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Abstract

New technologies have led to vast troves of large and complex data sets
across many scientific domains and industries. People routinely use machine
learning techniques not only to process, visualize, andmake predictions from
these big data, but also to make data-driven discoveries. These discoveries
are often made using interpretable machine learning, or machine learning
models and techniques that yield human-understandable insights. In this
article, we discuss and review the field of interpretable machine learning,
focusing especially on the techniques, as they are often employed to gener-
ate new knowledge or make discoveries from large data sets.We outline the
types of discoveries that can be made using interpretable machine learning
in both supervised and unsupervised settings. Additionally, we focus on the
grand challenge of how to validate these discoveries in a data-driven man-
ner, which promotes trust in machine learning systems and reproducibility
in science.We discuss validation both from a practical perspective, reviewing
approaches based on data-splitting and stability, as well as from a theoretical
perspective, reviewing statistical results on model selection consistency and
uncertainty quantification via statistical inference. Finally, we conclude by
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highlighting open challenges in using interpretable machine learning techniques to make
discoveries, including gaps between theory and practice for validating data-driven discoveries.

1. INTRODUCTION

Machine learning systems have gained widespread use in science, technology, and society. Given
the increasing number of high-stakes machine learning applications and the growing complexity
of machine learning models, many have advocated for interpretability and explainability to pro-
mote understanding of and trust in machine learning results (Rasheed et al. 2022, Toreini et al.
2020, Broderick et al. 2023). In response, there has been a recent explosion of research on in-
terpretable machine learning (IML), mostly focusing on new techniques to interpret black-box
systems; for recent reviews of the IML and explainable artificial intelligence literature, readers
are directed to Doshi-Velez & Kim (2017), Guidotti et al. (2018), Lipton (2018), Carvalho et al.
(2019), Du et al. (2019), Murdoch et al. (2019), and Molnar (2022). While most of these inter-
pretability techniques were not necessarily designed for this purpose, they are increasingly being
used to mine large and complex data sets to generate new insights (Roscher et al. 2020). These
so-called data-driven discoveries are especially important to advance data-rich fields in science,
technology, and medicine. While prior reviews focus mainly on IML techniques, we primarily
review how IML methods promote data-driven discoveries, challenges associated with this task,
and related research opportunities at the intersection of machine learning and statistics.

In the sciences and beyond, IML techniques are routinely employed to make new discoveries
from large and complex data sets; to motivate our review on this topic, we highlight several ex-
amples. First, feature importance and feature selection in supervised learning are popular forms
of interpretation that have led to major breakthroughs like discovering new genomic biomarkers
of diseases (Guyon et al. 2002), discovering physical laws governing dynamical systems (Brunton
et al. 2016), and developing new techniques for finding lesions and other abnormalities in radiol-
ogy (Borjali et al. 2020, Reyes et al. 2020).While most of the IML literature focuses on supervised
learning (Doshi-Velez & Kim 2017, Guidotti et al. 2018, Lipton 2018, Molnar 2022), there have
been many major scientific discoveries made via unsupervised techniques, and we argue that these
approaches should be included in any discussion of IML. For example, one of the earliest andmost
important machine learning findings in medicine was the discovery of genomic subtypes of breast
cancer using hierarchical clustering of gene expression data (Perou et al. 2000); this discovery led
to new ways to diagnose and treat cancer based on a patient’s specific genomic subtype and ush-
ered in an era of personalized medicine (Hassan et al. 2022). Clustering techniques have also been
used to discover galaxies in astronomical surveys (Materne 1978) and characterize communities
with similar political affiliations (Ozer et al. 2016). Other major unsupervised discoveries include
detecting major climate patterns like El Niño and their localized effects via dimension reduc-
tion ( Jolliffe 2002) and discovering the functional organization of the brain via network models
(Rubinov & Sporns 2010). These are just a few of many examples of how IML techniques have led
to new scientific discoveries. As the size and complexity of scientific data continue to grow, IML
techniques will be ever more valuable for mining these data to generate new findings and advance
science, hence motivating our review on this topic.

In this article, we review IML for the purpose of generating new data-driven discoveries. We
also discuss several challenges that come with using IML for discovery, review statistical and
other research that has sought to address these challenges, and highlight many associated open
research opportunities. We organize this article by first reviewing the extensive IML literature in
Section 2. Next, in Section 3, we review IML techniques, but instead of organizing this according
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to technique type as in most other IML reviews, we discuss IML techniques as they are used to
generate different types of discoveries. Our discussion includes both supervised and unsupervised
techniques, given the importance of the latter for generating new knowledge. In order for IML
discoveries to lead to accurate findings, however, we need them to be replicable and reliable (Yu
& Kumbier 2020), which also promotes trust in machine learning results (Toreini et al. 2020,
Broderick et al. 2023). In other words, we need approaches to validate IML discoveries. But
unfortunately, validation for IML is not widely discussed or applied in practice as it presents
many more challenges than validating machine learning predictions. In Section 4, we discuss the
grand challenge of validating IML discoveries and review several practical validation strategies
with examples. Then, in Section 5, we approach validation from a theoretical perspective and
review statistical theory and statistical inference approaches that can help determine when IML
techniques will recover the desired finding with high probability (Section 5.1) and help quantify
the uncertainty in IML discoveries via confidence intervals and statistical hypothesis testing
(Section 5.2). We also give an example of such approaches in Section 5.3. We finally conclude
with a discussion of the major open problems and opportunities in IML for discovery in Section 6.

2. INTERPRETABLE MACHINE LEARNING: DEFINITIONS,
RATIONALE, AND CATEGORIES

Before focusing on IML for making discoveries, we review the growing literature on IML.We dis-
cuss definitions, reasons for using IML, and taxonomies that provide a systematic way to describe
IML techniques. These are summarized in Figure 1.

2.1. What Is Interpretable Machine Learning?

Many have discussed IML, yet there is not a universally accepted consensus definition (Rudin
2014, Du et al. 2019, Murdoch et al. 2019, Barredo Arrieta et al. 2020, Roscher et al. 2020).
Imprecise definitions have likely led to a lack of consensus on how to study and validate IML
techniques, a major concern when these methods are used to make data-driven discoveries
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Definition, rationale, and taxonomies for interpretable machine learning.
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(Gilpin et al. 2018, Rudin et al. 2022). We adopt a broad definition: IML is the use of machine
learning techniques to generate human-understandable insights into data, the learned model, or
the model output. In other words, IML is very general and provides an understanding of any as-
pect of the machine learning process: the model inputs (data), the model insides or model guts (the
model parameters or learned model, or even how the model interacts with data), and the model
outputs (predictions or decisions based on the data and model). As many have noted, what is con-
sidered a human-understandable insight depends on the intended audience and the domain area;
thus, interpretations are domain, problem, and audience specific (Murdoch et al. 2019, Roscher
et al. 2020).

2.2. Why Interpretability?

Why do we need interpretability in machine learning? Many have proposed a number of reasons
and uses for IML (Doshi-Velez & Kim 2017, Guidotti et al. 2018, Lipton 2018, Carvalho et al.
2019, Du et al. 2019, Murdoch et al. 2019, Molnar 2022, Roscher et al. 2020), which we briefly
review here.

2.2.1. Model validation and debugging. When fitting complex machine learning systems, the
modeler may need to check that the model is performing and behaving in the desired manner,
or perform model validation and debugging. One may ask: Does this model make sense? Is this
model behaving as expected and consistently with my prior expectations or knowledge about the
system? This form of human validation requires IML models.

2.2.2. Transparency, accountability, and trust. IML approaches often help to make black-box
and other machine learning systems easier for humans to understand and hence more transparent.
This transparency is critical for promoting accountability and trust of machine learning systems,
which are necessary for their utilization in applications that have high stakes for society (Rudin
2019, Samek & Müller 2019, Xu et al. 2019).

2.2.3. Ethics. There has been an increasing focus on ensuring that machine learning algorithms
are fair and ethical (Doshi-Velez & Kim 2017). Due to biases that exist in our society, machine
learning algorithms that are trained on possibly biased data can often exacerbate these biases, lead-
ing to unfair predictions that are discriminatory (Guidotti et al. 2018). Understandable machine
learning techniques are needed to both assess and improve the fairness of machine learning in
critical societal applications.

2.2.4. Data exploration. John Tukey coined the term exploratory data analysis and promoted it
as the critical first stage of data analysis (Tukey 1977). Human-interpretable techniques can help
provide insights into major patterns, trends, groups, or artifacts of the data. These data explo-
ration insights are then used to clean and prepare data for modeling, make downstream modeling
decisions, and visualize and interpret model outputs (Murdoch et al. 2019, Berkhin 2006).

2.2.5. Discovery. As data sets have grown in size and complexity, we often rely on machine
learning techniques to make discoveries—or, in other words, to find rare signals in a sea of data.
Using IML techniques to make data-driven discoveries is the main focus of this review.

2.3. A Taxonomy of Interpretable Machine Learning Techniques

Recently, many have discussed IML techniques and proposed various categorizations to sys-
tematize the discussion and evaluation of the approaches (Doshi-Velez & Kim 2017, Guidotti
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et al. 2018, Lipton 2018, Molnar 2022). While there is not complete agreement in the liter-
ature on these categories, we discuss three main dimensions or axes along which most IML
techniques lie and give examples of methods falling under each designation. We also discuss
how these categories of techniques relate to the task of using IML methods for generating new
discoveries.

2.3.1. Intrinsic versus post hoc interpretability. A major axis that differentiates IML tech-
niques is intrinsic versus post hoc interpretability. Intrinsic interpretations are understandings
that are inherent in the fitted model itself—in other words, the user needs to simply fit a model
to produce the desired interpretation. Examples include trees, additive models, or regularization
approaches, which make the fitted model more understandable by adding constraints like sparsity
or smoothness.More recently, researchers in the field of deep learning have proposed models that
are made more intrinsically interpretable by constraining the final layer in a deep neural network
to follow certain prototypes or interpretability constraints (Dong et al. 2017, Rudin 2019). In con-
trast, post hoc interpretations require a secondary technique to be applied to the fitted model or
model outputs for the sole purpose of interpretation. Examples of post hoc interpretations in-
clude backpropagation-related methods, which traverse the learned neural network architecture
to assign importance scores to each feature, and local interpretable model-agnostic explanation
(LIME), which fits a second simple and interpretable model approximating the black-box model
at a particular input (Molnar 2022). Additionally, most supervised model-agnostic interpretations,
discussed subsequently, are post hoc in nature. Very little attention has been paid to unsupervised
learning techniques in the context of IML. But we argue that all unsupervised learning techniques
are naturally intrinsically interpretable, as their objective is to find some meaningful structure that
helps the user gain insights into the data, and hence they fall under our definition of IML. One
can still use post hoc interpretations of unsupervised findings, however. Consider that after clus-
tering, one may perform a secondary analysis to determine which features are most responsible
for separating the clusters (Satija et al. 2015).

For the purpose of making data-driven discoveries, both intrinsic and post hoc interpretations
can be used as long as they accurately capture the discovery of interest. For intrinsic interpreta-
tions, this means the model must fit the data well and closely approximate the true generating
model for the interpretations to reflect true discoveries. In linear regression, for example, the
intrinsic interpretation of feature importance based on estimated coefficients will only be accu-
rate if the true underlying model is linear or approximately linear. For post hoc interpretations,
on the other hand, both the original model and the secondary analysis must accurately capture
the data-generating process to yield accurate interpretations. If a deep learning model fits the
data well, but a post hoc analysis with LIME does not sufficiently capture the original deep
learning model, then interpretations and resulting discoveries will not be accurate (Zhang et al.
2019).

2.3.2. Model-specific versus model-agnostic interpretations. Another dimension along
which we can categorize IML techniques is by whether they are model-specific or model-agnostic.
Model-specific interpretations are tailored to the model and cannot generalize across models.
Model-agnostic interpretations can be applied to any model and interpreted in a similar manner
for all models. To illustrate these, consider a popular supervised interpretation: feature impor-
tance. Model-specific approaches include coefficients in generalized linear or additive models,
feature importance scores based on themean decrease in impurity for trees, or the plethora of deep
learning–specific techniques for feature attribution like backpropagation or layer-wise relevance
propagation methods (Molnar 2022). On the other hand, there are several model-agnostic fea-
ture importance methods that can be used for any supervised model; these include Shapley values,
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feature permutations, feature occlusion, and LIME (Molnar 2022). Note that model-specific in-
terpretations are not necessarily intrinsic interpretations; consider that feature importance scores
for trees and guided backpropagation feature attribution are both model-specific but post hoc. In
contrast, most model-agnostic interpretations are post hoc in nature.

For the task of making data-driven discoveries, there are several advantages to model-agnostic
interpretations. Importantly, model-agnostic interpretations can be understood in the same way
across all models. This is particularly useful for comparing models and validating discoveries by
checking if interpretations are the same across many models. However, it is typically easier to
study model-specific interpretations theoretically to understand under what conditions the result-
ing discoveries accurately recover some aspect of the true model, a topic we discuss in Section 5.1.
Model-specific interpretations are also often more conducive to uncertainty quantification via sta-
tistical inference, discussed in Section 5.2, although many recent approaches have been developed
for model-agnostic methods as well.

2.3.3. Global versus local interpretations. A final major dimension along which we can cate-
gorize IML techniques is based on whether the approach offers a local or a global interpretation.
Global interpretations reveal the overall structure of the fitted model. In contrast, local interpre-
tations only yield model insights based on subparts of the model input space; these could include
local interpretations about a single observation or a subset of the domain. To make these distinc-
tions concrete, again consider the example of feature importance in supervised learning. Here,
methods previously mentioned like coefficients in linear or additive models, tree-based feature
importance, and backpropagation-based feature attribution are all global interpretations that cap-
ture the relevance of each feature for all model predictions. In contrast, methods like LIME and
saliencymaps highlight the important features of a single new test instance or observation (Ribeiro
et al. 2016, Molnar 2022). Similarly, in unsupervised learning, consider the task of dimension re-
duction. Methods like principal component analysis (PCA) and spectral embedding yield global
interpretations, revealing global patterns represented in all observations in each of the factors.
In contrast, local embedding and neighborhood embedding methods, like t-SNE (t-distributed
stochastic neighbor embedding) (Van der Maaten & Hinton 2008) and UMAP (uniform mani-
fold approximation and projection) (McInnes et al. 2020), highlight local interpretations through
patterns and relationships among particular neighborhoods.

When using IML to make discoveries, global interpretations are more commonly employed,
as they reveal discoveries reflective of all the input data and the model landscape. Yet, local in-
terpretations are increasingly important to make discoveries among subgroups of observations.
Consider applications in healthcare, where saliency maps are used in radiology to discover abnor-
malities in images of individual patients (Yasaka & Abe 2018), or in precision medicine, where one
seeks to discover important genomic biomarkers for each patient or subgroups of similar patients
(Hassan et al. 2022).

3. TYPES OF INTERPRETABLE MACHINE LEARNING DISCOVERIES
AND TECHNIQUES

Recent research in IML has produced an abundance of interpretability techniques, as thoroughly
reviewed by Molnar (2022). But these works focus on the types of techniques and not the types
of data-driven discoveries that various techniques can make. We organize this section to high-
light the major types of discoveries achieved through interpretations of machine learning models.
Importantly, and distinct from the IML literature, we place great emphasis on unsupervised tech-
niques, which are popularly used throughout the sciences to make discoveries from unlabeled data
(see Figure 2 for an overview).
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Types of discoveries from interpretable machine learning

Groups
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Patterns

Dimension reduction
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Graphical model

Anomalies and prototypes

Isolation forest

Feature patterns

Saliency map

Feature importance

Lasso

Influential points

SVM

Figure 2

Overview of the broad types of unsupervised and supervised data-driven discoveries that can be made using interpretable machine
learning techniques, with some simple graphic examples.

3.1. Unsupervised Discoveries

Most work on IML has focused on supervised models and interpreting the results of predictive
systems (Rudin et al. 2022). In scientific domains, however, some of the most widespread uses of
machine learning are in unsupervised settings; hence, in this section, we review major types of
unsupervised discoveries and highlight which types of IML techniques are employed to generate
these discoveries.

3.1.1. Groups. Uncovering hidden group structures in large data sets is a common and popu-
lar type of unsupervised discovery. There are many well-established clustering techniques used
for this task, including K-means, hierarchical clustering, mixture modeling, and spectral clus-
tering, among many others (Hennig et al. 2015). Beyond group membership, other types of
interpretations related to clustering include uncovering groups of both observations and features
simultaneously via biclustering, discovering nested group structure via hierarchical clustering, de-
tecting localized important regions via spatial clustering, and finding a subset of features that
distinguish groups of observations via sparse clustering (Witten & Tibshirani 2010). Clustering
has been applied broadly and is a nearly ubiquitous technique in unsupervised and exploratory
analysis; groups found via clustering have also led to several major scientific discoveries, such as
finding gene expression patterns and genomic subtypes of diseases like cancer (Perou et al. 2000).

3.1.2. Patterns and trends. When conducting unsupervised analyses, a typical first task is to
visualize and explore the data to look for major patterns and trends. Often, important unsuper-
vised discoveries can be made through these visual inspections of the data. For large multivariate
data, dimension reduction approaches reduce the data down to a smaller number of compo-
nents that retain important structure, or patterns, in the data. There are a plethora of dimension
reduction techniques, including linear approaches like PCA, nonnegative matrix factorization,
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and independent component analysis, or nonlinear approaches like spectral embedding, multi-
dimensional scaling, isomap, t-SNE, UMAP, or autoencoders; Fodor (2002) provides a review of
such approaches. Each of these approaches is optimized to find slightly different types of patterns.
For example, PCA finds variance-maximizing patterns that preserve the global structure, whereas
t-SNE finds localized patterns that preserve neighborhood and group structure.

3.1.3. Associations. Discovering associations, or important relationships among features, is
another widely used type of unsupervised discovery. Most techniques typically find linear or non-
linear associations by exploring all possible pairwise interactions among features, using correlation,
mutual information, or other such metrics. Recently, there has been a surge of interest in ex-
ploring feature relationships using graphical models (Lauritzen 1996). In Markov networks, or
undirected graphical models, for example, the goal of structural learning is to estimate condi-
tional dependencies between features; structural learning in Bayesian networks or directed acyclic
graphs (DAGs) seeks to learn directed relationships and is an important part of causal discovery
(Drton & Maathuis 2017).

3.1.4. Anomalies and prototypes. Other types of unsupervised discoveries that are perhaps less
commonly used are finding anomalies (rare entities) or prototypes (typical entities). Anomalies are
rare but noteworthy observations. Techniques for anomaly detection are similar to those for out-
lier detection and include distance-based approaches, which often employ dimension reduction;
clustering approaches like single-linkage hierarchical clustering or DBSCAN; the one-class sup-
port vector machine; or the isolation forest (Hodge & Austin 2004). Alternatively, sometimes one
seeks to find the most representative observations, or prototypes. Adaptions of other unsuper-
vised approaches, especially dimension reduction and clustering, are typically employed for this
task (Bien & Tibshirani 2011).

3.2. Supervised Discoveries

Supervised learning has been the focus of the vast majority of the IML literature (Doshi-Velez
& Kim 2017, Guidotti et al. 2018, Lipton 2018, Molnar 2022). This occurs as some of the best-
performing predictive models, such as deep learning and tree-based ensembles, are essentially
black boxes that are not intrinsically interpretable and are difficult to decipher. Thus, interpreta-
tions of these predictive models are critical for generating new insights and making data-driven
discoveries.

3.2.1. Feature importance and feature selection. Perhaps the most common and popular
form of interpretation in supervisedmodels is understanding how each feature influences amodel’s
predictions, often referred to as feature importance.Related to this is feature selection,which finds
the best subset of features that maximize predictive accuracy. Importantly, feature importance and
feature selection in supervised learning offer a form of multivariate or conditional feature inter-
pretation: Given all other features in the model, what is the added benefit of including a particular
feature? This conditional feature interpretation is much stronger than marginally assessing how
each feature relates to an outcome and has been used extensively to discover important features.

Let us review the many types of methods for interpreting features in supervised learning
through the context of our IML taxonomies from Section 2.3. First, consider global and model-
specific feature importance metrics. For linear or generalized additive models, the feature weight
(or parameter or coefficient) can be directly interpreted as the conditional feature importance,
offering intrinsic feature interpretability. Tree-based ensembles offer post hoc interpretability by
the feature importance scores based on the decrease in impurity for each split. In deep learn-
ing, post hoc approaches are popular and include several feature importance scores calculated via
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gradient-based methods, which traverse the fitted neural network to attribute relevance to each
input feature (Samek et al. 2021). Local, post hoc, and model-specific methods are popular in
computer vision, where measures such as saliency maps and Grad-CAM (gradient-weighted class
activation mapping) highlight which pixels in a specific image were used to generate the predicted
label (Samek et al. 2021). There are also several model-agnostic metrics that can be used with any
supervised learning model, including methods that yield global interpretations, like feature occlu-
sion, feature permutation, and Shapley values, as well as local interpretations such as LIME (for
more information on these methods, see Molnar 2022). There is an equally impressive literature
on feature selection for supervised learning; most of these strategies offer intrinsic and model-
specific interpretations by working to minimize the empirical risk or loss function. As finding the
best subset of features is a combinatorially hard optimization problem, people typically turn to
greedy step-wise methods, like recursive feature elimination, or regularization strategies that re-
lax the best subset constraint. Popular approaches to the latter include the ℓ1 or the lasso (least
absolute shrinkage and selection operator) penalty that encourages sparsity in the feature weights
(Tibshirani 1996). The lasso and other regularization approaches are routinely employed across
all areas of machine learning to aid in interpreting features (Li et al. 2022).

3.2.2. Feature interactions and feature representations. Beyond the importance of each in-
dividual feature, one may want to understand higher-order interactions or feature patterns that
are important for a model’s predictions. Decision trees and their extensions offer natural ways
of assessing model-specific feature interactions, but there are several model-agnostic approaches,
such as Friedman’sH-statistic, variable interaction networks, and partial dependence functions (for
further details, see Molnar 2022). Going beyond pairwise feature interactions, many researchers
are interested in understanding how more complex, higher-order, and nonlinear feature patterns
contribute to a model’s predictions. This growing area is often called representation learning and
utilizes deep learningmodels like transformers to encode complex feature relationships in an often
lower-dimensional representation space (Bengio et al. 2013). While many of these feature repre-
sentations are not directly interpretable, learning interpretable feature representations is an active
area of research, especially in computer vision (Bengio et al. 2013).

3.2.3. Influential points. We have discussed interpretations of features in supervised models,
but one can also interpret the observations through influential points, defined as observations
whose removal significantly changes a model’s prediction. There are a few model-specific ap-
proaches that provide intrinsic interpretations of influential points, like support vector machines,
but most use model-agnostic strategies to identify these points. Coming from classical statistics,
one can use strategies to detect outliers as well as measure the effect of removing each single train-
ing point (Hodge & Austin 2004). But, more recently in machine learning, many have proposed
using the influence function to approximate parameter changes for individual points based on
the change in the gradient; these approaches have found widespread application in deep learning
models (Koh & Liang 2017).

4. VALIDATING INTERPRETABLEMACHINE LEARNINGDISCOVERIES

IML techniques are being deployed across science and beyond to generate new knowledge or
make data-driven discoveries. Yet, one may ask, is my discovery true? Or, have I discovered an
artifact? How can I tell the difference? In other words, how can we validate discoveries made via
IML?While most research in the IML community has focused on developing new interpretability
techniques, there has been relatively little work on the critically important problem of validation.
We contend that validation is one of the grand challenges in IML, and it is especially crucial for
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making replicable, reliable, and trustworthy data-driven discoveries. In this section, we motivate
the necessity of validation for IML, discuss why this is so challenging, and then discuss several
practical approaches that can be deployed with most IML techniques to help validate discoveries;
we conclude with recommendations for validating IML discoveries in practice.

4.1. Motivation and Challenges

We briefly outline why validation is so critically important as well as why it is such a formidable
task.

4.1.1. Motivation: replicability, reliability, and trust. IML techniques are designed to always
produce the desired interpretation, regardless of whether that interpretation or discovery truly
reflects the underlying structure of the data. For example, K-means clustering always returns K
clusters whether there are K groups in the data or not; feature selection always returns a subset of
features whether the underlying true model is sparse or not. Then, how can we tell if the machine
learning interpretation generated a true discovery or just is an artifact in the data? Furthermore,
there are a plethora of IML techniques, and often each technique produces a different interpre-
tation. Then, which interpretation is correct and represents a true discovery? These are perhaps
unknowable, epistemological questions. Science addresses these issues by continually replicating
and validating discoveries in follow-up studies until findings converge upon an accepted truth.
Indeed, reproducibility and replicability are cornerstones of science (Natl. Acad. Sci. Eng. Med.
2019, Stodden 2020).

In machine learning, reproducibility means being able to obtain the exact same results after
the same computational steps are performed on the same data, which is purely a computational
concept (Willis & Stodden 2020, Fineberg et al. 2020) and is a prerequisite for validation. Replica-
bility means being able to obtain very similar results when two independent studies are performed
to answer the same scientific question; in machine learning, this could entail performing the same
or similar analysis on a new data set (Fineberg et al. 2020,Meng 2020). Replicability by itself, how-
ever, cannot be the ultimate goal of scientific discoveries, as replicable results can still be wrong
if the same mistakes are made in follow-up studies. Thus, going one step beyond this, many have
advocated for reliability in machine learning, saying that predictions and findings should be robust
to reasonable sensitivity tests, like small changes in the data or the model, out-of-sample predic-
tion tests, and consistency with domain knowledge (Meng 2020). Validation for machine learning
directly seeks to assess the replicability and reliability of results. For predictive tasks, there are well-
developed and routinely employed validation strategies like data-splitting and cross-validation.
For IML, however, there are very few widely accepted validation strategies, and most employ
IML techniques without any validation whatsoever in practice. For some uses of IML, this practice
might not be terrible, but for the task of generating new discoveries, lack of validation is extremely
damaging and could lead to erroneous, irreplicable, and unreliable findings. Indeed, there has been
much commentary over the past several decades about a reproducibility and replicability crisis in
science (Baker 2016). Recently, several have suggested that failures to validate machine learning
findings could be contributing to this crisis (Beam et al. 2020, McDermott et al. 2021, Gibney
2022). Validation is a crucial component of IML for generating data-driven discoveries.

Beyond just the goal of utilizing best practices in science, replicability and reliability are critical
to promote trust in machine learning results. Many have lamented a lack of trust in machine
learning systems and recommended promoting trust and societal acceptance of machine learning
results by generating understandable interpretations (Toreini et al. 2020, Jacovi et al. 2021). But,
can we trust themachine learning interpretations? If interpretations are not replicable and reliable,
then trust in these interpretations and discoveries breaks down. Recently, Broderick et al. (2023)
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discussed these issues, and others, that cause trust to break down in probabilistic machine learning.
Furthermore, they and several others have proposed various ways to enhance trust in machine
learning results, emphasizing the need for validation strategies (Toreini et al. 2020, Rasheed et al.
2022, Broderick et al. 2023).

4.1.2. Challenges. To better understand why validating machine learning interpretations and
their data-driven discoveries is so challenging, let us first discuss why a discovery might fail to
validate. First, the machine learning model could be a poor fit to the data, and hence any resulting
interpretations would poorly reflect the signal in the data. Next, even if the model fits the data
well, the interpretation approach could be a poor fit for the model, resulting in problematic
interpretations; this can especially be the case with some post hoc interpretability methods that
fit a second model to generate the interpretation (e.g., LIME) (Molnar 2022). In addition, there
could be a mismatch between the employed interpretation technique and the desired discovery
task. For example, high-dimensional genomics data are known to be highly correlated, so selecting
important features from these data using the lasso might fail to identify important correlated
biomarkers, as the lasso is known to only select one feature out of a correlated set (Zou & Hastie
2005). Next, IML techniques are typically designed to find the desired interpretation in the data,
regardless of whether that discovery truly exists in data. For example, K-means clustering will
always discover K clusters. Many machine learning techniques are so powerful that they can
always detect the rarest signals in large and complex data sets. For predictive tasks, we call this
overfitting. We also argue that machine learning interpretations can be overfit to the training
data and hence would fail to validate.

However, despite the fact that machine learning interpretations might fail to validate for a
number of reasons, validation is a critical challenge that has received surprisingly little attention
in the literature (Rasheed et al. 2022). For prediction tasks, on the other hand, we have well-
established techniques for validation: we ensure the predictive model generalizes to new, similar
data. This is achieved by randomly splitting the data into a training set, which is used for building
the predictive model, and a test set, which is used for assessing the predictive accuracy of the
model. Similar to predictive models, we say that a machine learning interpretation validates if the
resulting data-driven discovery generalizes well to new, similar data. Given this, one may ask: Can
we simply employ a training and test set to validate interpretations? We discuss this possibility
subsequently, but in short, this prospect becomes much less straightforward for interpretations.
First, many IML techniques are designed to make discoveries from the current (training) data, but
one cannot directly apply the discovery to new data, and hence it is unclear how to assess how well
it generalizes. For example, clustering training data results in cluster labels for the training data,
but these do not help label the test data; similarly, many dimension reduction techniques, such as
t-SNE or UMAP, find low-dimensional embeddings of the training data, but these embeddings
cannot be applied to new data. Second, unlike the well-established prediction error metrics, there
is no consensus on metrics for quantifying the accuracy of interpretations. Most have suggested
assessing machine learning interpretations via human evaluation by laypersons or domain experts
(Doshi-Velez & Kim 2017, Carvalho et al. 2019, Molnar 2022), but this does not lend itself to an
objective, quantitative metric analog of prediction accuracy.

4.2. Practical Approaches for Validating Interpretations

In this section, we review two practical validation strategies that can be employed for almost
any machine learning discovery. While there may be additional validation approaches for spe-
cific IML approaches, we highlight these because they are fairly general and can be applied for
both supervised and unsupervised discoveries.
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4.2.1. Data-splitting. As we previously discussed, randomly splitting the available data into
training and test sets is the established mechanism for validating machine learning predictions.
Similar strategies can sometimes help us validate machine learning interpretations, but apply-
ing them here is less straightforward than in prediction tasks. The key idea of data-splitting for
IML is to use the IML technique on the training data to generate an interpretation as well as
construct a predictive model based on this interpretation; then, one can evaluate the model’s pre-
dictive performance on the test data. This approach leverages predictive models to help with IML
validation, thereby circumventing some of the previously discussed challenges. Consider some ex-
amples. With projective dimension reduction techniques like PCA, one can learn the projection
from the training set and then evaluate how the test data set differs from its projection onto these
components. In clustering, one could discover clusters on the training set, develop a classifica-
tion model on the training set to discriminate these clusters, and then apply this to the test set to
predict cluster labels; one could then compare these predicted labels to those generated in an un-
supervised manner by clustering the test set (Lange et al. 2004, Handl et al. 2005). For supervised
discoveries like feature selection, one could discover important features on the training set as well
as build a predictive model that only uses these features for the associated supervised learning task;
then, one can evaluate the prediction error of this model on the test set. The same idea can also
be applied to feature interactions, feature patterns, and other supervised discoveries.

Even though data-splitting provides a direct approach to validating IML discoveries, many
open questions and challenges remain. Although we presented several examples of how this strat-
egy can be used, it is unclear how to define an appropriate predictivemodel for some othermachine
learning interpretations, such as discovered associations and relationships between features, or
anomalies and prototypes. Next, this approach generates predictions on the test set, but it is not
always clear how to evaluate these predictions. For example, when selecting important features,
the prediction error of a sparse model is often not comparable with that of the full model, and
hence, it might be unclear whether the prediction error of the sparse model is good enough to in-
dicate it is validated. Finally, in data-splitting, the resulting interpretation is found using only part
of the data, and hence, the interpretation might change with another randomly sampled training
data. This can be troubling for replicability and in science. Relatedly, some might argue that since
discovery is such a challenging task, one needs to use all available data, and data-splitting reduces
the amount of data available for the discovery stage.

4.2.2. Stability. Another popular strategy for directly assessing the reliability of IML is the
stability principle, which seeks to identify interpretations that are stable, subject to random data
perturbations.This idea was first introduced byMeinshausen&Bühlmann (2010) in the context of
feature selection with the lasso. Since then,many variants of this method have also been studied in
the statistical machine learning literature for feature selection (Shah & Samworth 2013), feature
interactions (Basu et al. 2018), graphical models (Liu et al. 2010), PCA (Taeb et al. 2020), and
clustering, where it is commonly called consensus clustering (Monti et al. 2003). Even though
it has not been widely applied in other areas of machine learning, the idea of stability analysis
is rather general and could be applied to any IML procedure; we summarize the approach in
Figure 3. First, the data are repeatedly randomly perturbed through subsampling, bootstrapping,
randomly adding noise, or random data thinning (Neufeld et al. 2023). Then, IML procedures
are used to make a discovery on each new random data set, and discoveries with high frequency
are declared stable discoveries. The core idea of stability is that discoveries that are not consistent
under random data perturbations are more likely to be due to artifacts in the data or sampling
noise and, hence, are not replicable and reliable. Indeed, stability analysis has received widespread
attention, and many have advocated using it to validate discoveries and promote reproducibility
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Figure 3

Illustration of stability principle for determining reliable data-driven discoveries.

in (data) science (Yu & Kumbier 2020). It has also been widely used for solving many scientific
problems, such as discovering biomarkers in genomics (He & Yu 2010).

Despite the appeal of stability analysis to directly assesses reliability and overfitting, several
challenges remain. First, stability analysis can be computationally burdensome, as it requires re-
fitting the IML model many times; this is especially problematic for huge data or with complex
models like deep learning. Next, it is not always clear what type of random perturbation is appro-
priate and what quantitative criterion should be employed to determine stable discoveries for a
given IMLmodel and discovery task. Consider consensus clustering where cocluster membership
is recorded for each subsample, as there is not an easy way to record and ensemble the cluster
membership. Furthermore, stability analysis could exacerbate mismatches between the interpre-
tation techniques and the discovery task. Stability with the lasso for feature selection, for example,
is known to perform very poorly with correlated features. This is due to the fact that the lasso may
only select one among highly correlated features for each subsample, and hence none of these fea-
tures would be deemed stable, even if they are all important. Additionally, it is unclear whether the
final stable discoveries are consistent with each other, since they might not correspond to a single
interpretation or set of interpretations from applying an IML model (e.g., stable features may not
correspond to any lasso solution at a single regularization parameter); many might consider this
a disadvantage in scientific domains. Finally, and perhaps most importantly, stability analysis only
assesses one form of reliability: the robustness of the discovery to small changes in the data, but not
the robustness to changes in the modeling choice. As we discussed earlier, reliability also means
consistency with prior knowledge and out-of-sample predictive power, which are not reflected
in stability analysis (Yu & Kumbier 2020). To summarize, stability is necessary for indicating the
reliability of a discovery, but it is not sufficient.

4.2.3. Example: validating clusters. To illustrate data-splitting and stability analysis for vali-
dating IML,we turn to two real clustering examples: the Author data set,with n= 841 observations
and p = 69 features measuring the stop word count of book chapters from four English-language
authors (from Peng & Hengartner 2002), and The Cancer Genome Atlas Pan-Cancer (TCGA
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Figure 4

Example of how to validate cluster discoveries using data-splitting (top row) and the stability principle (bottom row) on two data sets.
Results from the Author data set (a) show four well-validated clusters, whereas results from the TCGA PANCAN data set (b) show that
the blue and teal clusters are not well separated and do not validate as well. Abbreviation: TCGA PANCAN, The Cancer Genome Atlas
Pan-Cancer.

PANCAN) data set with n = 761 subjects and p = 13,244 genes measuring the bulk RNA-seq
gene expression for patients with five different types of tumors (Weinstein et al. 2013). We apply
K-means clustering with K = 4 and K = 5, respectively, and seek to validate our discovered clus-
ters using data-splitting and stability. For data-splitting, we follow the predictive cluster validation
approach outlined by Lange et al. (2004) and Handl et al. (2005) by randomly taking 70% of ob-
servations as a training set where we discover clusters as well as build a random forest classifier
to predict these cluster labels.We then independently cluster the remaining 30% of observations
in the test set and apply the random forest classifier to predict the labels; we measure the overlap
between the predicted labels and the test set cluster labels using the adjusted Rand index (ARI),
a metric between zero and one, with higher values indicating better cluster membership overlap.
Results are shown in the top row of Figure 4, where we visualize the training and test set clusters
in principal component (PC) scatterplots and highlight the test set observations where there is a
mismatch between the predicted and cluster labels as larger points. In the Author data, the training
set predictions and test set cluster labels have a high degree of overlap, indicating strong validation
of these four clusters. Clusters in the PANCAN data set do not validate as well, as shown by the
lower ARI and the confusion of the cluster labels for the blue and teal clusters.

Additionally, we apply the stability principle, which in clustering is often called consensus clus-
tering (Monti et al. 2003), to validate these same cluster findings. Specifically, we employ repeated
data-splitting by repeatedly subsampling a training set on which we discover clusters and record
the cluster comembership; we then average these cluster comemberships across all data splits to
yield the n × n consensus matrix taking values between zero and one, with one indicating that the
two observations were always assigned to the same cluster. Heatmaps of the consensus matrix are
shown in the bottom left subpanels of Figure 4, with darker green indicating values at or near one.
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We see that in both the Author and PANCAN data sets, consensus clustering validates that there
are K = 4 and K = 5 clusters, respectively, exhibiting a clear block diagonal pattern. Consensus
clustering additionally allows us to inspect the uncertainty of cluster assignments for individual
observations. In the PC scatterplots in Figure 4 (bottom right subpanels), we show observations
with point sizes inversely proportional to their cluster assignment uncertainty. From this, we see
that clusters in the Author data set are fairly well separated, but again, the teal and the blue clus-
ters in the PANCAN data set exhibit a high degree of confusion. Overall, both data-splitting and
the stability principle can be used to validate cluster discoveries, and both of these methods reveal
similar findings in the two examples we present.

4.2.4. Practical recommendations. We have discussed two general, practical validation strate-
gies, but each has its strengths and limitations. Data-splitting can be a useful strategy for checking
whether the discovered interpretation fits the data well, while stability analysis is most effective
for evaluating whether the discovery is induced by random noise. Thus, we suggest that it is
important to employ strategies to evaluate both the predictability of the machine learning in-
terpretation (bias) and whether the IML technique overfits the noise (variance). Yu & Kumbier
(2020) recently advocated that predictability (achieved via data-splitting) and stability are critical
components of any data science process, and we argue that these are especially important in vali-
dating discoveries made using IML.We should additionally mention that after validation from a
statistical perspective, final human evaluation of discoveries is also important to ensure they match
the desired discovery task (Doshi-Velez & Kim 2017, Carvalho et al. 2019). Overall, validation is
critically important for IML, especially for generating data-driven discoveries. This understudied
area presents many opportunities for research to further develop and apply the practical validation
strategies we discussed, to study their theoretical properties, to relate the approaches to rigorous
notions of statistical uncertainty quantification (discussed in Section 5.2), and to determine the
best validation strategies for specific IML methods, discovery types, and specific applications.

5. STATISTICAL THEORY AND INFERENCE FOR INTERPRETABLE
MACHINE LEARNING DISCOVERIES

Validation of IML discoveries is critical in practice to promote replicability, reliability, and trust
in data-driven discoveries. But theoretical guarantees and valid statistical inference offer differ-
ent perspectives related to validation and are equally necessary to help build trust and promote
replicability of IML discoveries (Rasheed et al. 2022, Broderick et al. 2023). In this section, we
review statistical theoretical foundations for IML discoveries that address two pressing questions:
(a) Under what data-generating models and under what conditions does an IML technique re-
cover the true discovery with high probability? (b) What is the uncertainty in a discovery, or what
discoveries can be trusted with a sufficient level of confidence? We discuss these in Sections 5.1
and 5.2, respectively.

5.1. Statistical Theory for Interpretable Machine Learning

Recently, Broderick et al. (2023) argued that theoretical guarantees were important to help build
trust in machine learning. For IML discoveries, the goal is to theoretically characterize the type
of data-generating models and the conditions under which IML techniques will make the de-
sired discovery with high probability tending to one. These types of theoretical guarantees largely
fall under the areas of statistical consistency and selection consistency; the latter has received
a huge amount of attention in the statistical machine learning community over the past two
decades (Wainwright 2019).Developing such theoretical foundations can help guide practitioners
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to choose the appropriate technique for their application and desired discovery task, understand
when certain IML techniques will perform well and when they will not, and perhaps inspire the
development of new IML techniques with improved performance and theoretical guarantees.

Statistical consistency and selection consistency are well-studied for certain types of statistical
and machine learning models but are perhaps not readily applicable to other classes of machine
learning methods, leaving a gap in our theoretical understanding of IML. For example, clas-
sical statistical theory addresses the conditions under which parametric models like linear and
generalized linear models consistently estimate their coefficients, a measure of intrinsic feature
importance, in asymptotic and low-dimensional settings. More recently, there has been a surge
of interest in studying regularized versions of these and other statistical machine learning mod-
els in finite-sample and high-dimensional settings (Bühlmann & Van de Geer 2011, Wainwright
2019). Perhaps the most widely studied has been the lasso, or ℓ1-regularized regression, for the
IML task of feature selection (Tibshirani 1996). For example, it is well established that the lasso
achieves selection consistency, or correct selection of true features with high probability, under
sparse linear regression models when there is sufficient sample size relative to the log number of
features; when there is sufficient signal in the true features; and under conditions like the irrep-
resentable, restricted eigenvalue, or incoherence conditions that limit the amount of correlation
between features in the model (Zhao & Yu 2006). Consistency and selection consistency have also
been established for many extensions of the lasso, the lasso in classification, semiparametric mod-
els, and other sparse regularizers (Bühlmann & Van de Geer 2011). Beyond feature selection and
feature importance, several other model-specific and intrinsically interpretable unsupervised IML
techniques have been studied theoretically under high-dimensional regimes. These include statis-
tical consistency guarantees for clustering under a Gaussian mixture model (Löffler et al. 2021),
network clustering under the stochastic block model (Abbe 2017), low-rank estimation via PCA
under spiked covariance models ( Johnstone & Lu 2009), and graph selection or structural graph
learning for both Markov networks (undirected graphs) and DAGs for causal discovery (Drton
& Maathuis 2017); we refer the reader to Wainwright (2019) for more details on many of these
recent advances in high-dimensional statistical theory.

These advances in statistical theory provide assurance and insights for certain IML discoveries
and certain techniques, but many limitations of this type of theory and open questions remain.
First, this statistical theory assumes a true population model that generates the data. In practice,
the true data-generating process is unknown and uncheckable; it is often unclear how these IML
techniques perform with misspecified models. Second, this type of theory is only applicable to
model-specific and intrinsically interpretable IML techniques, which are often limited to linear or
additive parametric or semiparametric models. Thus, this theory does not help us understand the
performance of more flexible, nonlinear modeling strategies like tree-based ensembles and deep
learning.Next, even when this type of theory is applicable to a particular model, set of techniques,
and discovery task, the assumptions required to make the correct discovery with high probability
are often hard to interpret and impossible to check in practice. For example, it is impossible to
check the irrepresentable condition (Zhao & Yu 2006) necessary for selection consistency of the
lasso for a particular data set without knowing the true features. Thus, while this theory helps
us understand the properties of certain IML techniques, it is unhelpful for trying to assess the
validity of a particular discovery made by an IML technique on a particular data set. Finally, sta-
tistical theory is currently very limited for interpretations of tree-based ensembles like random
forests and boosting, neural networks, and deep learning, and model-agnostic interpretations like
Shapley values for feature importance. Such areas provide many open research opportunities that
would help us better understand these popular IML approaches and further promote trust in their
discoveries (Broderick et al. 2023).
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5.2. Statistical Inference for Interpretable Machine Learning

While statistical theory highlights the assumptions required to make an accurate discovery with
high probability, another approach to validating discoveries is through statistical inference, which
quantifies the uncertainty associated with the discovery. Uncertainty quantification, typically
through confidence intervals and hypothesis testing, is crucial in discerning whether a discov-
ered pattern is due to random chance or is a genuine discovery. This is especially important in
high-stakes applications of IML where making decisions based on discoveries with a high degree
of uncertainty could have devastating consequences; in science, this could lead to wasted resources
and irreplicable results. While uncertainty quantification for IML is a critically important task, it
presents many challenges. Note that the statistical theory discussed previously (Section 5.1) also
quantifies errors for a discovery, but these cannot readily be used for uncertainty quantification as
they depend on unknown parameters. Similarly, practical validation approaches like data-splitting
and stability, discussed in Section 4, give a sense of the uncertainty in a discovery but cannot always
be translated into rigorous statistical uncertainty quantification. Nonetheless, uncertainty quan-
tification has been studied for many of the same statistical machine learning models and IML tasks
for which statistical theory has been developed, and more recently, uncertainty quantification has
been considered in model-agnostic settings for specific IML tasks like feature importance and
feature selection. We briefly review these approaches.

Most statistical inference procedures are designed for model-specific, global, and intrinsically
interpretable statistical models that cover only a narrow range of IML techniques. Classical in-
ference approaches, which are typically asymptotic in nature, can be used for linear, generalized
linear, or additive parametric (sometimes semiparametric) statistical models to quantify the un-
certainty in parameters. Nonparametric or semiparametric methods like bootstrap uncertainty
quantification can also be used for many of the same methods. More recently, several people have
developed inferential procedures for regularization techniques like the lasso in high-dimensional
regimes. Such approaches include debiasing techniques (van de Geer et al. 2014), which calcu-
late the high-dimensional asymptotic distribution of the lasso, and selective inference (Taylor &
Tibshirani 2015), which computes confidence intervals and tests conditional on the lasso solution.
Several others have recently employed similar strategies to quantify the uncertainty for unsuper-
vised statistical learning tasks like clustering (Gao et al. 2022), graphical models (Liu 2013), and
PCA (Koltchinskii &Lounici 2016).This recent research on statistical inference for popular statis-
tical machine learning models in high-dimensional regimes represents important advances in the
field, but the approaches also have several limitations. All of these approaches are model-specific
and limited to parametric (or perhaps semiparametric) statistical models, precluding application
to popular nonlinear machine learning models such as tree-based ensembles, deep learning, and
t-SNE. Furthermore, these approaches assume the data arise from a specific generating model,
which is not checkable in practice. They are less effective at quantifying the uncertainty in IML
discoveries when the model is misspecified.

Given the limitations of model-specific approaches, and following from recent developments
in distribution-free predictive inference, many have advocated for model-agnostic inference,
which can quantify the uncertainty associated with any IML model. Thus far, such approaches
have only been developed for feature importance and feature selection. Some of the first such ap-
proaches were based on the model-X knockoff framework, which generates knockoff features that
have no relation to the response but that still retain the dependencies structure among the features
(Candès et al. 2018, Barber & Candès 2019). This approach has been used to select features with
false discovery rate (FDR) control (Barber & Candès 2019), conduct conditional independence
testing (Berrett et al. 2018), and construct confidence intervals for feature importance (Zhang &
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Janson 2022), among other applications. The fact that knockoff approaches can be employed for
any IML model is a major advantage, but this comes at the expense of assuming that the distri-
bution of the features is known or can be closely approximated, a significant limitation in many
domains. Others have recently developed model-agnostic inference approaches for feature im-
portance; some consider feature occlusion inference (Lei et al. 2018, Gan et al. 2022,Williamson
et al. 2023), which examines the prediction loss when removing one feature, while others consider
the feature permutation test (Berrett et al. 2018, Kim et al. 2022), which randomly permutes the
feature of interest. While very general and widely applicable, these approaches either perform
inference for a random quantity that depends on the training set or require limiting assumptions
on the data distribution or the consistency of the model employed. In fact, the fundamental diffi-
culty of distribution-free and model-agnostic feature importance inference was recently revealed
by Shah & Peters (2020), who show that any conditional independence test that is valid without
further assumptions on the data distribution or the model has no statistical power. Hence, while
model-agnostic inference and uncertainty quantification for IML are critically important for
validating many popular IML models, further research is needed to understand and work around
limiting distributional and modeling assumptions. Finally, there are many research opportunities
to develop model-agnostic inference approaches for IML tasks beyond feature selection and
importance; these could include inference approaches for unsupervised techniques as well.

Although this review is not focused on Bayesian machine learning, it is important to mention
these techniques in the context of uncertainty quantification. Indeed, many argue that one of the
more appealing aspects of Bayesian approaches is the built-in uncertainty quantification through
computing the posterior distribution and credible intervals; such approaches have been developed
for IML tasks like feature importance and selection, graphical models, factor models, clustering,
andmore (Vallejos et al. 2015,Cortes et al. 2017).Despite these approaches’ appealing uncertainty
quantification properties, there are several challenges when applying these techniques to generate
and validate IML discoveries. First, computing or sampling from the exact posterior distribution
is typically intractable or computationally prohibitive in big data settings. Thus, people typically
employ approximation techniques like variational inference (Blei et al. 2017), but there is limited
theory on how well these approaches work and how they affect the uncertainty quantification of
IML discoveries. Furthermore, the IML discovery, the posterior distribution, and any uncertainty
quantification depend strongly on the prior employed. The posterior distribution does not reflect
this sensitivity to the prior and hence can underestimate the true uncertainty in the IML discovery;
further sensitivity tests and model checking are needed for validation (Gelman & Shalizi 2013,
Kruschke 2021). We refer the reader to van de Schoot et al. (2021) for more details.

In summary, statistical inference for IML discoveries is critical for validation and is a growing
area of research. There are a number of important recent results in this field, especially for model-
agnostic inference, but there are also many open questions and challenges that are ripe areas for
further research.

5.3. Example: Uncertainty Quantification for Feature Importance

To illustrate uncertainty quantification via statistical inference and compare this to the practical
validation strategies discussed in Section 4, we consider the interpretation of feature importance
for a real regression example on the Communities and Crime data set (Redmond 2009). This
data set has n = 1,994 observations and p = 122 features, and was assembled with the goal of
predicting the per capita violent crime rate. We compare three popular regression methods with
their model-specific feature importance scores: the lasso with selected absolute coefficients rep-
resenting feature importance (λ is selected via cross-validation), random forest with the mean
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Example of how to validate feature importance via stability (a) and data-splitting (b), as well as uncertainty quantification via statistical
inference (c) for regression via the lasso, random forest (RF), and deep learning [multi-layer perceptron with feature importance
quantified via layer-wise relevance propagation, or MLP (LRP)] on the Communities and Crime data set. Inference techniques include
model-agnostic approaches such as leave-one-covariate-out (LOCO), generalized covariance measure (GCM), and knockoff inference,
as well as lasso-specific approaches such as debiased lasso and post selection inference. Other abbreviations: MP, minipatch; MSE, mean
squared error.

decrease in impurity tree-based feature importance score, and deep learning implemented via a
multilayer perception (MLP) architecture [with two hidden units of size p with rectified linear
unit (ReLU) activation] and the epsilon-layer-wise relevance propagation (Montavon et al. 2019)
used to compute the post hoc feature importance scores.

In Figure 5a and b, we illustrate the stability and predictability principle discussed in
Section 4.2.4 to validate discoveries. We first split the data into 70% training and 30% test sets.
Then, for stability, we further repeatedly subsample 70% of the training set and record a feature
as selected if its feature importance score is in the top 10; we report the selection rate for all three
methods and the top 10 aggregated most stable features in Figure 5a. Then, to assess whether
the selected stable features also offer good predictability, we rank order the top stable features for
each method, build a new model with only the top K = 1, . . . , 20 features on the training set, and
apply these models to make predictions on the test set; we report the test mean squared error in
Figure 5b. All three methods find many of the same features to be stable, with some differences
between features selected with linear methods (lasso) as opposed to nonlinear methods (random
forest and MLP). But, checking the predictability of the most stable features via data-splitting
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reveals that the top nine features of the random forest are the most generalizable, offering the
best predictions on a new test set.

Next, we seek to quantify the uncertainty in feature importance scores or in feature selection
for each method via statistical inference. We first apply model-specific techniques for the lasso,
including the debiased lasso ( Javanmard & Montanari 2014) and postselection inference for the
lasso (Taylor & Tibshirani 2015), to test whether coefficients are nonzero. Next, we apply the
knockoff approach (utilizing the same standard Gaussian knockoff construction for all methods),
which gives FDR control for model-agnostic feature selection. We also employ several recently
developed model-agnostic inference approaches to test whether feature importance scores are
greater than zero; these include the generalized covariance measure (Shah & Peters 2020) and
the leave-one-covariate-out (LOCO) inference implemented via minipatches (Gan et al. 2022)
or via data-splitting (Lei et al. 2018). In Figure 5c, we report the Benjamini-Hochberg adjusted
p-values controlling the FDR at 10% (Benjamini & Hochberg 1995) for each of the inference
methods and for the same top most stable features shown in Figure 5a. We see that several
approaches find few or no features to be statistically significant; the debiased lasso, on the
other hand, seems anticonservative, with 23 features declared significant (see the Supplemental
Appendix). But the LOCO inference approach runs counter to these trends, with the LOCO
methods finding the exact same features as statistically significant for all three machine learning
methods; these results also closely align with the most stable features from each method. Ex-
amining these features reveals several known socioeconomic and criminal justice trends, lending
further credence to these validated discoveries. (Further results and implementation details for
this example are provided in the Supplemental Appendix.)

Overall, this example illustrates how one can utilize stability, data-splitting, and statistical infer-
ence to validate the popular machine learning interpretations of feature importance. At the same
time, the differing inference results due to the different assumptions between methods highlight
the need for further research in this critically important area.

6. DISCUSSION

In this article, we provided an overview of IML techniques that can be used for data-driven dis-
covery and discussed associated challenges and opportunities with validation, statistical theory,
and inference. But importantly, there are many aspects that we did not cover in this review that
warrant further coverage and discussion in other works. This article focused on fairly general
machine learning tasks and techniques, but an abundance of techniques have been developed for
specific areas and tasks like those in computer vision, natural language processing and large lan-
guage models, and reinforcement learning (Glanois et al. 2022), among several other areas. Many
of these IML techniques can be used for discoveries and also share similar validation challenges.
Another important area that we only briefly covered but that deserves its own careful consider-
ation is causality, which includes interpretability via counterfactual explanations (Mothilal et al.
2020), causal inference from interventional studies, and causal discovery from observational data.
The latter can be especially important in science for discovering causal mechanisms, but it perhaps
faces evenmore challenges when it comes to validation, theory, and uncertainty quantification.We
also only briefly discussed Bayesian machine learning and its associated uncertainty quantification,
but this growing area of research deserves further discussion in the context of IML for generating
new discoveries.

This article reviewed and discussed the grand challenge of how to validate discoveries made
using IML. We specifically discussed three aspects of this grand challenge: (a) practical tools for
validating interpretations, (b) theoretical foundations of major IML techniques, and (c) uncertainty
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quantification for machine learning interpretations. We presented two major types of practical
validation strategies, data-splitting and stability, but each of these has their own caveats and lim-
itations. Further research is needed to combine the strengths of both approaches, elucidate a
theoretical basis for these approaches, or perhaps develop a connection with uncertainty quantifi-
cation via inference.Next, we have a strong theoretical understanding of only a limited number of
IML techniques, mainly those that are intrinsic, global, and model-specific. This does not include
interpretations of popular machine learning methods like random forests and deep learning; fur-
ther research is needed to not only explain the strong predictive performance of these approaches
but also understand their interpretations and discoveries. Finally, there has been growing interest
in uncertainty quantification for prediction, but quantifying the uncertainty of machine learn-
ing interpretations is also another critical component of validation that deserves further attention
and research. In addition to challenges associated with validation, there are also several other im-
portant questions that require further consideration and research. Some of these include how to
match the appropriate IML technique to the desired discovery task; how to compare different in-
terpretations from different IML techniques; and how to marry domain knowledge and expertise
with IML to better develop, deploy, and evaluate IML discoveries.

In summary, IML techniques hold great promise for making breakthroughs in science and be-
yond by mining ever larger data sets to detect the faintest signals. But at the same time, these IML
discoveries should be interpreted with caution in the absence of careful validation or uncertainty
quantification. Solving this grand challenge is critical for promoting replicable and reliable (data)
science as well as trustworthy machine learning; IML techniques also provide exciting research
opportunities at the intersection of statistics and machine learning.
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