables (variables with asterisks in Table 1). Before
analysis, all continuous variables were log-transformed. To make model
coefficients for continuous variables with different units comparable, we
z-transformed the data to a distribution with a standard deviation of 0.5
(Gelman, 2008). We assessed diagnostic plots of the residuals for
goodness of fit.

It is important to note that range size is used as a criterion (criterion
B) for assessing IUCN Red List status. We acknowledge that this in-
troduces some biases and limits our discussion of range size. It also
presents an issue when incorporating temperature variance into our
regression models, as larger temperature variance may be due to a larger
range size (because a larger range potentially exposes the species to a
greater variation in temperature). We cannot exclude species classified
under criterion B from our analyses as that would remove a large pro-
portion (45 of 97) of species. We also recognize that incorporating range
size directly into our model would create circularity issues. To mitigate
these challenges, we divide temperature variance by the number of grid
cells within each species' range. This approach aims to reduce the cor-
relation between temperature variance and range size, particularly
addressing the problem of larger temperature variances in species with
expansive ranges.

To determine which predictor variables best explained extinction
risk, we fit all possible simpler model combinations of the maximal
model using ‘MuMIn’ (Barton, 2022). Model performance is measured
using small-sample corrected Akaike Information Criterion (AICc)
weights. We compared the full model-averaged coefficients to determine
the relative importance of all predictor variables, averaged across co-
efficient and parameter uncertainty. In addition to our continuous PGLS
model, we modeled extinction risk as a binary response to account for
any potential errors or inaccurate interpretations associated with
modeling extinction risk as a continuous variable, as well as to identify
any differences between any two Red List Categories. The methods and
results for these analyses can be found in Appendix D.

2.5. Projections

We compared the estimated macroevolutionary diversification rates
of lemurs against the rate of projected climate change. We used the
estimated o2 values (estimated as described in Section 2.3; found to be
the best-supported model of trait evolution as outlined in Section 3.1) to
determine the rate at which trait values of related species will diverge
from each other. It should be noted that these estimates assume traits are
evolving at a constant rate, consistent with BM. Although it has been
argued that BM is not the best model for trait evolution (Elliot and
Mooers, 2014), we found support for the BM model across all traits
(although, as discussed below, some support for OU and one trait almost
as well-explained by a k transformation as a ). Thus, we suggest that
these estimates are reasonable. Models of continuous traits were fit
using fitContinuous in ‘geiger’ (Pennell et al., 2014). To understand how
rates of trait evolution compared to rates of climate change, we con-
verted trait rates into units of ‘felsens’, which makes traits directly
comparable. A felsen is the variance among log-transformed trait values
per million years (Ackerly, 2009), such that greater values indicate
faster evolution and so greater variation among species' traits. Using
historic climate data and future projections, we calculated the rate of
climate change per century. We divided estimated felsens by 10,000 to
convert from units of millions of years to centuries. Finally, we
compared rates of trait evolution to rates of climate change for each
species' distribution to deduce if climate is changing faster than traits are
evolving.

3. Results
The full dataset used for analyses included 114 lemur species: 101

extant and 13 extinct, representing at least 93 % of all known species.
Across the lemur phylogeny, 26 % of species fall into VU, 41 % fall into
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EN, and 33 % fall into CR. Fig. 1 shows a breakdown of extant species by
family and Red List status.

3.1. Trait evolution

We found that A models best explained trait evolution for nine of the
12 traits (Table 2). The values from these models support that traits are
evolving closer to a BM model of evolution (Fig. 2), since A is a measure
of phylogenetic signal, and a value of 1 is consistent with pure BM
evolution. While the Pagel transformations (A, 8, and ) are technically
metrics that summarise phylogenetic transformations, for simplicity of
presentation and to highlight that they relate to evolutionary models, we
refer to them as ‘models’ here, since we are modeling the fit to our data.
Of our 12 traits, all but one (temperature variance; A = 0.18, p < 0.01)
showed moderately strong phylogenetic signal (all » > 0.6, p < 0.05),
indicating that traits are evolving closer to BM. The D estimate
(Table A2) for trophic level (1-D = 1.44) signalled significant and
extreme phylogenetic clumping, while habitat breadth (1-D = 0.35)
indicated significant, yet weak phylogenetic signal. Body mass (A =1, p
< 0.0001) had the strongest signal, suggesting that it is evolving under
“perfect” BM. According to AIC values, the OU model was the best model
for temperature range, mean precipitation, mean temperature, and
precipitation seasonality (mean temperature and precipitation season-
ality showed equal support for ). However, none of these traits
exhibited a strong alpha value (¢ < 0.43 for all). While the BM model
was best only for body mass, A, @, and k values indicated that many traits
are evolving close to BM. Other exceptions include HFP (the only trait
for which the null model was among the best), AFR and home range
(both of which show high « values consistent with OU), and temperature
variance (which displayed low phylogenetic signal.) Notably, group size
showed most support for A and k transformations, with estimates of A
close to 1 (supporting BM evolution) and « of 0 (supporting punctuated
evolution). Values of o2 indicate that home range is evolving much more
rapidly than any other trait. Fig. 2 displays comparisons of , 62, a, and k
across all traits (exact values displayed in Table A3).

Biological Conservation 290 (2024) 110408

Table 2

Results of model comparison testing tempo and mode of trait evolution. AIC
values for each trait, under five different models (A, BM, OU, k, and a null
model). ‘BM’ is measured from ¢ values, and ‘OU’ from «. AIC values within two
units of each other are considered equivalent. For most traits, the best supported
model (indicated in bold) was A.

A BM ou K null

Body mass 144.50 142.50  144.50 144.50 465.94
Age at first 28.90 56.66 4213 31.96 40.11

reproduction
Interbirth interval 29.40 50.86 41.81 31.42 53.06
Longevity 42.25 75.47 57.98 50.04 66.80
Litter size 25.59 43.94 31.60 28.98 51.91
Home range 204.35 315.24 218.24 210.09 212.87
Group size 69.87 113.90 105.05 69.17 143.65
Temp. mean —137.61 —85.69 —135.69 —129.62 —134.22
Temp. variance 363.77 431.08 368.31 385.23 370.38
Annual precipitation 63.20 84.53 54.19 68.03 62.76
Precipitation 31.57 88.81 33.62 42.08 35.52

seasonality
Human footprint —18.80 65.67 —19.54 21.02 —20.80

3.2. Phylogenetic regressions

From the PGLS (n = 97, only extant species included), Pagel's A was
estimated at A = 0, which indicates no phylogenetic signal in the re-
siduals of the model (Uyeda et al., 2018). The model-averaged coeffi-
cient estimates in the full-model showed that diurnal activity cycle,
longevity, temperature mean, body mass, and temperature variance
were the strongest predictors (meaning they had the greatest standard
effect sizes) of extinction risk (Table 3; Fig. 3). Being diurnal was the
most important variable in the model, exhibiting a positive correlation
with extinction risk. Longevity was the second most important predictor,
with a negative correlation. Temperature mean, body mass, and tem-
perature variance were all positively correlated with extinction risk and
displayed relatively strong importance in the model, according to the
standard effect sizes from the full model-averaged coefficients.
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Fig. 1. Visualizations of Red List status distribution among families. (Left) Extant lemur phylogeny of the 97 species with Red List statuses. The four largest families
are shown with Red List status at the tips. Colors of families on phylogeny correspond to colors in the family graphs. (Right) Bar chart displaying the percentage of
species in each family that fall into each Red List category. (For interpretation of the references to color in this figure legend, the reader is referred to the web version

of this article.)
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Fig. 2. Comparison of A, 6% « and « values for each trait across the lemur suborder. Traits are plotted along the x-axis. The A plot shows that all traits, with the
exception of human footprint (HFP) and temperature variance, display intermediate phylogenetic signal (» > 0.6). The o2 plot shows that home range, followed by
temperature variance, is evolving at the fastest rates under the BM model. The o plot indicates multiple traits are experiencing a “pull” towards an optimum, however
of these, HFP is the only variable where the « model had the lowest AIC value, indicating this model is the best fit. The x plot indicates that body mass is evolving

consistent with the BM model.

Table 3

Phylogenetically-controlled regression model, showing the major predictors of
threat status. The estimate column refers to standard effect size, and Pr(>|z|)
refers to p-value associated with the value in the z value column. The intercept
acts as a reference (meaning the different factor levels are contrasts against it),
and in this case refers to a nocturnal only activity cycle. Since (as described in
the text) our explanatory variables are scaled so as to make their coefficients
estimates of relative importance, we highlight in bold those variables that are
noticeably larger (>0.3) and so are more important in the model.

Estimate Std. Z value Pr(>|
Error z|)
Intercept — activity cycle 3.961 0.117 33.426 0
(nocturnal)
Activity cycle (crepuscular/ 0.117 0.222 0.526 0.599
cathemeral)
Activity cycle (diurnal) 0.642 0.345 1.863 0.062
Longevity —0.422 0.172 2.454 0.014
Body mass 0.361 0.275 1.314 0.189
Temperature mean 0.381 0.169 2.262 0.024
Temperature variance 0.336 0.173 0.942 0.052
Interbirth interval 0.048 0.122 0.390 0.696
Habitat breadth 0.026 0.089 0.291 0.771
Precipitation seasonality —0.004 0.044 0.093 0.926
Age at first reproduction —0.004 0.102 0.035 0.972
Human footprint 0.002 0.032 0.070 0.944
Home range —0.002 0.038 0.050 0.960
Trophic level —0.013 0.089 0.148 0.883
Annual precipitation 0.001 0.031 0.022 0.982
Litter size —0.013 0.086 0.149 0.882
Group size —0.0003 0.063 0.004 0.997

Violin plots showing comparative distributions of species in each Red
List category (VU = Vulnerable, EN = Endangered, CR = Critically En-
dangered) for log-transformed (A) longevity, (B) body mass (C) tem-
perature mean, and (D) temperature variance. Boxplots represent the
median and interquartile range for each group. Red circles are labelled
with the mean value for each trait in each category. Significant values
from a pairwise Games-Howell test are displayed, which were calculated
using ggbetweenstats in ‘ggstatsplot’ (Patil, 2021). Here, we see that there
is a positive relationship between extinction risk and body mass, tem-
perature mean, and temperature variance, as well as a negative

relationship between extinction risk and longevity. (E) Stacked bar
graph showing the percentage of species in each activity level for each
Red List category. From this we can visualize how extinction risk is
positively and negatively associated with diurnal and cathemeral spe-
cies, respectively.

3.3. Projections

To make predictions about how lemurs will fare in the future given
climate change, we estimated rates at which traits were evolving, as well
as the rate at which climate is changing under the best- and worst-case
climate change scenarios. All rates of change were converted to felsen
units to allow for direct comparison. For all 12 traits in each of the 114
species, the rate of trait evolution was slower than the rate of temper-
ature change expected for the geographic range of the species
(Table A4). This held true for both temperature change scenarios. The
mean rate of temperature change across all species' range was 0.093
felsen units per 100 years under the best-case scenario, and 0.192 units
under the worst-case scenario. For comparison, the fastest evolving trait,
home range, is changing at a rate of 0.00033 units per 100 years. Thus,
temperature is projected to change faster by two to three orders of
magnitude than the fastest evolving trait (Fig. 4).

4. Discussion

Using an extensive dataset of intrinsic and extrinsic factors, we
applied PCMs to a focused clade to investigate the drivers of extinction
risk in lemurs. We found that home range and temperature variance are
evolving fastest, and most traits appear to be evolving under the BM
model of evolution. We found that the strongest predictors of extinction
risk were diurnal activity cycle and longevity, along with temperature
mean, body mass, and temperature variance. Analysis of climate pro-
jections and rates of trait evolution revealed that, even under a best-case
climate change scenario, through the macro-evolutionary past lemur
traits have been evolving slower than the climate is currently changing.

4.1. Trait evolution

We investigated the tempo and mode of evolution across traits. We
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Fig. 3. Visualisation of the most important predictor variables across all regression models.

found that across all traits, life-history traits generally exhibited the
strongest phylogenetic signal. However, signal was still moderately high
(>0.6 A, Table A2) across most traits, indicating that phylogeny in-
fluences similarities in lemur life history, morphology, ecology, as well
as in some environmental niches. Some of this phylogenetic structure
may have been lost over time (Freckleton et al., 2002), and there are
likely other covariates related to trait evolution. Notably, body mass
appeared to be evolving under pure BM. Similarly, Kamilar et al. (2012)
found high phylogenetic signal in lemur body mass, and Kamilar and

Cooper (2013) found relatively high phylogenetic signal in primate body
mass compared to most other traits. Other studies found differing re-
sults. Kamilar and Muldoon (2010) detected weak phylogenetic signal
across lemur environmental niche traits, but this may be due to multiple
convergent optima in environmental niches across lineages, rather than
a single rate across the whole clade (Herrera, 2020). Similarly, while
Kamilar et al. (2012) found a BM model for body mass across the whole
clade, Herrera (2017b) found evidence of OU evolution in lemur body
mass. In this study, we used a more complete trait dataset compared to
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Fig. 4. Visualizations of mean annual temperature in Madagascar under historic and projected future conditions. (A) Mean annual temperature from 1970 to 2000.
(B) Projected mean annual temperature in 2070 under the ‘best case’ scenario. (C) Projected mean annual temperature in 2070 under the ‘worst case’ scenario.

Kamilar and Muldoon (2010), which analysed only 43 species and used
range maps that are now considered outdated. Similarly, differences in
methodology may explain these discrepancies. For example, in this
study we assumed a single rate of trait evolution across lineages, while a
multi-peak OU model showed that body mass evolved under different
rates for species with different diets and activity patterns (Herrera,
2017b). Additionally, Cooper et al. (2016) caution that the OU model is
often incorrectly favoured over simpler models in smaller datasets. In
summary, our results may differ from previous studies because of our
more complete dataset, as well as assuming a single rate of trait evolu-
tion across the whole clade. We feel that these results reflect the varying
degrees to which species' niches evolved according to simple models of
variation through time and warrants the use of phylogenetic regression
in further analyses.

4.2. Extinction risk regression analysis

Regression analysis revealed that both intrinsic and extrinsic factors
predicted extinction risk, as hypothesized. Activity cycle was identified
as an important predictor of extinction risk, indicating that diurnal
species have a significantly higher extinction risk than nocturnal or
cathemeral species. This was expected, as some of the most endangered
lemur groups are diurnal (e.g., Indri and Varecia), and diurnal species in
general are more likely to become functionally extinct compared to
nocturnal, crepuscular, and cathemeral species (Cox et al., 2022). This is
due to factors such as increased vulnerability to hunting and typically
larger body size (Cox et al., 2022; Purvis et al., 2000a). Notably, Cox
et al. concluded that the eradication of diurnal primates, in particular,
will result in major functional losses in global trait space. Many of the
nocturnal species (e.g., Cheirogaleidae) are abundant, and the greatest
threat they face is loss of habitat. Species that are cathemeral (e.g.,
Eulemer collaris) have the greatest plasticity in their behaviour which
confers several advantages, including flexible foraging over a 24-hour
period (Donati et al., 2007). In support of this, a significant negative
correlation between cathemeral species and extinction risk was detected
when comparing Vulnerable and Critically Endangered species.

Somewhat surprisingly, we found that longevity is negatively asso-
ciated with extinction risk. Most literature (Gonzalez-Sudrez et al., 2013;
Purvis et al.,, 2000a) suggests that extinction risk increases with
longevity. However, it could be that controlling for other confounding
variables reveals that the pattern is not the same for lemurs. It is also
possible that the more generalist species, which tend to be compara-
tively longer-lived, are faring better than the more specialized species,
which include short-lived species. For example, Eulemur fulvus (listed as
VU) is a generalist species that inhabits both dry forests in the northwest
and eastern montane rainforests and has been recorded to live up to 37
years. Along with E. fulvus, several other Eulemur species that are not
highly endangered are also generalist species, as well as wide-ranging.
Importantly, E. fulvus is not listed under IUCN criterion B, thus range
size was not considered in determining its Red List status. In contrast,

more range-restricted species, including mouse and sportive lemurs
(Microcebus and Lepilemur), tend to be rather short-lived and more
endangered. Notably, these species are nocturnal, a trait we've already
factored into our analysis, thereby eliminating the influence of activity
patterns. By accounting for the variance explained by the most highly
endangered diurnal species, we allow for some of the effects of other
variables, such as longevity, to be observed. Furthermore, our findings
align with a study by Morris et al. (2008), which investigated longevity
across 15 plant and 21 animal taxa, finding that long-lived species
exhibit greater resilience to changes in climate variability compared to
their short-lived counterparts. They concluded that the stability in sur-
vival rates and consistent reproductive patterns of long-lived species
shields them from the adverse effects of environmental fluctuations,
making them less susceptible to variations in survival and reproduction
rates.

We also found partial support for our expectation that climate niches
and high HFP would be predictive of threat status. Although human
pressure is cited as an increasing threat to biodiversity (Ceballos et al.,
2015; Di Marco et al., 2018), HFP was not a significant predictor in any
model. This is possibly because HFP measures factors such as high
population density, light density, and roads — characteristics that are
rare in Madagascar given the predominance of rural populations with
low densities and low road and electrical infrastructure [e.g., over 80 %
of the population is rural, and fewer than 38 % of people have access to
electricity (“INSTAT”, 2022).] It also excludes the greatest human
pressures, including deforestation (Morelli et al., 2020) and hunting
(Borgerson et al., 2022). Additionally, the effects of anthropogenic
disturbance may not be immediately reflected in wildlife populations,
meaning that current extinction risk is mostly a product of the past as
opposed to recent human pressure (Turvey et al., 2017). However,
Sanderson et al. (2002) and Woolmer et al. (2008) highlight the limited
value of applying global maps of human footprint to regional studies,
due to poor accuracy and resolution of maps developed at the global
scale. Thus, we acknowledge that we likely under-estimate their
importance in driving lemur declines.

Supporting our hypothesis that extrinsic factors will predict extinc-
tion risk, we found that temperature mean and temperature variance
were positively correlated with extinction risk. The positive relationship
between temperature mean and extinction risk could indicate that spe-
cies from the western regions of Madagascar are most endangered, since
these regions are the hottest. Temperature mean and variance predicting
extinction risk bodes poorly with respect to climate change, given that
climate change is associated with increases in both temperature and
temperature variability (Bathiany et al., 2018). Further, if species track
their current climate niche in the future, 60 % of examined species will
experience range reductions (Brown and Yoder, 2015). These results
highlight the importance of closely monitoring species that live in areas
where temperatures are, or are expected to be, rising. As noted in the
methods, temperature variance across a species range is potentially
correlated with range size. While we did our best to control for this, we
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acknowledge that we may still observe some of this effect in the model
results. Additionally, Faurby and Aratijo (2018) discuss the importance
of including historical range data in analyses of species distributions and
climate change. While this is beyond the scope of the current study,
future research should delve deeper into the role of the anthropogenic
influences and recent range contractions in order to better inform our
understanding of the correlation between species ranges and traits.

Body mass was another important predictor of risk. We found a
positive association between body mass and extinction risk, consistent
with past studies in primates which concluded that primates with larger
bodies, as well as smaller litter sizes and longer gestations, experience
higher extinction risk (Matthews et al., 2011; Purvis et al., 2000a). As
discussed in the introduction, the slower life history traits that tend to be
correlated with body size may reduce their resilience, making it chal-
lenging to compensate for high mortality rates with high reproduction
rates. Additionally, larger lemur species are often the target of hunters,
since they are easier to spot and more sought after due to the larger
amount of meat they provide for the same amount of effort (Isaac and
Cowlishaw, 2004; Ripple et al., 2016). This finding, coupled with the
positive correlation between extinction risk and diurnal activity pat-
terns, emphasizes the urgency of tailored conservation efforts for these
larger, diurnal species. Specifically, these efforts should focus on coun-
tering threats such as hunting. Implementing targeted protection mea-
sures, such as intensified anti-poaching initiatives and the preservation
of their habitats, becomes imperative to safeguard these at-risk lemurs
effectively.

The results from binary GLMM analyses (Appendix D) partially
aligned with the results from the PGLS analysis. Consistent with the
PGLS results, the GLMM analyses indicate a positive correlation between
temperature variance and temperature mean with extinction risk. This
reinforces the finding that temperature-related variables significantly
contribute to extinction risk, similar to previous findings that changing
temperature is associated with risk of extinction (Hill and Winder, 2019;
Ozgul et al., 2023; Urban, 2015).

The binary GLMM analyses also revealed that annual precipitation
and precipitation seasonality are negatively correlated with extinction
risk — a trend that was not observed in the PGLS analysis. However,
various studies across different species (Hill and Winder, 2019; Hordley
et al., 2023; Roman-Palacios and Wiens, 2020) have reached similar
conclusions regarding changes in precipitation associated with
increased extinction risk. This finding holds particular significance given
the environmental context of Madagascar, which has witnessed a
decrease in annual precipitation, an increase in interannual precipita-
tion variability, and an increase in the duration of droughts (Arias et al.,
2021).

The disparities in identified variables between the PGLS and binary
GLMMs may be due to some variables exhibiting a more pronounced
effect when extinction risk is treated as a binary outcome. A binary
model may capture situations where the association between predictors
and extinction risk is non-linear or characterized by abrupt changes
under specific conditions. Variables identified as important predictors of
risk by only the PGLS, such as activity cycle and longevity, may become
apparent only when considering the entire spectrum of species as
opposed to comparing only two Red List groups at a time.

Sample size limited the extent of our model. First, we did not include
interactions between intrinsic and extrinsic drivers in the regression
model, as the statistical power would have been greatly reduced. It is
also important to note that the value of the [UCN Red List status as the
dependent variable is limited by its accuracy in capturing true extinction
risk, which has limitations (Collen et al., 2016). Future studies should
investigate using different response variables to gauge extinction risk,
possibly using EDGE scores (Isaac et al., 2007), which incorporate es-
timates of the expected loss of evolutionary history with endangered
status.
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4.3. Projections

We found that, under both the best-and worst-case climate change
scenarios, climate is changing faster than the evolutionary rate of all
examined traits, consistent with our hypothesis. This implies that, based
on past rates of evolution under a BM model and projected climate in-
formation, lemurs are not evolving fast enough to adapt to the changing
climate. Although this sounds alarming, these results are based on le-
murs' realized rather than fundamental niches (Hutchinson, 1957).
Thus, current distributions may be restricted by other factors such as
rivers (Goodman and Ganzhorn, 2004). Additionally, mapping macro-
evolutionary rates of evolution onto micro-timescale changes may not
be the most appropriate measure of risk. There are many reasons to
suppose that estimates of trait evolutionary rate on phylogenies are
under-estimates (Li et al., 2018; Pearse et al., 2018), in particular
because estimates of macro-evolutionary rates are often much slower
than evolutionary rate estimates in the present day. We do note, how-
ever, that our felsen approach maps onto Brownian Motion evolution,
which the majority of our traits (but not all) were found to be consistent
with. Thus, while we are in no way claiming to have proven that lemurs
cannot evolve to track climate change, given ongoing threats and pop-
ulation declines these results underscore the importance of immediate
preservation of habitat lemurs can survive within right now. We should
not assume, or perhaps even hope, that they will evolve to be able to
better survive within more marginal habitat. At this time, we cannot tell
if the assumption holds for group size, which our analyses suggest is
either evolving in a punctuated fashion or under BM, but importantly
group size is not a major predictor of extinction risk here and so this
assumption is unimportant. Revell (2013) argues that estimates from BM
models are prone to be biased to be more similar to each other than the
underlying generating values. Revell et al. (2008) also points out that
support for a BM model would also be consistent with past, strong se-
lection to track environmental conditions changing according to a
Brownian walk. We suggest that is unlikely in this case, since were le-
murs able to track changing conditions so well, we wouldn't expect them
to be so highly threatened with extinction as a result of recent anthro-
pogenic (environmental) stressors. We emphasise that finding support
for OU evolution in three of our extrinsic (environmental) traits does not
suggest that changes in climate regime are more likely to be tracked on
the basis that OU models describe how selection operates across the
phylogeny (Cooper et al., 2016). If anything, support for OU models
indicates that lemur evolution is likely to be constrained and thus unable
to respond to future change.

It is also important to consider that traits' evolution could produce
either additive or synergistic adaptive effects, meaning that one trait by
itself may not be able to evolve fast enough to outpace climate change,
but a combination of traits evolving might. Conversely, drivers can also
be multiplicative. Chen et al. (2015) found synergistic effects of human
egg-harvest and climate change were driving Chinese Crested Terns
close to extinction, demonstrating how human pressure and climate can
interact to manifest in a ‘perfect storm’.

Finally, it is important to mention that, while much of this paper has
focused on trait evolution and adaptation, species may also respond to
changing climates and environments through behavioral changes or
range shifts. For example, Eppley et al. (2022) found that rising tem-
peratures and deforestation pressures are causing many species of
monkeys and lemurs, which typically find shelter and food high up in the
tree canopy, to spend more time searching for food on the forest floor.
Nevertheless, it is possible that there will be scenarios where behavioral
adaptations won't suffice as climate patterns continue to change and
deforestation further reduces species ranges.

5. Conclusion

We applied phylogenetic comparative methods to a unique mono-
phyletic clade to determine the intrinsic and extrinsic factors that
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contribute to species extinction risk. This study has several important
implications. First, we found that a diurnal activity cycle, followed by a
shorter lifespan, and large body size, are all predictors of high extinction
risk. Temperature mean and temperature variance — both of which are
expected to increase with climate change — are also important predictors
of risk. Additionally, we found that, based on past evolution, lemurs'
traits are evolving too slowly to track climate change. Importantly, both
intrinsic and extrinsic variables were predictors of risk. In fact, pre-
dictors were not clustered around any particular type of trait, but were a
mix of evolutionary, ecological, and environmental factors. This finding
highlights the need for more focused research that examines specific
threats to specific species. In the face of a possible 6th mass extinction
event, determining species extinction risk is critical. Antonelli et al.
(2022) highlight the importance of understanding Madagascar's biodi-
versity and evolutionary history to protect the many unique, yet highly
threatened species inhabiting this island. Moreover, the current study
not only contributes to our understanding and prevention of the threats
facing lemurs, but it serves as a case study for island species more
generally. This is particularly important given that islands are more
susceptible to the extreme effects of climate change. Thus, findings are
relevant for discerning the drivers of extinction of species in Madagascar
and beyond, setting the stage for future conservation efforts.
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