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functions that occur as quotients of the associated theta 
functions by suitable eta products. We show that these 
lattice theta quotients can produce replicable functions not 
associated to any individual automorphisms. Moreover, we 
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certain replicable lattice theta quotients and we provide a 
general code theoretic characterization of order doubling for 
lifts of code automorphisms to the lattice-VOA. Finally, we 
prove results on the decompositions of characters of fixed 
subVOAs.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we investigate the connections between linear codes, lattices, and vertex 

operator algebras (VOAs). These three algebraic structures arose independently in math-

ematics, but are related by constructions which build lattices from codes, and VOAs from 

lattices. Moreover, the automorphism groups associated to these structures are linked 

to the theory of moonshine which explores the surprising connections between sporadic 

simple groups and modular objects. As a motivating example, we consider the following 

structures associated to the extended Golay code.

The extended binary Golay code G is a doubly even self-dual binary linear code of 

length 24 which can be used to construct the Leech lattice Λ24. In turn, the Leech 

lattice is involved in the construction of the monster module V �, an orbifold of the Leech 

lattice vertex operator algebra. Crucially, the automorphism groups of each of these three 

objects are related to sporadic simple groups: the Matheiu group M24, the Conway group 

Co0 (which is equal to 2.Co1), and the monster group M, respectively, each of which is 

a subquotient of the next. This suggests a tower involving codes, lattices, and VOAs:

M = Aut(V �)

Co0 = Aut(Λ24)

M24 = Aut(G).

A similar tower construction which does not require orbifolds consists of the extended 

Hamming code H, the E8 lattice, and the E8 lattice-VOA.

In general, one can construct a lattice from a given binary linear code, and there is 

a correspondence between (doubly even) self-dual binary linear codes of length N and 

certain (even) unimodular lattices in RN . Given an even positive definite lattice, one 

can construct its corresponding lattice vertex operator algebra. To further develop the 

analogies between these three structures, we consider the modular forms related to each. 

It is well known that one can associate a theta function to any even positive definite 

lattice and such functions are holomorphic on the upper half plane. If the lattice is also 

unimodular then these theta functions are modular forms. For a rational C2-cofinite 

vertex operator algebra V , Zhu showed that the characters of the irreducible modules 
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of V form a vector-valued modular function for SL2(Z) with a multiplier system [38]. 

Moreover, the characters of fixed point subVOAs under certain automorphisms of V are 

modular forms for congruence subgroups [12].

It is natural to investigate the automorphisms that fix an algebraic structure as a 

means of better understanding the structure itself. The central focus of this paper is 

the study of fixed sub-objects in general towers consisting of a code C, code-lattice 

L (see §3), and lattice-VOA VL (see §4), under automorphisms of C suitably lifted 

to act on L and VL. We note that there is more than one way to construct a lattice 

from a code and to construct a VOA from a lattice, for details on the constructions we 

consider see sections 3.1, 3.2, and 4.1. In particular, we study sublattices of L fixed by 

automorphisms via their associated theta functions and subVOAs of VL fixed by lifted 

lattice automorphisms via their associated characters.

Monstrous moonshine inspired the study of replicable functions (defined in §2.4) aris-

ing from sublattices of the Leech lattice fixed by individual automorphisms of the Golay 

code [27] and later by the full group of lattice automorphisms [28]. Soon after, a similar 

analysis was done for the E8 lattice [5]. However, one need not focus only on the action 

of individual automorphisms. More generally, we study sublattices fixed by subgroups of 

code automorphisms embedded into the automorphism group of the lattice. In doing so, 

we give a natural generalization of the quotient of the lattice theta function by the eta 

product determined by the cycle type of an automorphism, which we hereafter refer to 

as the lattice theta quotient. This leads to the following result.

Theorem A. Let C be a doubly even self-dual binary linear code of length N and let 

L be the associated code-lattice. Let G ⊂ Aut L be a subgroup of automorphisms in 

the image of Aut C under the natural embedding and let LG be the sublattice fixed by 

G. Then the lattice theta quotient (θLG(q)/ηG(q))24/N is a weakly holomorphic modular 

function. In the case that G = �g� is a cyclic subgroup, this recovers the usual lattice 

theta quotient associated to g. Moreover, this construction can produce non-monstrous 

replicable functions not necessarily associated to any individual automorphisms.

Various orbit types of subgroups that appear in the automorphism group of the ex-

tended Hamming code H embedded in the automorphism group of the E8 lattice similarly 

occur for higher rank unimodular code-lattices. In many cases the cycle type of an ele-

ment of Aut C (or more generally the orbit type of a subgroup of Aut C) is not sufficient 

to determine the corresponding sublattice of the code-lattice. However, in Proposition 6.6

we show that certain replicable functions must appear as lattice theta quotients for par-

ticular pairings of subgroup orbit type with sublattice isomorphism class.

In fact, the structure of the subcode Cg fixed by an automorphism g ∈ Aut C is some-

times enough to guarantee that the lifted automorphism g ∈ Aut L produces a certain 

lattice theta function. We prove the following results for cycle types of automorphisms 

of C. All notation used in this theorem is defined in Section 3.
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Theorem B. Let C be a doubly even self dual linear code of length N , let r|N , and 

let ḡ ∈ Aut C have cycle type rN/r. Suppose that the fixed subcode C ḡ has dimension 

dim C ḡ = 1
r dim C spanned by {B1, . . . , BN/2r}. Further suppose Bi ∩Bj = ∅ for all i �= j

and ∪iBi = {1, . . . , N}. Then the corresponding sublattice fixed by g = ι(ḡ) has theta 

series given by θLg (q) = ϑ3(qr)N/r. In particular the theta series of the fixed sublattice 

is the same as that of the lattice A1(r)N/r.

It then immediately follows from Proposition 6.6 that the lattice theta quotients 

corresponding to the sublattices in Theorem B are replicable. In the case of cycle type 

2N/2, Proposition 7.4 gives another characterization of a fixed subcode producing a lattice 

theta function of D∗
N/2 type with non-replicable lattice theta quotient. In Theorem 8.5

we give a general code theoretic characterization describing when even order lattice 

automorphisms g lift to automorphisms ĝ of the lattice-VOA VL that have order doubling. 

We use this result to show that the 2N/2 replicable cycle type exhibits order doubling 

when lifted to a VOA automorphism, while the non-replicable 2N/2 cycle type does 

not. Interestingly, these two cycle types are entwined via the characters of their fixed 

point subVOAs. In particular, the associated lattice theta quotients satisfy the following 

identities.

Theorem C. Suppose there exists an automorphism g1 ∈ Aut L with cycle type 2N/2

and fixed sublattice isometric to A1(2)N/2. Let L0 denote the kernel for order doubling 

associated to the lift of g1 to the VOA automorphism ĝ1 ∈ Aut VL and let V +
L denote the 

subVOA fixed by the automorphism −id ∈ Aut L

θLg1 (q)

η(q2)N/2
= Ch V ĝ1

L (q) − Ch V +
L0

(q) + Ch VDN/2
(q2). (1.1)

Moreover, if there exists an automorphism g2 ∈ Aut L with cycle type 2N/2 and fixed 

sublattice isometric to D∗
N/2(2), then the characters of the fixed point subVOAs are related 

via

θLg2 (q)

η(q2)N/2
= 2(Ch V ĝ2

L (q) − Ch V +
L (q)) −

�

Ch V ĝ1

L (q) − Ch V +
L0

(q)
�

+ Ch VDN/2
(q2). (1.2)

Finally, just as we considered sublattices fixed by noncyclic subgroups lifted from the 

automorphism group of the code, we consider characters of subVOAs fixed by noncyclic 

subgroups. In the more straightforward setting in which no order doubling of elements 

occurs, fixed subVOA characters may decompose in a way that reflects the structure of 

the group. For example, we prove the following result pertaining to semidirect products 

of order pq.

Theorem D. Let p and q be primes such that q > p and q ≡ 1 (mod p) and let Zq�Zp be a 

subgroup of the automorphism group of an even positive definite lattice L. The characters 

of the fixed point subVOAs of the lattice-VOA VL satisfy the following relation
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p Ch V Zq�Zp = Ch V Zq + p Ch V Zp − Ch VL.

1.1. Outline

In Section 2, we provide further background on the main objects in this paper, and 

in particular define codes, lattices, and vertex operator algebras. We describe several 

equivalent constructions of a lattice from a code C in Section 3 and make explicit the 

action of the automorphism group of the code on elements of the related code-lattice. 

This allows us to study theta quotients for sublattices fixed by automorphisms of the 

code. We give a new definition of a lattice theta quotient associated to a sublattice 

fixed by a subgroup of Aut C and give a proof of Theorem A together with examples. In 

Section 4, we review the lattice-VOA construction and discuss automorphisms of VOAs 

that are lifted from the underlying lattice. We recall the definition of characters for 

subVOAs fixed by finite cyclic groups of autormorphisms in Section 5.

In Section 6 we consider replicable functions that can be common to code-lattices of 

arbitrary rank by considering groups of automorphisms whose orbit types correspond 

to partitions of 8. We characterize theta quotients that are replicable functions based 

on their fixed sublattices in Proposition 6.6 and catalog the corresponding data for 

the 12 even unimodular code-lattices of rank at most 24. Moreover, we show that by 

considering subgroups of automorphisms, we recover additional non-monstrous replicable 

theta quotients not associated to any cyclic subgroups.

In Section 7 we give characterizations of certain fixed sublattices of a code-lattice L by 

automorphisms in the image of the embedding from Aut C in terms of properties of the 

fixed subcodes of C. In Section 8 we prove identities regarding coefficients of characters 

of fixed subVOAs. Finally, in Section 9 we consider how the structure of subgroups of 

Aut C is reflected in the structure of their corresponding fixed subVOAs. We prove results 

which relate characters of subVOAs fixed by semidirect products with the characters of 

the subVOAs fixed by the component subgroups in Theorem D and Theorem 9.3. We 

end the paper in Section 10 with questions for further study.
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2. Preliminaries

Here we review basic properties of the objects central to our study: linear codes, 

lattices, and vertex operator algebras. We also introduce modular forms and replicable 

functions.

2.1. Linear codes

We will briefly introduce some necessary properties of linear codes. For a thorough 

introduction, see for example [25,16]. Let Fq be the finite field of q elements. A linear 

code C is any k-dimensional subspace of Fn
q . The weight of a codeword c ∈ C is the 

number of its nonzero entries. The distance d of C is the minimal weight of its nonzero 

codewords, or equivalently the minimal number of positions in which any two codewords 

differ. We will call such C an [n, k, d]q-code. In this paper, all codes will be binary linear 

codes, so henceforth q = 2 and we will omit this subscript from the code parameters. 

An [n, k, d]-code C can be specified by giving a generator matrix G ∈ Fk×n
2 whose rows 

form a basis of C.

A code is doubly even if each codeword has weight divisible by 4. It is self-dual if it 

is equal to its dual code

C⊥ = {x ∈ Fn
2 |
�n

i=1 xici = 0 for all c ∈ C}.

A code C of length n and its dual always satisfy the dimension formula dim C+dim C⊥ =

n, hence a self dual code has dimension n
2 .

There is a natural action of the symmetric group Sn on Fn
2 by means of coordinate 

permutation. The subgroup of linear isomorphisms of Fn
2 arising from ḡ ∈ Sn that fix 

the code C forms the automorphism group Aut C, that is,

Aut C = {ḡ ∈ Sn : ḡ(C) = C}.

The cycle type of ḡ ∈ Aut C describes the disjoint cycle decomposition of ḡ, written in the 

form 
�

t trt = 1r12r2 · · · nrn . We will denote the subspace of C fixed by an automorphism 

ḡ ∈ Aut C as C ḡ.

Example 2.1. The extended Hamming code H is the doubly even self-dual [8, 4, 4]-linear 

code with generator matrix
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1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

¦

§

¨
.

The automorphism group Aut H has order 1344. The element (2, 8, 4, 6)(3, 5) ∈

Aut H ⊂ S8 has cycle type 122141.

2.2. Lattices

Here we establish some basic properties of lattices. For more details, see, for exam-

ple [16]. A lattice in Rn is a discrete subset L := Ze1 ⊕ · · · ⊕ Zem such that the set 

{e1, e2, . . . , em} is linearly independent in Rn. We consider only positive definite lattices, 

for which the norm of every λ ∈ L with respect to the standard Euclidean inner product 

�−, −� on Rn is positive. With this notation, L is an n-dimensional lattice of rank m. 

The determinant of L ⊂ Rn is the determinant of the inner product matrix for a basis of 

L. The dual lattice of L is L∗ := {x ∈ Rn | �x, y� ∈ Z for all y ∈ L}. An automorphism 

of L is a length-preserving linear endomorphism of L. We let Aut L denote the group of 

automorphisms of L. Standard lattices that arise throughout this paper include A1
∼= Z, 

A2, Dn(n ≥ 1), E8, Λ24, and their duals; for detailed descriptions of these lattices, see 

[11, Chapter 4].

Next we define some lattice properties which are desirable for lattice-VOA construc-

tions. A lattice L is even if the Euclidean norm �λ, λ� ∈ 2Z for every λ ∈ L. A lattice is 

called unimodular if det(L) = ±1. The unique even, positive definite, unimodular lattice 

of rank 8 is called E8, so named for its connection to the complex simple Lie algebra of 

the same name. This lattice can be constructed from the extended Hamming code H, 

as described in Section 3.1, and will serve as the setting for examples throughout the 

paper. The Leech lattice Λ24 is an even, positive definite, unimodular lattice of rank 24 

which has connections to Conway-Norton moonshine (see, for example, equation 10.3.32 

of [19]).

A natural counting function associated with a lattice L is the lattice theta function

θL(z), whose coefficients record the number of lattice points of fixed norm. Let

θL(z) :=
�

λ∈L

q"λ,λ�/2, (2.1)

where q := e2πiz. For example, θZ(z) =
�

n∈Z
qn2/2 is the theta function for Z ⊂ R. 

Given a lattice L and positive integer n, we let L(n) denote the lattice L with inner 

product scaled by n. Then θL(n)(q) = θL(qn).

2.3. Modular forms

The modular group SL2(Z) acts on the complex upper half plane H by linear frac-

tional transformations γz = az+b
cz+d for γ = ( a b

c d
) and z ∈ H. The elements of SL2(Z)
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are generated by S = ( 0 −1
1 0

) and T = ( 1 1
0 1

). Modular forms are functions on H that 

transform nicely with respect to SL2(Z) or certain congruence subgroups Γ ⊆ SL2(Z).

A weakly holomorphic modular form of weight k ∈ 1
2Z for Γ ⊆ SL2(Z) is a function 

f : H → C which is holomorphic on H, meromorphic when extended to the cusps of the 

Riemann surface H/Γ, and satisfies

f(γz) = εγ(cz + d)kf(z)

for all γ = ( a b
c d

) ∈ Γ and z ∈ H, where εγ is a particular root of unity depending on γ. 

If, in addition, f is holomorphic at the cusps of H/Γ, then f is a holomorphic modular 

form. The space of weakly holomorphic (resp. holomorphic) modular forms of weight k

for Γ is given by Mk(Γ) (resp. Mk(Γ)). Modular forms of weight zero are called modular 

functions.

Dedekind’s eta function is given by

η(z) := η(q) = q1/24
∞
"

n=1

(1 − qn)

for q = e2πiz. We will consider eta quotients, which generally have the form 
�

d|N η(dz)rd

for some integer N ≥ 1 and rd ∈ Z. Eta quotients are holomorphic on H and mero-

morphic at the cusps. Thus under certain conditions which guarantee modularity [34, 

Theorem 1.64], eta quotients are weakly holomorphic modular forms. We refer the reader 

to [10,34] for more detailed treatments of modular forms.

2.4. Replicable functions

The following formulation of replicable functions arises from McKay and Sebbar [32]. 

We first define Faber polynomials; see also [1] for more on replicable functions and 

another formulation of Faber polynomials.

Definition 2.2 (Faber Polynomial). Let f(q) be a power series, f(q) = 1
q +
�∞

n=1 anqn for 

q = e2πiz with z ∈ H, an ∈ C. For each k ∈ Z+, there exists a unique monic polynomial 

Fk, depending on the coefficients of f , such that

Fk(f(q)) =
1

qk
+ O(q) as q → ∞.

The q-expansion of the Faber polynomial of f(q), denoted Fk(f(q)) has the form

Fk(f(q)) =
1

qk
+ k

∞
�

n=1

an,kqn,

where an,1 = an and the double sequence an,k is symmetric, i.e., an,k = ak,n.
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We are now ready to state what it means for a formal power series f(q) as above to be 

a replicable function in terms of the coefficients of its Faber polynomial. In particular, for 

f(q), we denote the Faber polynomial of degree k by F f
k (z) to indicate its dependence on 

f . One can show that F f
0 (z) = 1, F f

1 (z) = z, F f
2 (z) = z2 − 2a1, F f

3 (z) = z3 − 3a1z − 3a2

and that the Faber polynomals satisfy the following recurrence relation

F f
k+1(z) = zF f

k (z) −
k−1
�

n=1

ak−nF f
n (z) − (k + 1)ak.

Definition 2.3. The function f(q) is said to be replicable if an,k = ar,s whenever 

gcd(n, k) = gcd(r, s) and lcm(n, k) = lcm(r, s).

Some of the simplest examples of formal power series are the functions fc(q) = q−1+cq

for some c ∈ R. It is straightforward to show that each fc is a replicable function. An-

other well-known class of replicable functions is related to Monstrous Moonshine. The 

Monstrous Moonshine Conjecture [7] asserts that there exists an infinite dimensional 

graded Monster module, V =
�

Vn, such that for the conjugacy class of g ∈ M, de-

noted [g], the modular functions Tg(τ) with τ ∈ H, associated to [g] are sums of traces 

of irreducible representations of the Monster, i.e., Tg(τ) =
�

tr(g|Vn)qn. We refer to 

these Tg(τ) as “monstrous moonshine functions,” also known as McKay-Thompson se-

ries. These modular functions are hauptmoduln, that is, each is a generator for the field 

of modular functions for a certain subgroup of SL2(R) depending on g. Further, each 

monstrous moonshine function Tg(τ) is a replicable function [20].

However, the converse is not true, not every replicable function is a hauptmodul let 

alone appears as a monstrous moonshine function. As noted in [20], Norton conjectured 

that any replicable function with rational coefficients is either a hauptmodul, or a ‘mod-

ular fiction,’ that is, a function f0(τ) = q−1 or f±1(τ) = q−1 ± q.

2.5. Vertex operator algebras

We begin by establishing the notation we will use throughout the paper. We re-

call some basic definitions and properties of vertex operator algebras (VOAs) and their 

twisted modules and refer the reader to [17,19,29] for explicit details.

Definition 2.4. A vertex operator algebra is a complex vector space V equipped with 

two distinguished vectors, the vacuum element 1 and the conformal vector ω. There is a 

map on V called a vertex operator denoted Y (·, z) : V → End(V )�z, z−1� which assigns 

to each vector v ∈ V a formal power series

Y (v, z) :=
�

n∈Z

v(n)z−n−1.
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The tuple (V, 1, ω, Y ) must satisfy several axioms stated in [19, §8.10]. In particular, if 

Y (ω, z) :=
�

n∈Z
L(n)z−n−2, with L(n) defined as the coefficients ω(n +1), then for any 

n1, n2 ∈ Z, we have

[L(n1), L(n2)] = (n1 − n2)L(n1 + n2) + 1
12 (n3

1 − n1)δn1+n2,0 c,

where δn1+n2,0 is the Kronecker delta function and [−, −] is a Lie bracket. We refer to c

as the central charge of V . That is, the coefficients of the vertex operator attached to 

the conformal vector ω generate a copy of the Virasoro algebra of central charge c.

VOAs admit a Z-grading (bounded from below) so that V =
�

n∈Z
Vn. This grading 

on V comes from the eigenspaces of the L(0) operator. That is, Vn := {v ∈ V | L(0)v =

nv}. The smallest n for which Vn �= 0 is called the conformal weight of V and is denoted 

ρ(V ). We say V is of CFT-type if ρ(V ) = 0 and V0 = C1.

Definition 2.5. A V -module is a vector space W equipped with an operation

YW (·, z) : V → End(W )�z, z−1�

which assigns to each v ∈ V a formal power series YW (v, z) :=
�

n∈Z
vW (n)z−n−1. 

Again, (W, 1, ω, YW ) is subject to several axioms that can be found in [17, §5.1]. If the 

only submodules of W are 0 and W itself, then W is called simple or irreducible.

We say V is a rational VOA if every admissible V -module decomposes into a direct 

sum of (ordinary) irreducible modules and V is holomorphic if it is rational and has a 

unique irreducible module which must be V itself. Given a V -module W with a grading, 

one can define a V -module, W �, that is the graded dual space of W as a vector space. (For 

a definition of the dual module, refer to [18, §5.2]). We say a vertex algebra V is self-dual

if the module V is isomorphic to its dual V � as a V -module. In [38], Zhu introduced a 

finiteness condition on VOAs. We say V is C2-cofinite if C2(V ) := span{v(2)w | v, w ∈ V }

has finite codimension in V . A VOA is called strongly rational if it is rational, C2-cofinite, 

self-dual, and of CFT-type.

In analogy to the lattice theta series, the graded characters of V serve as counting 

functions. Moreover, we have that graded characters of subVOAs of rational, C2-cofinite 

VOAs V exhibit nice transformation properties as functions of the upper half plane by 

work of Zhu [38], Dong–Li–Mason [12], and Dong–Lin–Ng [13].

3. Code-lattices and their automorphisms

In this section we introduce code-lattices which are lattices constructed from binary 

linear codes via Construction A; for other constructions of lattices from codes, see [11, 

Chapters 5,7]. We consider their automorphism groups and investigate, in particular, 

properties of sublattices fixed by subgroups of automorphisms of the code, which can be 

viewed as automorphisms of the lattice. While there are several equivalent constructions 
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of such lattices, they differ from one another from a computational perspective. To de-

termine sublattices fixed by automorphisms, one approach requires an embedding of the 

automorphism group of the code into the automorphism group of the corresponding lat-

tice. Such an embedding becomes increasingly computationally expensive to implement 

as the rank of the lattice grows. Recall, for example, that Aut E8 is the Weyl group of 

type E8 with order 696729600 and the automorphism group of the Leech lattice is the 

Conway group Co0 with order ≈ 8.3 × 1018.

Thus an approach that allows for computations purely via the automorphism group 

of the code is useful since although these groups also tend to grow in size as the length of 

the code grows, they are relatively small in comparison. For example, the automorphism 

group of the Hamming code H has order 1344 and the automorphism group of the Golay 

code G is the Matheiu group M24 which has order 244823040. We therefore provide 

details for two constructions of such lattices, their automorphisms, and fixed sublattices 

and give concrete examples whenever possible. With these tools in hand, we will then be 

able to determine modular functions associated to various fixed sublattices in Section 6

as well as modular functions associated to fixed point lattice vertex operator algebras in 

Section 8.

3.1. Code-lattices and their automorphisms via Construction A

Let C ⊂ FN
2 be a binary linear code of length N and consider the Q-vector space U

spanned by {β1, . . . , βN } with bilinear form �−, −� : U × U → Q defined by �βi, βj� =
1
2δi,j . Then the lattice L ⊂ U defined by

L := L(C) :=

�

�

i

aiβi : ai ∈ Z, (a1 + 2Z, . . . , aN + 2Z) ∈ C

�

is called the code-lattice of C. This construction is often referred to as Construction 

A [11, §7.2]. The code-lattice L is even if and only if C is a doubly even code, and is 

unimodular if and only if C is self dual. We will assume from now on that all code-lattices 

L will be even and unimodular. In addition, we will require that L is positive definite, 

to guarantee that the group of automorphisms is finite.

Now consider the natural embedding of the symmetric group

ι : SN �→ Aut(ZN ), (3.1)

where each σ ∈ SN permutes the basis vectors, in particular σ(βj) = βσ(j) for 1 ≤ j ≤ N . 

When L is the code-lattice of a code C of length N , the group ι(Aut C) is a subgroup 

of Aut L via this embedding. For any g := ι(ḡ) ∈ Aut L, we may freely consider its cycle 

type to be the cycle type of the associated ḡ ∈ Aut C. The cycle type of an arbitrary 

lattice automorphism, not necessarily in the image of ι, may be computed more generally 

[21, Appendix A]. This recovers the usual cycle type in the case that g = ι(ḡ).
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Remark 3.1. We have alluded to the relationship between the Leech lattice Λ24 and 

the extended binary Golay code G. However, Construction A applied to G produces the 

Niemeier lattice N(A24
1 ) which is not isometric to Λ24. The construction of the Leech 

lattice from G can be found in [11, §4.11]. Instead, we shall see that a related construction 

outlined in Section 3.2.1 allows us to directly compute the action of the automorphism 

group Aut G on elements of Λ24.

3.2. An equivalent construction

Following Tasaka [37], we let N be a positive integer divisible by 8 and let C be an 

even self-dual code of length N . Consider any orthogonal subset {α1, . . . , αN } of vectors 

of norm 2 in Euclidean space RN . That is, under the usual inner product, �αi, αi� =

2 and �αi, αj� = 0 if i �= j. Form the lattice L� with basis {α1, . . . , αN }. For any 

subset B ⊆ Ω := {1, . . . , N}, define αB :=
�

i∈B αi. We will associate to a codeword 

(b1, b2, ..., bN ) ∈ C the subset B ⊆ Ω consisting of indices i with bi �= 0. For example, 

the codeword (1, 0, 1, 1, 0, 1, 0, 0) ∈ H is associated to the set B = {1, 3, 4, 6}. By a 

small abuse of notation, we will then write B ∈ C to denote such a set associated to 

a codeword. In this setting, by [37, §1], the usual operation of addition of codewords 

B, B� ∈ C is defined by their symmetric difference as sets, i.e.,

B + B� := B ∪ B� � B ∩ B�. (3.2)

Proposition 3.2 ([37, Proposition 1]). The lattice associated to the even self-dual code C

defined by

L =
�

αi,
1
2αB : 1 ≤ i ≤ N, B ∈ C

�

=
�

B∈C

�

1
2αB + L�

�

,

is even and unimodular.

The construction of Proposition 3.2 applied to the Hamming code H produces the E8

lattice. For a direct proof that the lattice constructed is isometric to the E8 lattice, see 

[22, p. 63]. The virtue of this construction in general is that it allows us to explicitly 

describe the action of g = ι(ḡ) with ḡ ∈ Aut C on elements λ = 1
2αB +

�N
i=1 xiαi ∈ L in 

a straightforward manner. In particular,

g(λ) :=
1

2
αḡ(B) +

N
�

i=1

xiαḡ(i). (3.3)

To determine whether λ is invariant under g, consider the disjoint cycle form of ḡ ∈ Aut C

viewed as an element of SN . Such an element λ is invariant under g if and only if the set 

B is ḡ-invariant and if the following condition is satisfied: when i and j both appear in 
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the same disjoint cycle in the decomposition of ḡ, then xi = xj . We define the sublattice 

fixed by g to be Lg := {λ ∈ L | g(λ) = λ}. That is,

Lg =
�

B∈Cḡ

�

1
2αB +

�

i xiαi : xi = xj if i and j are in the same cycle of ḡ
�

. (3.4)

3.2.1. The Leech lattice and super codes

The construction in Proposition 3.2 applied to the Golay code G again produces the 

Niemeier lattice N(A24
1 ), so in order to obtain the Leech lattice we must use a more 

general construction. In full generality, the following can be applied to any even self-

dual code with minimum weight strictly greater than 4, also called super codes in [37]. 

Such codes only exist when the length N is at least 24, and the Golay code is the 

unique such code (up to isomorphism) with length 24. Keeping the notation above, we 

let Λ0 := {
�N

i=1 xiαi :
�

i xi ≡ 0 mod 2}, Λ1 := {
�N

i=1 yiαi :
�

i yi ≡ 1 mod 2}, and 

define the lattices

L0(C) :=
�

B∈C

( 1
2αB + Λ0) ∪ ( 1

4αΩ + 1
2αB + Λ0) (3.5)

L1(C) :=
�

B∈C

( 1
2αB + Λ0) ∪ ( 1

4αΩ + 1
2αB + Λ1). (3.6)

Both are even lattices and Lj(C) is unimodular precisely when 1
8N ≡ j mod 2 [37, §3]. 

Thus, the Leech lattice is isometric to the lattice L1(G). Given g arising from ḡ ∈ Aut G, 

the action on the elements of Λ24 = L1(G) is

g( 1
2αB +

�

i xiαi) = 1
2αḡ(B) +

�

i xiαḡ(i) (3.7)

g( 1
4αΩ + 1

2αB +
�

i yiαi) = 1
4αΩ + 1

2αḡ(B) +
�

i yiαḡ(i) (3.8)

and this description will allow us to compute lattice theta series of fixed sublattices.

3.3. Theta functions and theta quotients of fixed sublattices

Let C be a code of length N and let L be the associated code-lattice via either 

Construction A or Proposition 3.2. For a given g = ι(ḡ) ∈ Aut L with cycle type ḡ =
�

t trt (as defined in §2.1), the theta series θLg (z) of the g-fixed sublattice of L is a 

holomorphic modular form of weight k := 1
2

�

t rt. The eta product associated to g, 

denoted ηg(q), is of weight k and defined in terms of the cycle type of g by

ηg(q) :=
"

t

η(qt)rt . (3.9)

Then the lattice theta quotient (θLg (q)/ηg(q))24/N is a weakly holomorphic modular 

function. In Section 3.4, we will prove Theorem A which is a generalization of this fact 

to theta series associated to subgroups of automorphisms G ⊂ Aut L.
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3.3.1. Computing theta functions via Jacobi theta functions

Alternatively, given a code-lattice L constructed from a code C via Proposition 3.2, 

we can also compute the theta function of a fixed sublattice Lg by g ∈ ι(Aut C) ⊂ Aut L

by explicitly expressing θLg (q) in terms of the classical Jacobi theta functions

ϑ2(q) = θ�
Z+

1
2

�(q) =
�

n∈Z

q(n+ 1
2 )2/2 (3.10)

ϑ3(q) = θZ(q) =
�

n∈Z

qn2/2 (3.11)

ϑ4(q) =
�

n∈Z

(−1)nqn2/2, (3.12)

as detailed in [27]. Specifically, the description of the fixed sublattice given in equation 

(3.3) gives a decomposition of Lg into a union of discrete subsets in RN , each of which 

can be further decomposed into a sum of discrete subsets which are contained in mutually 

orthogonal linear subspaces in RN . For discrete subsets X, Y ⊂ RN , we have θ(X∪Y, z) =

θ(X, z) + θ(Y, z) and when X, Y are contained in orthogonal subspaces, θ(X + Y, z) =

θ(X, z)θ(Y, z). We may use these facts in order to compute the desired lattice theta series 

θLg (q). We illustrate this via an example.

Example 3.3. Let ḡ = (2, 8, 4, 6)(3, 5) ∈ Aut H and g = ι(ḡ) ∈ Aut E8. The codewords 

fixed by ḡ are B ∈ {∅, Ω, {2, 4, 6, 8}, {1, 3, 5, 7} }. Taking B = {2, 4, 6, 8}, we find any 

element of E8 of the form 1
2αB +

�

i xiαi invariant under g must have x2 = x4 = x6 = x8

and x3 = x5. Thus the corresponding term in the union (3.4) is

1
2α{2,4,6,8} +Zα{2,4,6,8} +Zα{3,5} +Zα1 +Zα7 =

�

Z + 1
2

�

α{2,4,6,8} +Zα{3,5} +Zα1 +Zα7

viewed as a discrete subset in R8. The formulas preceding the example then give the 

theta series for the discrete subset corresponding to B = {2, 4, 6, 8} as a product of 4

terms, ϑ2(q8)ϑ3(q4)ϑ3(q2)ϑ3(q2). Repeating this process for each remaining fixed code-

word above, we find that the theta series for the fixed sublattice Lg is given by

θLg (q) = ϑ3(q8)ϑ3(q4)ϑ3(q2)2 + ϑ2(q8)ϑ2(q4)ϑ2(q2)2 + ϑ2(q8)ϑ3(q4)ϑ3(q2)2

+ ϑ3(q8)ϑ2(q4)ϑ2(q2)2

= 1 + 14q + 30q2 + 36q3 + 62q4 + 72q5 + 68q6 + 112q7 + 126q8 + 98q9 + O(q10).

A similar process, together with equations (3.6) − (3.8), can also be used to give 

an explicit description of the theta functions of fixed sublattices of the Leech lattice 

and other lattices associated to super codes; see [27, §1] for further details and the 

repository [2] for an implementation in Magma.
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3.4. Sublattices fixed by subgroups of automorphisms

We now want to study sublattices fixed by subgroups of automorphisms of G (up 

to conjugacy) and consider theta quotients associated to these sublattices, analogous to 

those in Section 3.3. In order to compute fixed sublattices, we make use of the following 

lemma.

Lemma 3.4. Let {g1, . . . , gr} be a set of generators for the subgroup G of Aut L. Then 

the sublattice of L fixed by G is the lattice

LG =
�

g∈G

Lg =
r
�

i=1

Lgi .

Proof. The first equality is by definition of a fixed sublattice, so we verify the latter. 

The forward containment 
�

g∈G Lg ⊆ Lg1 ∩ · · · ∩ Lgr is immediate. Conversely, the set 

Lg1 ∩ · · · ∩ Lgr is contained in Lg for each g ∈ G since any g can be expressed as a word 

in the generators, and thus if λ ∈ L is fixed by each of g1, . . . , gr, then it is fixed by 

g. �

Analogously to (3.4), given G := ι(G) ⊂ Aut L we may write

LG =
�

B∈CG

�

1
2αB +

�

i xiαi : xi = xj if i and j are in the same orbit under G
�

.

(3.13)

Definition 3.5. Let G be a subgroup of Aut C and let G ⊆ Aut L be the image of G

under the embedding ι. Since G is a subgroup of SN , let rt denote the number of orbits 

of {1, . . . , N} of size t under the action of G. We define the eta product associated to 

LG by

ηG(q) :=
"

t

η(qt)rt . (3.14)

We further define the orbit type of G to be 
�

t trt .

The orbits of the action of G on the set {1, . . . , N} and the codewords fixed by G

have the following relationship.

Lemma 3.6. Let G be a subgroup of Aut C with orbit type 
��

i=1 tri
i and let m =

��
i=1 ri. 

Let {Oi : 1 ≤ i ≤ m} denote the orbits of the action of G. A codeword B ∈ C is fixed 

by G if and only if the decomposition Ω = ∪iOi is a refinement of the decomposition 

Ω = B ∪ (Ω � B).
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Proof. Suppose that B ∈ C is fixed by the action of G. Since G acts transitively on the 

orbit Oi, for each pair of elements u, v ∈ Oi, there exists ḡ ∈ G such that ḡ(u) = v. 

Thus u, v are in the same disjoint cycle decomposition of ḡ. Since the disjoint cycle 

decomposition of any such ḡ is a refinement of Ω = B ∪ (Ω � B), either u, v are both in 

B or both in Ω � B. Since this holds for all elements of Oi, each Oi is either a subset of 

B or Ω � B. The converse is immediate. �

We now give a proof of Theorem A. We note that this result gives lattice theta 

quotients that are non-monstrous replicable functions. Unlike previously known examples 

which were associated to individual automorphisms (see Section 6), those coming from 

Theorem A are associated to non-cyclic subgroups G ⊂ Aut C.

Theorem (Theorem A). Let C be a doubly even self-dual binary linear code of length N

and let L be the associated code-lattice. Let G ⊂ Aut L be a subgroup of automorphisms 

in the image of Aut C under the natural embedding and let LG be the sublattice fixed by 

G. Then the lattice theta quotient (θLG(q)/ηG(q))24/N is a weakly holomorphic modular 

function. In the case that G = �g� is a cyclic subgroup, this recovers the usual lattice 

theta quotient associated to g. Moreover, this construction can produce non-monstrous 

replicable functions not necessarily associated to any individual automorphisms.

Proof. Let L be the code-lattice associated to a code C and let G = ι(G) be a subgroup 

of automorphisms of L under the natural embedding. Assume that the orbit type of G

is 
��

i=1 tri
i , so that N =

��
i=1 tiri. We claim that both the theta series θLG(q) and the 

eta product (ηG(q))24/N are modular forms of weight k := 1
2

��
i=1 ri and level M :=

N
��

i=1 ti, which we now explain.

The theta series of LG is determined by the codewords fixed by G as in (3.13). More-

over, by Lemma 3.6, each fixed codeword B has the property that the orbit decomposition 

of G, written Ω = ∪m
i=1Oi, is a refinement of the decomposition Ω = B ∪ (Ω � B). Thus 

given B ∈ CG, after possibly reordering, we can write

B = ∪s
i=1Oi and Ω � B = ∪m

i=s+1Oi.

Hence the theta series for the discrete subset in the union (3.13) associated to B has the 

form

s
"

i=1

ϑ2(2|Oi|z)
m
"

i=s+1

ϑ3(2|Oi|z). (3.15)

Since ϑ2(z) = 2η(2z)2η(z)−1 and ϑ3(2z) = η(2z)5η(z)−2η(4z)−2, a term of the form 

(3.15) is the eta quotient

s
"

i=1

2 η(4|Oi|z)2η(2|Oi|z)−1
m
"

i=s+1

η(2|Oi|z)5η(|Oi|z)−2η(4|Oi|z)−2. (3.16)
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Now we can compute a level for each term (3.16) using [34, Theorem 1.64]. Since C is 

doubly even, we have |B| =
�s

i=1 |Oi| ≡ 0 mod 4. Therefore

8
s
�

i=1

|Oi| − 2
s
�

i=1

|Oi| + 10
m
�

i=s+1

|Oi| − 10
m
�

i=s+1

|Oi| = 6
s
�

i=1

|Oi| = 6|B| ≡ 0 mod 24.

Since N ≡ 0 mod 8 so that 2|Oi| and 4|Oi| divide M for 1 ≤ i ≤ m, we also have

s
�

i=1

2M

4|Oi|
−

M

2|Oi|
+

m
�

i=s+1

5M

2|Oi|
−

2M

|Oi|
−

2M

4|Oi|
≡ 0 mod 24.

This tells us that θLG(q) is a sum of terms which are each modular of level M . From 

(3.16), we also compute that the weight is

1

2
(s(2 − 1) + (m − s)(5 − 2 − 2)) =

1

2
m =

1

2

�
�

i=1

ri = k.

We note that this is the expected weight since the fixed sublattice LG has rank m.

By construction, ηG(q) also has weight k. Furthermore, the eta product ηG(q)
24
N sat-

isfies

24

N

�
�

i=1

tiri ≡ 0 −
24

N
· N ≡ 0 mod 24, since

�
�

i=1

tiri = N , and

24

N

�
�

i=1

M

ti
ri ≡

24

N

�
�

i=1

Nt1 . . . ti−1t̂iti+1 . . . t�ri ≡ 0 mod 24,

so it, too, has level M . Since η(z) is analytic and nonvanishing on the upper half plane 

and meromorphic at each cusp, the theta quotient (θLG(z)/ηG(z))24/N is a weakly holo-

morphic modular function of level M , although this level may not be optimal.

Finally, this construction recovers the usual lattice theta quotient associated to g ∈

Aut L when G = �g� = �ι(ḡ)�, since for a single element ḡ ∈ SN , the disjoint cycle 

decomposition precisely describes the orbits of {1, . . . , N} under the action of ḡ and 

hence of the whole subgroup �ḡ�. �

Example 3.7. Consider the subgroup G ⊂ Aut H generated by

g1 = (4, 6)(5, 7), g2 = (4, 7)(5, 6), and g3 = (1, 3)(2, 8),

and let G = ι(G) ⊂ Aut(E8). We determine that the orbits of the set Ω under 

the action of G are {1, 3}, {2, 8}, {4, 5, 6, 7}, hence the orbit type of G is 2241 and 

ηG(q) = η(q2)2η(q4). Then, as in Example 3.3, the set of G-fixed codewords are 
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{∅, Ω, {1, 2, 3, 8}, {4, 5, 6, 7}} and, for example, the discrete subset associated to the code-

word B = {1, 2, 3, 8} is (Z + 1
2 )α{1,3} + (Z + 1

2 )α{2,8} + Zα{4,5,6,7}. Repeating this for 

each fixed codeword, we eventually find that the theta series of the G-fixed sublattice is

θEG
8

(q) = ϑ3(q4)2ϑ3(q8) + ϑ2(q4)2ϑ2(q8) + ϑ2(q4)2ϑ3(q8) + ϑ3(q4)2ϑ2(q8)

= 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + 24q6 + 12q8 + 30q9 + O(q10),

the theta series for the lattice A1(2)3. Overall, the lattice theta quotient associated to 

G is

�

EG
8 (q)

ηG(q)

�3

= q−1(1 + 18q + 150q2 + 780q3 + 2928q4 + 88926q5 + 24032q6 + . . . ),

a modular function of level 64 which is a non-monstrous replicable function.

The orbit type is a natural generalization of cycle type when one considers subgroups 

of lattice automorphisms in the image of those from the code. The cycle type of a gen-

eral lattice automorphism is defined in terms of the decomposition of the characteristic 

polynomial into a product of cyclotomic polynomials [21, Appendix A]. For a lattice au-

tomorphism in the image of an automorphism of the code, this coincides with the cycle 

type as defined in Section 2.1.

Question 3.8. Can one generalize orbit type to an arbitrary subgroup of lattice automor-

phisms?

4. Lattice vertex operator algebras and automorphisms

In this section, we review the construction of lattice vertex operator algebras (lattice-

VOAs) which are VOAs built from even, positive definite lattices. We then recall au-

tomorphisms of VOAs and discuss those which are lifted from automorphisms of the 

lattice.

4.1. Lattice-VOA construction

Here we give a brief overview of the lattice-VOA construction in order to fix notation 

and ideas. For further details, we refer the reader to [30,19]. Given an even positive 

definite lattice L, we can form the twisted group algebra C�[L] spanned by the C-basis 

{e³}³∈L as follows. There exists a 2-cocycle

� : L × L → {±1} such that �(α, α) = (−1)"³,³�/2 and 
�(α, β)

�(β, α)
= (−1)"³,´� for α, β ∈ L

and where �·, ·� is the inner product on L. Multiplication on C�[L] is defined as e³e´ =

�(α, β)e³+´ and we define the weight of an element e³ to be �α, α�/2. Then the grading 

on C�[L] is given in terms of weight.



L. Beneish et al. / Journal of Algebra 642 (2024) 159–202 177

Let h = L ⊗Z C[t, t−1], then the Heisenberg algebra is defined as ĥ = h ⊕ Ck where 

k is a central element. This is a Lie algebra, with Lie bracket for h1 ⊗ tn1 , h2 ⊗ tn2 ∈ ĥ

defined by linearly extending the bracket given by

[h1 ⊗ tn1 , h2 ⊗ tn2 ] = �h1, h2�n1δn1+n2
k,

where h1, h2 ∈ h and n1, n2 ∈ Z. The Lie bracket of any element of ĥ with k is zero. Let 

h(n) = x ⊗ tn as an abbreviation, then we consider an ĥ-module, whose elements are of 

the form

hk(−nk) . . . h1(−n1)1, for n1 . . . nk ∈ Z+.

The lattice-VOA VL is defined as a tensor product of this ĥ-module with the twisted 

group algebra and consists of elements of the form

hk(−nk) . . . h1(−n1)1 ⊗ e³, for n1 . . . nk ∈ Z+ and e³ ∈ C�[L].

The weight of an element of this form is given by

n1 + · · · + nk + �α, α�/2.

One can equip this vector space with fields Y and conformal vector ω and VL will be a 

vertex operator algebra with central charge equal to the rank of L.

4.2. Automorphisms and fixed subVOAs

We now recall the definition of an automorphism of a VOA and discuss automorphisms 

of lattice-VOAs that arise as lifts of lattice automorphisms.

Definition 4.1 (VOA automorphism). For a VOA V , an automorphism of V is a linear 

operator h : V → V such that h1 = 1, hω = ω, and hY (v, z)h−1 = Y (hv, z) for all 

v ∈ V . We denote the group of automorphisms of V by Aut V .

For an automorphism h ∈ Aut V of order m, we have that V decomposes into 

eigenspaces

V =
�

k∈Z/mZ

V k

where V k = {v ∈ V | hv = e2πik/mv} for 0 ≤ k ≤ m − 1.

Definition 4.2 (Fixed subVOA). For a finite subgroup H ⊆ Aut V let V H be the set of 

v ∈ V that are pointwise fixed under the action of H, i.e.,
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V H := {v ∈ V | hv = v for all h ∈ H}.

By restricting the VOA structure from V to V H , V H has the structure of a vertex 

operator algebra.

The main theorem of orbifold theory (see, for example [30, Theorem 4.1.5] or [6,31,15]) 

asserts that if V is strongly rational and H is a finite solvable group of automorphisms 

of V , then the fixed-point VOA V H is strongly rational as well.

4.3. Lifting lattice automorphisms

We consider automorphisms of lattice-VOAs that arise as lifts of automorphisms of the 

underlying lattice. An automorphism g of an even positive definite lattice L can be lifted 

to an automorphism ĝ of the corresponding lattice-VOA VL. Based on the lattice-VOA 

construction, we decompose the VOA automorphism to see its action on the twisted 

group algebra and on the Heisenberg algebra. We write ĝ = gh ⊗ g� where gh acts on 

the elements of the Heisenberg algebra (denoted h(−n) where h ∈ h and n ∈ Z+) as 

g(h(−n)) = gh(−n). To define the action of g on the elements of the twisted algebra, we 

require a function u : L → {±1} that is compatible with the 2-cocycle � defined above in 

the sense that, for α, β in L we have

�(α, β)

�(gα, gβ)
=

u(α)u(β)

u(α + β)
.

We can then define the action of ĝ on C�[L] as ĝ(e³) = u(α)eg³. The action of gj on 

the Heisenberg algebra is straightforward, but it takes some care to define the action of 

ĝ on C�[L]. In particular, ĝj(e³) = u(α)u(gα) . . . u(gj−1α)egj³. To simplify notation, we 

define

wj(α) := u(α)u(gα) . . . u(gj−1α).

We will take u to be a standard lift of g, so that u(α) = 1 for each α ∈ Lg. However, 

since u(gjα) is not necessarily equal to 1 if j > 1, we use the following theorem to 

compute wj(α).

Theorem 4.3 ([3] [30]). Let g be an automorphism of L of order m and ĝ its lift to VL, 

then for all j ∈ Z≥0

wj(α) = u

"

j−1
�

i=0

giα

"

·

�

1 if m or j is odd,

(−1)"³,gj/2³� if m and j are even.

In particular, 
�j−1

i=0 giα is in Lg and thus if u is the standard lift, this factor is 1. Hence 

wj defines a homomorphism wj : Lgj

→ {±1}.
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In particular, if both the order m of the automorphism g and the power j of gj are 

even, then wj(α) need not equal 1. If g ∈ Aut(L) has order m and there is an α such 

that wj(α) �= 1, then the lift ĝ ∈ Aut(VL) has order 2m.

Corollary 4.4 (Order doubling). Let ĝ ∈ Aut(VL) be a standard lift of an order m auto-

morphism g ∈ Aut(L). If m is odd, then ĝ has order m. If m is even, then ĝ has order 

m if �α, gm/2α� ∈ 2Z for all α ∈ L, and order 2m otherwise.

5. Characters of fixed subVOAs

We now give the definition of the characters of the fixed subVOAs and an example 

of how to compute them. For a lattice-VOA VL, we take the fixed sublattice under a 

finite cyclic group of automorphisms �ĝ� of order n. By the classification of irreducible 

modules in [30], there are exactly n2 irreducible V "ĝ�-modules, namely

W (�,j) = {w ∈ V (ĝ�) | φ�(ĝ)v = e2πij/nv}

where φ� is a representation of �ĝ� on the vector space VL(ĝ�) that is unique up to an 

n-th root of unity (see [30, Proposition 4.2.3] or [12]). Recall that V = ⊕Vn is graded by 

the L0 eigenvalues, so we define tr(qL0−c/24|V ) := q−c/24
�

n dimVn qn.

Definition 5.1 (Twisted trace functions). Following [31,6,33], let

T (v, �, j, τ) := tr(o(v)φ�(ĝ
j)qL0− c

24 | V (ĝ�)), (5.1)

where for v ∈ Vk, we have o(v) := v(k − 1) which leaves each homogeneous space Vk

invariant and can be linearly extended to finite sums u =
�

k o(vk).

Definition 5.2. The character of a vertex operator algebra V =
�

n Vn of central charge 

c is defined as

Ch V :=
�

n

dim(Vn)qn−c/24.

To compute the character of VL fixed by �ĝ�, we sum over the traces of ĝj acting on 

VL for all ĝj ∈ �ĝ�. In the particular case when v = 1, the twisted character for the 

action of ĝj on the twisted module V (ĝ�) is

T (�, j, τ) = T (1, �, j, τ) = tr(φ�(ĝ
j)qL0− c

24 | V (ĝ�)). (5.2)

Taking φ0(ĝ) := ĝ for all ĝ ∈ Aut VL,1 we observe from (5.2) that

T (0, j, τ) = tr(φ0(ĝj)qL0− c
24 | VL) = tr(ĝjqL0− c

24 | VL),

1 Since VL is untwisted, this is a suitable choice for φ0 (see, for example Remark 4.2.2 of [30]).
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which is the trace of ĝj acting on VL. Note that in terms of the twisted modules above, 

we have ChV
"ĝ�

L = ChW (0,0)(τ). Thus

ChV
"ĝ�

L =
1

n

�

j∈Z/nZ

T (0, j, τ) =
1

n

�

j∈Z/nZ

tr(ĝjqL0− c
24 | VL) =

1

n

�

j∈Z/nZ

θLgj
,wj

(τ)

ηgj (τ)
,

(5.3)

with θLgj
,wj

(τ) =
�

³∈Lgj

wj(α)q"³,³�/2 and wj(α) = u(α)u(gα) . . . u(gj−1α), as before.

By Corollary 4.4, when j or n is odd, the theta series θLgj
,wj

(τ) is the usual lattice 

theta series θLg (τ) of the sublattice fixed by gj. When j and n are both even, the theta 

series θLgj
,wj

(τ) is not necessarily equal to θLgj (τ) since wj(α) need not be 1. In this 

case, since wj defines a homomorphism into {±1}, we can decompose Lgj

as a direct 

sum

Lgj = w−1
j ({1}) ⊕ w−1

j ({−1}) = Lgj

0 ⊕ w−1
j ({−1}). (5.4)

We call Lgj

0 := w−1
j ({1}) = ker(wj) the kernel for order doubling. Its complement 

w−1
j ({−1}) has theta series θLgj (τ) −θ

Lgj

0

(τ). Separating the terms of θLgj
,wj

(τ) accord-

ing the value of wj(α) in each term, we have θLgj
,wj

(τ) = θ
Lgj

0

(τ) − θw−1
j ({−1})(τ). In 

summary, we have

θLgj
,wj

(τ) =

§

¨

©

θLgj (τ), if one of j or n is odd

2θ
Lgj

0

(τ) − θLgj (τ), if both j and n are even.
(5.5)

In the case of E8, we prove that the kernel for order doubling is the D8 lattice.

Lemma 5.3. Let L = E8 and suppose g ∈ Aut(L) with even order n whose lift ĝ has order 

2n in Aut VL. Then when j = n, we have θLgj
,wj

(τ) = 2θD8
(τ) − θE8

(τ).

Proof. The kernel ker(wj) is always a full rank sublattice of Lgj

, the latter of which is 

L itself in the case that j = n since g has order n. By assumption, ĝ has order doubling, 

thus ker(wj) � E8. Moreover, since D8 = {
�

xiei :
�

i xi ≡ 0 mod 2} ⊂ E8, the norm 

�α, gα� ∈ 2Z for all α ∈ D8, hence D8 ⊂ ker(wj). Finally, since D8 has index 2 in E8, 

we must therefore have ker(wj) = D8 and thus the claim follows from (5.5). �

Example 5.4. Consider an element ḡ ∈ Aut H of cycle type 122141 and let g = ι(ḡ). By 

applying Corollary 4.4, we can determine that the lift of g to ĝ ∈ Aut VE8
has order 

doubling, i.e., ord(ĝ) = 8. For odd j, since the fixed sublattices Lg and Lg3

are the same, 

we find

T (0, j, τ) = q−1/3(1 + 16q + 64q2 + 192q3 + 510q4 + 1216q5 + 2688q6 + · · · ).
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We handle even powers of g individually. To compute T (0, 0, τ) = T (0, 8, τ), since g8 is 

the identity, this gives θLg8 (τ) = θLid(τ) = θE8
(τ). Thus we have

T (0, 0, τ) = q−1/3(1+248q+4124q2 +34752q3 +213126q4 +1057504q5 +4530744q6 +· · · ).

Since g2 has cycle type 1422, the fixed sublattice Lg2

has rank 6 and has theta series

θLg2 (τ) = 1 + 60q + 252q2 + 544q3 + 1020q4 + 1560q5 + 2080q6 + 3264q7 + 4092q8 + · · · .

The kernel of w2 is a full rank sublattice of Lg2

, and the theta series of Lg2

0 = ker(w2) is

θ
Lg2

0

(τ) = 1 + 28q + 124q2 + 288q3 + 508q4 + 728q5 + 1056q6 + 1728q7 + 2044q8 + · · · .

We then use (5.5) to compute the theta series. Following the same process for j = 4 and 

j = 6, we find

T (0, 2, τ) = q−1/3(1 − 4q2 + 6q4 − 8q6 + 17q8 − 28q10 + · · · ),

T (0, 4, τ) = q−1/3(1 − 8q + 28q2 − 64q3 + 134q4 − 288q5 + 568q6 + · · · ), and

T (0, 6, τ) = q−1/3(1 − 4q2 + 6q4 − 8q6 + 17q8 − 28q10 + · · · ).

Finally, by combining the previous calculations, we have

ChV
"ĝ�

L = q−1/3(1 + 38q + 550q2 + 4432q3 + 26914q4 + 132760q5 + 567756q6 + · · · ).

6. Replicable functions associated to code-lattices

In this section, we prove results about the modular functions associated to sublattices 

of even unimodular code-lattices fixed by subgroups of automorphisms of the code. In 

particular, motivated by Monstrous Moonshine, we consider the question of when these 

modular functions are replicable functions, and recover classical results regarding the 

functions that arise as theta quotients associated to sublattices of the E8 lattice fixed 

by a single automorphism. More generally, we show that when one considers sublattices 

fixed by subgroups of automorphisms, it is possible to recover additional replicable lattice 

theta quotients. We make this explicit in Section 6.3.1 for the Leech lattice. Furthermore, 

we characterize those replicable theta quotients associated to orbit types that can exist 

for code-lattices of arbitrary rank, and provide data for lattices of rank at most 24.

In Figs. 1–5, capital letters indicate monstrous functions for which ATLAS notation 

is used as in [7], while lowercase letters indicate non-monstrous replicable functions.

6.1. Lattices fixed by an automorphism

The relationship between the monstrous moonshine functions and graded trace func-

tions of automorphisms acting on lattice-VOAs (although not stated this way) has been 
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Cycle Type of g Representative (θLg (q)/ηg(q))3

18 Id(G) T1A(q)

12 32 (1, 5, 2)(3, 7, 8) T3A(q)

24 (1, 7)(2, 4)(3, 8)(5, 6) T4A(q)

11 71 (1, 3, 7, 8, 5, 4, 2) T7A(q)

42 (1, 3, 7, 8)(2, 5, 4, 6) T8B(q)

21 61 (1, 3, 7, 8, 2, 6)(4, 5) T6b(q)

Fig. 1. List of cycle types of automorphisms of H that produce replicable lattice theta quotients for E8.

investigated for individual lattice automorphisms g. In particular, when L is the Leech 

lattice, Conway and Norton [7] speculated that for any g ∈ Aut L, the lattice theta quo-

tient θLg (τ)/ηg(τ) is a monstrous moonshine function. This is in fact not the case; there 

are 15 conjugacy classes of elements of Aut L such that θLg (τ)/ηg(τ) are not hauptmod-

uln [28]. However, Kondo and Tasaka considered only automorphisms of L which are 

in the image of an automorphism Aut G under a natural embedding [27]. In this case 

they show that all of the lattice theta quotients θLg (τ)/ηg(τ) are monstrous moonshine 

functions. This leads naturally to the following question.

Question 6.1. Let C be a doubly-even self dual code and let L be the corresponding 

code-lattice. If one restricts to the trace functions θLg (τ)/ηg(τ) for g ∈ Aut L in the 

image of ḡ ∈ Aut C, are these all replicable functions? If not, to what extent does this 

fail?

In the case when L is the E8 lattice, the automorphisms of L that give hauptmoduln 

are classified in [5, Main Theorem]. In analogy with [27], we investigate the lattice theta 

quotients (θLg (τ)/ηg(τ))3 when g is an automorphism of E8 in the image of Aut H under 

the embedding ι, defined in equation (3.1). In particular, we find they are equal to mon-

strous moonshine functions or non-monstrous replicable functions for certain conjugacy 

classes. As in Theorem A, we take the cube to ensure that the theta quotients have 

desired transformation properties and are in fact modular functions. We summarize our 

findings below.

Proposition 6.2. Let ḡ be an automorphism of the Hamming code H. Then (θLg (z)/ηg(z))3

is a replicable function if and only ḡ is in one of the 6 conjugacy classes listed in Fig. 1.

Proof. We first note that one could obtain the result from [5, Main Theorem] by restrict-

ing to only those elements of Aut E8 in the image of Aut H under the natural embedding. 

We proceed by considering all 11 conjugacy classes of elements g in Aut H. Using Defini-

tion 2.3, one can verify that the associated theta quotients (θLg (z)/ηg(z))
3

are not repli-

cable for the following conjugacy classes: 24 with representative (1, 2)(3, 8)(4, 7)(5, 6), 

14 22 with representative (1, 6)(7, 8), 42 with representative (1, 5, 2, 6)(3, 7, 8, 4), and 

12 21 41 with representative (1, 7, 8, 6)(4, 5). For the remaining conjugacy classes, one 
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Orbit Type Generators of representative subgroup (ΘLG (q)/ηG(q))3

18 id T1A(q)

12 32 (1, 5, 2)(3, 7, 8)
T3A(q)

(1, 4, 3)(5, 8, 7), (1, 3)(5, 7)

24 (1, 7)(2, 4)(3, 8)(5, 6)
T4A(q)

(1, 5)(2, 6), (3, 8)(4, 7)

11 71
(1, 3, 7, 8, 5, 4, 2)

T7A(q)(1, 4, 3)(5, 8, 7), (1, 7, 3, 4, 6, 5, 8)

(1, 4)(3, 6), (1, 3, 8, 2)(4, 5)

42

(1, 3, 7, 8)(2, 5, 4, 6)

T8B(q)
(2, 5)(3, 4), (1, 8)(2, 5)(3, 4)(6, 7), (1, 5)(2, 8)(3, 7)(4, 6)

(1, 2)(3, 7)(4, 8)(5, 6), (1, 7)(2, 3)(4, 5)(6, 8)

(1, 2)(3, 7)(4, 8)(5, 6), (1, 7)(2, 3)(4, 5)(6, 8), (1, 2, 3)(4, 6, 5)

(1, 2, 5)(3, 7, 4), (2, 5)(3, 4), (1, 8)(2, 5)(3, 4)(6, 7),
(1, 2)(3, 6)(4, 7)(5, 8)

21 61

(1, 3, 7, 8, 2, 6)(4, 5)

T6b(q)

(1, 2)(3, 7)(4, 8)(5, 6), (1, 6, 8)(2, 4, 5)

(4, 6)(5, 7), (2, 7, 5)(3, 6, 4), (1, 8)(2, 3)(4, 5)(6, 7)

(1, 2, 5)(3, 7, 4), (2, 4)(3, 5), (1, 7)(2, 4)(3, 5)(6, 8), (1, 7)(2, 4)

(1, 2, 5)(3, 7, 4), (2, 4)(3, 5), (1, 7)(2, 3)(4, 5)(6, 8), (1, 7)(2, 4)

(2, 4)(3, 5), (1, 7)(2, 4)(3, 5)(6, 8), (2, 5)(3, 4), (1, 7)(2, 4),
(1, 5, 2)(3, 4, 7)

Fig. 2. The replicable lattice theta quotients associated to subgroups of automorphisms of the Hamming 
code H embedded as automorphisms of E8.

can compute the corresponding fixed sublattices and apply Proposition 6.6 to recover 

the replicable functions in Fig. 1. �

Remark 6.3. The cycle types in Aut H whose lattice theta quotients are not replicable 

functions, namely {24, 1422, 42, 122141}, coincide with the cycle types whose lifts to VE8

have order doubling. Note, however that while the cycle types are the same, the conjugacy 

classes are not necessarily the same.

6.2. Lattices fixed by subgroups of automorphisms

Recall that in Definition 3.5 we extended the notion of cycle type of an element 

g ∈ Aut L to an orbit type of a subgroup G ⊂ Aut L, thereby allowing us to define an 

eta product ηG(q) associated to a subgroup G.

Question 6.4. If one considers lattice theta quotients for lattices fixed by subgroups of 

Aut C rather than individual elements of Aut C, which, if any, of these functions are 

replicable? Will any additional replicable functions arise that were not realized as theta 

quotients from individual elements?

We first complete this analysis for subgroups of Aut H.

Proposition 6.5. Let G be a subgroup of automorphisms of the Hamming code H whose 

image is G := ι(G) in the automorphism group of L := E8. Then (θLG(z)/ηG(z))3 is a 
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replicable function if and only if the subgroup G is isomorphic to one of the 19 conjugacy 

classes of subgroups in Fig. 2.

Proof. The proof proceeds in the same manner as Proposition 6.2 except we consider all 

95 conjugacy classes of subgroups of Aut H. In particular, for each subgroup listed above 

we compute the fixed sublattice and apply Proposition 6.6, otherwise we determine the 

theta quotient is not replicable via Definition 2.3. �

6.3. Comparisons of theta quotients across lattices of varying rank

We now gather results regarding the replicable functions that frequently appear as 

lattice theta quotients for even unimodular code-lattices L as the rank N varies. Since 

N ≡ 0 mod 8, some of the orbit types that can appear for any such N are 1N , 2N/2, 

4N/4, 1N/4 3N/4, 2N/8 6N/8, 1N/8 7N/8, and 8N/8, since these correspond to the partitions 

of 8 where each distinct part appears the same number of times.

The orbit type of a subgroup G ⊂ Aut(L) is not enough to characterize the fixed 

sublattice and hence the corresponding lattice theta quotient. Therefore, we state results 

about pairs of an isomorphism class of fixed sublattice together with an orbit type listed 

above which must give rise to replicable theta quotients, with a focus on those pairs that 

arise for the E8 lattice and appear in higher rank lattices. Moreover, in Example 6.7 and 

Fig. 5, we recover additional replicable theta quotients associated to the Leech lattice, 

and in particular one from a non-cyclic subgroup with orbit type 23 63.

Proposition 6.6. Let G be a subgroup of Aut(L) and LG be the fixed sublattice.

(1) If G has orbit type 2N/2 with LG ∼= A1(2)N/2, then (θLG(q)/ηG(q))24/N = T4A(q).

(2) If G has orbit type 4N/4 with LG ∼= A1(4)N/4, then (θLG(q)/ηG(q))24/N = T8B(q).

(3) If G has orbit type 8N/8 with LG ∼= A1(8)N/8, then (θLG(q)/ηG(q))24/N = T16a(q).

(4) If G has orbit type 1N/4 3N/4 with LG ∼= A
N/4
2 , then (θLG(q)/ηG(q))24/N = T3A(q).

(5) If G has orbit type 2N/8 6N/8 with LG ∼= A2(2)N/8, then (θLG(q)/ηG(q))24/N =

T6b(q).

(6) If G has orbit type 2N/8 6N/8 with θLG(q) =
�

θA1
(q2) θA1

(q6)
�N/8

, then the lattice 

theta quotient (θLG(q)/ηG(q))24/N = T12A(q).

(7) If G has orbit type 1N/8 7N/8 with LG ∼= K, the Kleinian lattice with Gram matrix 
�

2 1
1 4

�

, then (θLG(q)/ηG(q))24/N = T7A(q).

Proof. (1) The theta quotient for the fixed sublattice is given by

�

θLG(q)

ηG(q)

�
24
N

=

�

θA1
(q2)

η(q2)

�
N
2 · 24

N

=

�

η(q2)4

η(q)2η(q4)2

�12

=

�

η(q2)2

η(q)η(q4)

�24

= T4A(q)

where the third equality follows from the fact that the theta function for the lattice 

A1(2) is the Jacobi theta function ϑ3(q2) = η(q2)5/(η(q)η(q4))2.
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(2) This result follows from the proof of (1) since the lattice theta quotient is

�

θLG(q)

ηG(q)

�
24
N

=

�

θA1
(q4)

η(q4)

�
N
4 · 24

N

=

�

θA1
(q4)

η(q4)

�6

= T4A(q2)1/2 = T8B(q).

(3) This result similarly follows from the proof of (1) since the lattice theta quotient 

is

�

θLG(q)

ηG(q)

�
24
N

=

�

θA1
(q8)

η(q8)

�
N
8 · 24

N

=

�

θA1
(q8)

η(q8)

�3

= T4A(q4)1/4 = T16a(q).

(4) The theta quotient for the given fixed sublattice has the form

�

θLG(q)

ηG(q)

�
24
N

=

�

θA2
(q)

η(q)η(q3)

�
N
4 · 24

N

=

�

θA2
(q)

η(q)η(q3)

�6

.

Since θA2
(q)6 = θA6

2
(q) = θA3

2
(q)2 =

�

η(q)12+27η(q3)12

(η(q)η(q3))3

�2

, we find

�

θA2
(q)

η(q)η(q3)

�6

=

�

θA3
2
(q)

η(q)3η(q3)3

�2

=

�

η(q)6

η(q3)6
+ 27

η(q3)6

η(q)6

�2

= T3A(q).

(5) This result follows from the proof of (4) since the lattice theta quotient is given 

by

�

θLG(q)

ηG(q)

�
24
N

=

�

θA2
(q2)

η(q2)η(q6)

�
N
8 · 24

N

=

�

θA2
(q2)

η(q2)η(q6)

�3

= T3A(q2)1/2 = T6b(q).

(6) The theta quotient for the described fixed sublattice has the form

�

θLG(q)

ηG(q)

�
24
N

=

�

θA1
(q2)θA1

(q6)

η(q2)η(q6)

�
N
8 · 24

N

=

�

η(q2)2η(q6)2

η(q)η(q4)η(q3)η(q12)

�6

= T12A(q).

(7) Since the theta function of the Kleinian lattice K is

θK(q) =
(η(q)η(q7))3 + 4(η(q2)η(q14))3

η(q)η(q2)η(q7)η(q14)
,

we find that the theta quotient for the given fixed sublattice has the form

�

θLG(q)

ηG(q)

�
24
N

=

�

θK(q)

η(q)η(q7)

�
N
8 · 24

N

"

η(q)η(q7)

η(q2)η(q14)
+ 4

�

(η(q2)η(q14)

η(q)η(q7)

�2
"3

= T7A(q). �
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Example 6.7. The automorphism group of the Golay code G does not contain any ele-

ments of cycle type 2363. However, it does contain four conjugacy classes of non-cyclic 

subgroups with this orbit type. A Magma computation shows that the embedding of these 

subgroups into the automorphism group of Λ24 all have fixed sublattices isomorphic to 

A2(2)3. Thus by Proposition 6.6, the corresponding lattice theta quotients are all equal 

to the non-monstrous replicable function T6b(q). For explicit generators or additional 

replicable functions that arise for orbit types associated to other conjugacy classes of 

non-cyclic subgroups, see Section 6.3.1.

Remark 6.8. Proposition 6.6 omits the theta quotient associated to the identity auto-

morphism, i.e., the orbit type 1N . Since the theta series of even unimodular lattices are 

modular forms of weight N/2 for Γ = SL2 Z, when N ≤ 24 there are limited possibilities. 

In particular, for N = 8 and 16, we have dim MN/2(Γ) = 1 and thus the theta series are 

uniquely determined. When N = 24, we have dim M12(Γ) = 2, so that each lattice has 

a distinct theta series. In this case, however, the theta series is completely determined 

by the number of roots, i.e., vectors of norm 2, and each such lattice has corresponding 

theta quotient T1A(q), albeit with varying constant term. This is no longer the case for 

higher rank lattices with N ≥ 32; the dimension of the corresponding space of modular 

forms is at least 2 [34, Prop. 1.25].

In Figs. 3 and 4 we record those replicable functions from Proposition 6.6 that arise 

as lattice theta quotients for the even unimodular code-lattices of rank N ≤ 24. The 

only such lattices with N ≤ 16 are E8, D+
16, and E2

8 . There are nine binary even self dual 

linear codes of length 24. These give rise to nine code-lattices of rank 24, corresponding 

to the nine Niemeier lattices containing an orthogonal 2-frame [24]. These consist of the 

lattices labeled N(D24), N(D16E8), N(E3
8), N(D2

12), N(D10E2
7), N(D3

8), N(D4
6), N(D6

4), 

and N(A24
1 ). Of these nine codes, the Golay code G is the only one with minimum weight 

greater than 4, and thus gives rise to both the Niemeier lattice N(A24
1 ) via Construction 

A and also to the Leech lattice via the construction in Section 3.2.1.

In Fig. 4 the blank entries signify only that the computation was not performed; this 

choice was due to the large amount of computing time and memory required to determine 

the existence of the relevant subgroups of automorphisms of these lattices.

6.3.1. Additional replicable functions associated to the Leech lattice

As mentioned above, when L is the Leech lattice Λ24, there exist non-cyclic subgroups 

of Aut G whose image in Aut L has orbit type 23 63 and the theta quotient for the 

corresponding fixed sublattice is T6b. In Fig. 5, we list some additional orbit types of 

(conjugacy classes of) non-cyclic subgroups of Aut G whose images in Aut L have fixed 

sublattices with non-monstrous replicable theta quotients that do not arise from any 

cyclic subgroups. This gives a partial answer to Question 6.4 for Λ24 and addresses the 

statement at the end of Theorem A.
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Orbit Type
�

θLG (q)

ηG(q)

�24/N
E8 D+

16 E2
8

1N T1A Y Y Y

2N/2 T4A Y Y Y

4N/4 T8B Y Y Y

8N/8 T16a N Y Y

1N/4 3N/4 T3A Y Y Y

2N/8 6N/8 T6b Y N Y

2N/8 6N/8 T12A N Y N

1N/8 7N/8 T7A Y Y Y

Fig. 3. Theta quotients for code-lattices of rank 8 and 16.

Orbit Type
�

θLG (q)

ηG(q)

�24/N
D2

12 D10E2
7 D3

8 D4
6 D24 D6

4 E3
8 D16E8 A24

1 Leech

1N T1A Y Y Y Y Y Y Y Y Y Y

2N/2 T4A Y Y Y Y Y Y Y Y Y Y

4N/4 T8B Y – Y Y Y Y Y Y Y Y

8N/8 T16a – – – – – – – – N N

1N/4 3N/4 T3A Y Y Y Y Y Y Y Y Y Y

2N/8 6N/8 T6b – – Y – – Y Y – Y Y

2N/8 6N/8 T12A – – – – – – – – N N

1N/8 7N/8 T7A – – – – – – Y Y Y Y

Fig. 4. Theta quotients for code-lattices of rank 24.

Orbit type Representative subgroup of Aut G Replicable function

23 63
(1, 16)(2, 20)(3, 22)(4, 21)(5, 10)(6, 17)(7, 13)(8, 11)(9, 15)(12, 23)

T6b(14, 18)(19, 24),
(1, 12, 5)(3, 17, 15)(6, 22, 9)(7, 8, 14)(10, 23, 16)(11, 13, 18)

32 92
(1, 14, 11)(2, 16, 5)(3, 21, 22)(4, 12, 20)(6, 17, 19)(7, 10, 24)(8, 9, 18)

T9b(13, 23, 15),
(1, 18, 13)(3, 4, 19)(6, 21, 12)(8, 23, 14)(9, 15, 11)(17, 22, 20)

61 181

(1, 6)(2, 15)(3, 9)(4, 14)(5, 13)(7, 20)(8, 21)(10, 22)(11, 16)(12, 23)

T18b

(17, 18)(19, 24),
(1, 18, 23)(2, 19, 21)(3, 5, 16)(4, 22, 20)(6, 12, 17)(7, 10, 14)(8, 24, 15)
(9, 11, 13),
(1, 14, 13)(3, 20, 17)(4, 6, 5)(7, 9, 18)(10, 11, 23)(12, 16, 22)

21 221
(1, 2)(3, 8)(4, 13)(5, 11)(6, 18)(7, 16)(9, 17)(10, 12)(14, 21)(15, 22)

T22a(19, 24)(20, 23),
(1, 15, 13, 14, 18, 11, 10, 23, 9, 8, 7)(2, 16, 3, 17, 20, 12, 5, 6, 21, 4, 22)

41 201

(1, 5)(2, 18)(3, 10)(4, 8)(6, 11)(7, 22)(9, 17)(12, 13)(14, 21)(15, 19)

T40a

(16, 24)(20, 23),
(1, 14)(2, 6)(3, 12)(4, 17)(5, 21)(7, 24)(8, 9)(10, 13)(11, 18)(15, 23)
(16, 22)(19, 20),
(1, 5)(2, 10, 19, 8, 22, 18, 3, 15, 4, 7)(6, 13, 20, 9, 16, 11, 12, 23, 17, 24)(14, 21)

Fig. 5. Replicable theta quotients associated to non-cyclic subgroups of automorphisms of the Leech lattice.

Remark 6.9. In fact, there is an automorphism of Λ24 with 2363 cycle type, however it lies 

in Aut Λ24�Aut G. The corresponding lattice theta quotient gives the replicable function 

T12A [28]. Similarly, T12A also appears as a lattice theta quotient for the E8 lattice, but 

for the conjugacy class of element with 2161 cycle type that lies in Aut E8 \ Aut H [5].
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6.3.2. Higher rank examples

Our methods and questions also apply to lattices of higher rank. There are 85 bi-

nary even self-dual linear codes C of length 32 (see [4,8,9,35,36] for the classification 

of binary self-dual codes of length at most 32.), each giving rise to a code-lattice L via 

Construction A. Of these, only the three lattices isomorphic to E4
8 , E2

8 ⊕ D+
16, or (D+

16)2

have theta quotient T1A corresponding to the cycle type 132, however many more have 

fixed sublattices with theta quotients T4A or T8B , for example. The interested reader 

can run the Magma code accompanying the paper [2] on any of the Type II linear codes 

C in the database [26] to recover additional information about the associated lattice 

theta quotients. Thus it is natural to ask for a classification of the possible replicable 

functions that can appear, especially for those higher rank lattices that are orthogonally 

indecomposable.

Question 6.10. Can one give complete classification of the replicable functions that can 

arise as lattice theta quotients for even unimodular lattices in a given fixed rank N? 

Which replicable functions never appear in rank N ≥ 32 for those lattices that are not 

direct sums of lattices of dimension at most 24?

7. Code theoretic characterizations of fixed sublattices

In Section 6, we proved Proposition 6.6 in which we enumerated pairs of automor-

phisms with a given cycle type and fixed sublattices of a code-lattice L that give rise 

to replicable lattice theta quotients. In this section, we prove that for several such cycle 

types, this information can be recovered purely via properties of subcodes of the code C

from which the code-lattices are constructed. We focus on those subcodes that exist for 

the unique doubly even self-dual code of length 8 and provide data for codes of length 

at most 32, noting that there are other characterizations of subcodes giving rise to the 

same replicable lattice theta quotients for length larger than 8.

7.1. Identities involving Jacobi theta functions

We record several identities regarding the Jacobi theta functions defined in (3.10)

which will be needed in the next several sections.

Lemma 7.1. Let N be a positive integer. The following identities hold.

(1) ϑ2(q)2 = 2ϑ2(q2)ϑ3(q2)

(2) ϑ3(q)2 = ϑ3(q2)2 + ϑ2(q2)2

(3) θAN
1

(q) = ϑ3(q)N , where AN
1

∼= ZN denotes the standard lattice of rank N .

(4) θD∗

N
(q) = ϑ3(q)N + ϑ2(q)N

(5)
η(q)2

η(q2)2
=

ϑ4(q2)

η(q2)



L. Beneish et al. / Journal of Algebra 642 (2024) 159–202 189

Proof. We have (1) is [27, (T4)], (2) is [27, (T5)], (3) is [11, §4.5], (4) is [11, §4.7(96)], 

and (5) follows from the identity ϑ4(q2) = η(q)2/η(q2) [27, (T22)]. �

Lemma 7.2. The theta series θ
A

N/2
1

(q2) and θD∗

N/2
(q2) have the same coefficients on the 

even (resp. odd) powers of q when N ≡ 8 mod 16 (resp. N ≡ 0 mod 16).

Proof. By Lemma 7.1(3) and (4), we need only consider the even (resp. odd) coefficients 

of ϑ2(q2)N/2. For a fixed integer k, let ak denote the coefficient on qk. Then by (3.10)

ak = #

§

¨

©

(y1, . . . , yN/2) ∈ ZN/2 :

N/2
�

i=1

y2
i +

N/2
�

i=1

yi +
N

8
= k

«

¬

­

.

Since 
�

y2
i and 

�

yi have the same parity, we have ak = 0 when N ≡ 8 mod 16 and k

is even (resp. N ≡ 0 mod 16 and k is odd). �

7.2. Fixed subcodes giving rise to prescribed lattice theta series

Given an automorphism ḡ ∈ Aut C, we now give conditions for the fixed subcode C ḡ

which guarantee that the fixed sublattice of the corresponding code-lattice has theta 

series that agrees with that of the lattice A1(r)N/r. This in turn guarantees a replicable 

lattice theta quotient.

Theorem (Theorem B). Let C be a doubly even self dual linear code of length N , let r|N , 

and let ḡ ∈ Aut C have cycle type rN/r. Suppose that the fixed subcode C ḡ has dimension 

dim C ḡ = 1
r dim C spanned by {B1, . . . , BN/2r}. Further suppose Bi ∩Bj = ∅ for all i �= j

and ∪iBi = {1, . . . , N}. Then the corresponding sublattice fixed by g = ι(ḡ) has theta 

series given by θLg (q) = ϑ3(qr)N/r. In particular the theta series of the fixed sublattice 

is the same as that of the lattice A1(r)N/r.

Proof. We will show that θLg (q) = (ϑ2(q2r)2 + ϑ3(q2r)2)N/2r, which is the same as 

θLg (q) = ϑ3(qr)N/r by Lemma 7.1(2). In fact, we will prove the equivalent statement 

that

θLg (q) =

N/2r
�

k=0

�

N/2r

k

�

ϑ2(q2r)2k ϑ3(q2r)2(N/2r−k). (7.1)

By equation (3.4), in order to find the fixed sublattice Lg we can take the union over 

each codeword in the fixed subcode C ḡ as follows. Write

Lg =
�

B∈Cḡ

�

1
2αB +

�

i xiαi : xi = xj if i and j are in the same cycle of ḡ
�

. (7.2)

Since Bi ∩ Bj = ∅ for all i �= j with ∪iBi = {1, . . . , N}, and
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dim C ḡ =
1

r
dim C =

1

r
·

N

2
=

N

2r
,

we have |Bi| = 2r for each i. Any codeword fixed by ḡ has the form B =
�

j∈J Bj for 

some (possibly empty) set of indices J ⊂ {1, . . . , N/2r}. We let k := |J | so that the 

weight of such a codeword B is 2kr. Since ḡ has cycle type rN/r, it has the disjoint 

cycle decomposition Ω = ∪
N/r
i=1 Oi with |Oi| = r for all i. By Lemma 3.6, after possibly 

reordering, we can write B = ∪2k
i=1Oi and Ω � B = ∪

N/r
i=2k+1Oi. Thus the corresponding 

discrete subset in the union defining Lg is given by

2k
�

i=1

�

Z + 1
2

�

αOi
∪

N/r
�

i=2k+1

Z αOi
,

which therefore has theta series

ϑ2(q2r)2kϑ3(q2r)N/r−2k = ϑ2(q2r)2kϑ3(q2r)2(N/2r−k), (7.3)

by the definitions of the Jacobi theta functions ϑ3 and ϑ2 in (3.10). Finally, the number 

of such codewords in C ḡ with |B| = 2kr is given by 
�

N/2r
k

�

. Together with the theta 

series calculation (7.3), this recovers formula (7.1). �

Corollary 7.3. Assume the code C and ḡ ∈ Aut C satisfy the hypothesis of Theorem B. 

Then the lattice theta quotient corresponding to g = ι(ḡ) is replicable. In particular, 

for r = 1, 2, 4, 8 then (θLg (q)/ηg(q))24/N is equal to T1A(q), T4A(q), T8b(q), and T16a(q)

respectively.

Proof. This follows immediately from Proposition 6.6 and Theorem B. �

When ḡ has cycle type 2N/2, the following conditions guarantee a sublattice which 

shares a theta series with the lattice D∗
N/2(2).

Proposition 7.4. Let C be a doubly even self-dual linear code of length N and let ḡ ∈ Aut C

have cycle type 2N/2. Suppose the fixed subcode C ḡ has dimension dim C ḡ = 1
2 dim C+1 =

N
4 + 1 and is spanned by {B0, B1, . . . , BN/4}. Further suppose that

(1) |B0| = N
2 ,

(2) |Bj | = 4 for 1 ≤ j ≤ N
4 ,

(3) Bi ∩ Bj = ∅ for 1 ≤ i, j ≤ N
4 with i �= j, and

(4) |B0 ∩ Bj | = 2 for 1 ≤ j ≤ N
4 .

Then the sublattice fixed by g = ι(ḡ) has theta series θLg (q) = ϑ3(q2)N/2 + ϑ2(q2)N/2. In 

particular, the theta series of the fixed sublattice agrees with that of the lattice D∗
N/2(2).
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N #

�

C : C ḡ∼=CA for some
ḡ ∈Aut C

"

#

�

C : C ḡ∼=CD for some
ḡ ∈Aut C

"

#{C : len(C) = N}

8 1 1 1

16 1 2 2

24 6 5 9

32 19 12 85

Fig. 6. Codes of length ≤ 32 containing fixed subcodes of the form in Theorem B or Proposition 7.4.

Proof. We will show that

θLg (q) = ϑ3(q2)N/2 + 2N/4(ϑ2(q4)2ϑ3(q4)2)N/4 (7.4)

which is equivalent to the desired form by Lemma 7.1(1).

Let S be the subcode of C ḡ spanned by {B1, . . . , BN/4}. Then S is isomorphic to 

the code in Theorem B with r = 2. Therefore the sum over B ∈ S of the theta series 

of the discrete subset associated to such B is given by ϑ3(q2)N/2. Thus it remains to 

compute the theta series of the discrete subsets associated to the codewords B ∈ C ḡ �S. 

Any such codeword has the form B := B0 +
�

j∈J Bj for some (possibly empty) set of 

indices J ⊂ {1, . . . , N4 }. Recall from (3.2) that the sum of any two codewords is defined 

by B + B� := B ∪ B� � B ∩ B�. Thus

|B| = |B0| +
�

�

�

j∈J Bj

�

�− 2
�

�B0 ∩
�

j∈J Bj

�

� = N
2 + 4|J | − 2(2|J |) = N

2 .

Hence in total there are 2N/4 such codewords of weight N
2 , each of which corresponds 

to a discrete subset with theta series given by (ϑ3(q4)2ϑ2(q4)2)N/4. Taking the sum of 

these terms together with the sum for those B ∈ S gives the equation (7.4). �

In Fig. 6 we record the number of doubly even binary self-dual codes of length N ≤ 32

that contain an element ḡ ∈ Aut C of cycle type 2N/2 fixing a subcode C ḡ of the form 

given in Theorem B (with r = 2) or Proposition 7.4, denoted by CA and CD, respectively.

8. Relationships between coefficients of characters of fixed subVOAs

Throughout this section, we assume that L is a code-lattice constructed from a doubly 

even self dual code C of length N (necessarily divisible by 8) via either Construction A or 

the lattice construction for super codes described in Section 3.2.1. We prove results about 

characters of the subVOAs of the lattice-VOA VL fixed by lifts of lattice automorphisms 

in the image of Aut C under the natural embedding. In order to distinguish between 

conjugacy classes of automorphisms with the same cycle type, we shall decorate the 

cycle type with either rep or nr to denote replicable or non-replicable associated trace 

function, respectively. Although there may be several conjugacy classes with the same 

associated trace function, we will choose just one such class which we assume to be fixed 

throughout.
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Lattice Cycle type Sublattice Ch V G

E8

24
rep A1(2)4 q−

1

3 (1 + 64q + 1052q2 + 8704q3 + 53382q4 + 264448q5

+ 1133112q6 . . . )

24
nr D∗

4 (2)
q−

1

3 (1 + 136q + 2076q2 + 17472q3 + 106630q4

+ 529184q5 + 2265656q6 . . . )

D+
16

28
rep 2A8

1

q−
2

3 (1 + 256q + 18552q2 + 533504q3 + 8685596q4

+ 98667008q5 + 874939328q6 . . . )

28
nr D∗

8 (2)
q−

2

3 (1 + 256q + 35064q2 + 1057792q3 + 17338396q4

+ 197233152q5 + 1749600192q6 . . . )

N(D2
12)

212
rep A1(2)12 q−1(1 + 224q + 57620q2 + 5570560q3 + 218540994q4

+ 5082972160q5 + 83449286360q6 + . . . )

212
nr D∗

12(2)
q−1(1 + 288q + 98580q2 + 10749952q3 + 432155586q4

+ 10123001856q5 + 166601412312q6 + . . . )

Fig. 7. Characters of subVOAs fixed by lifts of automorphisms with 2N/2 cycle type.

8.1. Characters of fixed subVOAs for certain cycle types

We consider automorphisms of codes with cycle type 2N/2. In particular, we consider 

the case when there are at least two such automorphisms, where one fixes a sublattice 

isomorphic to A1(2)N/2 and the other fixes a sublattice isomorphic to D∗
N/2(2). We 

observe properties of the characters of their fixed subVOAs Ch V G, where G is the cyclic 

subgroup generated by an automorphism either of cycle type 2
N/2
rep or 2

N/2
nr . Given a 

lattice L and the corresponding lattice-VOA VL, we let V +
L denote the subVOA fixed by 

the automorphism −id ∈ Aut L.

We find that the characters corresponding to a 2
N/2
nr cycle type have coefficients that 

coincide with the character of V +
L while the characters corresponding to a 2

N/2
rep cycle 

type have coefficients that coincide with the character of V +
L0

, where L0 denotes the 

kernel for order doubling. After gathering these results, we end the subsection by proving 

Theorem C relating the theta quotients to the fixed subVOA characters.

Fig. 7 records the characters of the subVOAs fixed by lifts of automorphisms with 

cycle types 2
N/2
rep and 2

N/2
nr of the codes whose corresponding code-lattices are E8, D+

16, 

and N(D2
12).

We compare the coefficients of the characters of the fixed subVOAs of the E8 lattice-

VOA to the characters of V +
E8

and V +
D8

. In this case, by Lemma 5.3, the kernel for order 

doubling for the 24
rep cycle type is D8. We note that the coefficients on the even powers 

of q are equal.

Ch V +
D8

= q− 1
3 (1 + 56q + 1052q2 + 8640q3 + 53382q4 + 264160q5 + 1133112q6 + . . . )

Ch V +
E8

= q− 1
3 (1 + 120q + 2076q2 + 17344q3 + 106630q4 + 528608q5 + 2265656q6 + . . . )

Similarly, taking L to be the Niemeier lattice N(D2
12) and VL the corresponding lattice-

VOA, we compare the coefficients of the characters of the fixed subVOAs to those of the 

characters of V +
L and V +

L0
where L0 is the kernel for order doubling for the 212

rep cycle 

type. Once again, we observe the matching coefficients on the even powers of q.
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Ch V +
L0

= q−1(1 + 200q + 57620q2 + 5568512q3 + 218540994q4 + 5082923008q5

+ 83449286360q6 + . . . )

Ch V +
N(D2

12)
= q−1(1 + 264q + 98580q2 + 10745856q3 + 432155586q4 + 10122903552q5

+ 166601412312q6 + . . . )

The same phenomena occur for at least two other Niemeier lattices, namely N(D3
8) and 

N(D6
4).

Proposition 8.1. Assume there exists g ∈ Aut L of cycle type 2N/2 with associated fixed 

sublattice isometric to D∗
N/2(2), and let G ⊂ Aut VL be the subgroup generated by the 

standard lift ĝ of g. Then the coefficients on the even powers of q in the character of the 

fixed subVOA Ch V G agree with those of the character Ch V +
L .

Proof. Consider −id ∈ Aut L and its standard lift to Aut VL. This automorphism has 

cycle type 1−N 2N with trivial fixed sublattice. Hence the character of V +
L is

Ch V +
L =

1

2

�

θL(q)

η(q)N
+

η(q)N

η(q2)N

�

, (8.1)

while the character Ch V G is given by

Ch V G =
1

2

"

θL(q)

η(q)N
+

θD∗

N/2
(q2)

η(q2)N/2

"

. (8.2)

By Lemma 7.2, the coefficients on the even powers of q in the second term of (8.2)

are equal to the coefficients on the even powers of q in the theta quotient

θ
A

N/2
1

(q2)

η(q2)N/2
=

ϑ3(q2)N/2

η(q2)N/2
=

�

ϑ3(q2)

η(q2)

�N/2

.

By Lemma 7.1(5), we have that

η(q)N

η(q2)N
=

�

η(q)2

η(q2)2

�N/2

=

�

ϑ4(q2)

η(q2)

�N/2

.

Since ϑ3(q2) =
�

qj2

and ϑ4(q2) =
�

(−1)jqj2

we therefore have agreement on the 

coefficients on the even powers of q, as desired. �

Proposition 8.2. Suppose that N ≡ 8 mod 16 and that there exists g ∈ Aut L of cycle 

type 2N/2 with associated fixed sublattice isometric to A1(2)N/2. Let G ⊂ Aut VL be the 

subgroup generated by the standard lift of g which has order doubling and kernel for order 

doubling denoted L0. Then the coefficients on the even powers of q in the character of 

the fixed subVOA Ch V G
L agree with those of Ch V +

L0
.
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Lattice Cycle type Sublattice Theta quotient

E8

24
rep A1(2)4 q−

1

3 (1 + 8q + 28q2 + 64q3 + 134q4 + 288q5

+ 568q6 + . . . )

24
nr D∗

4 (2)
q−

1

3 (1 + 24q + 28q2 + 192q3 + 134q4 + 864q5

+ 568q6 + . . . )

D+
16

28
rep A1(2)8 q−

2

3 (1 + 16q + 120q2 + 576q3 + 2076q4 + 6304q5

+17344q6 + . . . )

28
nr D∗

8 (2)
q−

2

3 (1 + 16q + 376q2 + 576q3 + 6172q4 + 6304q5

+ 52160q6 + . . . )

N(D2
12)

212
rep A1(2)12 q−1(1 + 24q + 276q2 + 2048q3 + 11202q4 + 49152q5

+ 184024q6 + 614400q7 + 1881471q8 + . . . )

212
nr D∗

12(2)
q−1(1 + 24q + 276q2 + 6144q3 + 11202q4 + 147456q5

+ 184024q6 + 1843200q7 + 1881471q8 + . . . )

Fig. 8. Theta quotients of fixed sublattices by automorphisms with 2N/2 cycle type.

Proof. We must compare

Ch V G
L =

1

4

"

θ
A

N/2
1

(q2)

η(q2)N/2
+

2θL0
(q) − θL(q)

η(q)N
+

θ
A

N/2
1

(q2)

η(q2)N/2
+

θL(q)

η(q)N

"

=
1

2

"

θ
A

N/2
1

(q2)

η(q2)N/2
+

θL0
(q)

η(q)N

"

with the character

Ch V +
L0

=
1

2

�

η(q)N/2

η(q2)N/2
+

θL0
(q)

η(q)N

�

,

where the element −id ∈ Aut L0 ⊂ Aut L has cycle type 1−N 2N with trivial fixed 

sublattice. The result then follows from the argument at the end of Proposition 8.1. �

We also consider analogous results for the lattice theta quotients associated to these 

two cycle types. We prove that their theta quotients share coefficients, both with each 

other and with characters of other known lattice-VOAs. Fig. 8 records the theta quotients 

of the fixed sublattices by automorphisms with cycle types 2
N/2
rep and 2

N/2
nr for several low 

rank code-lattices.

Proposition 8.3.

(1) The theta quotients for the fixed sublattices associated to elements with cycle types 

2
N/2
rep and 2

N/2
nr in Aut L have the same coefficients on even (resp. odd) powers of q

when N ≡ 8 mod 16 (resp. 0 mod 16).

(2) The character Ch VDN/2
(q2) of the DN/2(2) lattice-VOA and the theta quotients as-

sociated to the cycle types 2
N/2
rep and 2

N/2
nr have the same coefficients on even powers 

of q for N ≡ 8 mod 16.
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Proof. (1) The fixed sublattices are both associated to a conjugacy class of element in 

Aut L with cycle type 2N/2. Hence the two theta quotients have the same denominator, 

namely η(q2)N/2. Thus it suffices to compare the coefficients of the corresponding theta 

series, i.e., θ
A

N/2
1

(q2) and θD∗

N/2
(q2). This is the content of Lemma 7.2.

(2) Note that the character of the DN/2(2) lattice-VOA has denominator η(q2)N/2, 

thus again we need only compare the theta series of this lattice to the theta series of 

A1(2)N/2. Let ak denote the coefficient on qk in the theta series of the lattice DN/2(2). 

Then

ak = #

�

(x1, . . . , xN/2) ∈ ZN/2 :
�

i

xi ≡ 0 mod 2 and
�

x2
i = k

�

.

Since 
�

x2
i and 

�

xi, have the same parity, ak is nonzero if and only if k is even. We 

see from the proof of (1) that these coefficients agree with the corresponding coefficients 

in the theta series of A1(2)N/2 and D∗
N/2(2), as desired. �

Remark 8.4. The Golay code G has exactly one conjugacy class of automorphism with 

cycle type 212. For both N(A24
1 ) and Λ24 the corresponding theta quotient is the repli-

cable function T4A(q). In the case of Λ24, the fixed sublattice is isometric to the lattice 

2D+
12 and the standard lift of the lattice automorphism to the Leech lattice-VOA has 

order doubling. The kernel for order doubling is an index 2 sublattice of Λ24 with theta 

series

θL0
(q) = 1 + 98256q2 + 8384512q3 + 199066704q4 + 2314125312q5 + O(q6).

Theorem (Theorem C). Suppose there exists an automorphism g1 ∈ Aut L with cycle 

type 2N/2 and fixed sublattice isometric to A1(2)N/2. Let L0 denote the kernel for order 

doubling associated to the lift of g1 to the VOA automorphism ĝ1 ∈ Aut VL. Then

θLg1 (q)

η(q2)N/2
= Ch V ĝ1

L (q) − Ch V +
L0

(q) + Ch VDN/2
(q2). (8.3)

Moreover, if there exists an automorphism g2 ∈ Aut L with cycle type 2N/2 and fixed 

sublattice isometric to D∗
N/2(2), then the characters of the fixed point subVOAs are related 

via

θLg2 (q)

η(q2)N/2
= 2(Ch V ĝ2

L (q) − Ch V +
L (q)) −

�

Ch V ĝ1

L (q) − Ch V +
L0

(q)
�

+ Ch VDN/2
(q2). (8.4)

Proof. By Lemma 7.1(5), we have

η(q)N

η(q2)N
=

�

ϑ4(q2)

η(q2)

�N/2

.
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Then, using the definitions of the theta series for A1(2)N/2 and D∗
N/2(2) given in 

Lemma 7.1(3) and (4), respectively, the right hand side of (8.4) is

= 2 ·
1

2

�

ϑ3(q2)N/2 + ϑ2(q2)N/2

η(q2)N/2
+

θL(q)

η(q)N

�

− 2 ·
1

2

�

θL(q)

η(q)N
+

ϑ4(q2)N/2

η(q2)N/2

�

−
1

2

�

ϑ3(q2)N/2

η(q2)N/2
+

θL0
(q)

η(q)N

�

+
1

2

�

θL0
(q)

η(q)N
+

ϑ4(q2)N/2

η(q2)N/2

�

+
1

2

�

ϑ3(q2)N/2 + ϑ4(q2)N/2

η(q2)N/2

�

=
ϑ3(q2)N/2 + ϑ2(q2)N/2

η(q2)N/2
=

θLg2 (q)

η(q2)N/2
.

Similarly, the right hand side of equation (8.3) is

=
1

2

�

ϑ3(q2)N/2

η(q2)N/2
+

θL0
(q)

η(q)N

�

−
1

2

�

θL0
(q)

η(q)N
+

ϑ4(q2)N/2

η(q2)N/2

�

+
1

2

�

ϑ3(q2)N/2 + ϑ4(q2)N/2

η(q2)N/2

�

=
ϑ3(q2)N/2

η(q2)N/2
=

θLg1 (q)

η(q2)N/2
. �

The identity (8.3) also holds for the Leech lattice, up to a constant. To the authors’ 

knowledge, a statement analogous to Theorem C does not easily generalize to other cycle 

types.

8.2. Code theoretic characterization of order doubling

Certain properties of the code-lattices and lattice-VOAs from Section 8.1 are de-

tectable by the automorphism groups and fixed subcodes of the linear code. Let C

be a doubly even self-dual linear code of length N , and assume that L is the code-

lattice of C as constructed in Proposition 3.2. That is, L is the lattice generated by 

{αi, 
1
2 αB : 1 ≤ i ≤ N, B ∈ C}, where {αi}

N
i=1 is a basis for RN such that �αi, αj� = 2δi,j . 

We again view codewords B in the lens of Section 3.2, that is, as a subset B ⊂ {1, . . . , N}

encoding the indices of B for which the coordinate is 1, with addition defined by equation 

(3.2) as the symmetric difference of sets.

The following theorem gives a characterization, in terms of a property of the code 

C, of when an even order lattice automorphism g lifts to an automorphism ĝ of the 

lattice-VOA VL that has order doubling.

Theorem 8.5. Suppose ḡ ∈ Aut C has even order and let g = ι(ḡ) be the image of ḡ in 

Aut L. The standard lift of g ∈ Aut L to an automorphism ĝ of the lattice-VOA VL does 

not have order doubling if and only |B ∩ ḡord(g)/2(B)| ≡ 0 mod 4 for all B ∈ C.
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Since gord(g)/2 has order 2, Corollary 4.4 characterizes when ĝ does not have order 

doubling in terms of the parity of �α, ̄gord(g)/2(α)� for all α ∈ L. Thus the proof of 

Theorem 8.5 is an immediate consequence of the following lemma.

Lemma 8.6. Suppose ḡ ∈ Aut C has order 2 and let g = ι(ḡ) be the image of ḡ in Aut L. 

Then for all B ∈ C we have |B ∩ g(B)| ≡ 0 mod 4 if and only if �α, g(α)� ∈ 2Z for all 

α ∈ L.

Proof. For an arbitrary α ∈ L we may write α = 1
2αB +

�N
i=1 xiαi, for some B ∈ C. 

Let I ⊂ {1, . . . , N} denote the set of indices where xi �= 0. By equation (3.3), the action 

of g on α is given by g(α) = 1
2αḡ(B) +

�N
i=1 xiαḡ(i). Thus we find

�α, g(α)� =
1

4
�αB , αḡ(B)� +

1

2

"

N
�

i=1

�αB , xiαḡ(i)� +
N
�

i=1

�αḡ(B), xiαi�

"

+
N
�

i=1

N
�

j=1

�xiαi, xjαḡ(j)�

(8.5)

We claim that the parity of �α, g(α)� is completely determined by whether |B ∩ ḡ(B)|

is 0 or 2 modulo 4. Since �αi, αj� = 2δi,j , the last term of (8.5) is always even. If α ∈ Lg

then the first two terms in (8.5) simplify to 1
4α2

B + �αB , 
�N

i=1 xiαi� ∈ 2Z since C is 

doubly even, therefore each codeword B has weight |B| ≡ 0 mod 4.

So suppose that α /∈ Lg. Given any two subsets X, Y ⊂ {1, . . . , N} we have ḡ(X∩Y ) =

ḡ(X) ∩ ḡ(Y ). Since ḡ has order 2 in Aut C, we have that B ∩ ḡ(I) = ḡ(ḡ(B) ∩ I). Since 

ḡ is a bijection, this implies |B ∩ ḡ(I)| = |ḡ(B) ∩ I|. This shows that the second term of 

equation (8.5) is always even since the parity of the two sums is the same, determined by 

|B ∩ ḡ(I)|. Thus the parity of �α, g(α)� is determined only by the first term of equation 

(8.5), i.e. by 1
4 �αB , αḡ(B)� =

1
4 · 2|B∩ḡ(B)|. The statement of the lemma then follows. �

For codes C of length N ≤ 32, when there exists an automorphism ḡ with cycle type 

2N/2 and fixed subcode satisfying the hypotheses of Theorem B with r = 2, then there 

are codewords B ∈ C such |B ∩ g(B)| ≡ 2 mod 4. Hence by Theorem 8.5, the lift ĝ

must have order doubling. There appear to be many more cycle types which give rise to 

lattice automorphisms whose fixed sublattices have corresponding theta quotients that 

are not replicable functions. However, whenever there exists ḡ ∈ Aut C with cycle type 

2N/2 and C ḡ satisfies the assumptions of Proposition 7.4, each codeword B ∈ C satisfies 

|B ∩ g(B)| ≡ 0 mod 4. Theorem 8.5 implies that the standard lift of g to ĝ ∈ Aut VL

does not have order doubling.

9. Decomposition of VOA characters

Since we have considered theta quotients coming from fixed sublattices under both 

cyclic and non-cyclic subgroups, we can also study characters of subVOAs fixed by 
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noncyclic subgroups. This is more straightforward when none of the elements have order 

doubling, in which case we observe some decomposition of the fixed subVOA characters 

based on the group structure. It is of course possible to compute such characters for non-

cyclic subgroups when order doubling occurs, however, the analogues of the following 

propositions are more complicated in those cases since the group structure as an subgroup 

of automorphism group of the lattice is not preserved (see, for example Section 4 of [21]). 

Therefore, throughout this section, we assume all lifts of lattice automorphisms do not 

have order doubling.

Theorem (Theorem D). Let p and q be primes such that q > p and q ≡ 1 (mod p) and 

let Zq � Zp be a subgroup of the automorphism group of an even positive definite lattice 

L. The characters of the fixed point subVOAs of the lattice-VOA VL satisfy the following 

relation

p Ch V Zq�Zp = Ch V Zq + p Ch V Zp − Ch VL.

Proof. Since q > p, this forces the existence of a unique q-Sylow subgroup. Since the 

group is not abelian and q ≡ 1 mod p, the number of p-Sylow subgroups must be equal 

to q. Thus there are (q −1)p elements of exact order p and q remaining elements of order 

dividing q. Thus we have

Ch V Zq�Zp =
1

pq

�

g∈Zq�Zp

tr(g|VL)

=
1

pq

⎛

¿1
�

g∈Zq

tr(g|VL) + q
�

g∈Zp

tr(g|VL) − q tr(e|VL)

À

⎠ .

Now, Ch V Zp = 1
p

�

g∈Zp
tr(g|VL) and Ch V Zq = 1

q

�

g∈Zq
tr(g|VL), so we can rewrite 

the above as

Ch V Zq�Zp =
1

pq

�

q Ch V Zq + pq Ch V Zp − q Ch VL

�

,

and thus

p Ch V Zq�Zp = Ch V Zq + p Ch V Zp − Ch VL. �

In fact, these propositions hold more generally because V need not be a lattice-VOA. 

Since we have assumed the lattice automorphism groups have no elements with order 

doubling, these propositions hold if one simply lets G be a group of automorphisms of 

some strongly rational VOA V .

Remark 9.1. Note the formal similarities between Theorem D and Proposition 3.4 of [21], 

in which they prove a similar statement about the characters of the Zq � Zp-orbifolds 
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of VL. Since the only holomorphic C2-cofinite VOAs of CFT-type with central charge 

c < 24 are the lattice-VOAs VE8
, VD+

16
and VE2

8
[14, Theorems 1 and 2], in the case of 

lattices L of rank N < 24, the orbifolds of the lattice-VOA VL simply recover VL again, 

and so the statement of [21, Proposition 3.4] becomes trivial in these cases. In contrast, 

the statement of Theorem D regarding characters of fixed subVOAs can be applied to 

low rank lattices and we give an example below for the E8 lattice to illustrate the result.

Example 9.2. The group generated by h1 = (1, 2, 5, 3, 7, 6, 4) and h2 = (2, 5, 7)(3, 4, 6)

forms a subgroup H ∼= Z/7Z � Z/3Z of order 21 in Aut H. Let H1 = �h1� ∼= Z/7Z and 

H2 = �g2� ∼= Z/3Z. Thus,

3 Ch V H = Ch V H1 + 3 Ch V H2 − Ch VE8
.

To see this, we first note that H has 14 elements of order 3, 6 elements of order 7, and 

one element of order 1. The elements of order 3 can be arranged into 7 subgroups of order 

3 intersecting at the identity, similarly the remaining 6 + 1 elements of order dividing 7 

can be form a subgroup of order 7. In particular, we find:

Ch V H = q−1/3(1 + 22q + 242q2 + 1762q3 + 10460q4 + 51078q5 + 217266q6 + . . . )

Ch V H1 = q−1/3(1 + 38q + 596q2 + 4974q3 + 30468q4 + 151102q5 + 647298q6 + . . . )

Ch V H2 = q−1/3(1 + 92q + 1418q2 + 11688q3 + 71346q4 + 353212q5 + 1511748q6 + . . . )

and finally, we have that Ch V H1 + 3 Ch V H2 − Ch VE8

= q−1/3(3 + 66q + 726q2 + 5286q3 + 31380q4 + 153234q5 + 651798q6 + . . . )

= 3 Ch V H .

Theorem 9.3. Let p and q be primes such that q > p and let H be a non-abelian subgroup 

of order p2q of the automorphism group of an even positive definite lattice L. Then the 

characters of the fixed point subVOAs of the lattice-VOA VL satisfy the following relation

q Ch V Zp2�Zq = Ch V Zp2 + q Ch V Zq − Ch VL, if H ∼= Zp2 � Zq (9.1)

p2 Ch V Zq�Zp2 = p2 Ch V Zp2 + Ch V Zq − Ch VL, if H ∼= Zq � Zp2 (9.2)

Much of the following proof is a standard exercise in group theory, however we record 

the details here for completeness.

Proof. The number nq of q-Sylow subgroups of H is either 1 or p2, since by assumption 

p < q and therefore we cannot have p ≡ 1 mod q. If nq = p2 then H contains p2 subgroups 

of order q that pairwise intersect in the identity element, thereby giving (q−1)p2 elements 

of exact order q. This leaves p2q − (q − 1)p2 = p2 remaining elements, all of which must 

be contained in a single Sylow-p subgroup which is necessarily normal in H. If instead 
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nq = 1, then the unique Sylow-q subgroup is normal in H and since H is not abelian, we 

must have np = q (and thus can only occur if q ≡ 1 mod p). In the former case, we have

Ch V H =
1

p2q

�

g∈H

tr(g|VL) =
1

p2q

⎛

¿

�

g∈Zp2

tr(g|VL) + p2
�

g∈Zq

tr(g|VL) − p2 tr(e|VL)

À

⎠

Since Ch V Zp2 = 1
p2

�

g∈Zp

tr(g|VL) and Ch V Zq = 1
q

�

g∈Zq

tr(g|VL), we can rewrite the 

above as

Ch V H =
1

p2q

�

p2 Ch V Zq + p2q Ch V Zp − p2 Ch VL

�

,

and thus

q Ch V H = Ch V Zp2 + q Ch V Zq − Ch VL.

The proof for the latter case follows similarly. �

Question 9.4. Is there an analogous statement to Theorem D and Theorem 9.3 that gives 

a decomposition of theta series of fixed sublattices under a group G into theta series of 

fixed sublattices under subgroups of G? Alternatively, can a similar statement be made 

about the dimensions of the fixed sublattices under G and its subgroups?

10. Questions for further study

We conclude by listing several additional questions for further study.

Question 10.1. If one applies constructions other than Construction A to doubly even, 

self-dual linear codes (for example, Constructions B, C, or D), how do the replicable 

functions and graded characters compare to those that arise from Construction A?

Question 10.2. If one applies Construction A to a subcode fixed by an element ḡ ∈

Aut(C), the resulting lattice is distinct from the fixed sublattice Lg. Similarly, the lattice-

VOA constructed from applying the lattice-VOA construction to (a potentially scaled 

version of) the fixed sublattice Lg is not the same as the lattice-VOA V ĝ
L . Can one 

quantify the relationship (if any) between the two lattices (resp. VOAs)?

Question 10.3. Consider the theta quotients associated to an automorphism of a lattice 

from Section 6, that is, the quotients of the theta functions of the fixed sublattices by 

the eta products based on the cycle type of the automorphism. Is there an analogue 

when one considers indefinite lattices that can be decomposed into positive definite and 

negative definite parts where the theta quotients are replaced by theta blocks of the form 

below?
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θL1
(τ)θL2

(τ)

η(τ)

In a personal communication, J. Lagarias remarked that theta blocks are similar to 

the theta quotients considered by the authors and may be related to this work (see [23]

for the definition of theta block in general). The authors speculate the aforementioned 

connection with indefinite lattices, but there may be a different connection altogether.

Question 10.4. Can one characterize how the structure of a subgroup of Aut(C) changes 

when lifted to a subgroup of VOA automorphisms in cases where elements of the sub-

group have order doubling? Is there anything to be learned from restricting our attention 

only to lattice automorphisms that come from code automorphisms?

Question 10.5. Are there characteristics of the fixed subVOAs under lifted code au-

tomorphisms that can be deduced from the fixed subcode under that automorphism? 

For example, the conformal weights of twisted modules of lattice-VOAs by VOA au-

tomorphisms depend on quantities related to the lattice and the cycle type of the 

automorphism. Can this or other values be computed using properties of the fixed sub-

codes?

Data availability

All referenced computational data is in the manuscript, we have a link to github for 

the code included in the paper.
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