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certain replicable lattice theta quotients and we provide a
general code theoretic characterization of order doubling for
lifts of code automorphisms to the lattice-VOA. Finally, we
prove results on the decompositions of characters of fixed
subVOAs.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we investigate the connections between linear codes, lattices, and vertex
operator algebras (VOAs). These three algebraic structures arose independently in math-
ematics, but are related by constructions which build lattices from codes, and VOAs from
lattices. Moreover, the automorphism groups associated to these structures are linked
to the theory of moonshine which explores the surprising connections between sporadic
simple groups and modular objects. As a motivating example, we consider the following
structures associated to the extended Golay code.

The extended binary Golay code G is a doubly even self-dual binary linear code of
length 24 which can be used to construct the Leech lattice Aoy. In turn, the Leech
lattice is involved in the construction of the monster module V¥, an orbifold of the Leech
lattice vertex operator algebra. Crucially, the automorphism groups of each of these three
objects are related to sporadic simple groups: the Matheiu group May, the Conway group
Cog (which is equal to 2.C01), and the monster group M, respectively, each of which is
a subquotient of the next. This suggests a tower involving codes, lattices, and VOAs:

M = Aut(V?)

COO = Aut(A24)

M24 = Aut(g)

A similar tower construction which does not require orbifolds consists of the extended
Hamming code H, the Eg lattice, and the Eg lattice-VOA.

In general, one can construct a lattice from a given binary linear code, and there is
a correspondence between (doubly even) self-dual binary linear codes of length N and
certain (even) unimodular lattices in RY. Given an even positive definite lattice, one
can construct its corresponding lattice vertex operator algebra. To further develop the
analogies between these three structures, we consider the modular forms related to each.
It is well known that one can associate a theta function to any even positive definite
lattice and such functions are holomorphic on the upper half plane. If the lattice is also
unimodular then these theta functions are modular forms. For a rational Cs-cofinite
vertex operator algebra V', Zhu showed that the characters of the irreducible modules
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of V form a vector-valued modular function for SLg(Z) with a multiplier system [38].
Moreover, the characters of fixed point subVOAs under certain automorphisms of V' are
modular forms for congruence subgroups [12].

It is natural to investigate the automorphisms that fix an algebraic structure as a
means of better understanding the structure itself. The central focus of this paper is
the study of fixed sub-objects in general towers consisting of a code C, code-lattice
L (see §3), and lattice-VOA Vi, (see §4), under automorphisms of C' suitably lifted
to act on L and V. We note that there is more than one way to construct a lattice
from a code and to construct a VOA from a lattice, for details on the constructions we
consider see sections 3.1, 3.2, and 4.1. In particular, we study sublattices of L fixed by
automorphisms via their associated theta functions and subVOAs of Vy, fixed by lifted
lattice automorphisms via their associated characters.

Monstrous moonshine inspired the study of replicable functions (defined in §2.4) aris-
ing from sublattices of the Leech lattice fixed by individual automorphisms of the Golay
code [27] and later by the full group of lattice automorphisms [28]. Soon after, a similar
analysis was done for the Ejg lattice [5]. However, one need not focus only on the action
of individual automorphisms. More generally, we study sublattices fixed by subgroups of
code automorphisms embedded into the automorphism group of the lattice. In doing so,
we give a natural generalization of the quotient of the lattice theta function by the eta
product determined by the cycle type of an automorphism, which we hereafter refer to
as the lattice theta quotient. This leads to the following result.

Theorem A. Let C' be a doubly even self-dual binary linear code of length N and let
L be the associated code-lattice. Let G C Aut L be a subgroup of automorphisms in
the image of Aut C' under the natural embedding and let LS be the sublattice fized by
G. Then the lattice theta quotient (Opc(q)/na(q))?*N is a weakly holomorphic modular
function. In the case that G = (g) is a cyclic subgroup, this recovers the usual lattice
theta quotient associated to g. Moreover, this construction can produce mon-monstrous
replicable functions not necessarily associated to any individual automorphisms.

Various orbit types of subgroups that appear in the automorphism group of the ex-
tended Hamming code ‘H embedded in the automorphism group of the Ejg lattice similarly
occur for higher rank unimodular code-lattices. In many cases the cycle type of an ele-
ment of Aut C' (or more generally the orbit type of a subgroup of Aut C') is not sufficient
to determine the corresponding sublattice of the code-lattice. However, in Proposition 6.6
we show that certain replicable functions must appear as lattice theta quotients for par-
ticular pairings of subgroup orbit type with sublattice isomorphism class.

In fact, the structure of the subcode C7 fixed by an automorphism g € Aut C is some-
times enough to guarantee that the lifted automorphism g € Aut L produces a certain
lattice theta function. We prove the following results for cycle types of automorphisms
of C. All notation used in this theorem is defined in Section 3.
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Theorem B. Let C' be a doubly even self dual linear code of length N, let r|N, and
let § € AutC have cycle type ¥N/7. Suppose that the fized subcode C9 has dimension
dim C9 = L dim C spanned by {Bx, ..., By, }. Further suppose B;NB; = () for alli # j
and U;B; = {1,...,N}. Then the corresponding sublattice fixred by g = 1(g) has theta
series given by Ors(q) = 93(q")N/". In particular the theta series of the fized sublattice

is the same as that of the lattice Ay(r)N/".

It then immediately follows from Proposition 6.6 that the lattice theta quotients
corresponding to the sublattices in Theorem B are replicable. In the case of cycle type
2N/2 Proposition 7.4 gives another characterization of a fixed subcode producing a lattice
theta function of D7, /2 type with non-replicable lattice theta quotient. In Theorem 8.5
we give a general code theoretic characterization describing when even order lattice
automorphisms g lift to automorphisms § of the lattice-VOA V7, that have order doubling.
We use this result to show that the 2V/2 replicable cycle type exhibits order doubling
when lifted to a VOA automorphism, while the non-replicable 2¥/2 cycle type does
not. Interestingly, these two cycle types are entwined via the characters of their fixed
point subVOAs. In particular, the associated lattice theta quotients satisfy the following
identities.

Theorem C. Suppose there exists an automorphism g1 € Aut L with cycle type 2V/?
and fized sublattice isometric to A1(2)N/2. Let Lo denote the kernel for order doubling
associated to the lift of g1 to the VOA automorphism ¢; € Aut Vy, and let VL+ denote the
subVOA fized by the automorphism —id € Aut L

Ors1 (q)

()N = Ch VLgA1 (q) — Ch VLJ:) (¢) +Ch VDN/Z(CIQ)- (1.1)

Moreover, if there exists an automorphism go € Aut L with cycle type 2N/? and fized
sublattice isometric to DJ*V/2(2), then the characters of the fived point subVOAs are related
via

92 (q)
n(g?)N/2

Finally, just as we considered sublattices fixed by noncyclic subgroups lifted from the

=2(ChV{*(q) — ChV  (q)) — (Ch V' (q) — Ch V" (q)) + Ch Vp, . (¢%). (1.2)

automorphism group of the code, we consider characters of subVOAs fixed by noncyclic
subgroups. In the more straightforward setting in which no order doubling of elements
occurs, fixed subVOA characters may decompose in a way that reflects the structure of
the group. For example, we prove the following result pertaining to semidirect products
of order pgq.

Theorem D. Let p and q be primes such that ¢ > p and ¢ =1 (mod p) and let ZyxZ, be a
subgroup of the automorphism group of an even positive definite lattice L. The characters
of the fixed point subVOAs of the lattice-VOA Vi, satisfy the following relation
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pChVZ:*Zr — Ch V%4 + pCh V% — Ch V.
1.1. Outline

In Section 2, we provide further background on the main objects in this paper, and
in particular define codes, lattices, and vertex operator algebras. We describe several
equivalent constructions of a lattice from a code C' in Section 3 and make explicit the
action of the automorphism group of the code on elements of the related code-lattice.
This allows us to study theta quotients for sublattices fixed by automorphisms of the
code. We give a new definition of a lattice theta quotient associated to a sublattice
fixed by a subgroup of Aut C and give a proof of Theorem A together with examples. In
Section 4, we review the lattice-VOA construction and discuss automorphisms of VOAs
that are lifted from the underlying lattice. We recall the definition of characters for
subVOAs fixed by finite cyclic groups of autormorphisms in Section 5.

In Section 6 we consider replicable functions that can be common to code-lattices of
arbitrary rank by considering groups of automorphisms whose orbit types correspond
to partitions of 8. We characterize theta quotients that are replicable functions based
on their fixed sublattices in Proposition 6.6 and catalog the corresponding data for
the 12 even unimodular code-lattices of rank at most 24. Moreover, we show that by
considering subgroups of automorphisms, we recover additional non-monstrous replicable
theta quotients not associated to any cyclic subgroups.

In Section 7 we give characterizations of certain fixed sublattices of a code-lattice L by
automorphisms in the image of the embedding from Aut C' in terms of properties of the
fixed subcodes of C. In Section 8 we prove identities regarding coefficients of characters
of fixed subVOAs. Finally, in Section 9 we consider how the structure of subgroups of
Aut C is reflected in the structure of their corresponding fixed subVOAs. We prove results
which relate characters of subVOAs fixed by semidirect products with the characters of
the subVOAs fixed by the component subgroups in Theorem D and Theorem 9.3. We
end the paper in Section 10 with questions for further study.
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2. Preliminaries

Here we review basic properties of the objects central to our study: linear codes,
lattices, and vertex operator algebras. We also introduce modular forms and replicable
functions.

2.1. Linear codes

We will briefly introduce some necessary properties of linear codes. For a thorough
introduction, see for example [25,16]. Let F, be the finite field of ¢ elements. A linear
code C is any k-dimensional subspace of F;'. The weight of a codeword ¢ € C' is the
number of its nonzero entries. The distance d of C' is the minimal weight of its nonzero
codewords, or equivalently the minimal number of positions in which any two codewords
differ. We will call such C an [n, k, d],-code. In this paper, all codes will be binary linear
codes, so henceforth ¢ = 2 and we will omit this subscript from the code parameters.
An [n, k,d]-code C can be specified by giving a generator matrix G € IFZk X" whose rows
form a basis of C.

A code is doubly even if each codeword has weight divisible by 4. It is self-dual if it
is equal to its dual code

Ct={reFy | zic;=0forallceC}

A code C of length n and its dual always satisfy the dimension formula dim C'+dim C*+ =
n, hence a self dual code has dimension 3.

There is a natural action of the symmetric group S,, on FJ by means of coordinate
permutation. The subgroup of linear isomorphisms of F3' arising from g € S, that fix

the code C forms the automorphism group Aut C, that is,

AwtC={ge S, :g(C)=C}.
The cycle type of g € Aut C describes the disjoint cycle decomposition of g, written in the
form ], t" = 172" ... n™. We will denote the subspace of C' fixed by an automorphism

g€ AutC as C9.

Example 2.1. The extended Hamming code H is the doubly even self-dual [8, 4, 4]-linear
code with generator matrix
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100 0 01 11
01001011
001 01101
00011110

The automorphism group Aut?# has order 1344. The element (2,8,4,6)(3,5) €
Aut H C Sg has cycle type 122141,

2.2. Lattices

Here we establish some basic properties of lattices. For more details, see, for exam-
ple [16]. A lattice in R™ is a discrete subset L := Zej & --- & Ze,, such that the set
{e1,e9,...,en} is linearly independent in R”™. We consider only positive definite lattices,
for which the norm of every A € L with respect to the standard Euclidean inner product
(—,—) on R™ is positive. With this notation, L is an n-dimensional lattice of rank m.
The determinant of L C R™ is the determinant of the inner product matrix for a basis of
L. The dual lattice of L is L* := {zx € R" | (z,y) € Z for all y € L}. An automorphism
of L is a length-preserving linear endomorphism of L. We let Aut L denote the group of
automorphisms of L. Standard lattices that arise throughout this paper include A; = Z,
As, Dy(n > 1), Eg, Aag, and their duals; for detailed descriptions of these lattices, see
[11, Chapter 4].

Next we define some lattice properties which are desirable for lattice-VOA construc-
tions. A lattice L is even if the Euclidean norm (A, \) € 2Z for every A € L. A lattice is
called unimodular if det(L) = 1. The unique even, positive definite, unimodular lattice
of rank 8 is called Eg, so named for its connection to the complex simple Lie algebra of
the same name. This lattice can be constructed from the extended Hamming code H,
as described in Section 3.1, and will serve as the setting for examples throughout the
paper. The Leech lattice Asy is an even, positive definite, unimodular lattice of rank 24
which has connections to Conway-Norton moonshine (see, for example, equation 10.3.32
of [19]).

A natural counting function associated with a lattice L is the lattice theta function
01.(z), whose coefficients record the number of lattice points of fixed norm. Let

Or(z) ==Y ¢/, (2.1)

AEL

where ¢ := ™%, For example, 0z(z) = 3., .5 ¢"*/2 is the theta function for Z C R.
Given a lattice L and positive integer n, we let L(n) denote the lattice L with inner
product scaled by n. Then 0, (q) = 0L(¢").

2.3. Modular forms

The modular group SLy(Z) acts on the complex upper half plane H by linear frac-

a2l for v = (¢ Z) and z € H. The elements of SLy(Z)

tional transformations vz =
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0-1
10
transform nicely with respect to SLo(Z) or certain congruence subgroups I' C SLo(Z).

A weakly holomorphic modular form of weight k € %Z for I' C SLo(Z) is a function
f : H — C which is holomorphic on H, meromorphic when extended to the cusps of the

are generated by S = ( )and T = (é }) Modular forms are functions on H that

Riemann surface H/T", and satisfies

fyz) = ey(cz + d)* f(z)

for all v = (‘c‘ 2) € I' and z € H, where ¢, is a particular root of unity depending on +.
If, in addition, f is holomorphic at the cusps of H/T, then f is a holomorphic modular
form. The space of weakly holomorphic (resp. holomorphic) modular forms of weight k
for I is given by My(T") (resp. My(T")). Modular forms of weight zero are called modular
functions.

Dedekind’s eta function is given by

n(z) =n(q) = ¢ [J(1—q"
n=1

for ¢ = €*™*. We will consider eta quotients, which generally have the form Hle n(dz)"
for some integer N > 1 and rqy € Z. Eta quotients are holomorphic on H and mero-
morphic at the cusps. Thus under certain conditions which guarantee modularity [34,
Theorem 1.64], eta quotients are weakly holomorphic modular forms. We refer the reader
to [10,34] for more detailed treatments of modular forms.

2.4. Replicable functions
The following formulation of replicable functions arises from McKay and Sebbar [32].
We first define Faber polynomials; see also [1] for more on replicable functions and

another formulation of Faber polynomials.

Definition 2.2 (Faber Polynomial). Let f(q) be a power series, f(q) = %—l— oo L ang™ for

q = e?>™? with z € H, a,, € C. For each k € Z™, there exists a unique monic polynomial
Fy,, depending on the coefficients of f, such that

Folf(@) = — + 0(g) as ¢ — .

The g-expansion of the Faber polynomial of f(q), denoted F(f(g)) has the form

1 o0
Fr(f(q) = & +E> ankq",
n=1

where a,,,1 = a,, and the double sequence a,, j is symmetric, i.e., ap i = ag,n-

)
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We are now ready to state what it means for a formal power series f(q) as above to be
a replicable function in terms of the coefficients of its Faber polynomial. In particular, for
f(q), we denote the Faber polynomial of degree k by F,g (2) to indicate its dependence on
f- One can show that F({(z) =1, F{(2) = 2, F{(2) = 22 — 2a,, Fg(z) =23~ 3a12 — 3as
and that the Faber polynomals satisfy the following recurrence relation

k—1
Floi(2) = 2F{(2) =Y areuFL(2) — (k + Day.
n=1

Definition 2.3. The function f(g) is said to be replicable if a,; = a,s whenever
ged(n, k) = ged(r, s) and lem(n, k) = lem(r, s).

Some of the simplest examples of formal power series are the functions f.(q) = ¢~ ' +cq
for some ¢ € R. It is straightforward to show that each f. is a replicable function. An-
other well-known class of replicable functions is related to Monstrous Moonshine. The
Monstrous Moonshine Conjecture [7] asserts that there exists an infinite dimensional
graded Monster module, V' = @ V,,, such that for the conjugacy class of g € M, de-
noted [g], the modular functions Ty (7) with 7 € H, associated to [g] are sums of traces
of irreducible representations of the Monster, i.e., Ty(7) = > tr(g|V,)q". We refer to

)

these Ty(7) as “monstrous moonshine functions,” also known as McKay-Thompson se-
ries. These modular functions are hauptmoduln, that is, each is a generator for the field
of modular functions for a certain subgroup of SLy(R) depending on g. Further, each
monstrous moonshine function T(7) is a replicable function [20].

However, the converse is not true, not every replicable function is a hauptmodul let
alone appears as a monstrous moonshine function. As noted in [20], Norton conjectured
that any replicable function with rational coefficients is either a hauptmodul, or a ‘mod-

ular fiction,” that is, a function fo(7) = ¢! or f1i1(7) =¢ 1 +q.

2.5. Vertex operator algebras

We begin by establishing the notation we will use throughout the paper. We re-
call some basic definitions and properties of vertex operator algebras (VOAs) and their
twisted modules and refer the reader to [17,19,29] for explicit details.

Definition 2.4. A vertex operator algebra is a complex vector space V equipped with
two distinguished vectors, the vacuum element 1 and the conformal vector w. There is a
map on V called a vertex operator denoted Y (-, z) : V — End(V)[z, 2~!] which assigns
to each vector v € V' a formal power series

Y(v,2):= Z v(n)z "L

nezZ
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The tuple (V,1,w,Y’) must satisfy several axioms stated in [19, §8.10]. In particular, if
Y(w,2) :=3,cz L(n)z=""2, with L(n) defined as the coefficients w(n+ 1), then for any
ny,ng € Z, we have

[L(n1), L(n2)] = (n1 — n2)L(n1 + n2) + 15(nf = n1)0n, 1y 06,

where 0y, 4n,,0 i the Kronecker delta function and [—, —] is a Lie bracket. We refer to c
as the central charge of V. That is, the coefficients of the vertex operator attached to
the conformal vector w generate a copy of the Virasoro algebra of central charge c.

VOAs admit a Z-grading (bounded from below) so that V' = &, .5 V;,. This grading
on V comes from the eigenspaces of the L(0) operator. That is, V,, :={v € V | L(0)v =
nv}. The smallest n for which V,, # 0 is called the conformal weight of V and is denoted
p(V). We say V is of CFT-type if p(V) =0 and V = C1.

Definition 2.5. A V-module is a vector space W equipped with an operation
Yw (-, 2): V= End(W)[z, 27 ']

which assigns to each v € V a formal power series Yy (v,2) := Y., .z 0" (n)z7"" L.
Again, (W, 1,w, Yy ) is subject to several axioms that can be found in [17, §5.1]. If the
only submodules of W are 0 and W itself, then W is called simple or irreducible.

We say V is a rational VOA if every admissible V-module decomposes into a direct
sum of (ordinary) irreducible modules and V' is holomorphic if it is rational and has a
unique irreducible module which must be V itself. Given a V-module W with a grading,
one can define a V-module, W', that is the graded dual space of W as a vector space. (For
a definition of the dual module, refer to [18, §5.2]). We say a vertex algebra V is self-dual
if the module V' is isomorphic to its dual V' as a V-module. In [38], Zhu introduced a
finiteness condition on VOAs. We say V is Ca-cofinite if C(V) := span{v(2)w | v,w € V'}
has finite codimension in V. A VOA is called strongly rational if it is rational, Cs-cofinite,
self-dual, and of CFT-type.

In analogy to the lattice theta series, the graded characters of V serve as counting
functions. Moreover, we have that graded characters of subVOAs of rational, Co-cofinite
VOAs V exhibit nice transformation properties as functions of the upper half plane by
work of Zhu [38], Dong-Li-Mason [12], and Dong-Lin—-Ng [13].

3. Code-lattices and their automorphisms

In this section we introduce code-lattices which are lattices constructed from binary
linear codes via Construction A; for other constructions of lattices from codes, see [11,
Chapters 5,7]. We consider their automorphism groups and investigate, in particular,
properties of sublattices fixed by subgroups of automorphisms of the code, which can be
viewed as automorphisms of the lattice. While there are several equivalent constructions
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of such lattices, they differ from one another from a computational perspective. To de-
termine sublattices fixed by automorphisms, one approach requires an embedding of the
automorphism group of the code into the automorphism group of the corresponding lat-
tice. Such an embedding becomes increasingly computationally expensive to implement
as the rank of the lattice grows. Recall, for example, that Aut Eg is the Weyl group of
type Fs with order 696729600 and the automorphism group of the Leech lattice is the
Conway group Cop with order ~ 8.3 x 10'8.

Thus an approach that allows for computations purely via the automorphism group
of the code is useful since although these groups also tend to grow in size as the length of
the code grows, they are relatively small in comparison. For example, the automorphism
group of the Hamming code H has order 1344 and the automorphism group of the Golay
code G is the Matheiu group Ma4 which has order 244823040. We therefore provide
details for two constructions of such lattices, their automorphisms, and fixed sublattices
and give concrete examples whenever possible. With these tools in hand, we will then be
able to determine modular functions associated to various fixed sublattices in Section 6
as well as modular functions associated to fixed point lattice vertex operator algebras in
Section 8.

3.1. Code-lattices and their automorphisms via Construction A

Let C C FY¥ be a binary linear code of length N and consider the Q-vector space U
spanned by {f1,...,n} with bilinear form (—,—): U x U — Q defined by (f;, ;) =
£6;j. Then the lattice L C U defined by

L:= L(C) = {Zalﬂi:ai EZ,(G1+2Z,...,GN+2Z> S C}

is called the code-lattice of C'. This construction is often referred to as Construction
A [11, §7.2]. The code-lattice L is even if and only if C' is a doubly even code, and is
unimodular if and only if C' is self dual. We will assume from now on that all code-lattices
L will be even and unimodular. In addition, we will require that L is positive definite,
to guarantee that the group of automorphisms is finite.

Now consider the natural embedding of the symmetric group

1 Sy = Aut(ZN), (3.1)

where each o € Sy permutes the basis vectors, in particular o(8;) = B,(;) for 1 <j < N.
When L is the code-lattice of a code C' of length N, the group ¢(AutC) is a subgroup
of Aut L via this embedding. For any ¢ := ¢(g) € Aut L, we may freely consider its cycle
type to be the cycle type of the associated g € Aut C. The cycle type of an arbitrary
lattice automorphism, not necessarily in the image of ¢, may be computed more generally
[21, Appendix A]. This recovers the usual cycle type in the case that g = ¢(g).
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Remark 3.1. We have alluded to the relationship between the Leech lattice A4 and
the extended binary Golay code G. However, Construction A applied to G produces the
Niemeier lattice N (A§4) which is not isometric to Ass. The construction of the Leech
lattice from G can be found in [11, §4.11]. Instead, we shall see that a related construction
outlined in Section 3.2.1 allows us to directly compute the action of the automorphism
group Aut G on elements of Aoy.

3.2. An equivalent construction

Following Tasaka [37], we let N be a positive integer divisible by 8 and let C' be an
even self-dual code of length N. Consider any orthogonal subset {aq,...,axn} of vectors
of norm 2 in Euclidean space RY. That is, under the usual inner product, (o, a;) =
2 and (o,a5) = 0 if ¢ # j. Form the lattice L' with basis {cy,...,ax}. For any
subset B C Q := {1,...,N}, define ap := >, 5 a;. We will associate to a codeword
(b1,ba,...,bn) € C the subset B C 2 consisting of indices ¢ with b; # 0. For example,
the codeword (1,0,1,1,0,1,0,0) € H is associated to the set B = {1,3,4,6}. By a
small abuse of notation, we will then write B € C to denote such a set associated to
a codeword. In this setting, by [37, §1], the usual operation of addition of codewords
B, B’ € C is defined by their symmetric difference as sets, i.e.,

B+ B :=BUB ~BNnB. (3.2)

Proposition 3.2 (/37, Proposition 1]). The lattice associated to the even self-dual code C
defined by

L={a;3ap:1<i<N,BeC)= | {{an+L},
BeC

is even and unimodular.

The construction of Proposition 3.2 applied to the Hamming code H produces the Eg
lattice. For a direct proof that the lattice constructed is isometric to the Fg lattice, see
[22, p. 63]. The virtue of this construction in general is that it allows us to explicitly
describe the action of g = ¢(g) with g € Aut C on elements A = 1ap + Zi\; zia; € Lin
a straightforward manner. In particular,

N
1
g()\) = 50@(3) + Zmiag(i). (3.3)
=1

To determine whether A is invariant under g, consider the disjoint cycle form of g € Aut C
viewed as an element of Sy . Such an element A is invariant under g if and only if the set
B is g-invariant and if the following condition is satisfied: when ¢ and j both appear in
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the same disjoint cycle in the decomposition of g, then x; = x;. We define the sublattice
fixed by g to be LI := {X € L | g(\) = A}. That is,

L9 = U {%QB + >, xia; : x; = x; if ¢ and j are in the same cycle of g} . (34
BeC9

3.2.1. The Leech lattice and super codes

The construction in Proposition 3.2 applied to the Golay code G again produces the
Niemeier lattice N(A%*), so in order to obtain the Leech lattice we must use a more
general construction. In full generality, the following can be applied to any even self-
dual code with minimum weight strictly greater than 4, also called super codes in [37].
Such codes only exist when the length N is at least 24, and the Golay code is the
unique such code (up to isomorphism) with length 24. Keeping the notation above, we
let Ap = {Zf\ilxiai : >, = 0mod 2}, Ay = {Zf\; yioy © y.y; = 1 mod 2}, and
define the lattices

EO(C) = U (%043 + Ao) U (iag + %aB + A()) (35)
BeC

ﬁl(C) = U (%QB—FA())U(%(IQ—F%(XB—FAH. (36)
BeC

Both are even lattices and £;(C) is unimodular precisely when N = j mod 2 [37, §3].
Thus, the Leech lattice is isometric to the lattice £1(G). Given g arising from g € Aut G,
the action on the elements of Ay = £1(G) is

g(%ag + >, wi0y) = %ag(g) + > oG (3.7)
9(Gao + za5 + 3, yiai) = jaa + sags) + X, Yiaga) (3.8)

and this description will allow us to compute lattice theta series of fixed sublattices.

3.8. Theta functions and theta quotients of fixed sublattices

Let C' be a code of length N and let L be the associated code-lattice via either
Construction A or Proposition 3.2. For a given g = «(g) € Aut L with cycle type g =
[I,t" (as defined in §2.1), the theta series 614(2) of the g-fixed sublattice of L is a
holomorphic modular form of weight k& := %Zt r¢. The eta product associated to g,
denoted n4(q), is of weight k and defined in terms of the cycle type of g by

ng(q) = [ [ n(a")™. (3.9)

Then the lattice theta quotient (61.(q)/n,(q))**/" is a weakly holomorphic modular
function. In Section 3.4, we will prove Theorem A which is a generalization of this fact
to theta series associated to subgroups of automorphisms G C Aut L.
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3.8.1. Computing theta functions via Jacobi theta functions

Alternatively, given a code-lattice L constructed from a code C' via Proposition 3.2,
we can also compute the theta function of a fixed sublattice LI by g € t(AutC) C Aut L
by explicitly expressing 014 (q) in terms of the classical Jacobi theta functions

P2(0) = b, 1)(0) = 3 gt (3.10)
2 nez
Vs(q) = 0z(q) =y " /* (3.11)
nez
a(g) = Y _(~1)"¢" /2, (3.12)

nezZ

as detailed in [27]. Specifically, the description of the fixed sublattice given in equation
(3.3) gives a decomposition of L9 into a union of discrete subsets in RY, each of which
can be further decomposed into a sum of discrete subsets which are contained in mutually
orthogonal linear subspaces in R™V. For discrete subsets X, Y C R, we have §(XUY, z) =
0(X,z) +0(Y,z) and when X,Y are contained in orthogonal subspaces, (X + Y, z) =
0(X,2)0(Y, z). We may use these facts in order to compute the desired lattice theta series
019 (q). We illustrate this via an example.

Example 3.3. Let g = (2,8,4,6)(3,5) € AutH and g = «(g) € Aut Es. The codewords
fixed by g are B € {0,Q,{2,4,6,8}, {1,3,5,7} }. Taking B = {2,4,6,8}, we find any
element of Eg of the form %aB + >, xja; invariant under g must have zo = x4 = z6 = 23
and x5 = x5. Thus the corresponding term in the union (3.4) is

saqoa 68yt 2oya sy +Lagssy+Zor+ZLar = (L + 5) aqz,a6s) +Lags s+ Lo+ Laz

viewed as a discrete subset in R8. The formulas preceding the example then give the
theta series for the discrete subset corresponding to B = {2,4,6,8} as a product of 4
terms, ¥2(q®)93(q*)V¥3(¢?)93(q?). Repeating this process for each remaining fixed code-
word above, we find that the theta series for the fixed sublattice LY is given by

O1s(q) = 93(q®)0s(q*)0s(¢*)? + 92(q®)P2(q*)02(¢*)* + 92(q®)3(q*)Us(q*)?
+ 93(¢%)02(q")V2(¢*)?
=1+ 14q + 30¢* + 36¢> + 62¢* + 72¢° + 68¢° + 112¢" + 126¢° + 98¢° + O(¢').

A similar process, together with equations (3.6) — (3.8), can also be used to give
an explicit description of the theta functions of fixed sublattices of the Leech lattice
and other lattices associated to super codes; see [27, §1] for further details and the
repository [2] for an implementation in Magnma.
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3.4. Sublattices fixed by subgroups of automorphisms

We now want to study sublattices fixed by subgroups of automorphisms of G' (up
to conjugacy) and consider theta quotients associated to these sublattices, analogous to
those in Section 3.3. In order to compute fixed sublattices, we make use of the following
lemma.

Lemma 3.4. Let {g1,...,9-} be a set of generators for the subgroup G of Aut L. Then
the sublattice of L fized by G is the lattice

LG = ﬂLQ:ﬁLgi.
=1

geG

Proof. The first equality is by definition of a fixed sublattice, so we verify the latter.
The forward containment (), .o LY C L9 N ---N L9 is immediate. Conversely, the set
L9 N---N LY is contained in LY for each g € G since any g can be expressed as a word
in the generators, and thus if A\ € L is fixed by each of gi,...,g., then it is fixed by
g. O

Analogously to (3.4), given G := «(G) C Aut L we may write

L¢ = U {%aB + > xiq; t x; = xj if ¢ and j are in the same orbit under @} .
BeC@
(3.13)

Definition 3.5. Let G be a subgroup of AutC and let G C Aut L be the image of G
under the embedding ¢. Since G is a subgroup of Sy, let r; denote the number of orbits

of {1,..., N} of size ¢t under the action of G. We define the eta product associated to
LC by

na(q) == [ [ n(a")™ (3.14)

We further define the orbit type of G to be ], ™.

The orbits of the action of G on the set {1,..., N} and the codewords fixed by G
have the following relationship.
Lemma 3.6. Let G be a subgroup of Aut C with orbit type Hle t;* and let m = Zle ;.
Let {O; : 1 < i < m} denote the orbits of the action of G. A codeword B € C is fived
by G if and only if the decomposition Q = U;0; is a refinement of the decomposition
Q=BU(Q\ B).
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Proof. Suppose that B € C is fixed by the action of G. Since G acts transitively on the
orbit O;, for each pair of elements u,v € O;, there exists § € G such that g(u) = v.
Thus u,v are in the same disjoint cycle decomposition of g. Since the disjoint cycle
decomposition of any such g is a refinement of QO = BU (2 \ B), either u,v are both in
B or both in ©Q ~\. B. Since this holds for all elements of O;, each O; is either a subset of
B or Q ~ B. The converse is immediate. O

We now give a proof of Theorem A. We note that this result gives lattice theta
quotients that are non-monstrous replicable functions. Unlike previously known examples
which were associated to individual automorphisms (see Section 6), those coming from
Theorem A are associated to non-cyclic subgroups G C Aut C.

Theorem (Theorem A). Let C be a doubly even self-dual binary linear code of length N
and let L be the associated code-lattice. Let G C Aut L be a subgroup of automorphisms
in the image of Aut C under the natural embedding and let LG be the sublattice fized by
G. Then the lattice theta quotient (O.c(q)/na(q))**N is a weakly holomorphic modular
function. In the case that G = (g) is a cyclic subgroup, this recovers the usual lattice
theta quotient associated to g. Moreover, this construction can produce mon-monstrous
replicable functions not necessarily associated to any individual automorphisms.

Proof. Let L be the code-lattice associated to a code C and let G = +(G) be a subgroup
of automorphisms of L under the natural embedding. Assume that the orbit type of G
is Hl 1t so that N = Zle t;r;. We claim that both the theta series 6,¢(q) and the
eta product (ng(¢))**/N are modular forms of weight k := %Zle r; and level M :=
N TI,;_, ti, which we now explain.

The theta series of LY is determined by the codewords fixed by G as in (3.13). More-
over, by Lemma 3.6, each fixed codeword B has the property that the orbit decomposition
of G, written Q = U™, 0;, is a refinement of the decomposition Q2 = B U (2 \ B). Thus
given B € CC, after possibly reordering, we can write

B=U_,0, and ONB=U"~,,,0;.

Hence the theta series for the discrete subset in the union (3.13) associated to B has the
form

Hﬁg (2|042) H 93(2]0;2) (3.15)
1=s+1

Since ¥2(2) = 2n(22)*n(2)~! and 93(22) = 7(22)°n(2)"2n(42)~2, a term of the form
(3.15) is the eta quotient

[127410il2)*n(210il2) " H 1(2/0i|2)°n(|03]2) *n(4]0il2) 2. (3.16)
= 1=s+1
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Now we can compute a level for each term (3.16) using [34, Theorem 1.64]. Since C is
doubly even, we have |B| = >, |O;] = 0 mod 4. Therefore

SZ\O|—QZ|O\+10 Z |04 — 10 Z |O\_6Z\O|_6|B|_0mod24
1=s+1 1=s+1
Since N = 0 mod 8 so that 2|0;| and 4|0;| divide M for 1 < i < m, we also have

S m

2M M 5M 2M 2M
— — S =0mod 24.
2 50] 500 2 300 ol a0] =™

This tells us that 6y¢(q) is a sum of terms which are each modular of level M. From
(3.16), we also compute that the weight is

(8(271)+(m73)(57272)):%m:%Zri:k.

| =

We note that this is the expected weight since the fixed sublattice L¢ has rank m.
By construction, ng(q) also has weight k. Furthermore, the eta product ng(q)% sat-
isfies

24
EO—N-NEOmOd 24, since ZtirizN, and

y4
Z
=

¢ £

Z T = Z c.tisatitizr .. ter; = 0 mod 24,

so it, too, has level M. Since 7n(z) is analytic and nonvanishing on the upper half plane
and meromorphic at each cusp, the theta quotient (6,¢(2)/na(2))?*/Y is a weakly holo-
morphic modular function of level M, although this level may not be optimal.

Finally, this construction recovers the usual lattice theta quotient associated to g €
Aut L when G = (g) = (u(g)), since for a single element g € Sy, the disjoint cycle
decomposition precisely describes the orbits of {1,..., N} under the action of g and
hence of the whole subgroup (g). O

Example 3.7. Consider the subgroup G C Aut H generated by
g1 = (4,6)(5,7), g2 = (4,7)(5,6), and g3=(1,3)(2,8),
and let G = 1(G) C Aut(Eg). We determine that the orbits of the set Q under

the action of G are {1,3},{2,8},{4,5,6,7}, hence the orbit type of G is 224! and
na(q) = n(¢®>)?n(q*). Then, as in Example 3.3, the set of G-fixed codewords are
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{0,9,{1,2,3,8},{4,5,6,7}} and, for example, the discrete subset associated to the code-
word B = {1,2,3,8} is (Z + 3)aq1 3y + (Z + 3)aqas) + Zagas 671 Repeating this for
each fixed codeword, we eventually find that the theta series of the G-fixed sublattice is

Opc (q) = 93(¢")*93(¢%) + 92(¢")?92(¢%) + V2(¢*)*V3(¢®) + V3(¢*)*V2(¢®)
=1+ 6q+12¢> + 8¢> + 6¢* + 24¢° + 24¢° + 12¢® + 30¢° + O(¢'?),

the theta series for the lattice A;(2)3. Overall, the lattice theta quotient associated to
G is

ES()\*
< 8 ((q))) =q (14 18¢ + 150¢* + 780¢> 4 2928¢" + 889264° 4 24032¢° + .. .),
na(q

a modular function of level 64 which is a non-monstrous replicable function.

The orbit type is a natural generalization of cycle type when one considers subgroups
of lattice automorphisms in the image of those from the code. The cycle type of a gen-
eral lattice automorphism is defined in terms of the decomposition of the characteristic
polynomial into a product of cyclotomic polynomials [21, Appendix A]. For a lattice au-
tomorphism in the image of an automorphism of the code, this coincides with the cycle
type as defined in Section 2.1.

Question 3.8. Can one generalize orbit type to an arbitrary subgroup of lattice automor-
phisms?

4. Lattice vertex operator algebras and automorphisms

In this section, we review the construction of lattice vertex operator algebras (lattice-
VOAs) which are VOAs built from even, positive definite lattices. We then recall au-
tomorphisms of VOAs and discuss those which are lifted from automorphisms of the
lattice.

4.1. Lattice-VOA construction

Here we give a brief overview of the lattice-VOA construction in order to fix notation
and ideas. For further details, we refer the reader to [30,19]. Given an even positive
definite lattice L, we can form the twisted group algebra C.[L] spanned by the C-basis
{¢a}tacr as follows. There exists a 2-cocycle

€: L x L — {#1} such that e(a,a) = (=1){**/2 an

e(a, B)
d e(8, @)

and where (-, -) is the inner product on L. Multiplication on C¢[L] is defined as eqeg =
€(a, B)eqtp and we define the weight of an element e, to be (@, «)/2. Then the grading

= (=1){®P) for a, B € L

on C[L] is given in terms of weight.
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Let h = L ®z C[t,t~1], then the Heisenberg algebra is defined as h = h @& Ck where
k is a central element. This is a Lie algebra, with Lie bracket for h; ® t™, hy @ t"2 € 6
defined by linearly extending the bracket given by

[hl ® tnl s hQ ® tnﬂ = <h1, h2>n15n1+n2k7

where hy, he € h and n1,ny € Z. The Lie bracket of any element of 6 with k is zero. Let
h(n) = z ® t™ as an abbreviation, then we consider an h-module, whose elements are of
the form

hi(—=ng) ... hi(—n1)1, forny...n; € ZT.

The lattice-VOA V7, is defined as a tensor product of this G—module with the twisted
group algebra and consists of elements of the form

hi(—=ng) ... hi(—n1)1 ®@ ey, forny...n; € ZT and e, € C.[L].
The weight of an element of this form is given by
ny+ -+ ng + (o, a)/2.

One can equip this vector space with fields Y and conformal vector w and Vi, will be a
vertex operator algebra with central charge equal to the rank of L.

4.2. Automorphisms and fized subVOAs

We now recall the definition of an automorphism of a VOA and discuss automorphisms
of lattice-VOAs that arise as lifts of lattice automorphisms.

Definition 4.1 (VOA automorphism). For a VOA V', an automorphism of V is a linear
operator h: V — V such that hl = 1, hw = w, and hY (v,2)h~t = Y (hv,2) for all
v € V. We denote the group of automorphisms of V' by Aut V.

For an automorphism h € AutV of order m, we have that V decomposes into
eigenspaces

v= P v*

kEZ/mZ
where V¥ = {v € V | hv = e?™*/™y} for 0 < k <m — 1.

Definition 4.2 (Fized subVOA). For a finite subgroup H C AutV let VH be the set of
v € V that are pointwise fixed under the action of H, i.e.,
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VA .={veV |h=uvforall hc H}.

By restricting the VOA structure from V to VH, VH has the structure of a vertex
operator algebra.

The main theorem of orbifold theory (see, for example [30, Theorem 4.1.5] or [6,31,15])
asserts that if V' is strongly rational and H is a finite solvable group of automorphisms
of V, then the fixed-point VOA V# is strongly rational as well.

4.8. Lifting lattice automorphisms

We consider automorphisms of lattice-VOAs that arise as lifts of automorphisms of the
underlying lattice. An automorphism ¢ of an even positive definite lattice L can be lifted
to an automorphism § of the corresponding lattice-VOA V},. Based on the lattice-VOA
construction, we decompose the VOA automorphism to see its action on the twisted
group algebra and on the Heisenberg algebra. We write § = gy ® g where gy acts on
the elements of the Heisenberg algebra (denoted h(—n) where h € h and n € Z*) as
g(h(—n)) = gh(—n). To define the action of g on the elements of the twisted algebra, we
require a function u: L — {£1} that is compatible with the 2-cocycle € defined above in
the sense that, for a, 8 in L we have

(e, f) _ u(a)u(p)

e(ga,gB)  ula+p)

We can then define the action of § on C[L] as §(eq) = u()eyq. The action of g7 on
the Heisenberg algebra is straightforward, but it takes some care to define the action of
g on C[L]. In particular, §’(eq) = u(a)u(ge) ... u(g’ 'a)eyi,. To simplify notation, we
define

j—1

wj(a) == u()u(ge) ... u(g’ ).

We will take u to be a standard lift of g, so that u(«) =1 for each o € LY. However,
since u(g’a) is not necessarily equal to 1 if 5 > 1, we use the following theorem to
compute w;(a).

Theorem 4.3 (/3] [30]). Let g be an automorphism of L of order m and § its lift to V,
then for all j € Z>g

j—1 . ..
i 1 if m or j is odd,
wj(a) =u <§g a) : {(_1)<a7g]-/za>

if m and j are even.

In particular, Zf;é gl is in LI and thus if u is the standard lift, this factor is 1. Hence
w; defines a homomorphism wj: L9 — {+1}.
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In particular, if both the order m of the automorphism ¢ and the power j of ¢’ are
even, then w;(«) need not equal 1. If g € Aut(L) has order m and there is an « such
that w; () # 1, then the lift § € Aut(Vz) has order 2m.

Corollary 4.4 (Order doubling). Let § € Aut(Vy) be a standard lift of an order m auto-
morphism g € Aut(L). If m is odd, then § has order m. If m is even, then § has order
m if <a,gm/2a> € 27 for all a € L, and order 2m otherwise.

5. Characters of fixed subVOAs

We now give the definition of the characters of the fixed subVOAs and an example
of how to compute them. For a lattice-VOA Vi, we take the fixed sublattice under a
finite cyclic group of automorphisms (g) of order n. By the classification of irreducible
modules in [30], there are exactly n? irreducible V{9 -modules, namely

WD = {w e V(3" | ¢e(g)v = ™9/ v}

where ¢, is a representation of (§) on the vector space Vi (§) that is unique up to an
n-th root of unity (see [30, Proposition 4.2.3] or [12]). Recall that V' = @V, is graded by
the Lo eigenvalues, so we define tr(g=o—¢/24|V) := ¢=¢/24 Y dimV}, ¢™.

Definition 5.1 (Twisted trace functions). Following [31,6,33], let
T(v,4.j,7) := tr(o(v)de(§” g™~ | V(3")), (5.1)

where for v € Vj, we have o(v) := v(k — 1) which leaves each homogeneous space V
invariant and can be linearly extended to finite sums u = ), o(vy).

Definition 5.2. The character of a vertex operator algebra V = @D, V,, of central charge
c is defined as

ChV := Z dim(Vn)qn_C/24.

To compute the character of V7, fixed by (g), we sum over the traces of ¢ acting on
Vy, for all §¢7 € (g). In the particular case when v = 1, the twisted character for the
action of ¢/ on the twisted module V(§*) is

T(t,5,7) = T(1,4,5,7) = tr(¢0(g)a™ 73 | V(5)). (5-2)
Taking ¢o(g) := ¢ for all g € Aut Vy,," we observe from (5.2) that

T(0,j,7) = tr(¢o(§?)g™~ 31 | Vi) = tr(g7q"~ 3 | Vi),

! Since Vi, is untwisted, this is a suitable choice for ¢q (see, for example Remark 4.2.2 of [30]).
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which is the trace of §/ acting on V7. Note that in terms of the twisted modules above,
we have ChV}? = ChiW(©0) (7). Thus

A X . 0 J (T)
<g)—1 ; fl ~j Lo—& 71 L9
ChVy _EAZ T(O’J’T)—E‘Z tr(g’q™° 24|VL)—E‘Z ()

JEZ/nZ JEL/nZ jez/nz
(5.3)
with 0, ()= 3 w;(a)g!**/? and w;(a) = u(a)u(ga) ... u(¢?'a), as before.
acL9?
By Corollary 4.4, when j or n is odd, the theta series 6, w, (1) is the usual lattice

theta series 014 (7) of the sublattice fixed by ¢g/. When j and n are both even, the theta

series 0 (1) is not necessarily equal to 6, ,; () since w;(a) need not be 1. In this

L9? W
. . . J .
case, since w; defines a homomorphism into {£1}, we can decompose L9 as a direct

sum
. _ _ i _

L9 =wi ({1)) @ wy ' ({-1}) = L§ @ w; ({-1}). (5-4)

We call ng = w;l({l}) = ker(w;) the kernel for order doubling. Its complement

w}l({*l}) has theta series 6, ,; (1) — 0ng

ing the value of w;(a) in each term, we have 6, ,; w0, (r) = 9ng (1) — 0w;1({71})(7). In

(7). Separating the terms of 0, . o, (1) accord-
summary, we have

0,45 (7), if one of j or n is odd

0 4 = 5.5
Lo w; (7) 20, ,5(7) =0, (1), if both j and n are even. (5:5)
0

In the case of Eg, we prove that the kernel for order doubling is the Dg lattice.

Lemma 5.3. Let L = Eg and suppose g € Aut(L) with even order n whose lift § has order
2n in Aut Vp. Then when j = n, we have 0, ,; w; (1) = 20p, (1) — O, (7).

Proof. The kernel ker(w;) is always a full rank sublattice of LY, the latter of which is
L itself in the case that j = n since g has order n. By assumption, § has order doubling,
thus ker(w;) C Eg. Moreover, since Dg = {)_x;e; : », ; = 0 mod 2} C FEjg, the norm
(v, ga) € 27 for all o € Dg, hence Dg C ker(w;). Finally, since Dg has index 2 in E,
we must therefore have ker(w;) = Dg and thus the claim follows from (5.5). O

Example 5.4. Consider an element g € AutH of cycle type 122'4! and let g = «(g). By
applying Corollary 4.4, we can determine that the lift of g to § € Aut Vg, has order
doubling, i.e., ord(g) = 8. For odd j, since the fixed sublattices L9 and L9 are the same,
we find

T(0,4,7) = ¢ /31 4+ 16¢ + 644> + 192¢° + 510¢* + 1216¢° + 2688¢° + - - - ).
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We handle even powers of g individually. To compute 7(0,0,7) = T(0,8,7), since ¢® is
the identity, this gives 0, s (7) = 0pia(7) = g, (7). Thus we have

T(0,0,7) = ¢~ ¥/3(1+248¢+4124¢> 4 34752¢° + 213126 ¢* + 1057504¢° +-4530744¢° +- - - ).
Since g2 has cycle type 1422, the fixed sublattice L9 has rank 6 and has theta series

0, ,2(1) = 14 60q + 252> + 544¢> + 1020¢" + 1560¢° + 2080¢° + 3264¢" + 4092¢° + - - - .
The kernel of ws is a full rank sublattice of L9, and the theta series of ng = ker(wsy) is
0,4 (1) = 1+ 28q + 124¢> + 288¢> + 508¢™ + 728¢° + 1056¢° + 1728¢" + 2044¢° + - - - .

We then use (5.5) to compute the theta series. Following the same process for j = 4 and
j =6, we find

T(0,2,7) = ¢~ /3(1 — 4¢® + 6¢* — 8¢° + 17¢° — 28¢"° + - - ),
T(0,4,7) = ¢~ */3(1 — 8q + 28¢> — 64¢> + 134¢" — 288¢° + 568¢° + - - -), and
T(0,6,7) = ¢~ /3(1 — 4¢> 4 6¢* — 8¢ + 17¢° — 28¢"° + - - ).

Finally, by combining the previous calculations, we have
ChV,\? = ¢~ V/3(1 4 38¢ + 550¢° + 4432¢® + 26914¢" + 132760¢° + 567756¢° + - - - ).
6. Replicable functions associated to code-lattices

In this section, we prove results about the modular functions associated to sublattices
of even unimodular code-lattices fixed by subgroups of automorphisms of the code. In
particular, motivated by Monstrous Moonshine, we consider the question of when these
modular functions are replicable functions, and recover classical results regarding the
functions that arise as theta quotients associated to sublattices of the Fg lattice fixed
by a single automorphism. More generally, we show that when one considers sublattices
fixed by subgroups of automorphisms, it is possible to recover additional replicable lattice
theta quotients. We make this explicit in Section 6.3.1 for the Leech lattice. Furthermore,
we characterize those replicable theta quotients associated to orbit types that can exist
for code-lattices of arbitrary rank, and provide data for lattices of rank at most 24.

In Figs. 1-5, capital letters indicate monstrous functions for which ATLAS notation
is used as in [7], while lowercase letters indicate non-monstrous replicable functions.

6.1. Lattices fixed by an automorphism

The relationship between the monstrous moonshine functions and graded trace func-
tions of automorphisms acting on lattice-VOAs (although not stated this way) has been
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Cycle Type of §  Representative (019(q)/n4(q))>
1# 1d(G) Tr4(q)
1232 (1,5,2)(3,7,8) Ts4(q)
2! (1,7)(2,4)(3,8)(5,6)  Tua(q)
1t 7t (1,3,7,8,5,4,2) Tra(q)
4?2 (1,3,7,8)(2,5,4,6) Tss(q)
21 6! (1,3,7,8,2,6)(4,5) Tou(q)

Fig. 1. List of cycle types of automorphisms of H that produce replicable lattice theta quotients for Efg.

investigated for individual lattice automorphisms g. In particular, when L is the Leech
lattice, Conway and Norton [7] speculated that for any g € Aut L, the lattice theta quo-
tient 010 (7)/n4(7) is a monstrous moonshine function. This is in fact not the case; there
are 15 conjugacy classes of elements of Aut L such that 616 (7)/n,(7) are not hauptmod-
uln [28]. However, Kondo and Tasaka considered only automorphisms of L which are
in the image of an automorphism AutG under a natural embedding [27]. In this case
they show that all of the lattice theta quotients 614 (7)/ny(7) are monstrous moonshine
functions. This leads naturally to the following question.

Question 6.1. Let C' be a doubly-even self dual code and let L be the corresponding
code-lattice. If one restricts to the trace functions 0p¢(7)/ng(7) for g € Aut L in the
image of g € Aut C, are these all replicable functions? If not, to what extent does this
fail?

In the case when L is the Eg lattice, the automorphisms of L that give hauptmoduln
are classified in [5, Main Theorem]. In analogy with [27], we investigate the lattice theta
quotients (61+(7)/ny(7))® when g is an automorphism of Fg in the image of Aut H under
the embedding ¢, defined in equation (3.1). In particular, we find they are equal to mon-
strous moonshine functions or non-monstrous replicable functions for certain conjugacy
classes. As in Theorem A, we take the cube to ensure that the theta quotients have
desired transformation properties and are in fact modular functions. We summarize our
findings below.

Proposition 6.2. Let g be an automorphism of the Hamming code H. Then (01s(2)/n,(2))?
is a replicable function if and only g is in one of the 6 conjugacy classes listed in Fig. 1.

Proof. We first note that one could obtain the result from [5, Main Theorem]| by restrict-
ing to only those elements of Aut Eg in the image of Aut H under the natural embedding.
We proceed by considering all 11 conjugacy classes of elements g in Aut H. Using Defini-
tion 2.3, one can verify that the associated theta quotients (61 (2)/n, (2))? are not repli-
cable for the following conjugacy classes: 2* with representative (1,2)(3,8)(4,7)(5,6),
1422 with representative (1,6)(7,8), 4% with representative (1,5,2,6)(3,7,8,4), and
122141 with representative (1,7,8,6)(4,5). For the remaining conjugacy classes, one
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Orbit Type Generators of representative subgroup (®LG(Q)/77G(Q))3

& d Tia(q)

12 32 (1,5,2)(3,7,8) T34(q)
(1,4,3)(5,8,7),(1,3)(5,7)

” (L7)(2,4)(3.8)5.6) Tia(a)

(1,5)(2,6),(3,8)(4,7)
(1,3,7,8,5,4,2)

IS (1,4,3)(5,8,7),(1,7,3,4,6,5,8) T74(q)

(1,4)(3,6),(1,3,8,2)(4,5)
(1,3,7,8)(2,5,4,6)
(2.5)(3,4), (1,8)(2,5)(3,4)(6,7), (1,5)(2.8) (3, 7) (4. 6)

4 (1,2)(3,7)(4,8)(5,6), (1,7)(2,3)(4,5) (6, 8) Tsn(q)
(1,2)(3,7)(4,8)(5,6), (1,7)(2,3)(4,5)(6,8), (1, 2,3)(4,6,5)
(1,2,5)(3,7,4), (2,5)(3,4), (1,8)(2,5)(3,4)(6, 7),
(1,2)(3,6)(4,7)(5,8)
(1,3,7,8,2,6)(4,5)
(1,2)(3,7)(4,8)(5,6),(1,6,8)(2,4,5)

21 gt (4,6)(5,7),(2,7,5)(3,6,4), (1,8)(2,3)
(1,2,5)(3,7,4),(2,4)(3,5), (1,7)(2,4)
(1,2,5)(3,7,4),(2,4)(3,5), (1,7)(2,3)
(2,4)(3,5),(1,7)(2,4)(3,5)(6,8), (2,5
(1,5,2)(3,4,7)

(6,7) Tev(q)
(6,8),(1,7)(2,4)
(6,8),(1,7)(2,4)

,4), (1,7)(2,4),

)

4,5)
3,5)
4,5)
(

)

(
(
(
)

Fig. 2. The replicable lattice theta quotients associated to subgroups of automorphisms of the Hamming
code ‘H embedded as automorphisms of Eg.

can compute the corresponding fixed sublattices and apply Proposition 6.6 to recover
the replicable functions in Fig. 1. O

Remark 6.3. The cycle types in Aut ’H whose lattice theta quotients are not replicable
functions, namely {24, 1422 42 12214} coincide with the cycle types whose lifts to Vg,
have order doubling. Note, however that while the cycle types are the same, the conjugacy
classes are not necessarily the same.

6.2. Lattices fixed by subgroups of automorphisms

Recall that in Definition 3.5 we extended the notion of cycle type of an element
g € Aut L to an orbit type of a subgroup G C Aut L, thereby allowing us to define an
eta product ng(q) associated to a subgroup G.

Question 6.4. If one considers lattice theta quotients for lattices fixed by subgroups of
Aut C rather than individual elements of Aut C, which, if any, of these functions are
replicable? Will any additional replicable functions arise that were not realized as theta
quotients from individual elements?

We first complete this analysis for subgroups of Aut H.

Proposition 6.5. Let G be a subgroup of automorphisms of the Hamming code H whose
image is G = 1(G) in the automorphism group of L := Eg. Then (8¢ (2)/na(2))? is a
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replicable function if and only if the subgroup G is isomorphic to one of the 19 conjugacy
classes of subgroups in Fig. 2.

Proof. The proof proceeds in the same manner as Proposition 6.2 except we consider all
95 conjugacy classes of subgroups of Aut H. In particular, for each subgroup listed above
we compute the fixed sublattice and apply Proposition 6.6, otherwise we determine the
theta quotient is not replicable via Definition 2.3. O

6.3. Comparisons of theta quotients across lattices of varying rank

We now gather results regarding the replicable functions that frequently appear as
lattice theta quotients for even unimodular code-lattices L as the rank N varies. Since
N = 0 mod 8, some of the orbit types that can appear for any such N are 1V, 2V/2,
gN/A IN/AgN/A 9N/8 GN/8 IN/STN/8 and 8N/8 since these correspond to the partitions
of 8 where each distinct part appears the same number of times.

The orbit type of a subgroup G C Aut(L) is not enough to characterize the fixed
sublattice and hence the corresponding lattice theta quotient. Therefore, we state results
about pairs of an isomorphism class of fixed sublattice together with an orbit type listed
above which must give rise to replicable theta quotients, with a focus on those pairs that
arise for the Eg lattice and appear in higher rank lattices. Moreover, in Example 6.7 and
Fig. 5, we recover additional replicable theta quotients associated to the Leech lattice,
and in particular one from a non-cyclic subgroup with orbit type 23 63.

Proposition 6.6. Let G be a subgroup of Aut(L) and LY be the fized sublattice.

(1) If G has orbit type 2N/2 with LG = A1(2)N/?, then (01¢(q)/na(q))**N = Tua(q).
(2) If G has orbit type 4N/* with LE = A1 (4)N/4, then (016 (q)/nc(q))**N = Tsp(q).
(3) If G has orbit type 8N/8 with LE 22 A1 (8)N/8, then (01¢(q)/nc(q)**N = Tisa(q).
(4) If G has orbit type 1V/* 3N/* with LC = Aév/4, then (016 (q)/na(q))**N = T34(q).
(5) If G has orbit type 2N/86N/8 with LG =2 Ay(2)N/8, then (01¢(q)/nc(q))*N =
Tev(q)-
(6) If G has orbit type 2N/86N/8 with 0c(q) =
theta quotient (8¢ (q)/1c(9))**'N = Tiaa(q).
(7) If G has orbit type 1N/8TN/® with LY = K, the Kleinian lattice with Gram matriz

(21), then (016(q)/nc(0)*/N = Tralq).

(04,(¢%) 0, (q6))N/8, then the lattice

Proof. (1) The theta quotient for the fixed sublattice is given by
N .2
2

@m@>w_c&w» W_( Wﬁ4>u_(nWF>M_ﬂM@
ne(q) n(q?) n(q)*n(q*)? n(g)n(q*)

where the third equality follows from the fact that the theta function for the lattice
Aj(2) is the Jacobi theta function 93(¢?) = 7(¢?)°/(n(q)n(q*))?.
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(2) This result follows from the proof of (1) since the lattice theta quotient is
LG o A9 . A, g - on1/2
B = =Tsalq = Tsg(q).
( nc(q) ) < n(q*) > ( n(gh) ) 14(q7) s5(q)

(3) This result similarly follows from the proof of (1) since the lattice theta quotient
24
‘N 0A1 8 3
N ( ; )> = Taalq )1/ = T16a(q).

0rc(0)\ Y _ (04 (c®)
(na(q) ) B ( n(q®) ) n(a®)
(4) The theta quotient for the given fixed sublattice has the form
Oc @\ Y _ (0@ TN _ [ Oae) \°
(nc;(q) ) N <n(q)n(q3)> B (n(q)n(ff’)) '

(77(¢1)12+2777(tf')12 )2’ we find

is

|z

N
4

Since 04, (a)° = 0ag(a) = 043(0)* = (@)

(eh(q)))ﬁ:(n(aﬁlﬂ):(n(q)‘ﬁ +2777(q3)66)2:T3A(q)_

n(an(q? q)*n(q®)? n(g3)" n(q)

(5) This result follows from the proof of (4) since the lattice theta quotient is given

by
() = (ian)

(6) The theta quotient for the described fixed sublattice has the form

N
8

4% 2 3
- (77(9;2)45761(61)6)) = T34(¢%)"? = T (q)-

Ge@\ ¥ _ (0000 @Y (@
Ceiw) =) = Gamemona) ~ T

(7) Since the theta function of the Kleinian lattice K is

)

(n(@)n(g")® + 4(n(¢*)n(d"))?
1)

Ocl) = n(@)n(g®)nq")n(q*

we find that the theta quotient for the given fixed sublattice has the form

0re@\ ¥ _ (o) \¥F () | (0@ )
(nc(q)) B <n(q)n(q7)) <n(q2)n(q14) +4< n(a)n(q") ) )

:T7A(q). O
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Example 6.7. The automorphism group of the Golay code G does not contain any ele-
ments of cycle type 236%. However, it does contain four conjugacy classes of non-cyclic
subgroups with this orbit type. A Magma computation shows that the embedding of these
subgroups into the automorphism group of As, all have fixed sublattices isomorphic to
A5(2)3. Thus by Proposition 6.6, the corresponding lattice theta quotients are all equal
to the non-monstrous replicable function Tg(q). For explicit generators or additional
replicable functions that arise for orbit types associated to other conjugacy classes of
non-cyclic subgroups, see Section 6.3.1.

Remark 6.8. Proposition 6.6 omits the theta quotient associated to the identity auto-
morphism, i.e., the orbit type 17V. Since the theta series of even unimodular lattices are
modular forms of weight N/2 for I' = SLy Z, when N < 24 there are limited possibilities.
In particular, for N = 8 and 16, we have dim MN/Q(I‘) = 1 and thus the theta series are
uniquely determined. When N = 24, we have dim M;5(T") = 2, so that each lattice has
a distinct theta series. In this case, however, the theta series is completely determined
by the number of roots, i.e., vectors of norm 2, and each such lattice has corresponding
theta quotient Th 4(q), albeit with varying constant term. This is no longer the case for
higher rank lattices with IV > 32; the dimension of the corresponding space of modular
forms is at least 2 [34, Prop. 1.25].

In Figs. 3 and 4 we record those replicable functions from Proposition 6.6 that arise
as lattice theta quotients for the even unimodular code-lattices of rank N < 24. The
only such lattices with N < 16 are Eg, D{y, and EZ. There are nine binary even self dual
linear codes of length 24. These give rise to nine code-lattices of rank 24, corresponding
to the nine Niemeier lattices containing an orthogonal 2-frame [24]. These consist of the
lattices labeled N(Da4), N(D16Es), N(E3), N(D3,), N(D1oE2), N(D3), N(Dg), N(DS),
and N (A3%). Of these nine codes, the Golay code G is the only one with minimum weight
greater than 4, and thus gives rise to both the Niemeier lattice N(A%*) via Construction
A and also to the Leech lattice via the construction in Section 3.2.1.

In Fig. 4 the blank entries signify only that the computation was not performed; this
choice was due to the large amount of computing time and memory required to determine
the existence of the relevant subgroups of automorphisms of these lattices.

6.3.1. Additional replicable functions associated to the Leech lattice

As mentioned above, when L is the Leech lattice Aoy, there exist non-cyclic subgroups
of AutG whose image in Aut L has orbit type 236> and the theta quotient for the
corresponding fixed sublattice is Tgp. In Fig. 5, we list some additional orbit types of
(conjugacy classes of) non-cyclic subgroups of AutG whose images in Aut L have fixed
sublattices with non-monstrous replicable theta quotients that do not arise from any
cyclic subgroups. This gives a partial answer to Question 6.4 for Ass and addresses the
statement at the end of Theorem A.
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Orbit Type | (%)™ || B | Dl | B2
1N T)a Y Y Y
oN/2 Tun Y | Y Y
4N/ Tsn Y | Y Y
gN/8 Ti6a N |Y Y
1V/4 3N/4 Tsa Y | Y Y
oN/8 gN/8 Teb Y | N Y
2N/8GN/S | Ty, N |Y |N
1N/8 7N/8 Tra Y | Y Y

Fig. 3. Theta quotients for code-lattices of rank 8 and 16.

187

24/N

Orbit Type (f’,,;f(g) / D2, | D1oE2 | D} | DY | Doy | DS | E® | DigEs | A?* | Leech

1N Tia Y Y Y Y Y Y Y | Y Y Y

oN/2 Tyn Y Y Y Y Y Y Y Y Y Y

qN/4 Tsn Y - Y Y Y Y Y Y Y Y

gN/e Ti6a - - I - |- |- N N

1N/4gN/4 Tsa Y Y Y Y Y Y Y Y Y Y

oN/8 gN/8 T - - Y — - Y Y — Y Y

oN/8 gN/8 Tioa — — - — - N N

1N/8 7N/8 Tra - - - — - - Y Y Y Y

Fig. 4. Theta quotients for code-lattices of rank 24.
Orbit type  Representative subgroup of Aut G Replicable function
o (1,16)(2,20)(3,22)(4, 21)(5, 10)(6, 17)(7, 13)(8, 11)(9, 15)(12, 23)

2363 (14,18)(19, 24), Tes
(1,12,5)(3,17,15)(6, 22, 9)(7, 8, 14) (10, 23,16) (11, 13, 18)

(1,14, 11)(2,16,5)(3, 21, 22)(4, 12, 20)(6, 17, 19)(7, 10, 24)(8, 9, 18)

3292 (13,23,15), To
(1,18,13)(3,4,19)(6, 21, 12)(8,23,14)(9, 15, 11)(17, 22, 20)

(1,6)(2,15)(3,9)(4, 14)(5, 13)(7, 20)(8, 21)(10, 22) (11, 16)(12, 23)
(17,18)(19, 24),

6' 18! (1,18,23)(2,19,21)(3, 5, 16)(4, 22,20)(6, 12, 17)(7, 10, 14)(8,24,15)  Tigs
(9,11,13),

(1,14,13)(3,20,17)(4,6,5)(7,9,18)(10, 11, 23)(12, 16, 22)
(1,2)(3,8)(4, 13)(5,11)(6, 18)(7, 16)(9, 17)(10, 12) (14, 21) (15, 22)

21 221! (19, 24)(20, 23), Thoa
(1,15,13,14,18,11,10,23,9,8,7)(2, 16, 3, 17,20, 12, 5, 6, 21, 4, 22)
(1,5)(2,18)(3,10)(4, 8)(6,11)(7, 22)(9, 17)(12, 13)(14, 21)(15, 19)

(16, 24)(20, 23),
41 20" (1,14)(2,6)(3,12)(4, 17)(5, 21)(7, 24)(8,9)(10, 13) (11, 18) (15, 23) Taoa

(16, 22)(19, 20),
(1,5)(2,10, 19,8, 22,18, 3, 15,4, 7)(6, 13,20, 9, 16, 11, 12, 23, 17, 24) (14, 21)

Fig. 5. Replicable theta quotients associated to non-cyclic subgroups of automorphisms of the Leech lattice.

Remark 6.9. In fact, there is an automorphism of Ay with 2362 cycle type, however it lies
in Aut Aoy~ Aut G. The corresponding lattice theta quotient gives the replicable function
T124 [28]. Similarly, Ti24 also appears as a lattice theta quotient for the Eg lattice, but
for the conjugacy class of element with 216! cycle type that lies in Aut Eg \ AutH [5].
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6.3.2. Higher rank examples

Our methods and questions also apply to lattices of higher rank. There are 85 bi-
nary even self-dual linear codes C' of length 32 (see [4,8,9,35,36] for the classification
of binary self-dual codes of length at most 32.), each giving rise to a code-lattice L via
Construction A. Of these, only the three lattices isomorphic to Eg, E2 @ D{s, or (Df)?
have theta quotient Tj4 corresponding to the cycle type 132, however many more have
fixed sublattices with theta quotients Ty4 or Tgp, for example. The interested reader
can run the Magma code accompanying the paper [2] on any of the Type II linear codes
C' in the database [26] to recover additional information about the associated lattice
theta quotients. Thus it is natural to ask for a classification of the possible replicable
functions that can appear, especially for those higher rank lattices that are orthogonally
indecomposable.

Question 6.10. Can one give complete classification of the replicable functions that can
arise as lattice theta quotients for even unimodular lattices in a given fixed rank N?
Which replicable functions never appear in rank N > 32 for those lattices that are not
direct sums of lattices of dimension at most 247

7. Code theoretic characterizations of fixed sublattices

In Section 6, we proved Proposition 6.6 in which we enumerated pairs of automor-
phisms with a given cycle type and fixed sublattices of a code-lattice L that give rise
to replicable lattice theta quotients. In this section, we prove that for several such cycle
types, this information can be recovered purely via properties of subcodes of the code C
from which the code-lattices are constructed. We focus on those subcodes that exist for
the unique doubly even self-dual code of length 8 and provide data for codes of length
at most 32, noting that there are other characterizations of subcodes giving rise to the
same replicable lattice theta quotients for length larger than 8.

7.1. Identities involving Jacobi theta functions

We record several identities regarding the Jacobi theta functions defined in (3.10)
which will be needed in the next several sections.

Lemma 7.1. Let N be a positive integer. The following identities hold.

(1) V2(a)* = 292(¢%)93(¢?)

(2) U3(q)? = 93(¢%)* + V2(¢°)?

(3) Oan(q) = 93(q)Y, where AN = ZN denotes the standard lattice of rank N.
(4) b3, (q) = V3(0)" + V(@)™

(5) n(@)* _ Ya(d®)
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Proof. We have (1) is [27, (T4)], (2) is [27, (T5)], (3) is [11, §4.5], (4) is [11, §4.7(96)],
and (5) follows from the identity 94(¢?) = n(q)?/n(¢?) [27, (T22)]. O

Lemma 7.2. The theta series 0 ,n/2(q*) and by, , (¢) have the same coefficients on the
1
even (resp. odd) powers of ¢ when N =8 mod 16 (resp. N =0 mod 16).

Proof. By Lemma 7.1(3) and (4), we need only consider the even (resp. odd) coefficients
of ¥2(¢?)V/2. For a fixed integer k, let a; denote the coefficient on ¢*. Then by (3.10)

N/2 N/2 N
_ N/2 . 2 N
ar = (Y1, Yny2) €Z ';yi+;yz+8—k

Since >~ y? and > y; have the same parity, we have ar, = 0 when N = 8 mod 16 and k
is even (resp. N = 0 mod 16 and k is odd). O

7.2. Fized subcodes giving rise to prescribed lattice theta series

Given an automorphism g € Aut C, we now give conditions for the fixed subcode C9
which guarantee that the fixed sublattice of the corresponding code-lattice has theta
series that agrees with that of the lattice A;(r)N/". This in turn guarantees a replicable
lattice theta quotient.

Theorem (Theorem B). Let C be a doubly even self dual linear code of length N, let r|N,
and let § € Aut C have cycle type rN/". Suppose that the fized subcode C9 has dimension
dim C9 = % dim C spanned by {B, ..., Bnja,}. Further suppose BiN\Bj = () for alli # j
and U;B; = {1,...,N}. Then the corresponding sublattice fized by g = 1(g) has theta
series given by 0rs(q) = V93(q")N/". In particular the theta series of the fized sublattice

is the same as that of the lattice Ay (r)N/".

Proof. We will show that 614(q) = (92(¢*")? + 95(¢>")?)N/?", which is the same as
0r9(q) = ¥3(¢")N/" by Lemma 7.1(2). In fact, we will prove the equivalent statement
that

N/2r

0. (q) _ Z (N/Q?”) 192(q2r)2k 193(q27‘)2(N/2T*k). (71)

k
k=0

By equation (3.4), in order to find the fixed sublattice LY we can take the union over
each codeword in the fixed subcode CY as follows. Write

LY = U {%aB + >, wio; : x; = x; if i and j are in the same cycle of g}.  (7.2)
BeC9

Since B; N Bj = 0 for all i # j with U;B; = {1,..., N}, and
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we have |B;| = 2r for each i. Any codeword fixed by g has the form B =} ., B; for
some (possibly empty) set of indices J C {1,...,N/2r}. We let k := |J| so that the
weight of such a codeword B is 2kr. Since g has cycle type #V/", it has the disjoint
cycle decomposition Q@ = va/ 10; with |O;| = r for all i. By Lemma 3.6, after possibly
reordering, we can write B = U?% O; and Q \ B = va/;kHOi. Thus the corresponding
discrete subset in the union defining LY is given by

2k N/r
U(ZJF%)O‘OiU U Z ap,,
i=1 i=2k+1

which therefore has theta series
Vs (q2r)2k193 (qQT)N/’I"72k =y (q2r)2k,l93 (q2r)2(N/2r7k) , (73)

by the definitions of the Jacobi theta functions ¢35 and 93 in (3.10). Finally, the number
of such codewords in C9 with |B| = 2kr is given by (N{fr). Together with the theta
series calculation (7.3), this recovers formula (7.1). O

Corollary 7.3. Assume the code C and g € Aut C satisfy the hypothesis of Theorem B.
Then the lattice theta quotient corresponding to g = 1(g) is replicable. In particular,
forr =1,2,4,8 then (014(q)/1y(q))**™ is equal to Tya(q), Tua(q), Tes(q), and Tiea(q)
respectively.

Proof. This follows immediately from Proposition 6.6 and Theorem B. O

When g has cycle type 2¥/2, the following conditions guarantee a sublattice which
shares a theta series with the lattice D} /,(2).

Proposition 7.4. Let C be a doubly even self-dual linear code of length N and let g € Aut C
have cycle type 2V/2. Suppose the fized subcode C9 has dimension dim C9 = % dim C+1 =
% +1 and is spanned by {Bo, B1, ..., Bny/a}. Further suppose that

(1) \B|=%, .

(2) |Bjl=4for1<j<7,

(3) BinB; =0 for 1 <i,j <& withi+#j, and
(4) |BonB;j| =2 for1<j <&

Then the sublattice fized by g = 1(g) has theta series Opq(q) = V3(q*)N/2 +05(¢>)N/?. In
particular, the theta series of the fixed sublattice agrees with that of the lattice DN/2( ).
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N || # {c : %gezgﬁ for Some} # {c : %ggﬁllg Lor Some} #{C :1en(C) = N}
8 1 1 1

16 1 2 2

24 6 5 9

32 || 19 12 85

Fig. 6. Codes of length < 32 containing fixed subcodes of the form in Theorem B or Proposition 7.4.

Proof. We will show that
00 (q) = Vs(q*)N/? + 24 (92(q*)? V5 (g*)*) (7.4)

which is equivalent to the desired form by Lemma 7.1(1).

Let S be the subcode of CY spanned by {Bi,.. .y Bnya}. Then S is isomorphic to
the code in Theorem B with r = 2. Therefore the sum over B € S of the theta series
of the discrete subset associated to such B is given by 93(g?)N/2. Thus it remains to
compute the theta series of the discrete subsets associated to the codewords B € CI\. S.
Any such codeword has the form B := By + Y jeq Bi for some (possibly empty) set of
indices J C {1,..., %} Recall from (3.2) that the sum of any two codewords is defined
by B+ B’ := BUB' ~ BN B Thus

|B| = ‘BO| + | Zjej Bj| - 2’30 N Zjej Bj| = % +4|~7‘ - 2(2|~7D = %
Hence in total there are 2V/4 such codewords of weight %, each of which corresponds
to a discrete subset with theta series given by (93(¢*)?92(¢*)?)V/%. Taking the sum of
these terms together with the sum for those B € S gives the equation (7.4). O

In Fig. 6 we record the number of doubly even binary self-dual codes of length N < 32
that contain an element g € Aut C of cycle type 2/ fixing a subcode C7 of the form
given in Theorem B (with r = 2) or Proposition 7.4, denoted by C4 and Cp, respectively.

8. Relationships between coefficients of characters of fixed subVOAs

Throughout this section, we assume that L is a code-lattice constructed from a doubly
even self dual code C of length N (necessarily divisible by 8) via either Construction A or
the lattice construction for super codes described in Section 3.2.1. We prove results about
characters of the subVOAs of the lattice-VOA V7, fixed by lifts of lattice automorphisms
in the image of AutC' under the natural embedding. In order to distinguish between
conjugacy classes of automorphisms with the same cycle type, we shall decorate the
cycle type with either rep or nr to denote replicable or non-replicable associated trace
function, respectively. Although there may be several conjugacy classes with the same
associated trace function, we will choose just one such class which we assume to be fixed
throughout.
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Lattice Cycle type  Sublattice  Ch Ve
a7 5 (14 64q + 1052¢> + 8704¢> + 53382¢* + 2644484°

4 4
E Zrep 41 (2) +1133112¢°...)
8
. Di(2) a5+ 136q + 207642 + 17472¢° + 106630¢*
nr 4 +529184¢° + 22656564° .. .)
o8 o A" a5+ 2564 + 18552¢% + 533504¢° + 8685596¢*
D+ rep ! +98667008¢° 4 874939328¢° .. .)
16
o8 D2 (2) a5+ 2564 + 35064¢> + 1057792¢° + 173383964
nr 8 +197233152¢° + 1749600192¢° . . .)
912 A1 (2)12 q (1 +224q + 57620q> + 5570560¢° + 218540994q*
N(D2) rep ! +5082972160¢° + 83449286360¢° + .. .)
2 912 D2, (2) g~ (1 + 288q + 98580¢% + 10749952¢> + 4321555864
nr 12

+101230018564° + 166601412312¢° + . ..)

Fig. 7. Characters of subVOAs fixed by lifts of automorphisms with 2V/2 cycle type.

8.1. Characters of fizred subVOAs for certain cycle types

We consider automorphisms of codes with cycle type 2V/2. In particular, we consider
the case when there are at least two such automorphisms, where one fixes a sublattice
isomorphic to A;(2)V/? and the other fixes a sublattice isomorphic to Dy /5(2). We
observe properties of the characters of their fixed subVOAs Ch V¢, where G is the cyclic
subgroup generated by an automorphism either of cycle type 2%@2 or 27]2]/ % Given a
lattice L and the corresponding lattice-VOA V,, we let V" denote the subVOA fixed by
the automorphism —id € Aut L.

We find that the characters corresponding to a 2%«/ 2 cycle type have coefficients that
coincide with the character of V" while the characters corresponding to a 27{\]4)2 cycle
type have coefficients that coincide with the character of VLJ; , where Ly denotes the
kernel for order doubling. After gathering these results, we end the subsection by proving
Theorem C relating the theta quotients to the fixed subVOA characters.

Fig. 7 records the characters of the subVOAs fixed by lifts of automorphisms with

cycle types 271«\%2 and 22’/ % of the codes whose corresponding code-lattices are Ej, Df‘6,

and N (D32%,).

We compare the coefficients of the characters of the fixed subVOASs of the Eg lattice-
VOA to the characters of V};; and Vgg. In this case, by Lemma 5.3, the kernel for order
doubling for the 2361, cycle type is Dg. We note that the coefficients on the even powers
of g are equal.

Ch V5, = q (1 + 56¢ + 1052¢% + 8640¢° + 53382¢* + 264160¢° + 1133112¢° + ...

Wl

Ch Vi = ¢ 3(1 + 120q + 2076¢” + 17344¢> + 106630¢" + 528608¢° + 2265656¢° + . .. )

Similarly, taking L to be the Niemeier lattice N(D%,) and V7, the corresponding lattice-
VOA, we compare the coefficients of the characters of the fixed subVOAs to those of the
characters of V;" and V" where L is the kernel for order doubling for the 212, cycle
type. Once again, we observe the matching coefficients on the even powers of q.
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ChV; = ¢ '(1+200q + 57620¢” + 5568512¢° + 218540994¢" + 5082923008¢”
1 83449286360¢° +- .. .)

ChV{ = ¢ (1 4 264q + 98580¢> + 10745856¢> + 4321555864 + 10122903552¢°

N(D%,)

+166601412312¢° + .. .)

The same phenomena occur for at least two other Niemeier lattices, namely N(D3) and
N(DJ).

Proposition 8.1. Assume there exists g € Aut L of cycle type 2N/? with associated fized
sublattice isometric to D}‘V/2(2), and let G C AutVy be the subgroup gemerated by the
standard lift G of g. Then the coefficients on the even powers of q in the character of the
fired subVOA Ch V' agree with those of the character Ch VLJF.

Proof. Consider —id € Aut L and its standard lift to Aut Vz. This automorphism has
cycle type 17V2V with trivial fixed sublattice. Hence the character of VLJr is

_ 1 (0l | n@~
ChVi =3 (n<q>N * n<q2>N) ’ (8.1)

while the character Ch V& is given by

1(6 Opy, ,(¢%)
Ve =3 (n(Lq()qI3 i 77D(q§)N/2 ) ' (52)

By Lemma 7.2, the coefficients on the even powers of ¢ in the second term of (8.2)
are equal to the coefficients on the even powers of ¢ in the theta quotient

0,02(@) gV <ﬁ3<q2>>”2
W@ = (@~ \ ()

By Lemma 7.1(5), we have that

n@) _ < n(q)? )N/2 _ (194(q2)>N/2
n(@)™  \n(g?)? n(q°)

Since ¥3(¢%) = 3. ¢ and V4(q%) = S3(—=1)7¢%" we therefore have agreement on the
coefficients on the even powers of ¢, as desired. O

Proposition 8.2. Suppose that N = 8 mod 16 and that there exists g € Aut L of cycle
type 2N/2 with associated fized sublattice isometric to A1(2)N/?. Let G C AutVy be the
subgroup generated by the standard lift of g which has order doubling and kernel for order
doubling denoted Ly. Then the coefficients on the even powers of q in the character of
the fized subVOA ChVE agree with those of Ch V,j;.
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Lattice Cycle type  Sublattice = Theta quotient
q 5 (14 8q + 28¢2 + 64¢° + 134¢* + 288¢°

24 4
5 rep A1(2) +568¢° +...)
8
" D: () q 5 (14 24q + 28¢2 + 192¢® + 134¢* + 8644°
nr 4 +568¢°5 +...)
o8 A1(2)° g5 (1 + 16q + 12042 + 576¢° + 2076¢* + 6304¢°
Dt er ! +17344¢° +. )
16 -
o8 D:(2) ¢~ 5 (14 16q + 376¢2 + 576¢° + 6172¢" + 6304¢°
nr 8 +52160¢°% +...)
912 Ay(2)12 q (1 + 24q + 27647 + 20484> + 11202¢* + 49152¢°
N(D2,) rep ! +184024¢° + 61440047 + 1881471¢% + ...)
" 912 D5,(2) q (1 + 24q + 276¢° + 61444° + 11202¢" + 1474564°
nr 12

+184024¢° + 184320047 + 1881471¢% + .. .)

Fig. 8. Theta quotients of fixed sublattices by automorphisms with oN/2 cycle type.

Proof. We must compare

1 [ 04n2(a%) 20, (q)—0 0,52(0%) g
ChVit =3 (ntzQ)N/z i (:()Q)N 0y nfqu)N/2 " n(Lq()q13>

(0@ 01, (g)
2\ (@M (g

with the character

1 n@™? | 0L,(q)
ChVi, = 2 <77(612)N/2 - nL(Q)N) ’

where the element —id € Aut Ly C Aut L has cycle type 1-V2V with trivial fixed
sublattice. The result then follows from the argument at the end of Proposition 8.1. O

We also consider analogous results for the lattice theta quotients associated to these
two cycle types. We prove that their theta quotients share coefficients, both with each
other and with characters of other known lattice-VOAs. Fig. 8 records the theta quotients
of the fixed sublattices by automorphisms with cycle types 2%,2 and 22// ? for several low

rank code-lattices.
Proposition 8.3.

(1) The theta quotients for the fized sublattices associated to elements with cycle types
271«\%2 and 22//2 in Aut L have the same coefficients on even (resp. odd) powers of q
when N = 8 mod 16 (resp. 0 mod 16).

(2) The character ChVp, ,(¢°) of the Dn/2(2) lattice-VOA and the theta quotients as-

sociated to the cycle types 27]«\%2 and 25/2 have the same coefficients on even powers
of q for N = 8 mod 16.
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Proof. (1) The fixed sublattices are both associated to a conjugacy class of element in
Aut L with cycle type 2V/2. Hence the two theta quotients have the same denominator,
namely 7(q?)N/2. Thus it suffices to compare the coefficients of the corresponding theta
series, i.e., 0 \n/2 (¢%) and 0oy, , (¢%). This is the content of Lemma 7.2.

(2) Note that the character of the Dy/o(2) lattice-VOA has denominator n(q?)N/2,
thus again we need only compare the theta series of this lattice to the theta series of
A;(2)N/2. Let aj, denote the coefficient on ¢* in the theta series of the lattice Dy /2(2).
Then

ak:#{(xl,...,a:N/g) EZN/Q:inEOmonand fo:k}.

7

Since Y22 and 3" z;, have the same parity, ax is nonzero if and only if k is even. We
see from the proof of (1) that these coefficients agree with the corresponding coefficients
in the theta series of A;(2)"/? and Dy /5(2), as desired. O

Remark 8.4. The Golay code G has exactly one conjugacy class of automorphism with
cycle type 2'2. For both N(A3*) and Agy the corresponding theta quotient is the repli-
cable function Ty4(q). In the case of Aoy, the fixed sublattice is isometric to the lattice
2D}, and the standard lift of the lattice automorphism to the Leech lattice-VOA has
order doubling. The kernel for order doubling is an index 2 sublattice of Agy with theta
series

01,(q) = 1+ 982564 + 8384512¢> + 199066704 4 2314125312¢° 4+ O(q°).

Theorem (Theorem C). Suppose there exists an automorphism g1 € Aut L with cycle
type 2N/? and fized sublattice isometric to A1(2)N/2. Let Lo denote the kernel for order
doubling associated to the lift of g1 to the VOA automorphism ¢ € Aut V. Then

0191 (q)

e = Ch Vi (q) — Ch V! (q) + Ch Vp, . (¢?). (8.3)

Moreover, if there exists an automorphism go € Aut L with cycle type 2N/? and fized
sublattice isometric to D7V/2(2)7 then the characters of the fized point subVOAs are related
via

0192 (q)

RN 2(Ch V¥ (q) — Ch V;f (q)) — (ChV{* (q) — Ch V[ (q)) + Ch Vp, , (¢%). (8.4)

Proof. By Lemma 7.1(5), we have

n(@™ (194(q2)>N/2 .

(@)™ \ n(¢?)
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Then, using the definitions of the theta series for A;(2)"/? and DN/2( ) given in
Lemma 7.1(3) and (4), respectively, the right hand side of (8.4) is

19N+ 02PN (@) 1 (0nle) | Pa(@®)N?

? 2( n(g?)N/? * n(Q)N) 2 2( @V © n(q"’)m)
s(@N2 00, (@) | 1 (On(q) | Pa(gD)N?

(77(612)N/2 o q)N> T3 (77( N * n(g?)N/? >

1 ( s(¢)N/? +194(q2)N/2)

2 n(g*)N/?

D3N +92(*)N?  0192(q)

n(g?)N/? - n(g®)N/2

l\D|F—‘

_|_

Similarly, the right hand side of equation (8.3) is

1 (193(112)]\’/2

1 o() OLo(q) | Da(g®)N?\ |1 (05(q))N + Va(g)N/?
~2 Uni@) " <>) 2( i )*2( )
)
N/2

QN n(g®)N/? n(q?)N/2
193(q2)N/2 9[,91 (

= = O
(@ n(e?)
The identity (8.3) also holds for the Leech lattice, up to a constant. To the authors’
knowledge, a statement analogous to Theorem C does not easily generalize to other cycle

types.
8.2. Code theoretic characterization of order doubling

Certain properties of the code-lattices and lattice-VOAs from Section 8.1 are de-
tectable by the automorphism groups and fixed subcodes of the linear code. Let C'
be a doubly even self-dual linear code of length N, and assume that L is the code-
lattice of C' as constructed in Proposition 3.2. That is, L is the lattice generated by
{ai,3ap:1<i< N,B e C}, where {o;}}Y, is a basis for RY such that (a;, o) = 26; ;.
We again view codewords B in the lens of Section 3.2, that is, as a subset B C {1,...,N}
encoding the indices of B for which the coordinate is 1, with addition defined by equation
(3.2) as the symmetric difference of sets.

The following theorem gives a characterization, in terms of a property of the code
C, of when an even order lattice automorphism ¢ lifts to an automorphism § of the
lattice-VOA V7, that has order doubling.

Theorem 8.5. Suppose g € Aut C has even order and let g = 1(g) be the image of g in
Aut L. The standard lift of g € Aut L to an automorphism § of the lattice-VOA Vi, does
not have order doubling if and only |B N g°™9)/2(B)| = 0 mod 4 for all B € C.
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Since ¢°'4(9)/2 has order 2, Corollary 4.4 characterizes when § does not have order

doubling in terms of the parity of (a,g*"49)/2(a)) for all a € L. Thus the proof of
Theorem 8.5 is an immediate consequence of the following lemma.

Lemma 8.6. Suppose g € Aut C has order 2 and let g = 1(g) be the image of g in Aut L.
Then for all B € C we have |BN g(B)| = 0 mod 4 if and only if {(a, g(e)) € 27 for all
a€ L.

Proof. For an arbitrary o € L we may write o = %aB + Zfil z;a4, for some B € C.
Let Z C {1,..., N} denote the set of indices where z; # 0. By equation (3.3), the action
of g on a is given by g(a) = Sazp) + Zﬁl T (). Thus we find

N N
1 1
(@, g(a)) = {ap, agm) + 5 <Z<O‘vaiag(i)> + Z<ag(3)vxiai>> (8.5)
=1 1=1
N N

+ Z Z(axiai, xjozg(j)>

i=1 j=1

We claim that the parity of (c, g(«)) is completely determined by whether |BN g(B)|
is 0 or 2 modulo 4. Since (o, ;) = 26; ;, the last term of (8.5) is always even. If o € L9
then the first two terms in (8.5) simplify to ta% + <aB,Zfi1 xi0u) € 27 since C is
doubly even, therefore each codeword B has weight |B| = 0 mod 4.

So suppose that « ¢ L9. Given any two subsets X, Y C {1,..., N} we have g(XNY) =
g(X) N g(Y). Since g has order 2 in Aut C, we have that BN g(Z) = g(g(B) NZ). Since
g is a bijection, this implies |B N g(Z)| = |g(B) NZ|. This shows that the second term of
equation (8.5) is always even since the parity of the two sums is the same, determined by
|B N g(Z)|. Thus the parity of (o, g(«)) is determined only by the first term of equation
(8.5), i.e. by +{ap, agp)) = 1 -2/BM9B) The statement of the lemma then follows. O

For codes C of length N < 32, when there exists an automorphism g with cycle type
2V/2 and fixed subcode satisfying the hypotheses of Theorem B with r = 2, then there
are codewords B € C such |B N g(B)| = 2 mod 4. Hence by Theorem 8.5, the lift §
must have order doubling. There appear to be many more cycle types which give rise to
lattice automorphisms whose fixed sublattices have corresponding theta quotients that
are not replicable functions. However, whenever there exists g € Aut C' with cycle type
2N/2 and C9 satisfies the assumptions of Proposition 7.4, each codeword B € C satisfies
|BNg(B)| = 0mod 4. Theorem 8.5 implies that the standard lift of g to § € AutV,
does not have order doubling.

9. Decomposition of VOA characters

Since we have considered theta quotients coming from fixed sublattices under both
cyclic and non-cyclic subgroups, we can also study characters of subVOAs fixed by
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noncyclic subgroups. This is more straightforward when none of the elements have order
doubling, in which case we observe some decomposition of the fixed subVOA characters
based on the group structure. It is of course possible to compute such characters for non-
cyclic subgroups when order doubling occurs, however, the analogues of the following
propositions are more complicated in those cases since the group structure as an subgroup
of automorphism group of the lattice is not preserved (see, for example Section 4 of [21]).
Therefore, throughout this section, we assume all lifts of lattice automorphisms do not
have order doubling.

Theorem (Theorem D). Let p and q be primes such that ¢ > p and ¢ =1 (mod p) and
let Z.y x Zy, be a subgroup of the automorphism group of an even positive definite lattice
L. The characters of the fized point subVOAs of the lattice-VOA Vi, satisfy the following
relation

pChVZa*%Zr — ChV%:i 4+ pCh V% — ChVy.

Proof. Since ¢ > p, this forces the existence of a unique ¢-Sylow subgroup. Since the
group is not abelian and ¢ =1 mod p, the number of p-Sylow subgroups must be equal
to g. Thus there are (¢ — 1)p elements of exact order p and g remaining elements of order
dividing ¢q. Thus we have

1
ChVZa%r = — N tr(g|VL)

Pq gEL XLy

1

=— 1) te(glVe) +q Y tr(glVe) — qtr(elVi)
pq
9E€Z, 9EZLy

Now, ChVZ» = % >_gez, tr(9|VL) and Ch Vi = % > gez, tr(glVL), so we can rewrite
the above as

1
ChVZarZy — * (thVZq +pgCh V7% — thVL) ,
pq
and thus
pChVZ*Zy — Ch V% + pChVZ —ChV,. O

In fact, these propositions hold more generally because V need not be a lattice-VOA.
Since we have assumed the lattice automorphism groups have no elements with order
doubling, these propositions hold if one simply lets G be a group of automorphisms of
some strongly rational VOA V.

Remark 9.1. Note the formal similarities between Theorem D and Proposition 3.4 of [21],
in which they prove a similar statement about the characters of the Z, x Zp,-orbifolds
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of V. Since the only holomorphic Cs-cofinite VOAs of CFT-type with central charge
¢ < 24 are the lattice-VOAs Vg, Vi and Vi [14, Theorems 1 and 2], in the case of
lattices L of rank N < 24, the orbifolds of the lattice-VOA V7, simply recover V}, again,
and so the statement of [21, Proposition 3.4] becomes trivial in these cases. In contrast,
the statement of Theorem D regarding characters of fixed subVOAs can be applied to
low rank lattices and we give an example below for the Fg lattice to illustrate the result.

Example 9.2. The group generated by hy = (1,2,5,3,7,6,4) and hy = (2,5,7)(3,4,6)
forms a subgroup H = Z/7Z x Z/3Z of order 21 in AutH. Let Hy = (hy) = Z/7Z and
Hy = (g2) = Z/3Z. Thus,

3ChVH# =Ch Vv +3ChVH2 — ChVpg,.

To see this, we first note that H has 14 elements of order 3, 6 elements of order 7, and
one element of order 1. The elements of order 3 can be arranged into 7 subgroups of order
3 intersecting at the identity, similarly the remaining 6 + 1 elements of order dividing 7
can be form a subgroup of order 7. In particular, we find:

ChVH = ¢7V3(1 + 22¢ + 242¢% + 1762¢° + 10460¢* + 51078¢° + 217266¢° + .. .)
Ch VT = ¢7V/3(1 + 38¢ + 596¢% + 4974¢° + 30468¢" + 151102¢° + 647298¢° + ...)
ChVH2 = ¢71/3(1 + 92¢ + 141842 + 11688¢> + 71346¢* + 353212¢° + 1511748¢° + .. .)

and finally, we have that Ch V1 +3Ch V2 — Ch Vg,

= ¢ 1/3(3 4 66¢ + 726¢> + 52864¢° + 31380¢™ + 153234¢° 4 651798¢° + .. .)
=3ChVH,

Theorem 9.3. Let p and q be primes such that ¢ > p and let H be a non-abelian subgroup
of order p*q of the automorphism group of an even positive definite lattice L. Then the
characters of the fized point subVOAs of the lattice-VOA Vi, satisfy the following relation

qCh V%2 2a — Ch V2 4 qChVEe — ChVy, if H=Z, x1Z, (9.1)
p? Ch V2o — 2 Ch V22 4 ChV2s — ChVy, if H=Zy %Ly (9.2)

Much of the following proof is a standard exercise in group theory, however we record
the details here for completeness.

Proof. The number n, of ¢-Sylow subgroups of H is either 1 or p?, since by assumption
p < g and therefore we cannot have p = 1 mod q. If n, = p? then H contains p? subgroups
of order ¢ that pairwise intersect in the identity element, thereby giving (¢—1)p? elements
of exact order ¢. This leaves p?q — (¢ — 1)p? = p? remaining elements, all of which must
be contained in a single Sylow-p subgroup which is necessarily normal in H. If instead
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ng = 1, then the unique Sylow-¢ subgroup is normal in H and since H is not abelian, we
must have n, = ¢ (and thus can only occur if ¢ = 1 mod p). In the former case, we have

1 1
ChV === > trl(glV) = o | 2 trlglVa) +97 ) tr(9lVe) - p* ta(elV2)

geEH 9€EZ 2 gEZ,

Since Ch V%2 = 1% > tr(g|Vy) and ChVZa = % > tr(g|VL), we can rewrite the
9ELyp 9ELg

above as

1

ChVH = " (p2 ChVZi 4 p2gChVZ — p2Ch VL) ,

and thus
qChV* = ChV%? 4+ qCh V% — Ch V.
The proof for the latter case follows similarly. O

Question 9.4. Is there an analogous statement to Theorem D and Theorem 9.3 that gives
a decomposition of theta series of fixed sublattices under a group G into theta series of
fixed sublattices under subgroups of G?7 Alternatively, can a similar statement be made
about the dimensions of the fixed sublattices under G' and its subgroups?

10. Questions for further study

We conclude by listing several additional questions for further study.

Question 10.1. If one applies constructions other than Construction A to doubly even,
self-dual linear codes (for example, Constructions B, C, or D), how do the replicable
functions and graded characters compare to those that arise from Construction A?

Question 10.2. If one applies Construction A to a subcode fixed by an element g €
Aut(C), the resulting lattice is distinct from the fixed sublattice LY. Similarly, the lattice-
VOA constructed from applying the lattice-VOA construction to (a potentially scaled
version of) the fixed sublattice L9 is not the same as the lattice-VOA VLQ . Can one

quantify the relationship (if any) between the two lattices (resp. VOAs)?

Question 10.3. Consider the theta quotients associated to an automorphism of a lattice
from Section 6, that is, the quotients of the theta functions of the fixed sublattices by
the eta products based on the cycle type of the automorphism. Is there an analogue
when one considers indefinite lattices that can be decomposed into positive definite and
negative definite parts where the theta quotients are replaced by theta blocks of the form
below?
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0L1 (T)0L2 (T)
n(7)

In a personal communication, J. Lagarias remarked that theta blocks are similar to
the theta quotients considered by the authors and may be related to this work (see [23]
for the definition of theta block in general). The authors speculate the aforementioned
connection with indefinite lattices, but there may be a different connection altogether.

Question 10.4. Can one characterize how the structure of a subgroup of Aut(C') changes
when lifted to a subgroup of VOA automorphisms in cases where elements of the sub-
group have order doubling? Is there anything to be learned from restricting our attention
only to lattice automorphisms that come from code automorphisms?

Question 10.5. Are there characteristics of the fixed subVOAs under lifted code au-
tomorphisms that can be deduced from the fixed subcode under that automorphism?
For example, the conformal weights of twisted modules of lattice-VOAs by VOA au-
tomorphisms depend on quantities related to the lattice and the cycle type of the
automorphism. Can this or other values be computed using properties of the fixed sub-
codes?

Data availability

All referenced computational data is in the manuscript, we have a link to github for
the code included in the paper.
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