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Abstract

In this tutorial paper, we describe some basic principles and practical consid-
erations for designing probe circuits for NMR or MRI. The goal is building
a bridge from material that is familiar from undergraduate physics courses
to more specialized information needed to put together and tune a resonant
circuit for magnetic resonance. After a brief overview of DC and AC circuits,
we discuss the properties of circuit elements used in an NMR probe and how
they can be assembled into building blocks for multi-channel circuits. We also
discuss the use of transmission lines as circuit elements as well as practical
considerations for improving circuit stability and power handling.
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1. Introduction

The design of NMR probes is a specialized application of radiofrequency
(rf) electronics. Many of the classic references on this topic are rich in in-
formation, but were intended for different audiences, e.g., post WWII radio
engineers [1]. The purpose of this tutorial paper is to present an introduction
to some general principles that are pertinent to probe design. The intended
audience is students and others who are interested in building NMR probes
and have some background in electricity and magnetism [2], but are not
yet experts. Throughout, we note some of the classic references on radio-
frequency circuit and transmission line design, and where available, suggest
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updated sources that may be more accessible to modern readers. A gen-
eral discussion of direct current (DC) and alternating current (AC) circuits
is included, followed by a description of the properties of common compo-
nents used in probe circuits. There are many good references on this topic,
including [3, 4], and works by Forrest Mims III, e.g. [5] and many oth-
ers on specific practical topics. The use of transmission lines is also covered
[6, 7]. The objective is to develop an understanding of the circuit components
needed to assemble and tune a simple probe circuit as an entry point to NMR
instrumentation development. Other useful pedagogical resources include a
textbook on NMR probes [8] set of laboratory exercises for beginning probe
builders [9], a more advanced tutorial on how to simulate complicated probe
circuits for particular applications [10], a guide to calculating the circuit fill-
ing factor [11], which is a measure of performance for multiply-tuned probes
[12]. Finally, a general overview of setting up and testing NMR instrumen-
tation [13] provides a welcome update to some of the practical information
provided in the classic textbook of Fukushima [14].

In its simplest form, an NMR probe is a tunable LC circuit that is
impedance matched to the source it is used with, generally a radio-frequency
(rf) amplifier operating at a resistance of 50 Ω. An inductor is used for
excitation of nuclear spins in the sample and for detection of the signal. Ca-
pacitors are often used as the adjustable elements for tuning and matching
the circuit. Transmission line segments are often used to deliver power to the
probe circuit, and can also serve as circuit elements themselves. An overview
of their behavior in both capacities is given. The general design and char-
acterization of series and parallel resonant circuits is discussed, as well as
efficiency and power handling capabilities.

2. DC circuits and Ohm’s law

Although the treatment of DC circuits is not directly applicable to NMR
probe design, some discussion of Ohm’s law and the definition of resistance is
useful as a starting point A DC circuit is an electric circuit in which electrons
flow from a source to a sink in a single direction, and the applied potential and
the current do not vary with respect to time. Here, current flow is impeded
only by the resistance of the circuit elements. In practice, this is usually
achieved using a constant voltage source such as a battery. The behavior of
DC circuits can be understood by applying Kirchoff’s rules. Briefly, these
state that the sum of all currents entering a junction must equal the sum of
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currents leaving the junction, and the sum of all potential differences around
a closed loop must equal zero [3]. These rules are based on Ohm’s law,

V = IR (1)

Resistance (R) is defined in terms of the current density passing through
a conductor; the resistance of a material is its characteristic opposition to
flow of electric current. This is analogous to friction in a mechanical system,
and it is an extensive property: it depends on the size and shape of an object
as well as the material. Resistivity (ρ [Ω9m]) is the resistance (R [Ω]) in a
material having a cross section A [m2] per length ℓ [m].

ρ =
RA

ℓ
(2)

This quantity is related to the conductivity (σ), which measures the ease of
charge flow, with the expression σ = 1/ρ. The current density (J) is the rate
of charge flow, or current (I), per a cross sectional area (A) of a conductor.

J = I/A (3)

When a constant potential difference is applied across the conductor, propor-
tionally generating a constant electric field (E) along the length, the current
density becomes dependent on the conductor’s conductivity,

J = σE (4)

The applied potential (V ) at the ends of the conductor is

V = Eℓ (5)

where ℓ is the length. From current density, current (I) is given as

I = JA = σEA =
σV A

ℓ
(6)

Rewriting this expression in terms of resistivity (ρ) from conductivity (σ)
and recalling resistance (R) from Eq. 2 results in the derivation of Ohm’s
Law

I =
V A

ρℓ
=

V

R
(7)
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DC circuits are often used in consumer electronics and small electronic de-
vices that are used in the lab because of their relative simplicity and their
efficiency for transmitting power over short distances.

3. AC circuits and the complex form of Ohm’s law

In AC circuits, the applied current and voltage are not constant, but
oscillate periodically in time, changing direction and magnitude with a char-
acteristic frequency ω. Here there is a phase difference between I and V ,
described by the phase factor ϕ. Phase can be expressed either in terms of
an angle or a displacement in time. A change in time by one period T cor-
responds to a change in phase by 360◦. This change in phase in AC circuits
is accounted for by the complex analogue of resistance, impedance (Z).

V (t) = V0 sin(ωt+ ϕ) (8)

I(t) = I0 sin(ωt+ ϕ′) (9)

where ω is the frequency in radians and ϕ and ϕ′ are the phases of V and
I. The amplitude of the voltage can be measured as voltage peak to peak
(VPP = 2V0) or root mean square voltage (VRMS) [3]. VRMS is defined as

VRMS ≡
[
1

T

∫ T

0

V 2(t)dt

] 1
2

=

[
1

T

∫ T

0

V 2
0 sin2(ωt)dt

] 1
2

=
V0√
2
= 0.707V0

(10)
In this way the value of VRMS can be obtained from the value of VPP ,

which can be measured easily with an oscilloscope.
Ohm’s law is still valid for AC circuits as long as voltage and current

are expressed as complex quantities with a phase term added to their real
magnitudes. For simplicity, the following discussion assumes that the circuit
is excited with only one frequency at a time. In the NMR context, this corre-
sponds to a single-channel probe. The more complicated case with multiple
frequencies is addressed in Section 9.

The complex form of Ohm’s law relates the impedance Z to the current
and voltage. In this expression, V and I each have a phase term and Z is a
complex number.

V = IZ (11)
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The complex impedance (Z) contains a term for the resistance as well as
a term for the reactance.

Z = R + jX (12)

In Equation 9, R is the resistance, j is the square root of -1, following the
convention used in electronics, and X is the reactance. Reactance accounts
for energy that is stored in the electric field of a capacitor or the magnetic
field of an inductor. At zero frequency (DC), an ideal capacitor has infinite
reactance, and therefore infinite impedance (see Section 4. Capacitors).
As a result, a capacitor behaves as an open circuit or an insulator with respect
to DC. As the frequency increases, the capacitor has less time to build up
charge in opposition to the current, and the reactance shrinks. On the other
hand, an ideal inductor will have an impedance of 0, behaving as an ideal
wire in a DC circuit (see Section 5. Inductors). As frequency increases,
the impedance also increases, resulting in higher opposition to current flow.
When a capacitor and inductor of equal and opposite reactance are used
together, the impedance becomes purely resistive (R) and maximal current
can flow through the circuit network (see Section 6. Resonant circuits).
In the ideal case, inductors and capacitors are non-dissipative, but in practice,
they are lossy. Loss can be modeled as a resistor, often with a value chosen
to match empirical observations.

In series circuits, impedance adds in series, similar to resistance in DC
circuits. For parallel AC circuits, the inverse of impedance, which is called
admittance, is additive. The conductance, G = 1

R
, is sometimes used in

referring to losses in dielectric materials. The conductance of a capacitor
depends on the type and amount of dielectric used. Another useful quantity
is susceptance (B), which is the imaginary part of admittance as reactance
is the imaginary part of impedance;

BL =
−1

2πfL
(13)

BC = 2πfC (14)

In the ideal case where R = 0, B and X are inversely related. The
susceptance of a capacitor is positive, while that of an inductor is negative.
This is the opposite of the case for reactance. If impedance is known, it is
possible to transform to admittance and vice versa. This is useful because
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it may be appropriate to use either impedance or admittance depending on
whether the circuit to be analyzed is in series or parallel.

GL,C =
RL,C

R2
L,C +X2

L,C

(15)

BL,C =
−XL,C

R2
L,C +X2

L,C

(16)

RL,C =
GL,C

G2
L,C +B2

L,C

(17)

XL,C =
−BL,C

G2
L,C +B2

L,C

(18)

When adding capacitors or inductors in series, the complex impedance
is written as in Eq. 6, where we add the resistive real component (R) to
the complex component X. This transformation can also be accomplished
using a Smith chart [15, 16, 17], which is a convenient graphical representa-
tion of the circuit’s impedance behavior (Figure 1A). This graphical tool
was developed before computers were widely available, and it was (and is)
commonly used to plot how the addition of circuit elements changes the
impedance. In the past, impedance values not directly labeled on the chart
had to be calculated by interpolation, but now software is available (includ-
ing free or inexpensive web-based options) that enables plotting of the exact
values desired. Many network analyzers are also capable of displaying their
output in this format. The Smith chart is particularly useful for impedance
matching, because it is easy to keep track of the effect of multiple circuit
elements on the chart. The most commonly used (impedance) version has
circles representing constant resistance and circular arcs representing con-
stant reactance. The horizontal line represents zero reactance, while values
along this axis represent pure resistance. Infinite resistance and reactance
are represented by the point intersecting this axis on the extreme right side
of the chart. When components are placed in parallel, the impedance terms
for those components are inversely added, also known as the admittance (Y ).
Recalling that admittance is the inverse of impedance,

Y =
1

Z
=

1

R + jX
(19)
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In this scenario, one might think it would be more convenient to use the
admittance Smith chart, which contains the constant conductance circles and
susceptance curves of a network. However, admittance values can be derived
from the impedance values, and vice versa, on the Smith chart by inverting
a data point 180◦ from the center of the chart, called prime zero. There-
fore, many engineers simply use the impedance Smith chart, (usually just
called a Smith chart), for most, if not all, of their circuit network’s mea-
surements. The impedance (Z) measured on the Smith chart is normalized,
Z = Zload/Zsource, where Zsource is the instrument’s impedance, usually at 50
Ω, and Zload is the circuit network’s impedance. This means that when the
circuit being measured is purely resistive, the impedance will be at the center
of the graph at Z = 1. If the source impedance differs from Z = 1 (often, we
want it to be 50 Ω), then the resulting impedance (Z) will be normalized to
that value.

In the LC circuit networks used in NMR probes, components are placed
strategically to achieve different resonant frequencies spanning a range of a
few MHz to about 1 GHz, as well as isolation elements to minimize cross-
talk between the channels in multiply-resonant circuits. This involves a
combination of series and parallel components, introducing both complex
impedance and admittance terms. However, in an optimal resonant circuit,
the impedance should be purely resistive – ideally, the capacitive and in-
ductive reactance terms are of equal magnitude and opposite sign so as to
cancel each other out (See Section 6 for more detail). In the Smith chart,
this is represented by being on the resistive horizontal axis of the chart. If
the impedance of a circuit is not purely resistive, then the impedance at the
resonant frequency will have capacitive or inductive reactance, and the re-
sulting complex impedance will either be below or above the horizontal line,
respectively. An example is shown in (Figure 1B)

These aspects of the Smith chart show the residual complex impedance of
a circuit, providing hints as to what changes could be made to obtain the de-
sired resonant frequency (i.e., the Larmor frequency that will be excited in an
NMR experiment) and purely resistive impedance (Figure 1). Impedance
matching is one of the most important functions of the Smith chart, and
a requirement in practical rf circuit design. Having an impedance-matched
network means that any signal going from a source to your network will have
zero wave reflectance. As the purely resistive impedance deviates from the
ideal value, signal reflectance increases and results in poor signal propaga-
tion. In an NMR context, if the reflected voltage is very large, damage to
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Figure 1: The Smith chart A A general Smith chart (template from
https://commons.wikimedia.org/wiki/File:Smith chart.svg). A data point lying on the
horizontal line (orange) represents a purely resistive circuit (Z = R). As the point moves
above or below the horizontal line, obtaining some inductive or capacitive reactance com-
ponents, respectively, the resistance (R) can still be traced through the constant resistive
circles (red). Similarly, the complex reactance component can be traced through the reac-
tance curves, allowing users to find the inductive reactance (blue) or capacitive reactance
(green). B An example is shown for a simple single-channel probe circuit. Left : Here,
the reflection coefficient (S11) is shown for a circuit tuned to resonance frequency of 500
MHz. Better transmission corresponds to a more negative S11 value, which occurs when
the source and load impedances are matched. This is accomplished graphically using the
Smith chart to match the impedance of the probe to the known impedance of the load (50
Ω). Right The impedance output of this simple resonating circuit is shown (green) as a
curve plotted on the Smith chart. We can see that the circuit is well matched because the
resonant frequency (point B) is purely resistive on the Smith chart. Points A and C on
the Smith chart trace are useful when tuning the circuit to another frequency; they show
how the reactance characteristics change as we tune.
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equipment such as power amplifiers can result. By observing the Smith chart
impedance, we can determine whether to add a series or shunt capacitor or
inductor, or simply modify the magnitudes of existing components.

4. Capacitors

A capacitor consists of two conductive surfaces separated by a dielectric
material. As discussed above, this arrangement behaves as a conductor for
AC and an open circuit in the DC limit. The capacitive reactance XC is
given by the expression

XC =
1

2πfC
(20)

where f is the frequency in Hz and C is the capacitance. As a potential is
applied, charge flows off one plate and onto the other at a rate determined by
the applied voltage and the resistive components in the circuit. Initially, all
the voltage is across the resistive elements and the current flow is maximized.
As the charge flows onto the plates, the potential across the capacitor builds
up until it reaches the applied potential and the flow stops. At this point,
the potential is at a maximum and the charge flow is at a minimum.

If the voltage is alternated sinusoidally, the current lags 90◦ behind the
voltage. DC cannot pass through a capacitor unless the dielectric breaks
down. The voltage at which this occurs is referred to as the breakdown
voltage. The capacitance of a circuit element is the property that makes
it able to store a charge when there is a potential difference between the
conductors. Capacitance is defined as the ratio of the charge on one of the
conductive surfaces to the potential difference between them.

C =
QS

V
(21)

C is the capacitance in farads (1 F is 1 amp second per volt), QS is
the coulombic charge on one surface, and V is the potential difference. The
simplest capacitor consists of two metal plates with a constant separation d
filled with insulating material of uniform dielectric.

C =
ϵ0ϵrA

d
(22)

where ϵ0 is the permittivity of free space, 1
36π×108

F/m, ϵr is the relative
permittivity of the dielectric, and A is the area of the plate.
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Transmission line segments can also be used as coaxial capacitors. The
capacitance of a transmission line per unit length in picofarads per meter
(pF/m) is given by

C

ℓ
=

2πkϵr
ln(b/a)

(23)

where a is the diameter of the center conductor, and b is the inner diam-
eter of the outer conductor and k is the dielectric constant of the insulating
material.

Capacitors add directly in parallel and inversely in series.

Cp = C1 + C2 (24)

Cs =

[
1

C1

+
1

C2

]−1

(25)

In addition to the capacitors that are intentionally part of the circuit,
stray capacitance is also formed between circuit elements. Stray capaci-
tances arise from two or more components forming an unwanted capacitor
– two conductive elements separated by an insulating medium, including
air. Thus, having components too close together, using high permittivity
dielectrics, and poorly shielding conductors will result in stray capacitances.
Even structural probe components can add stray reactances. This becomes
increasingly important at high frequencies, because even small stray capac-
itances may be comparable to the values of the circuit elements needed. In
transmission lines that carry signals, stray capacitances effectively introduce
a new circuit element that affects the transmission line impedance, affecting
wave propagation and signal reflection. In NMR probes, proper shielding and
grounding will limit the effect of stray capacitances in the circuit, especially
in preventing unwanted shorting, cross talk between different channels, and
external electromagnetic interference (EMI). Having too many or too large
stray capacitances can change the resonant frequency of the circuit, causing
it to deviate from the Larmor frequency of the nucleus of interest. If the
capacitance is altered outside of the tuning range of the circuit, then ex-
citing a particular nucleus will be unachievable. In the more common case
where the stray capacitance is small enough to permit retuning, it still creates
problems because moving improperly grounded or secured circuit elements
or even placing hands near them may cause unpredictable tuning changes.
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The energy stored in the electric field of a capacitor is equivalent to the
work required to charge the capacitor (WC).

WC =

∫ V

0

V dQS =

∫ V

0

V d(CV ) = C

∫ V

0

V dV =
1

2
CV 2 (26)

The voltage across a capacitor is V = V0 cos(ωt), so the current is

I
dQS

dt
=

d

dt
CV =

d

dt
CV0 cos(ωt) = ωCV0 sin(ωt) (27)

using the identity − sin(ωt) = cos(ωt+ π
2
),

I = ωCV0 cos
(
ωt+

π

2

)
(28)

The voltage and current can also be expressed as exponentials of the form

V (t) = Re
[
ω(V0e

j(ωt))
]

(29)

I(t) = Re
[
ωCV0e

j(ωt+π
2 )
]

(30)

As we derived above, in ideal capacitors, V lags I by 90◦. In real ca-
pacitors, this phase angle is smaller due to the added resistance produced
by nonideality of the physical components, i.e., the small current leakage
through the dielectric. For purposes of discussing dielectric effects in capaci-
tors, it is necessary to define an additional phase angle, δ, which is the angle
by which the current is displaced from exact quadrature with the applied
voltage due to dielectric loss. In this case ϕ, the relative phase between V
and I, is 90◦ − δ. The power factor is defined in terms of the phase angle ϕ;
PF = cosϕ = sin δ. This quantity depends on the dielectric, temperature,
and frequency [18, 19].

The dissipation factor (DF = tan δ) is the ratio of the effective series
resistance (ESR) to the reactance of the capacitor:

DF =
ESR

XC

(31)

For a given circuit or circuit element, the inverse of the dissipation factor
is its quality factor, Q. The quality factor for capacitors is denoted here by
QC to differentiate it from the overall Q of a circuit, which will be impacted by
other circuit elements. This quantity is tabulated for commercial capacitors
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and ranges from approximately 50-50,000. In contrast to ideal capacitors,
QC for practical chip capacitors degrades sharply with increasing frequency,
even for small capacitance values. For example, a 1 pF chip capacitor has a
QC of 3800 at 150 MHz, whereas at 800 MHz, the QC of the same capacitor
is reduced to 260 [5]. Q is inevitably reduced at high frequencies because the
effective resistance in the circuit increases. At low frequencies [20], dielectric
loss in the capacitors dominates. At higher frequencies, AC resistance, which
is proportional to the square root of the frequency, becomes more important.

In DC circuits, the current is distributed evenly over the cross-sectional
area of the conductor. In AC circuits, the alternating magnetic fields induce
eddy currents that are strongest at the center, forcing electrons towards the
periphery of a cylindrical conductor, a phenomenon called the skin effect [21].
At very high frequency, the current effectively flows only on the surface of
the conductor, meaning that a hollow tube is equivalent to a solid conductor
of the same dimensions. Because the current distribution is exponential,
the skin depth (δS) is defined as the depth where the current is 1

e
of its

surface magnitude [22]. The skin depth is a function of the material and the
frequency.

δS =

√
2ρ

ωµ
(32)

where ρ is the resistivity (ρ = 6.787 ×10−7 Ω/inch for copper) and µ0

is the permeability of free space (µ0 = 1.26 ×10−6 Henry/m). Using this
expression, the skin depth in copper is 0.023 mm at 800 MHz and 0.074 mm
at 80 MHz. Since the skin depth is less than one mm even at moderate NMR
frequencies, hollow tubes can be used instead of solid conductors without
any difference in the behavior of the circuit. This strategy can be used to
minimize mass of components and to save space inside the magnet bore by
using concentric conductors where possible [23].

Assuming that the thickness and radius of curvature of the conductor are
larger than the skin depth, the AC resistance (RAC) in Ω per unit length of
a conductor can be calculated as follows:

RAC =
ρ

δS

(
1

πd

)
=

ρ√
ρ

πfµ0

(
1

πd

)
= 2.61× 10−7

√
f
1

πd
(33)

where the values of ρ and µ0 are the same as before and f is the frequency
in Hz. Thus, AC resistance increases as the square root of frequency and
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decreases with increasing surface area of the conductor.

5. Inductors

An inductor, which is the magnetic equivalent of a capacitor, opposes
a change in the current flowing through it. Any current-carrying wire has
a self-inductance, which is normally low, but can be enhanced by winding
it into a coil. For a given length and area, a flat strip has less inductance
than a round wire. This is important in high-frequency applications where
stray inductances in the leads connecting different parts of the circuit must
be minimized. Even using flat ribbon leads, the distance between circuit
elements that must be connected with a lead should be kept as small as
possible. At high frequencies, stray reactances that could be tolerated in a
lower frequency circuit could be on the order of the circuit elements required,
causing interference with the performance of the circuit.

Inductance is given by

L =
ϕM

I
(34)

where ϕM is the magnetic flux, which is equal to the product of the
magnetic field B and the area A. The time-dependent relationship of V to I
is given by Faraday’s law:

V = −dϕM

dt
=

d

dt
(LI) = −L

dI

dt
(35)

The expression for energy stored in an inductor is analogous to that for a
capacitor.

WL =
1

2
LI2 (36)

WL =

∫
V dQ =

∫ (
L
dI

dt

)
(Idt) = L

∫ I

0

IdI =
1

2
LI2 (37)

The inductive reactance XL is

XL = 2πfL (38)

The voltage across an inductor is V = V0 cos(ωt) and the current can be
found by integrating the Faraday’s law expression for voltage:
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I(t)− I(0) =

∫ t

0

V dt =
1

L

∫ t

0

V0 cos(ωt)dt =
V0

ωL
sin(ωt) (39)

If I0 = 0, then

I(t) =
V0

ωL
sin(ωt) =

V0

ωL

cos
(
ωt− π

2

)
(40)

Thus, the current lags the voltage by 90◦. This expression also shows
that the higher the frequency, the smaller the current. End effects and loose
winding have an effect on the coil’s inductance. Most NMR sample coils are
loosely wound and have a small number of turns. An approximate formula
for inductance in nH of coils of length ℓ (cm) and n turns is:

L =
10n2D2

ℓ+ 0.45D
(41)

where D is the coil diameter in cm.
Inductors also have losses represented by a series resistance, as well as

parasitic capacitance. The parasitic capacitance arising from the total stray
capacitances between the turns of the coil makes the coil’s overall inductance
appear less. The quality factor for an inductor (QL) is dependent on the
coil’s inductance and frequency (f), while being inversely proportional to its
internal resistance (R). The QL-factor can be calculated by

QL =
2πfL

R
(42)

Inductors also have a self-resonance at high frequency because of the dis-
tributed capacitance. At frequencies above the self-resonance frequency, the
inductor behaves as a more complicated circuit element.

6. Resonant circuits

In a resonant circuit, energy is alternately stored in the magnetic fields
of an inductor and the electric fields of a capacitor. The resonant frequency
(f0) is the frequency where the reactances of the capacitor (XC) and the
inductor (XL) are of equal magnitude and opposite sign. The oscillation be-
tween the capacitor (C) and the inductor (L) defines the resonant frequency
of the circuit. At time = 0 , the capacitor is fully charged and I = 0. Then
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the capacitor discharges through the inductor, and the current through L
creates a magnetic field in which energy is stored, balancing the energy leav-
ing the electric field in the capacitor. The field lines cutting the turns in L
induce a voltage that opposes the current (Lenz’s law), and this recharges
the capacitor.

Resonant circuits can be series or parallel, as shown in Figure 2. The
impedance of a series resonant circuit is at a minimum at the resonant fre-
quency. For a series resonant circuit, the inductive reactance is XL = jωL
and the capacitive reactance is XC = −j

ωC
[24].

L

C C

L

series resonant parallel resonantA B

Figure 2: Diagrams of resonant circuits A A series resonant circuit has low impedance
at resonance. B A parallel resonant circuit has high impedance at resonance.

Because the reactances have equal magnitudes and opposite signs, in an
ideal resonant circuit, these cancel, and the impedance is zero. In a real
circuit, these elements have resistance and therefore do not cancel each other
perfectly. Real coils are often modeled as an ideal inductance L in series with
a small resistance R, such that at resonance the impedance is:

Z = jωL+R− −1

jωC
(43)

The phase of the current relative to the voltage, (θ, where θ + δ = 90◦)
changes from lag to lead as ω passes through ω0 [25], because

tan θ =
ωL− 1

ωC

R
(44)

The effect of a series resonant circuit is to attenuate all but a narrow band
of frequencies centered about its resonant frequency. This type of circuit is
often used as an isolation element in multichannel NMR probes, where it
is desirable to give one frequency a path to ground before it reaches the
electronics associated with another frequency. The quality factor Q of a
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resonant circuit is a measure of the relative amount of energy lost per cycle
and is defined as:

Q ≡ WS

WL

(45)

The energy stored in L is

WS =
1

2
LI2 (46)

where I = I0 cos(ωt). W is maximized when I and V are 90◦ out of
phase, so when I = Imax, V = 0.

WL =

∫ T

0

Pdt (47)

where P is the instantaneous power, and T is the period of the circuit,
T = 2π

ω
. Therefore,

Q =
2π 1

2
LI2∫ T

0
i2tRdt

=
πLI20

R
∫ T

0
I20 cos(ωt)dt

=
πL

R

1∫ π

0
cos(ωt)dt

=
ωL

R
(48)

at the resonant frequency,

Q =
1

R

√
L

C
(49)

Based on these expressions, it is evident that large inductances give larger
Q values, but this effect is counteracted by the fact that in practice it is
difficult to make large inductors without also increasing resistance.

A parallel resonant circuit has a sharp rise in impedance at the resonant
frequency. For a parallel resonant circuit, the coil has a complex reactance of
jωL, and the capacitor has a reactance of −j

ωC
. Therefore, the total reactance

is

jωL

1− ω2LC
(50)

This is infinite when ω2LC = 1, which is the resonance condition. In
real circuits, this condition is not met because of non-ideal components. The
inductor in the system has resistance R, making the impedance
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(
1

jωL+R
+ jωC

)−1

=

(
R− jωL

(
1− ω2CL−R2C

L

)
R + ω2L2

)−1

(51)

Resonance then occurs when the impedance is real:

1− ω2CL− RC

L
= 0 (52)

and the value of the impedance at this point is:

Z =
R2 + ω2L2

R
(53)

Usually ωL is much larger than R, so the impedance approximately equals

Z =
ω2L2

R
(54)

This value is large, but not infinite, and can be rewritten in terms of the
quality factor Q.

Q =
ωL

R
(55)

Z = QωL (56)

In probe design, two-capacitor networks are often used (Figure 3). In
one common type of design, the tune capacitor is placed in parallel with the
coil such that the resonant frequency of this circuit is higher than the desired
frequency. This value is chosen so that the real component of the parallel
circuit’s impedance matches the resistance of the load. The series capacitor
is then chosen to cancel the remaining inductive reactance of the parallel
resonant circuit. A useful heuristic is that the match capacitor will have
about 1/10 the capacitance of the tune capacitor in this arrangement. Thus,
the impedance looking into the network is 50 Ω at the resonant frequency.
Impedance matching is critical in probe design in order to maintain probe
efficiency and prevent damage to the amplifier due to excessive reflected
power.

The quality factor Q for a resonant circuit is usually approximated as
the QL of the coil, Lω

R
, where ω is the resonant frequency of the circuit
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Figure 3: Simple NMR probe circuit A An example of a simple impedance-matched
circuit of the type often used in NMR probes is shown. This single channel probe circuit
consists of a parallel resonant circuit with a tunable capacitor (CT ) and fixed inductor (L).
Impedance matching is achieved by adjusting the value of the match capacitor CM . B
The measured frequency response of a circuit of the type in A, with a resonant frequency
around 200 MHz.
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(ω = 1√
LC

). This approximation can be made because most of the loss in the
circuit occurs in the coil. However, non-ideal capacitors can further degrade
the Q of the circuit, as is discussed in Section 4.

The quality factor Q of a resonant circuit is related to RL and RC , the
series resistances representing loss in the inductor and the capacitor, respec-
tively.

Q =
XC

RC +RL

(57)

The impedance of a parallel resonant circuit has a maximum at:

ZP =

(
1

QC

+
1

QL

)−1

|XC,L| (58)

where QC is the quality factor of the capacitor, QL is the quality factor
of the inductor, and XC,L is the reactance of the capacitor or inductor. The
minimum impedance of a series resonant circuit is the total series resistance.

ZP =

(
1

QC

+
1

QL

)
|XC,L| (59)

Q for a parallel resonant circuit can be discussed in the same terms as for
the series case, except that the current is now given by

I(t) = I0 cos(ωt− ϕ) (60)

Q =
πLI2max∫ 2

0
cos2(ωt− ϕ)Rdt

=
πL

R

1

(T/2)
=

ωL

R
(61)

I0 is maximized at resonance, where its value is V0

R
[6].

It is possible to measure the Q of a resonant circuit if the impedance
magnitude or response magnitude is known over a range of frequencies. The
Q is related to the point where the impedance magnitude is 3 decibels (dB)
below the impedance at resonance for parallel circuits or above for series
circuits. The impedance of these points is:

|Z3dB| = |Zres|
1√
2

(62)

for the parallel case and
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|Z3dB| = |Zres|
√
2 (63)

for the series case. In these circuits,

Q =
f0
∆f

(64)

where ∆f is the difference between the upper and lower 3 dB frequencies
and f0 is the resonant frequency in Hz.

7. Transmission lines

In the above discussion of AC circuits, the implicit assumption has been
made that all components are physically much smaller than the wavelength of
the frequency of interest. When considering transmission line elements, this
assumption is no longer valid. A transmission line is a structure that transfers
energy and has its electrical properties such as capacitance and inductance
distributed along its length. Several different geometries of transmission lines
can be used, including striplines, twinlines, and coaxial lines. Transmission
lines used in probe design are usually of the coaxial geometry. For traditional
uses of transmission lines, the line is many times longer than the wavelength
of interest. In circuit elements, it may be much shorter. Transmission lines
have distributed capacitance and inductance and may therefore be used as
AC circuit elements. By choosing line lengths between 0 and λ/2 , it is
possible to generate any value of reactance. The propagation mode of interest
is the transverse electromagnetic (TEM) wave, also called the principal mode.
This mode, which requires a transmission line structure rather that a single
waveguide, is one where there is no component of E or H along the direction
of propagation.

For propagation of the principal mode in a transmission line, the internal
resistance of the line must be considered and is given by

R =

√
f

107

(
1

a
√
σa

+
1

b
√
σb

)
Ω/m (65)

where a and b are the diameters of the inner and outer conductors in
meters, f is the frequency in Hz, and σa and σb are the conductivities of the
inner and outer conductors in mhos/m3. The value of σ for copper is σCu =
5.9× 10− 7 mhos/m3.
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A description of the propagation characteristics of a transmission line
must include consideration of forward and reflected standing waves in the
line. This description can be developed starting from the time dependence
of voltage and current in the line. At point x, the instantaneous values of
voltage and current are represented by V and I. These depend on position
along the line:

∂V

∂x
= −

(
RI + L

∂I

∂t

)
(66)

∂I

∂x
= −

(
GV + LC

∂V

∂t

)
(67)

The solution to these equations that fits with the physical system of in-
terest is one where the time dependent amplitudes of the voltage and current
(V and I) are harmonic functions of time, i.e., V ejωt and Iejωt. Assuming
this form and taking the time derivatives of I and V gives

∂V

∂x
= −ejωt(R + jωL)I (68)

∂I

∂x
= ejωt(G+ jωC)V (69)

These are the expressions for the complex time amplitudes of voltage and
current as a function of position from the source [22]. Taking the second
derivative with respect to voltage,

∂2V

∂x2
= (R + jωL)(G+ jωC)V = P 2V (70)

where P =
√
(R = jωL)(G+ jωC). A general solution of this type of

equation is

Vx = Ae−Px +BePx (71)

where A and B are constants that depend on the boundary conditions.
From the expression for dV

dx
, it is straightforward to get an expression for I:

I =
1

(R + jωL)

dV

dx
=

P

(R + jωL)

[
Ae−Px +BePx

]
(72)

upon writing out what P is and simplifying, this becomes
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I =

√
G+ jωC

R + jωL

[
Ae−Px +BePx

]
(73)

or, defining Z0 ≡
√

R+jωL
G+jωC

I =
1

Z0

[
Ae−Px +BePx

]
(74)

Thus, for both V and I there is an expression that appears as a sum
of forward and reflected traveling waves. For an infinite line, there are no
reflections and hence no backward components. For lines of finite length,
this effect is achieved by impedance matching the line with the source. This
is important in probe design since backward reflections will reduce probe
efficiency and possibly damage the amplifier or detector.

The quantity Z0 defined in the description of current is called the charac-
teristic impedance, because it arises from intrinsic properties of the transmis-
sion line. The characteristic impedance is a property that is specific to the
construction of a particular line. For lines constructed with low-resistance
conductors and low-conductivity dielectric material, the expression for Z0

approximately reduces to
√

Lℓ

Cℓ
. The characteristic impedance also depends

on the geometry of the line and can be approximated as Z0 ≈ 138ϵr log10
b
a

for a coaxial transmission line [26]
When a line is terminated in a resistive load matched to Z0, only the

transmitted wave exists. If the line is terminated in any other impedance,
there is also a reflected component. The impedance of a transmission line,
as for any AC circuit element is Z = R+ jX. The admittance is also defined
the same as for any other AC circuit element Y = G + jB. Impedance and
admittance are constant with respect to x in a transmission line of uniform
geometry.

For a small section of line dx with a time dependent wave traveling
through it, the distribution of the voltage is given by:

dV

dx
= IZ (75)

and the corresponding current distribution is:

dI

dx
= V Y (76)
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The second derivatives of these are

d2V

dx2
= I

dZ

dx
+ Z

dI

dx
= I

dZ

dx
+ ZV Y (77)

d2I

dx2
= V

dY

dx
+ Y

dV

dx
= V

dY

dx
+ Y IZ (78)

If the line is of constant geometry, these can be written so that:

d2V

dx2
− ZV Y = 0 (79)

d2I

dx2
− Y IZ = 0 (80)

In order to derive voltage and current distributions along the line, it is
assumed that there is a solution of the form V = eγx , where γ =

√
ZY =

α+ jβ. In this expression, γ is the propagation constant, which is composed
of the attenuation constant α and the phase constant β. The voltage and
current can be described in terms of the attenuation constant and phase
constant as a series of forward and reflected waves as follows.

V = V1e
αxej(αx+βx) + V2V1e

−αxej(αx−βx) (81)

I =
V1√
(Z/Y )

eαxej(αx+βx) − V2√
(Z/Y )

e−αxej(αx−βx) (82)

These define the voltage and current at any point in the line. These have
the components of two traveling waves propagating in opposite directions.
For a single wave traveling in the +x direction, the impedance is

Z =
V

I
−
√

Z

Y
= Z0 (83)

The quantity G is a measure of the lossiness of the dielectric due to
the fact that it is not a perfect insulator, as discussed in Section 4. The
expression for G in a transmission line gives the conductance per unit length
of continuous dielectric

G = 2π
σd

ln(b/a)
(mhos/m) (84)
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where σd is the conductivity of the dielectric material. This expression
is not the most convenient to use when considering probe design because
departures from ideality in dielectric materials are usually expressed in terms
of the loss tangent, which is tangent of the angle δ by which the current is
displaced from exact quadrature with the applied voltage.

tan δ =
G

Cω
(85)

The characteristic impedance can be expressed in terms of the loss tangent
for a more convenient representation

Z0 =

√
Rℓ + jωLℓ

(tan δ)ωCℓ

Ω (86)

where j = −1, Rℓ is the resistance per unit length in the conductors, ω
is the angular frequency, Lℓ and Cℓ are the inductance and capacitance per
unit length of an infinitely long transmission line.

The conductance can be related to the loss tangent by using the expression
for internal capacitance,

G =
2π

1.8× 1010
ϵrf tan δ

ln(b/a)
(mhos/m) (87)

Factors such as resistance in the conductors and loss in the dielectric
contribute to the overall loss of the transmission line. This quantity should
be minimized in order to maximize probe efficiency. The loss per unit length
is described by the attenuation constant α

α = 4.34

(
R

Z0

+GZ0

)
(dB/m) (88)

which is related to the loss tangent by the expression

α = 9.95× 10−6
√

f
√
ϵr

[
1

a
√
σa

+ 1
b
√
σb

log(b/a)

]
+ (9.10× 10−8)f

√
ϵr(tan δ) (89)

α = 4.34

(
R

Z0

+ (Cω tan δ)Z0

)
(dB/m) (90)
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The minimum attenuation of a matched transmission line occurs for the
condition [2]

ln(b/a) = 1 +

√
σa

ab

(b/a)
(91)

It is important to consider this condition when choosing the relative di-
mensions of transmission line segments to be used as tunable probe circuit
elements. For copper, the optimum value of b/a is 3.59. However, this con-
dition is not very sensitive. In a transmission line with copper inner and
outer conductors, this value is within 5% for ratios in the range 2.6-5.3 [27].
This flexibility makes it convenient to design transmission line components
to fit in specific spaces within the probe. This expression applies to matched
transmission lines, and is therefore appropriately considered in the design
of matched lines carrying current to the probe elements as opposed to the
mismatched transmission line segments used as capacitive and inductive ele-
ments. In addition to the attenuation per unit length, each line also produces
a displacement in phase per unit length. This is called the phase constant
(β). Together, α and β comprise the propagation constant for a particular
line ( γ = α + jβ)

The above expressions are useful for describing transmission lines used to
propagate rf, but additional equations are needed to describe other transmis-
sion line circuit elements used in the probe design. The use of transmission
line segments as coaxial capacitors has already been discussed in Section
4, but a more detailed description of the capacitive and inductive properties
of transmission line elements is given below. The general expression for the
input impedance of a transmission line given in terms of the propagation
constant and the length of the line is:

Zin =
Z0[Zℓ + Z0 tanh(γℓ)]

[Z0 + Zℓ tanh(γℓ)]
(92)

where ℓ is the length and Zℓ is the series impedance per unit length [2].
The expressions for input impedance in the special cases of lines termi-

nated in a short circuit
(

Zℓ

Z0
= 0
)
and an open circuit

(
Zℓ

Z0
= ∞

)
are

Zshort
in = Z0 tanh(γℓ) (93)

and
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Zopen
in =

Z0

tanh(γℓ)
(94)

The imaginary part of the impedance, or the reactance, is given by the
following expressions for shorted and open lines:

Xshort
in = −j

Z0

tan
(
2π ℓ

λ

) (95)

and

Xopen
in = jZ02π

ℓ

λ
(96)

The reactances for transmission lines in open and shorted configurations
are plotted as a function of the length of the transmission line in λ/4 incre-
ments in Figures 4A and 4B, respectively.

As shown in Figure 4A, the input impedance behaves as an inductive
reactance for shorted lines between 0 and λ/4 and capacitive reactance be-
tween λ/4 and λ/2. Thus, a small piece of grounded transmission line can
be used as an inductor with approximate inductance:

L =
9.55

f
ln

b

a
tan

2πℓ

λ
(µH) (97)

where f is the frequency in MHz, is the length of the shorted line, and λ
is the wavelength.

Open quarter wave elements behave like high-Q series resonant circuits
at short wavelengths. A transmission line of length λ/4 that is open on one
end acts as a low impedance to ground, as can be seen from Figure 4B.
Therefore, this type of structure can be used as a trap tuned to a particu-
lar frequency. Thus, transmission line elements may be used as capacitors,
inductors, or tuned resonant circuits. These elements can be treated as sim-
ple circuit elements using the formulas given above. This means that every
element in a probe circuit may be made of transmission line elements while
maintaining the relative ease of analysis that is associated with discrete ele-
ments.

8. Power and impedance matching

Power is expressed in terms of current and voltage:
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Figure 4: Impedance of shorted and open transmission line segments as a func-
tion of length A The impedance of a shorted transmission line is plotted as a function
of length in units of λ/4. A high impedance condition occurs at odd multiples of λ/4 and
a low impedance occurs at even multiples of λ/4. B An analogous plot is shown for an
open-ended transmission line. In this case, odd multiples of λ/4 give a low impedance
condition and even multiples of λ/4 result in a high impedance.
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P = IV =
V 2

R
= I2R (98)

P =
V 2
pp

8R
=

V 2
RMS

R
(99)

In order to maximize the power delivered to a load from a source, it is
necessary to match the resistance of the load to the internal resistance of the
battery. This can be shown by considering a simple circuit consisting of a
battery with voltage rating Vb and internal resistance Rb connected to a load
RL. The current in this circuit is

I =
Vb

(Rb +RL)
(100)

and the voltage at the load is

VL = IRL =
VbRL

Rb +RL

(101)

Therefore, the power PL is given by(
Vb

Rb +RL

)2

RL (102)

At the maximum power condition, ∂PL

∂RL
= 0. This reduces to RL =

Rb. Therefore, the power delivered to the load is maximized when the load
resistance is matched to the internal resistance of the source. This result
is important when discussing NMR probe circuits, because it is desirable to
ensure that the ratio of forward to reflected power in the circuit consisting
of the amplifier and the probe is high in order to maximize probe efficiency
and prevent damage to the amplifier.

In AC circuits with reactive elements, the power has dissipated and non-
dissipated terms.

P = PIV = (Pdissipated + jPstored) (103)

The instantaneous power in an AC circuit is given by

P (t) = I20R sin2(ωt) (104)
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A more useful quantity is the average power (Pav) [3]. Because VRMS =
V0√
2
, it follows that Pav =

V 2
RMS

R
and also Pav = I2RMSR. If the voltage and

current differ by phase ϕ, then

P (t) = V0 sin(ωt+ ϕ)I0 sin(ωt) (105)

and

Pav = VRMSIRMS cosϕ (106)

The quantity cosϕ is called the power factor.
Another factor that affects probe performance is the power handling ca-

pabilities of the capacitors. At low frequencies, the maximum current rating
for a capacitor is limited by the voltage and can be calculated by

IV = Vmax × 2πfC (107)

where IV is the voltage limited maximum current rating of the capacitor,
and Vmax is its RMS voltage rating. At higher frequencies, the current rating
is limited by power dissipation, described by

Ip =

√
Pmax

ESR
≈
√

Pmax

RAC

(108)

IV is the power dissipation limited maximum current rating and Pmax is
the maximum power dissipation defined relative to a mounting surface with
well-defined thermal characteristics [28, 29, 30, 31].

At high frequencies, ESR can be approximated by RAC . In the volt-
age limited (low frequency) case, the current rating is influenced mainly by
the breakdown voltage of the dielectric material. In the power dissipation
(high frequency) case, the resistance becomes important. Again, optimum
performance is obtained from the capacitor that has more surface area and
therefore less AC resistance. Another important factor is the thermal resis-
tance (θR) of the capacitor, which influences Pmax. Pmax can be found by
determining the temperature differential across the length of the capacitor
and dividing by θR. The thermal resistance per unit length of a capacitor of
cross-sectional area A is

θRℓ =
1

λTA

(◦C

W

)
(109)
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where λT is the thermal conductance of a particular material in W
(◦C)(cm2)

.
This expression shows that thermal resistance is inversely proportional to
the cross-sectional area [32]. This is another reason why physically larger
capacitors have better power handling capabilities.

Although the power handling capability of capacitors at high frequency is
usually limited by thermal rather than electric stress considerations, arcing
can still occur at high voltage points in the coaxial capacitors and should
be considered. The electric stress (in volts/m) for a length of coaxial line is
given in terms of the voltage (V ) across the plates by

E = ϵr
V

a ln(b/a)
(110)

Corona discharge will occur at the center conductor when the electric
stress exceeds the breakdown voltage of the dielectric. For air, corona dis-
charge occurs at about 30 kV/cm. The breakdown voltage can be much
higher in lines filled with a higher dielectric strength material. However, if
there are air gaps at the interface between the conductor and the dielectric
at high voltage points, arcing will occur in these areas, particularly in areas
where there is no air movement. Air space can be tolerated better in areas
where a continuous flow removes ions or particles that are prone to arcing.
This factor should be considered when designing the geometry of the ends
of coaxial capacitors. Hemispherical pin ends and cavities should be used
whenever possible to minimize the possibility of corona discharge at sharp
points [33]. The greater the radius of the sphere, the closer the two plates
must be to permit arcing. For instance, at a voltage of 120 kV, the spark gap
length in air for spherical electrodes of 25 cm diameter is 4.28 cm. For 10
cm diameter, the length is 4.78 cm, and this increases to 7.07 cm for spheres
of diameter 5 cm. For needle points, the spark gap distance at 120 kV is
19.8 cm [24]. These data indicate that sharp edges should be avoided in the
construction of electrodes and that larger diameter center conductors should
be used for lower-frequency applications, which require more power handling
capability.

Another factor that is important when considering arcing in probe design
is the voltages in the sample coil and the tune capacitor required to resonate
it. The voltages across the tuning capacitor VC = I0(max)

(
1
ωC

)
and the

sample inductor VL = I0(max) (ωL) are large at the resonance condition.
This can pose a problem with corona discharge occurring in a capacitor or
between the turns of the coil in a resonant circuit. Another feature of real
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capacitors is the phenomenon of self-resonance. As the frequency increases,
the inductance in the leads and plates of the capacitor becomes increasingly
important. At the self-resonant frequency, this inductance becomes self-
resonant with the capacitor, making its performance difficult to model. This
becomes an important consideration when working at high frequencies [16].

Efficiency is a measure of the power delivered to the load as a fraction
of the available power. In a real probe circuit, some means of impedance
matching is needed to ensure acceptable efficiency of power traveling from
the RF amplifier to the probe circuit. The maximum power is dissipated in
a load when the load resistance equals the source resistance. In general, any
load impedance can be matched to any source impedance, but in the case
of RF amplifiers, the source impedance is usually 50 Ω. Many methods of
impedance matching can be used, including transformers, transmission lines,
and capacitive or inductive networks. Practical methods for calculating and
measuring efficiencies in NMR probe circuits have been described by several
instrument builders, e.g. [34, 35, 36, 11].

9. Considerations for building multi-channel circuits

The LC component analysis above is sufficient to build a simple reso-
nant circuit at a single frequency. For multiply-resonant circuits, interaction
among the channels must be considered, especially if more than two chan-
nels are connected. Let us consider a dual-resonant circuit where we will
tune and match for a proton (1H) Larmor frequency of 500 MHz and car-
bon (13C) Larmor frequency of 125 MHz. In context of NMR, adequate
impedance matching means efficient signal propagation at those frequencies,
requiring minimal power for sample excitation. As the first step of the design
process, the 1H and 13C resonant circuits can be tuned independently from
each other, as shown in Figure 5. Although many different strategies for
producing multiply-resonant circuits exist, an exhaustive discussion of them
is beyond the scope of this tutorial: we provide an example of a double-tuned
circuit with one coil.

The 1H channel comprises the inductor, Ls along with a match (C1) and
tune (C2) capacitor. The geometry, and hence the value of the inductance for
Ls is partly determined by the desired sample dimensions. Taking this into
account, the capacitors are selected to resonate it at ωH , 500 MHz here and
provide impedance matching to the load at 50 Ω as described in Section 3.
Similarly, the 13C channel, composed of another match (C3) and tune (C4)
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Figure 5: Individual LC circuits Single-frequency circuits for A the 1H channel and B
the 13C channel. These circuits share the sample coil Ls and each is independently tuned
and matched at its resonant frequency.

capacitors, is connected on the other side of the same inductor, Ls. Here,
the (C3) and (C4) capacitor values are selected to resonate the same coil
at ωC , in this example approximately 125 MHz. Without additional circuit
elements to isolate them, there will be cross-talk between the channels, which
can result in unexpected resonant frequencies as well as more subtle issues,
such as poor impedance matching and increased noise during data collection.

Once the two LC circuits have been tuned to their respective frequencies,
isolation elements can be added. Although the design of a trap can vary
depending on its purpose, its primary role in an isolation scheme is to be-
have as either an open or short circuit for a targeted frequency, while not
impacting the performance at other frequencies of interest [37]. Since the
resonant frequency of any particular channel must cross the sample coil Ls,
traps are generally implemented after Ls while considering the other chan-
nel’s tuning elements. Figure 6 shows a doubly-resonant circuit with good
isolation between the channels. The C5L5 parallel configuration resonates at
ωH and appears as an open circuit to this high frequency. This prevents ωH

from reaching the 13C port by acting as a band-stop filter and reflecting the
signal back to the 1H channel. At the same time, it lets through the lower
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frequency range containing the resonant frequency of ωC . On the other side,
a series trap (C6L6) resonates at ωC and serves as a low impedance (shunt)
path to ground, preventing signal from reaching the 1H port. Choosing the
capacitance such that C1 << C2 is preferred, because this low capacitance
in C1 creates a high impedance path for the lower frequency, ωC , and assists
in the isolation of the 1H channel [23].

Although isolation traps are represented as lumped elements with desig-
nated locations in the circuit design, in practice, they are made up of real
capacitive and inductive elements that must be arranged within the probe
and may interact with other components. They present additional impedance
to the channel networks, influencing the resonant frequencies and potentially
changing the values of tune and match capacitances to reach the desired res-
onant frequency. Depending on how they are placed relative to the rest of
the circuit, they can also interact with other components to create stray reac-
tances. During development, this can create a cycle of altering capacitances
as the isolation traps and balancing capacitors (details below) are optimized,
all while maintaining the resonant frequency of each channel. Simulating the
rf circuit before beginning construction enables us to at least approximately
predict the circuit’s behavior, which becomes increasingly important as we
add additional rf channels, traps, and balancing components [10]. Although
the circuit simulation is imperfect, mostly due to properties of real compo-
nents that are unaccounted for in the model, it saves a great deal of time
during the probe engineering process and can be used as starting point for
new designs.

After the target resonant frequency is achieved for each channel in the
presence of the isolation elements, isolation performance between ports must
be tested. With a network analyzer, we can perform an S-parameter measure-
ment, specifically, the transmission coefficient (S21). This is accomplished by
performing a frequency sweep through port 1 and measuring the output sig-
nal through port 2. The ports can then be switched to measure isolation in
the other direction. The S21 measurement gives us information about the
input-output relationship through the circuit network in either the time or
frequency domain. In our case, we are observing the frequency behavior as a
measure of isolation, and if it is poor, the circuit cross-talk. If the isolation
element for ωH is improperly tuned, the measured signal coming out of the
13C port will show a large peak at this frequency. In contrast, good isolation
will result in an S21 isolation curve with a minimum, or at least a value close
to zero, at the unwanted resonant frequency (Figure 6C).
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Figure 6: Double-resonance LC circuit A Double-resonance circuit with tuning and
match elements to achieve ωH and ωC . B The reflection coefficient (S11 and S22) in dB is
shown for each channel. Each is centered on its resonant frequency. C Isolation between
the two channels (S12 and (S21) is simulated and plotted.
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Another practical consideration that applies not only to multiply-resonant
circuits, but also single-channel ones at high frequency is coil balancing. In
an ideally balanced circuit, the reactances on either side of Ls are equal and
opposite. Electrically, this causes the voltage have opposite phase and equal
amplitude with respect to ground, creating a node at the coil’s center [10]. In
turn, this causes the average current to be distributed symmetrically across
the coil as it alternates. If the coil is not balanced, the voltage will alternate
between a maximum on one side of the coil and zero at the other. At high
frequencies, where the length of the wire is comparable to λ/4 this can lead
to an asymmetric B1 distribution and degradation of performance [38]. In
the context of multiply resonant circuits, lack of balancing can lead to the
surprising result that the field profiles are very different for high and low
frequencies, even when only one coil is used.

One way to balance the 1H channel is by adding a balancing capacitor
(C7) on the opposite side of the coil (Figure 7A). When calculating the ca-
pacitance for C7, it is recommended to double the tune capacitance of C2 and
give C7 an equal value, splitting the impedance load across the inductor (Ls)
[23] [8]. These theoretically re-add to the original total capacitance of C2.
In practice, the balancing capacitor is often a fixed value whereas the tuning
capacitor is variable in order to tune to ωH and adjust for small deviations
caused by different samples. The effects of unbalanced circuits on B1 have
been previously explored with experimental [39] and computational analysis
[40]. At lower frequencies, acceptable homogeneity and B1 symmetry can
be achieved despite the asymmetrical circuit load on the NMR sample coil.
However, if balancing the ωC network is desired, an additional capacitor C8

can be added, using the same principles as discussed for C7. This is labeled as
optional in our design because in our experience the performance improve-
ment gained often does not offset the added complexity and the required
adjustment to the other capacitors.

As the circuit design becomes more complex, spurious (or secondary) res-
onances can arise. For example, in our balanced circuit, a spurious resonance
with poor impedance matching (≈ -2.8 dB) can be observed around 356 MHz
(Figure 8). If these resonances are too close the primary resonance, there
can be issues in determining the correct resonance frequency of the circuit
as well as power loss during experiments. However, if all such resonances
reside far from the primary resonances, one can safely ignore them. This is
fortunate, because engineering the circuit to remove all spurious resonances
can be difficult and may not be worth the effort for many applications.
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Figure 7: Balanced double-resonance LC circuit A A balanced double-resonant cir-
cuit network based on Figure 6 is presented. For the 1H channel, the balancing capacitor
(C7) is utilized. If balancing of the 13C channel is desired, an optional balancing capacitor
(C8) can be placed next to the sample coil across the 13C circuit network. B S11 and
S22 are shown for the 2-channel network, centered at their resonant frequencies. C In the
now balanced network, the simulated isolation (S12 and (S21) between the two channels
is shown. 36
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Figure 8: Spurious resonance in dual-resonant circuit A spurious resonance is found
near 356 MHz in the 2-channel circuit tuned to 500 MHz (ωH) and 125 MHz (ωC). The
resonant frequency for 1H is shown for reference.

The example circuits shown here have been modeled and the code is
available in the online Supplementary Information. The circuits were
analyzed using the S-parameter simulation tool within the QucsStudio [41]
circuit simulation software. Here, components can be fine-tuned while con-
veniently observing effects of the resonant frequencies via the reflection co-
efficient and impedance via the Smith chart, both described in Section 3.

10. Conclusion

In summary, it is possible to begin designing probe circuits for NMR or
MRI with some knowledge of the behavior of capacitors and inductors and
how they interact in a few simple configurations. In our experience, the most
straightforward way to begin is to select a transceiver coil that fits the de-
sired sample geometry and then select a tuning capacitor to resonate it at
the Larmor frequency of a nucleus of interest. It is then possible to build
on this simple circuit, adding a match capacitor, and if desired, additional
channels and isolation elements. The Smith chart is a useful way to display
the impedance of the circuit during the design process; this is an output
available in many software packages and the displays of some experimental
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network analyzers. In some cases (i.e., when space is limited), it is more con-
venient to use of transmission lines elements rather than traditional lumped
elements. We hope that this collection of information and references will be
useful to students and others who are interested in building custom probes
or fully understanding how existing ones work.
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