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A B S T R A C T   

Understanding why some species are more susceptible to extinction than others is critical for implementing 
effective conservation strategies. Phylogenetic comparative methods (PCMs) have been used to understand the 
drivers of extinction risk, and are most effective when applied to an entire lineage. Lemurs are a monophyletic 
group that evolved in Madagascar in relative isolation over millions of years, representing a unique and diverse 
lineage that provides an excellent case study for the drivers of extinction risk. We investigated the drivers of 
extinction risk in lemurs using intrinsic (species' traits) and extrinsic (environmental) variables related to ecol
ogy, life-history, and biogeography. We evaluated the tempo and mode of trait evolution and used PCMs to 
examine correlations between traits and extinction risk. We used models of trait evolution and historic and future 
climate data to predict how lemurs will fare under climate change. The predominant drivers of extinction risk in 
lemurs were diurnal activity and longevity, which were positively and negatively associated with extinction risk, 
respectively. Body size, as well as temperature mean and temperature variance across a species' range, were also 
predictors of risk. We found no evidence for evolution punctuated by short periods of rapid change in response to 
environmental shifts or other factors (punctuated equilibria), suggesting that traits will not evolve to track 
Madagascar's changing climate. These results may inform conservation strategies in Madagascar by differenti
ating the role of intrinsic vs. extrinsic traits in extinction risk. Moreover, findings may contribute to preventing 
declines in other endangered and endemic taxonomic groups.   

1. Introduction 

There is mounting evidence that the Earth is in the midst of a global 
biodiversity crisis. Estimates suggest that vertebrate species population 
sizes have halved in the past 40 years (McLellan et al., 2014), and that, at 
present, more than one million species face extinction (Montanarella 
et al., 2018). Determining why some species are more susceptible to 
extinction is critical for implementing effective conservation strategies 
to preserve biodiversity. Both evolutionary and ecological factors can 
influence the degree of threat that species face, and these factors can 
generally be categorized as intrinsic (species' traits and evolutionary 
history) or extrinsic (relating to the external environment) (Blackburn 
and Gaston, 2002; Fisher et al., 2003; Purvis et al., 2000a). 

Common intrinsic factors include traits such as body size, longevity, 
and group size. Large body size is often cited as the prepotent intrinsic 
predictor of extinction risk (McKinney, 1997; Rapacciuolo et al., 2017). 
Studies have found that for species below 3 kg, extinction risk is 
generally driven by external threats, whereas in larger species it is 

driven by a combination of external and intrinsic factors, and vulnera
bility to most threats increases sharply (Cardillo et al., 2005; Davies 
et al., 2008). Larger species tend to exhibit slower life histories than 
smaller species, meaning they reach sexual maturity later, have longer 
gestation periods and interbirth intervals, as well as smaller litter sizes. 
These factors reduce resilience, making it more difficult for them to 
offset high mortality with high fecundity, thus rendering them more 
vulnerable to extinction (McKinney, 1997). Intrinsic factors also 
comprise aspects of the ecology of large species that may increase their 
extinction risk, such as trophic level, activity cycle, habitat breadth, and 
home range size. For example, Atwood et al. (2020) found a corelation 
between body size and herbivory. Both these factors independently in
fluence threat status in mammals, yet because of their shared evolu
tionary history they are not completely independent. When this is 
controlled for, some of this effect disappears, meaning that herbivory 
may be a spurious driver in such groups. Furthermore, diurnal species 
display a host of attributes that may predispose them to extinction, such 
as large body size, high predation rates, and vulnerability to hunting 
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(Purvis et al., 2000a). 
Extrinsic factors, such as biogeographic and climatic variables as 

well as anthropogenic disturbance, also drive species towards extinc
tion. Human activities have likely contributed to species extinctions 
since the late Pleistocene, as evidenced by a mean body mass decline in 
taxa (Barnosky et al., 2004). Currently, the primary human-caused 
drivers that threaten biodiversity are habitat loss and fragmentation, 
hunting, invasive species, disease, pollution, and climate change (Baillie 
et al., 2004; Koch and Barnosky, 2006). While habitat loss is regarded as 
the primary threat, some analyses indicate that climate change is 
already affecting many species (Parmesan and Yohe, 2003) and may 
soon be the predominant driver of extinction (Thuiller, 2007; Urban, 
2015). Thus, understanding species' climate niches and tolerances is 
necessary for predicting their responses to changing temperatures. 

Extinction risk analysis is used to assess the probability of species' 
extinction, calculated as a function of their intrinsic biological charac
teristics and extrinsic factors. Over the last several decades, phyloge
netic comparative methods (PCMs) have emerged as a powerful 
framework to model how threat status is affected by such factors 
(Garamszegi, 2014), with the goal of identifying the causes of species 
declines and predicting how changes in stressors will affect threat status 
(Fisher and Owens, 2004; Purvis, 2008). PCMs can be used to elucidate 
the evolution of biological traits, the intrinsic and extrinsic factors that 
contribute to speciation and extinction, and to account for the phylo
genetic non-independence of taxa (Cornwell and Nakagawa, 2017). 
These methods can also be used to examine the “tempo” (speed) and 
“mode” (manner) of evolution in traits (Simpson, 1984), informing us 
how traits are evolving. A popular model of trait evolution is Brownian 
Motion (BM), which can be described as a ‘random walk’ through time 
(Revell et al., 2008). This model is often used due its application to a 
wide range of evolutionary scenarios, as well as being relatively 
straightforward to statistically fit to data (discussed in Harmon, 2019). 
In this model, trait values change randomly over time and descendent 
species drift away from each other following a speciation event (Fel
senstein, 1985). A modification of this model is the Ornstein–Uhlenbeck 
(OU) model, which posits that trait values are being “pulled” towards an 
optimum (Butler and King, 2004). We can also evaluate evolution using 
metrics such as Pagel's λ, a measure of phylogenetic signal (Pagel, 1999), 
which measures the extent to which closely related species resemble 
each other, as approximated by BM. Additionally, Pagel's κ can signal 
whether evolution is occurring in a more punctuated manner, i.e. trait 
change is concentrated at speciation events, rather than constant over 
time. This may signify a case of adaptive radiation, in which diversifi
cation of lineages is associated with diversification of traits (Gavrilets 
and Losos, 2009). 

PCMs are most effective when dealing with a complete monophyletic 
clade within which a single process is operating, such as when species 
evolved in relatively remote and circumscribed ranges. An example of 
this is the lemurs of Madagascar. Madagascar is the world's fourth- 
largest island, and an ideal natural laboratory for exploring evolu
tionary processes (Vences et al., 2009). It is home to an exceptional 
number of endemic species, making it one of the greatest biodiversity 
hotspots (Myers et al., 2000). Several entirely endemic clades have been 
evolving across the landscape in relative isolation for millions of years, 
including lemurs, carnivores, tenrecs, reptiles, and amphibians, which 
are 92–100 % endemic (Antonelli et al., 2022; Goodman and Benstead, 
2005). Thus, conservation in Madagascar is important not only for 
safeguarding living species, but also for preserving deep lineages and 
important pieces of evolutionary history (Davies et al., 2013). 

As Madagascar's endemic primates, lemurs have been a predominant 
target of evolutionary theory and research. Lemurs belong to the 
Strepsirrhini suborder of primates, comprising over 100 known extant 
species, approximately 94 % of which are vulnerable to extinction 
(Davies et al., 2013). Indeed, lemurs have been cited as the most en
dangered vertebrates (Davies et al., 2013). Lemurs are widely distrib
uted throughout the forested habitats of Madagascar, including eastern 

rainforests, western tropical dry forests, and southern arid spiny forest. 
This steep geographic and climatic gradient of the landscape may have 
had a considerable impact on the evolution of lemur traits (Dewar and 
Richard, 2007; Wright, 1999). Consequently, lemurs are taxonomically 
and phenotypically diverse. Body size in extant species ranges from 30 g 
(Microcebus berthae, the smallest living primate) to nearly 10kg (Indri 
indri), while recently extinct lemurs have been recorded as weighing up 
to 160 kg (Archaeoindris fontoynontii) (Godfrey and Jungers, 2003). Le
murs also exhibit wide interspecific variation in dietary preferences, 
habitat breadth, and activity patterns which likely coevolved with body 
mass (Herrera, 2017a). Concerning activity patterns, some species are 
classified as strictly nocturnal/diurnal, whereas others are cathemeral, 
meaning their activity occurs at irregular times (Santini et al., 2015). 
Climate change over deep time may play a role in how lemurs have 
evolved and diversified (Godfrey et al., 2020; Herrera, 2020). This is 
relevant because temperature continues to rise across Madagascar, 
causing hotter dry seasons, wetter rainy seasons, and increases in 
number and severity of cyclones and droughts (Nematchoua et al., 
2018). 

Although many of the intricacies of lemur origins and evolution 
remain unknown, there is evidence that this clade has been evolving in 
relative isolation for approximately 50–60 million years (Herrera and 
Dávalos, 2016; Yoder and Yang, 2004). To date, there have been no 
analyses of the drivers of extinction risk across a nearly complete lemur 
phylogeny that considers both biological and environmental factors. In 
fact, lemurs have been excluded from research to ensure results would 
not be driven by this extremely threatened and unique group (Verde 
Arregoitia et al., 2013). Discerning the factors that predispose lemur 
species to greater extinction risk will help fill these research gaps, allow 
for more effective planning of conservation action in Madagascar, and 
aid our understanding and prevention of declines in other endemic or at- 
risk taxonomic groups. Thus, the fundamental goal of this project was to 
investigate the various drivers of extinction risk in these endemic pri
mates. First, using extensive phenotypic data on species traits related to 
their intrinsic biology, as well as environmental data related to the 
external environments they live in, we investigated the tempo and mode 
of trait evolution across the entire lemur phylogeny. We then investi
gated the drivers of extinction risk by regressing extinction risk against 
intrinsic and extrinsic factors. Additionally, we used climate forecasts 
and rates of trait evolution to predict how lemurs will respond to 
anticipated climate change. Based on existing studies of extinction risk 
and evolution, we made the following hypotheses:  

1) With respect to trait evolution, we expected to find evidence of high 
phylogenetic signal in life-history traits, consistent with past 
research in lemurs and other primates (Kamilar et al., 2012; Kamilar 
and Cooper, 2013).  

2) We hypothesized that both intrinsic and extrinsic factors will predict 
extinction risk. The former would be consistent with past research in 
other mammals (Purvis et al., 2000b), whereas the latter is based on 
more recent studies that concluded narrow climate niches and 
human pressure were positively correlated with extinction risk 
(Chichorro et al., 2020; Di Marco et al., 2018).  

3) Based on recent projections of rapid climate change, we predicted 
that climate niches, along with all other intrinsic and extrinsic fac
tors, are evolving at a slower rate than the climate in Madagascar is 
changing. 

The results of this study should advance the understanding of the 
factors contributing to lemurs' vulnerability to extinction and serve as a 
case study for other endangered or endemic island species. 

2. Methods 

We evaluated the drivers of extinction risk in lemurs using a dataset 
of intrinsic and extrinsic factors. We examined collinearity among 
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variables to select which traits to incorporate in analyses, and then fitted 
statistical models to test the tempos and modes of trait evolution. To 
determine how these traits relate to extinction risk, we conducted a 
phylogenetic regression analysis to examine correlations between traits 
and extinction risk, defined as IUCN Red List Status. Finally, we esti
mated rates of lemur trait evolution and projected forward to predict 
how lemurs will fare under climate change. All analyses were conducted 
using R version 4.0.2 (R Core Team, 2020); R package names are given 
in ‘single quotes’ while function names are in italics. 

2.1. Trait data and phylogeny 

This study included traits compiled from the literature (Table 1), 
based on two datasets to encompass the range of traits across species. 
The primary dataset was compiled from original literature sources 
(Table B1). We filled in some missing data from this dataset using a 
secondary dataset, Razafindratsima et al. (2018), which was a compi
lation of traits representing the ecological and geographical diversity of 
all extant mammal and bird species of Madagascar. As an index of 
extinction risk, we used data from the IUCN Red List of Threatened 
Species (IUCN, 2021), which includes 107 lemur species. The Red List is 
comprised of categories (ranging from least concern to extinct) that 
classify risk of extinction based on five criteria: population reduction, 
geographic range, small population size and decline, very small or 
restricted population, and probability of extinction (IUCN, 2012). 
Following Atwood et al. (2020), we incorporated all lemurs' IUCN Red 
List extinction statuses as data (IUCN, 2012). To incorporate phyloge
netic information into the models, we used a time-calibrated maximum 
clade credibility phylogeny of 114 lemur species (Herrera and Dávalos, 
2016). 

2.2. Geographic range and environmental data 

To extract environmental variables from within lemur geographic 
distributions, we used polygon shapefiles of extant lemur distribution 
maps (IUCN, 2021) and obtained climate data from WorldClim (Hijmans 
et al., 2005). Using extract in ‘raster’ (Hijmans, 2022), we extracted 
climate data (collected from 1970–2000) for all species. We calculated 
the mean and variance of annual temperature (BIO1), as well as the 
means for temperature range (BIO7), annual precipitation (BIO12) and 
precipitation seasonality (BIO15). We included precipitation variables 
to capture climates that may not vastly differ in temperature alone. We 
also retrieved WorldClim future climate projections. We extracted the 
projected mean temperature for the years 2061–2080 under the best 
case (rcp 2.6) and worst case (rcp 8.5) climate change scenarios and 
calculated the mean for each species (Taylor et al., 2012; van Vuuren 
et al., 2011). We used data from the ‘IPSL-CM5A-LR’ model, with a 
spatial resolution of 10 min of a degree of longitude and latitude 
(approximately 320 km2). Lemur distributions ranged from around 20 
km2 to 101,442 km2. Lastly, to measure anthropogenic pressures within 
species' ranges, we obtained the 2009 Human Footprint index (HFP) 
data which measures cumulative human pressures, such as population 
density, and the spatial extent of railways, roads, and electrical infra
structure (Venter et al., 2016). 

Missing values are common in trait data, and excluding species on 
the basis of missing data not only reduces sample size and thus statistical 
power, but risks introducing bias into analysis (Little and Rubin, 2002). 
To account for gaps in the datasets, we imputed missing values for all 
continuous trait data based on ancestral character reconstruction using 
phyEstimate in ‘picante’ (Garland, and Ives, 2000; Kembel et al., 2010). 
In total, 29.6 % of the data was missing and imputed. Refer to the Ap
pendix for the percentage of imputed data for each trait (Table A1) and 
the pre- and post-imputation data tables (Tables C1 and C2, respec
tively). Since imputing using phylogeny would introduce obvious biases 
in our analyses of the tempo and mode of trait evolution across phy
logeny (Section 2.3 below), we did not use such imputed estimates in 

those analyses, but only in our regression analyses (Section 2.4 below). 
All trait-evolution analyses were conducted using the original data 
without imputation. 

2.3. Trait evolution 

The ultimate goal of this study was to understand the factors that 

Table 1 
A description of all traits included in the dataset that were deemed as possibly 
important to extinction risk. * = Predictor variables used for regression analyses.  

Trait Description Range Units 

Intrinsic traits 
Brain size Estimates of the cranial capacity 1.7–135.6 cm3 

* Body mass Body mass averaged across sexes. 
Midpoints used if averages were 
unavailable 

30.6–161,200 g 

* IBI Interbirth interval. The length of 
time between successive births of 
the same female(s) after a 
successful or unspecified litter 

210–1460 days 

* AFR Average age of first reproduction 321.4–1964.4 days 
Gestation length Length of time of fetal growth 

from conception to birth 
52–321.2 days 

Weaning days Age at which infants are weaned 37.8–1095 days 
* Longevity Maximum adult longevity 103–472.6 months 
* Litter size Average number of offspring per 

female per litter 
1–4.4 # 

* Home range Mean size of the area in which 
daily activities are generally 
restricted for a social group 

0.0019–13.3 km2 

* Group size Average number of individuals in 
a social group 

1–17 # 

* Trophic level Based on diet: (0) herbivore; (1) 
omnivore  

N/A 

* Habitat breadth Number of habitat layers used by 
each species. Layers include 
above-ground dwelling, aquatic, 
fossorial and ground dwelling. 
Coded as single habitat layer (0) or 
multiple layers (1)  

N/A 

* Activity cycle Activity cycle of each species. 
Activity cycles include: (1) 
nocturnal only; (2) nocturnal/ 
crepuscular, cathemeral, 
crepuscular or diurnal/ 
crepuscular and (3) diurnal only  

N/A  

Extrinsic traits 
* Mean 

temperature 
Mean annual temperature (BIO1) 
across each species' geographic 
range 

17.4–26.8 ◦C 

* Temperature 
variance 

Variance in mean annual 
temperature across each species' 
geographic range 

0.003–106.3 ◦C 

Maximum 
temperature 

Max Temperature of Warmest 
Month (BIO5) 

25.7–35.5 ◦C 

Minimum 
temperature 

Min Temperature of Coldest 
Month (BIO6) 

8.3–19.8 ◦C 

Temperature 
range 

Mean annual temperature range 
(BIO7) across each species' 
geographic range 

11.4–24.4 ◦C 

* Annual 
Precipitations 

Mean annual precipitation 
(BIO12) across each species' 
geographic range 

507.2–2770.6 mm 

* Precipitation 
seasonality 

Precipitation Coefficient of 
Variation (BIO15). A measure of 
the variation in monthly 
precipitation totals over the course 
of the year across each species' 
geographic range 

41.6–124.2 mm 

* HFP Human Footprint Index of 
cumulative pressures on the 
environment in 2009 across each 
species' geographic range 

3.3–10.1 N/A  
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render lemur species to be more susceptible to extinction, part of which 
includes understanding the evolution of these factors. A fundamental 
goal in PCM involves determining the model, or mode, of evolution 
under which traits are evolving (Hernández et al., 2013). To test the 
most likely mode of trait evolution, we fit several models. We estimated 
σ2 – a measure of the variance in a macroevolutionary time scale under 
the BM model. σ2 measures the tempo of evolution by evaluating the rate 
at which trait values of related species will diverge from each other. We 
also estimated α, a parameter of the OU model that measures the 
strength of return towards a theoretical optimum (Hansen, 1997). 
Larger values of α signify a faster approach towards the optimum and 
constraint around the optimal trait value. When α is 0, the OU model is 
equivalent to the BM model. Lastly, we fit a white-noise (null) model 
that assumes no phylogenetic relationship. 

Evaluating the extent to which closely related species resemble each 
other, or their ‘phylogenetic signal’, is another fundamental part of 
PCMs (Münkemüller et al., 2012). We estimated Pagel's λ, a metric for 
measuring patterns of phylogenetic signal (Pagel, 1999), on continuous 
traits across the entire lemur phylogeny. λ is measured on a scale of 0–1, 
where traits with a value closer to 1 exhibit strong phylogenetic signal 
consistent with a BM model of evolution, and values closer to 0 are 
consistent with a white-noise model. For binary traits, we measured 
phylogenetic signal using D statistic (Fritz and Purvis, 2010). D and λ are 
conceptually linked, although D is anchored with 0 reflecting the 
expectation under BM (unlike λ, where the expectation is 1), and so we 
follow Díaz et al. (2013) in reporting 1-D for ease of comparison with λ. 
We also estimated Pagel's κ, a metric of mode that reflects a punctua
tional versus gradual mode of evolution. Like λ, a κ value of 1 refers to 
gradual evolution under a BM model, while a value of 0 signals that 
character change may be more concentrated at speciation events, 
consistent with adaptive radiation, for example. 

We used Akaike Information Criterion (AIC) scores to assess models' 
fit (Burnham and Anderson, 2004; Richards, 2005) and determined the 
best model as the one with the lowest AIC score. We conducted likeli
hood ratio tests to determine if λ and κ values differed significantly from 
0. Prior to analyses, we log-transformed all values to reduce skew. All 
models of continuous traits were fit using fitContinuous in ‘geiger’ 
(Pennell et al., 2014) and binary traits were measured using phylo.d in 
‘caper’ (Orme et al., 2018). 

2.4. Phylogenetic regression 

We constructed a Phylogenetic Generalized Least Squares (PGLS) 
model to determine what factors best predict extinction risk in lemurs. 
We calculated variation inflation factors (VIF) to assess collinearity 
among continuous predictor variables (Kock, 2015), and thus removed 
all variables with a VIF greater than three: temperature range, maximum 
temperature, minimum temperature, weaning days, brain size, and 
gestation length. We used Red List statuses as a measure of extinction 
risk. Following Purvis et al. (2000a), we converted these ratings into an 
ordinal index. We chose not to include species that fell under Least 
Concern or Near Threatened, as these groups only included 3 species in 
total (2.5 % of our data) and were insufficient for analyses. We also 
excluded Extinct species, due to insufficient trait data, and Data Defi
cient species, reducing the sample size to 97 species. Our final index 
used for the regression analysis was: Vulnerable (VU) = 1, Endangered 
(EN) = 2, Critically Endangered (CR) = 3. 

We modeled Red List status as a continuous measure of threat status 
following Purvis et al. (2000a). While there is the potential for this to 
introduce type I errors, Matthews et al. (2011) found that these error 
rates did not increase when ordinal data were used for PGLS. Using the 
pgls function in ‘caper’ (Orme et al., 2018), we tested the relationship 
between Red List status and predictor variables. PGLS corrects for 
phylogenetic nonindependence during model-fitting using the 
maximum likelihood estimate of Pagel's λ (Pagel, 1999). We first con
structed a maximal PGLS model, with 12 continuous predictor variables 

and three discrete variables (variables with asterisks in Table 1). Before 
analysis, all continuous variables were log-transformed. To make model 
coefficients for continuous variables with different units comparable, we 
z-transformed the data to a distribution with a standard deviation of 0.5 
(Gelman, 2008). We assessed diagnostic plots of the residuals for 
goodness of fit. 

It is important to note that range size is used as a criterion (criterion 
B) for assessing IUCN Red List status. We acknowledge that this in
troduces some biases and limits our discussion of range size. It also 
presents an issue when incorporating temperature variance into our 
regression models, as larger temperature variance may be due to a larger 
range size (because a larger range potentially exposes the species to a 
greater variation in temperature). We cannot exclude species classified 
under criterion B from our analyses as that would remove a large pro
portion (45 of 97) of species. We also recognize that incorporating range 
size directly into our model would create circularity issues. To mitigate 
these challenges, we divide temperature variance by the number of grid 
cells within each species' range. This approach aims to reduce the cor
relation between temperature variance and range size, particularly 
addressing the problem of larger temperature variances in species with 
expansive ranges. 

To determine which predictor variables best explained extinction 
risk, we fit all possible simpler model combinations of the maximal 
model using ‘MuMIn’ (Bartoń, 2022). Model performance is measured 
using small-sample corrected Akaike Information Criterion (AICc) 
weights. We compared the full model-averaged coefficients to determine 
the relative importance of all predictor variables, averaged across co
efficient and parameter uncertainty. In addition to our continuous PGLS 
model, we modeled extinction risk as a binary response to account for 
any potential errors or inaccurate interpretations associated with 
modeling extinction risk as a continuous variable, as well as to identify 
any differences between any two Red List Categories. The methods and 
results for these analyses can be found in Appendix D. 

2.5. Projections 

We compared the estimated macroevolutionary diversification rates 
of lemurs against the rate of projected climate change. We used the 
estimated σ2 values (estimated as described in Section 2.3; found to be 
the best-supported model of trait evolution as outlined in Section 3.1) to 
determine the rate at which trait values of related species will diverge 
from each other. It should be noted that these estimates assume traits are 
evolving at a constant rate, consistent with BM. Although it has been 
argued that BM is not the best model for trait evolution (Elliot and 
Mooers, 2014), we found support for the BM model across all traits 
(although, as discussed below, some support for OU and one trait almost 
as well-explained by a κ transformation as a λ). Thus, we suggest that 
these estimates are reasonable. Models of continuous traits were fit 
using fitContinuous in ‘geiger’ (Pennell et al., 2014). To understand how 
rates of trait evolution compared to rates of climate change, we con
verted trait rates into units of ‘felsens’, which makes traits directly 
comparable. A felsen is the variance among log-transformed trait values 
per million years (Ackerly, 2009), such that greater values indicate 
faster evolution and so greater variation among species' traits. Using 
historic climate data and future projections, we calculated the rate of 
climate change per century. We divided estimated felsens by 10,000 to 
convert from units of millions of years to centuries. Finally, we 
compared rates of trait evolution to rates of climate change for each 
species' distribution to deduce if climate is changing faster than traits are 
evolving. 

3. Results 

The full dataset used for analyses included 114 lemur species: 101 
extant and 13 extinct, representing at least 93 % of all known species. 
Across the lemur phylogeny, 26 % of species fall into VU, 41 % fall into 
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EN, and 33 % fall into CR. Fig. 1 shows a breakdown of extant species by 
family and Red List status. 

3.1. Trait evolution 

We found that λ models best explained trait evolution for nine of the 
12 traits (Table 2). The values from these models support that traits are 
evolving closer to a BM model of evolution (Fig. 2), since λ is a measure 
of phylogenetic signal, and a value of 1 is consistent with pure BM 
evolution. While the Pagel transformations (λ, δ, and κ) are technically 
metrics that summarise phylogenetic transformations, for simplicity of 
presentation and to highlight that they relate to evolutionary models, we 
refer to them as ‘models’ here, since we are modeling the fit to our data. 
Of our 12 traits, all but one (temperature variance; λ = 0.18, p < 0.01) 
showed moderately strong phylogenetic signal (all λ > 0.6, p < 0.05), 
indicating that traits are evolving closer to BM. The D estimate 
(Table A2) for trophic level (1-D = 1.44) signalled significant and 
extreme phylogenetic clumping, while habitat breadth (1-D = 0.35) 
indicated significant, yet weak phylogenetic signal. Body mass (λ = 1, p 
< 0.0001) had the strongest signal, suggesting that it is evolving under 
“perfect” BM. According to AIC values, the OU model was the best model 
for temperature range, mean precipitation, mean temperature, and 
precipitation seasonality (mean temperature and precipitation season
ality showed equal support for λ). However, none of these traits 
exhibited a strong alpha value (α < 0.43 for all). While the BM model 
was best only for body mass, λ, α, and κ values indicated that many traits 
are evolving close to BM. Other exceptions include HFP (the only trait 
for which the null model was among the best), AFR and home range 
(both of which show high α values consistent with OU), and temperature 
variance (which displayed low phylogenetic signal.) Notably, group size 
showed most support for λ and κ transformations, with estimates of λ 
close to 1 (supporting BM evolution) and κ of 0 (supporting punctuated 
evolution). Values of σ2 indicate that home range is evolving much more 
rapidly than any other trait. Fig. 2 displays comparisons of λ, σ2, α, and κ 
across all traits (exact values displayed in Table A3). 

3.2. Phylogenetic regressions 

From the PGLS (n = 97, only extant species included), Pagel's λ was 
estimated at λ = 0, which indicates no phylogenetic signal in the re
siduals of the model (Uyeda et al., 2018). The model-averaged coeffi
cient estimates in the full-model showed that diurnal activity cycle, 
longevity, temperature mean, body mass, and temperature variance 
were the strongest predictors (meaning they had the greatest standard 
effect sizes) of extinction risk (Table 3; Fig. 3). Being diurnal was the 
most important variable in the model, exhibiting a positive correlation 
with extinction risk. Longevity was the second most important predictor, 
with a negative correlation. Temperature mean, body mass, and tem
perature variance were all positively correlated with extinction risk and 
displayed relatively strong importance in the model, according to the 
standard effect sizes from the full model-averaged coefficients. 

Fig. 1. Visualizations of Red List status distribution among families. (Left) Extant lemur phylogeny of the 97 species with Red List statuses. The four largest families 
are shown with Red List status at the tips. Colors of families on phylogeny correspond to colors in the family graphs. (Right) Bar chart displaying the percentage of 
species in each family that fall into each Red List category. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.) 

Table 2 
Results of model comparison testing tempo and mode of trait evolution. AIC 
values for each trait, under five different models (λ, BM, OU, κ, and a null 
model). ‘BM’ is measured from σ2 values, and ‘OU’ from α. AIC values within two 
units of each other are considered equivalent. For most traits, the best supported 
model (indicated in bold) was λ.   

λ BM OU κ null 

Body mass 144.50 142.50 144.50 144.50 465.94 
Age at first 

reproduction 
28.90 56.66 42.13 31.96 40.11 

Interbirth interval 29.40 50.86 41.81 31.42 53.06 
Longevity 42.25 75.47 57.98 50.04 66.80 
Litter size 25.59 43.94 31.60 28.98 51.91 
Home range 204.35 315.24 218.24 210.09 212.87 
Group size 69.87 113.90 105.05 69.17 143.65 
Temp. mean ¡137.61 −85.69 −135.69 −129.62 −134.22 
Temp. variance 363.77 431.08 368.31 385.23 370.38 
Annual precipitation 63.20 84.53 54.19 68.03 62.76 
Precipitation 

seasonality 
31.57 88.81 33.62 42.08 35.52 

Human footprint ¡18.80 65.67 ¡19.54 21.02 ¡20.80  
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Violin plots showing comparative distributions of species in each Red 
List category (VU = Vulnerable, EN = Endangered, CR = Critically En
dangered) for log-transformed (A) longevity, (B) body mass (C) tem
perature mean, and (D) temperature variance. Boxplots represent the 
median and interquartile range for each group. Red circles are labelled 
with the mean value for each trait in each category. Significant values 
from a pairwise Games-Howell test are displayed, which were calculated 
using ggbetweenstats in ‘ggstatsplot’ (Patil, 2021). Here, we see that there 
is a positive relationship between extinction risk and body mass, tem
perature mean, and temperature variance, as well as a negative 

relationship between extinction risk and longevity. (E) Stacked bar 
graph showing the percentage of species in each activity level for each 
Red List category. From this we can visualize how extinction risk is 
positively and negatively associated with diurnal and cathemeral spe
cies, respectively. 

3.3. Projections 

To make predictions about how lemurs will fare in the future given 
climate change, we estimated rates at which traits were evolving, as well 
as the rate at which climate is changing under the best- and worst-case 
climate change scenarios. All rates of change were converted to felsen 
units to allow for direct comparison. For all 12 traits in each of the 114 
species, the rate of trait evolution was slower than the rate of temper
ature change expected for the geographic range of the species 
(Table A4). This held true for both temperature change scenarios. The 
mean rate of temperature change across all species' range was 0.093 
felsen units per 100 years under the best-case scenario, and 0.192 units 
under the worst-case scenario. For comparison, the fastest evolving trait, 
home range, is changing at a rate of 0.00033 units per 100 years. Thus, 
temperature is projected to change faster by two to three orders of 
magnitude than the fastest evolving trait (Fig. 4). 

4. Discussion 

Using an extensive dataset of intrinsic and extrinsic factors, we 
applied PCMs to a focused clade to investigate the drivers of extinction 
risk in lemurs. We found that home range and temperature variance are 
evolving fastest, and most traits appear to be evolving under the BM 
model of evolution. We found that the strongest predictors of extinction 
risk were diurnal activity cycle and longevity, along with temperature 
mean, body mass, and temperature variance. Analysis of climate pro
jections and rates of trait evolution revealed that, even under a best-case 
climate change scenario, through the macro-evolutionary past lemur 
traits have been evolving slower than the climate is currently changing. 

4.1. Trait evolution 

We investigated the tempo and mode of evolution across traits. We 

Fig. 2. Comparison of λ, σ2, α and κ values for each trait across the lemur suborder. Traits are plotted along the x-axis. The λ plot shows that all traits, with the 
exception of human footprint (HFP) and temperature variance, display intermediate phylogenetic signal (λ > 0.6). The σ2 plot shows that home range, followed by 
temperature variance, is evolving at the fastest rates under the BM model. The α plot indicates multiple traits are experiencing a “pull” towards an optimum, however 
of these, HFP is the only variable where the α model had the lowest AIC value, indicating this model is the best fit. The κ plot indicates that body mass is evolving 
consistent with the BM model. 

Table 3 
Phylogenetically-controlled regression model, showing the major predictors of 
threat status. The estimate column refers to standard effect size, and Pr(>|z|) 
refers to p-value associated with the value in the z value column. The intercept 
acts as a reference (meaning the different factor levels are contrasts against it), 
and in this case refers to a nocturnal only activity cycle. Since (as described in 
the text) our explanatory variables are scaled so as to make their coefficients 
estimates of relative importance, we highlight in bold those variables that are 
noticeably larger (>0.3) and so are more important in the model.   

Estimate Std. 
Error 

Z value Pr(>| 
z|) 

Intercept – activity cycle 
(nocturnal) 

3.961 0.117 33.426 0 

Activity cycle (crepuscular/ 
cathemeral) 

0.117 0.222 0.526 0.599 

Activity cycle (diurnal) 0.642 0.345 1.863 0.062 
Longevity ¡0.422 0.172 2.454 0.014 
Body mass 0.361 0.275 1.314 0.189 
Temperature mean 0.381 0.169 2.262 0.024 
Temperature variance 0.336 0.173 0.942 0.052 
Interbirth interval 0.048 0.122 0.390 0.696 
Habitat breadth 0.026 0.089 0.291 0.771 
Precipitation seasonality −0.004 0.044 0.093 0.926 
Age at first reproduction −0.004 0.102 0.035 0.972 
Human footprint 0.002 0.032 0.070 0.944 
Home range −0.002 0.038 0.050 0.960 
Trophic level −0.013 0.089 0.148 0.883 
Annual precipitation 0.001 0.031 0.022 0.982 
Litter size −0.013 0.086 0.149 0.882 
Group size −0.0003 0.063 0.004 0.997  
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found that across all traits, life-history traits generally exhibited the 
strongest phylogenetic signal. However, signal was still moderately high 
(>0.6 λ, Table A2) across most traits, indicating that phylogeny in
fluences similarities in lemur life history, morphology, ecology, as well 
as in some environmental niches. Some of this phylogenetic structure 
may have been lost over time (Freckleton et al., 2002), and there are 
likely other covariates related to trait evolution. Notably, body mass 
appeared to be evolving under pure BM. Similarly, Kamilar et al. (2012) 
found high phylogenetic signal in lemur body mass, and Kamilar and 

Cooper (2013) found relatively high phylogenetic signal in primate body 
mass compared to most other traits. Other studies found differing re
sults. Kamilar and Muldoon (2010) detected weak phylogenetic signal 
across lemur environmental niche traits, but this may be due to multiple 
convergent optima in environmental niches across lineages, rather than 
a single rate across the whole clade (Herrera, 2020). Similarly, while 
Kamilar et al. (2012) found a BM model for body mass across the whole 
clade, Herrera (2017b) found evidence of OU evolution in lemur body 
mass. In this study, we used a more complete trait dataset compared to 

Fig. 3. Visualisation of the most important predictor variables across all regression models.  
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Kamilar and Muldoon (2010), which analysed only 43 species and used 
range maps that are now considered outdated. Similarly, differences in 
methodology may explain these discrepancies. For example, in this 
study we assumed a single rate of trait evolution across lineages, while a 
multi-peak OU model showed that body mass evolved under different 
rates for species with different diets and activity patterns (Herrera, 
2017b). Additionally, Cooper et al. (2016) caution that the OU model is 
often incorrectly favoured over simpler models in smaller datasets. In 
summary, our results may differ from previous studies because of our 
more complete dataset, as well as assuming a single rate of trait evolu
tion across the whole clade. We feel that these results reflect the varying 
degrees to which species' niches evolved according to simple models of 
variation through time and warrants the use of phylogenetic regression 
in further analyses. 

4.2. Extinction risk regression analysis 

Regression analysis revealed that both intrinsic and extrinsic factors 
predicted extinction risk, as hypothesized. Activity cycle was identified 
as an important predictor of extinction risk, indicating that diurnal 
species have a significantly higher extinction risk than nocturnal or 
cathemeral species. This was expected, as some of the most endangered 
lemur groups are diurnal (e.g., Indri and Varecia), and diurnal species in 
general are more likely to become functionally extinct compared to 
nocturnal, crepuscular, and cathemeral species (Cox et al., 2022). This is 
due to factors such as increased vulnerability to hunting and typically 
larger body size (Cox et al., 2022; Purvis et al., 2000a). Notably, Cox 
et al. concluded that the eradication of diurnal primates, in particular, 
will result in major functional losses in global trait space. Many of the 
nocturnal species (e.g., Cheirogaleidae) are abundant, and the greatest 
threat they face is loss of habitat. Species that are cathemeral (e.g., 
Eulemer collaris) have the greatest plasticity in their behaviour which 
confers several advantages, including flexible foraging over a 24-hour 
period (Donati et al., 2007). In support of this, a significant negative 
correlation between cathemeral species and extinction risk was detected 
when comparing Vulnerable and Critically Endangered species. 

Somewhat surprisingly, we found that longevity is negatively asso
ciated with extinction risk. Most literature (González-Suárez et al., 2013; 
Purvis et al., 2000a) suggests that extinction risk increases with 
longevity. However, it could be that controlling for other confounding 
variables reveals that the pattern is not the same for lemurs. It is also 
possible that the more generalist species, which tend to be compara
tively longer-lived, are faring better than the more specialized species, 
which include short-lived species. For example, Eulemur fulvus (listed as 
VU) is a generalist species that inhabits both dry forests in the northwest 
and eastern montane rainforests and has been recorded to live up to 37 
years. Along with E. fulvus, several other Eulemur species that are not 
highly endangered are also generalist species, as well as wide-ranging. 
Importantly, E. fulvus is not listed under IUCN criterion B, thus range 
size was not considered in determining its Red List status. In contrast, 

more range-restricted species, including mouse and sportive lemurs 
(Microcebus and Lepilemur), tend to be rather short-lived and more 
endangered. Notably, these species are nocturnal, a trait we've already 
factored into our analysis, thereby eliminating the influence of activity 
patterns. By accounting for the variance explained by the most highly 
endangered diurnal species, we allow for some of the effects of other 
variables, such as longevity, to be observed. Furthermore, our findings 
align with a study by Morris et al. (2008), which investigated longevity 
across 15 plant and 21 animal taxa, finding that long-lived species 
exhibit greater resilience to changes in climate variability compared to 
their short-lived counterparts. They concluded that the stability in sur
vival rates and consistent reproductive patterns of long-lived species 
shields them from the adverse effects of environmental fluctuations, 
making them less susceptible to variations in survival and reproduction 
rates. 

We also found partial support for our expectation that climate niches 
and high HFP would be predictive of threat status. Although human 
pressure is cited as an increasing threat to biodiversity (Ceballos et al., 
2015; Di Marco et al., 2018), HFP was not a significant predictor in any 
model. This is possibly because HFP measures factors such as high 
population density, light density, and roads – characteristics that are 
rare in Madagascar given the predominance of rural populations with 
low densities and low road and electrical infrastructure [e.g., over 80 % 
of the population is rural, and fewer than 38 % of people have access to 
electricity (“INSTAT”, 2022).] It also excludes the greatest human 
pressures, including deforestation (Morelli et al., 2020) and hunting 
(Borgerson et al., 2022). Additionally, the effects of anthropogenic 
disturbance may not be immediately reflected in wildlife populations, 
meaning that current extinction risk is mostly a product of the past as 
opposed to recent human pressure (Turvey et al., 2017). However, 
Sanderson et al. (2002) and Woolmer et al. (2008) highlight the limited 
value of applying global maps of human footprint to regional studies, 
due to poor accuracy and resolution of maps developed at the global 
scale. Thus, we acknowledge that we likely under-estimate their 
importance in driving lemur declines. 

Supporting our hypothesis that extrinsic factors will predict extinc
tion risk, we found that temperature mean and temperature variance 
were positively correlated with extinction risk. The positive relationship 
between temperature mean and extinction risk could indicate that spe
cies from the western regions of Madagascar are most endangered, since 
these regions are the hottest. Temperature mean and variance predicting 
extinction risk bodes poorly with respect to climate change, given that 
climate change is associated with increases in both temperature and 
temperature variability (Bathiany et al., 2018). Further, if species track 
their current climate niche in the future, 60 % of examined species will 
experience range reductions (Brown and Yoder, 2015). These results 
highlight the importance of closely monitoring species that live in areas 
where temperatures are, or are expected to be, rising. As noted in the 
methods, temperature variance across a species range is potentially 
correlated with range size. While we did our best to control for this, we 

Fig. 4. Visualizations of mean annual temperature in Madagascar under historic and projected future conditions. (A) Mean annual temperature from 1970 to 2000. 
(B) Projected mean annual temperature in 2070 under the ‘best case’ scenario. (C) Projected mean annual temperature in 2070 under the ‘worst case’ scenario. 
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acknowledge that we may still observe some of this effect in the model 
results. Additionally, Faurby and Araújo (2018) discuss the importance 
of including historical range data in analyses of species distributions and 
climate change. While this is beyond the scope of the current study, 
future research should delve deeper into the role of the anthropogenic 
influences and recent range contractions in order to better inform our 
understanding of the correlation between species ranges and traits. 

Body mass was another important predictor of risk. We found a 
positive association between body mass and extinction risk, consistent 
with past studies in primates which concluded that primates with larger 
bodies, as well as smaller litter sizes and longer gestations, experience 
higher extinction risk (Matthews et al., 2011; Purvis et al., 2000a). As 
discussed in the introduction, the slower life history traits that tend to be 
correlated with body size may reduce their resilience, making it chal
lenging to compensate for high mortality rates with high reproduction 
rates. Additionally, larger lemur species are often the target of hunters, 
since they are easier to spot and more sought after due to the larger 
amount of meat they provide for the same amount of effort (Isaac and 
Cowlishaw, 2004; Ripple et al., 2016). This finding, coupled with the 
positive correlation between extinction risk and diurnal activity pat
terns, emphasizes the urgency of tailored conservation efforts for these 
larger, diurnal species. Specifically, these efforts should focus on coun
tering threats such as hunting. Implementing targeted protection mea
sures, such as intensified anti-poaching initiatives and the preservation 
of their habitats, becomes imperative to safeguard these at-risk lemurs 
effectively. 

The results from binary GLMM analyses (Appendix D) partially 
aligned with the results from the PGLS analysis. Consistent with the 
PGLS results, the GLMM analyses indicate a positive correlation between 
temperature variance and temperature mean with extinction risk. This 
reinforces the finding that temperature-related variables significantly 
contribute to extinction risk, similar to previous findings that changing 
temperature is associated with risk of extinction (Hill and Winder, 2019; 
Ozgul et al., 2023; Urban, 2015). 

The binary GLMM analyses also revealed that annual precipitation 
and precipitation seasonality are negatively correlated with extinction 
risk – a trend that was not observed in the PGLS analysis. However, 
various studies across different species (Hill and Winder, 2019; Hordley 
et al., 2023; Román-Palacios and Wiens, 2020) have reached similar 
conclusions regarding changes in precipitation associated with 
increased extinction risk. This finding holds particular significance given 
the environmental context of Madagascar, which has witnessed a 
decrease in annual precipitation, an increase in interannual precipita
tion variability, and an increase in the duration of droughts (Arias et al., 
2021). 

The disparities in identified variables between the PGLS and binary 
GLMMs may be due to some variables exhibiting a more pronounced 
effect when extinction risk is treated as a binary outcome. A binary 
model may capture situations where the association between predictors 
and extinction risk is non-linear or characterized by abrupt changes 
under specific conditions. Variables identified as important predictors of 
risk by only the PGLS, such as activity cycle and longevity, may become 
apparent only when considering the entire spectrum of species as 
opposed to comparing only two Red List groups at a time. 

Sample size limited the extent of our model. First, we did not include 
interactions between intrinsic and extrinsic drivers in the regression 
model, as the statistical power would have been greatly reduced. It is 
also important to note that the value of the IUCN Red List status as the 
dependent variable is limited by its accuracy in capturing true extinction 
risk, which has limitations (Collen et al., 2016). Future studies should 
investigate using different response variables to gauge extinction risk, 
possibly using EDGE scores (Isaac et al., 2007), which incorporate es
timates of the expected loss of evolutionary history with endangered 
status. 

4.3. Projections 

We found that, under both the best-and worst-case climate change 
scenarios, climate is changing faster than the evolutionary rate of all 
examined traits, consistent with our hypothesis. This implies that, based 
on past rates of evolution under a BM model and projected climate in
formation, lemurs are not evolving fast enough to adapt to the changing 
climate. Although this sounds alarming, these results are based on le
murs' realized rather than fundamental niches (Hutchinson, 1957). 
Thus, current distributions may be restricted by other factors such as 
rivers (Goodman and Ganzhorn, 2004). Additionally, mapping macro- 
evolutionary rates of evolution onto micro-timescale changes may not 
be the most appropriate measure of risk. There are many reasons to 
suppose that estimates of trait evolutionary rate on phylogenies are 
under-estimates (Li et al., 2018; Pearse et al., 2018), in particular 
because estimates of macro-evolutionary rates are often much slower 
than evolutionary rate estimates in the present day. We do note, how
ever, that our felsen approach maps onto Brownian Motion evolution, 
which the majority of our traits (but not all) were found to be consistent 
with. Thus, while we are in no way claiming to have proven that lemurs 
cannot evolve to track climate change, given ongoing threats and pop
ulation declines these results underscore the importance of immediate 
preservation of habitat lemurs can survive within right now. We should 
not assume, or perhaps even hope, that they will evolve to be able to 
better survive within more marginal habitat. At this time, we cannot tell 
if the assumption holds for group size, which our analyses suggest is 
either evolving in a punctuated fashion or under BM, but importantly 
group size is not a major predictor of extinction risk here and so this 
assumption is unimportant. Revell (2013) argues that estimates from BM 
models are prone to be biased to be more similar to each other than the 
underlying generating values. Revell et al. (2008) also points out that 
support for a BM model would also be consistent with past, strong se
lection to track environmental conditions changing according to a 
Brownian walk. We suggest that is unlikely in this case, since were le
murs able to track changing conditions so well, we wouldn't expect them 
to be so highly threatened with extinction as a result of recent anthro
pogenic (environmental) stressors. We emphasise that finding support 
for OU evolution in three of our extrinsic (environmental) traits does not 
suggest that changes in climate regime are more likely to be tracked on 
the basis that OU models describe how selection operates across the 
phylogeny (Cooper et al., 2016). If anything, support for OU models 
indicates that lemur evolution is likely to be constrained and thus unable 
to respond to future change. 

It is also important to consider that traits' evolution could produce 
either additive or synergistic adaptive effects, meaning that one trait by 
itself may not be able to evolve fast enough to outpace climate change, 
but a combination of traits evolving might. Conversely, drivers can also 
be multiplicative. Chen et al. (2015) found synergistic effects of human 
egg-harvest and climate change were driving Chinese Crested Terns 
close to extinction, demonstrating how human pressure and climate can 
interact to manifest in a ‘perfect storm’. 

Finally, it is important to mention that, while much of this paper has 
focused on trait evolution and adaptation, species may also respond to 
changing climates and environments through behavioral changes or 
range shifts. For example, Eppley et al. (2022) found that rising tem
peratures and deforestation pressures are causing many species of 
monkeys and lemurs, which typically find shelter and food high up in the 
tree canopy, to spend more time searching for food on the forest floor. 
Nevertheless, it is possible that there will be scenarios where behavioral 
adaptations won't suffice as climate patterns continue to change and 
deforestation further reduces species ranges. 

5. Conclusion 

We applied phylogenetic comparative methods to a unique mono
phyletic clade to determine the intrinsic and extrinsic factors that 
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contribute to species extinction risk. This study has several important 
implications. First, we found that a diurnal activity cycle, followed by a 
shorter lifespan, and large body size, are all predictors of high extinction 
risk. Temperature mean and temperature variance – both of which are 
expected to increase with climate change – are also important predictors 
of risk. Additionally, we found that, based on past evolution, lemurs' 
traits are evolving too slowly to track climate change. Importantly, both 
intrinsic and extrinsic variables were predictors of risk. In fact, pre
dictors were not clustered around any particular type of trait, but were a 
mix of evolutionary, ecological, and environmental factors. This finding 
highlights the need for more focused research that examines specific 
threats to specific species. In the face of a possible 6th mass extinction 
event, determining species extinction risk is critical. Antonelli et al. 
(2022) highlight the importance of understanding Madagascar's biodi
versity and evolutionary history to protect the many unique, yet highly 
threatened species inhabiting this island. Moreover, the current study 
not only contributes to our understanding and prevention of the threats 
facing lemurs, but it serves as a case study for island species more 
generally. This is particularly important given that islands are more 
susceptible to the extreme effects of climate change. Thus, findings are 
relevant for discerning the drivers of extinction of species in Madagascar 
and beyond, setting the stage for future conservation efforts. 
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Torres Jiménez, M.F., Andela, N., Andermann, T., Andriamanohera, A.M., 
Andriambololonera, S., Bachman, S.P., Bacon, C.D., Baker, W.J., Belluardo, F., 
Birkinshaw, C., Borrell, J.S., Cable, S., Canales, N.A., Carrillo, J.D., Clegg, R., 
Clubbe, C., Cooke, R.S.C., Damasco, G., Dhanda, S., Edler, D., Faurby, S., de Lima 
Ferreira, P., Fisher, B.L., Forest, F., Gardiner, L.M., Goodman, S.M., Grace, O.M., 
Guedes, T.B., Henniges, M.C., Hill, R., Lehmann, C.E.R., Lowry, P.P., Marline, L., 
Matos-Maraví, P., Moat, J., Neves, B., Nogueira, M.G.C., Onstein, R.E., 
Papadopulos, A.S.T., Perez-Escobar, O.A., Phelps, L.N., Phillipson, P.B., Pironon, S., 
Przelomska, N.A.S., Rabarimanarivo, M., Rabehevitra, D., Raharimampionona, J., 
Rajaonah, M.T., Rajaonary, F., Rajaovelona, L.R., Rakotoarinivo, M., 
Rakotoarisoa, A.A., Rakotoarisoa, S.E., Rakotomalala, H.N., Rakotonasolo, F., 
Ralaiveloarisoa, B.A., Ramirez-Herranz, M., Randriamamonjy, J.E.N., 
Randriamboavonjy, T., Randrianasolo, V., Rasolohery, A., Ratsifandrihamanana, A. 
N., Ravololomanana, N., Razafiniary, V., Razanajatovo, H., Razanatsoa, E., 
Rivers, M., Sayol, F., Silvestro, D., Vorontsova, M.S., Walker, K., Walker, B.E., 

Wilkin, P., Williams, J., Ziegler, T., Zizka, A., Ralimanana, H., 2022. Madagascar’s 
extraordinary biodiversity: evolution, distribution, and use. Science 378, eabf0869. 
https://doi.org/10.1126/science.abf0869. 

Arias, P.A., Bellouin, N., Coppola, E., Jones, R.G., Krinner, G., Marotzke, J., Naik, V., 
Palmer, M.D., Plattner, G.-K., Rogelj, J., Rojas, M., Sillmann, J., Storelvmo, T., 
Thorne, P.W., Trewin, B., Achutarao, K.M., Adhikary, B., Allan, R.P., Armour, K., 
Bala, G., Barimalala, R., Berger, S., Canadell, J.G., Cassou, C., Cherchi, A., 
Collins, W., Collins, W.D., Connors, S.L., Corti, S., Cruz, F.A., Dentener, F.J., 
Dereczynski, C., Di Luca, A., Diongue-Niang, A., Doblas-Reyes, F.J., Dosio, A., 
Douville, H., Engelbrecht, F., Eyring, V., Fischer, E., Forster, P., Fox-Kemper, B., 
Fuglestvedt, J.S., Fyfe, J.C., Gillett, N.P., Goldfarb, L., Gorodetskaya, I.V., 
Gutiérrez, J.M., Hamdi, R., Hawkins, E., Hewitt, H.T., Hope, P., Islam, A.S., 
Jones, C., Kaufman, D.S., Kopp, R.E., Kosaka, Y., Kossin, J., Krakovska, S., Lee, J.-Y., 
Li, J., Mauritsen, T., Maycock, T.K., Meinshausen, M., Min, S.-K., Scheel 
Monteiro, P., Ngo-Duc, T., Otto, F., Pinto, I., Pirani, A., Raghavan, K., 
Ranasinghe, R., Ruane, A.C., Ruiz, L., Sallée, J.-B., Samset, B.H., Sathyendranath, S., 
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