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Abstract
Charcoal rot of sorghum (CRS) is a significant disease affecting sorghum crops,

with limited genetic resistance available. The causative agent,Macrophomina phase-
olina (Tassi) Goid, is a highly destructive fungal pathogen that targets over 500

plant species globally, including essential staple crops. Utilizing field image data

for precise detection and quantification of CRS could greatly assist in the prompt

identification and management of affected fields and thereby reduce yield losses.

The objective of this work was to implement various machine learning algorithms

to evaluate their ability to accurately detect and quantify CRS in red-green-blue

images of sorghum plants exhibiting symptoms of infection. EfficientNet-B3 and a

fully convolutional network emerged as the top-performing models for image clas-

sification and segmentation tasks, respectively. Among the classification models

evaluated, EfficientNet-B3 demonstrated superior performance, achieving an accu-

racy of 86.97%, a recall rate of 0.71, and an F1 score of 0.73. Of the segmentation

models tested, FCN proved to be the most effective, exhibiting a validation accu-

racy of 97.76%, a recall rate of 0.68, and an F1 score of 0.66. As the size of

Abbreviations: AI, artificial intelligence; AZMET, Arizona Meteorologial Network; BCE, binary cross entropy; CNN, convolutional neural network; CRF,

conditional random field; CRS, charcoal rot of sorghum; EMS, ethyl methanesulfonate; FCN, fully convolutional network; FN, false negative; FP, false

positive; GPU, graphics processing unit; IOU, intersection over union; ITS, internal transcribed spacer; MAC, Maricopa Agricultural Center; ML, machine

learning; NLB, northern leaf blight of corn; NN, neural network; PDA, potato dextrose agar; R-CNN, region-based convolutional neural network; RGB,

red-green-blue; SVWC, soil volumetric water content; TN, true negative; TP, true positive; UAV, unoccupied aerial vehicle; WL, water-limited; WW,

well-watered.

Emmanuel Gonzalez and Ariyan Zarei contributed equally to this work.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided

the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2024 The Author(s). The Plant Phenome Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy and Crop Science Society of America.

The Plant Phenome J. 2024;7:e20110. wileyonlinelibrary.com/journal/ppj2 1 of 18
https://doi.org/10.1002/ppj2.20110

https://orcid.org/0000-0002-3021-9842
https://orcid.org/0000-0002-3670-2472
https://orcid.org/0000-0001-9401-4494
https://orcid.org/0009-0005-4034-7433
https://orcid.org/0009-0008-2945-2103
https://orcid.org/0000-0002-7725-7379
https://orcid.org/0000-0003-1107-5414
https://orcid.org/0000-0003-4825-1282
https://orcid.org/0000-0003-2799-954X
https://orcid.org/0000-0002-8568-9518
https://orcid.org/0000-0002-3348-8845
https://orcid.org/0000-0002-8292-2388
mailto:dukepauli@arizona.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/ppj2
https://doi.org/10.1002/ppj2.20110
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fppj2.20110&domain=pdf&date_stamp=2024-06-27


2 of 18 GONZALEZ ET AL.

the image patches increased, both models’ validation scores increased linearly, and

their inference time decreased exponentially. This trend could be attributed to larger

patches containing more information, improving model performance, and fewer

patches reducing the computational load, thus decreasing inference time. The mod-

els, in addition to being immediately useful for breeders and growers of sorghum,

advance the domain of automated plant phenotyping and may serve as a foundation

for drone-based or other automated field phenotyping efforts. Additionally, the mod-

els presented herein can be accessed through a web-based application where users

can easily analyze their own images.

1 INTRODUCTION

The impacts of plant biotic stresses pose a significant risk

to sustainable agricultural production and threaten the avail-

ability of nutritious calories to a growing world population.

Globally, plant diseases are directly responsible for yield

losses ranging from 10% to 40% across major staple crops

that provide ∼50% of the calorie intake among humans

(Savary et al., 2019). Further compounding cropping system

challenges created by biotic stressors is the presence and inter-

action with abiotic stresses such as heat and drought (Desaint

et al., 2021; Pandey et al., 2015; Ramegowda & Senthil-

Kumar, 2015; H. Zhang & Sonnewald, 2017). Collectively,

these factors further exacerbate the challenges facing crop

production and highlight the need for resistant crop cultivars

capable of mitigating these factors (Kissoudis et al., 2014).

This urgent need for improved cultivars is further highlighted

by the aridification of agricultural lands which will increase

and intensify the effects of abiotic and biotic stresses (Over-

peck & Udall, 2020); these environmental changes will likely

disrupt and alter the geographic distribution and abundance of

crop pathogens (Chakraborty et al., 2000; Delgado-Baquerizo

et al., 2020; Newbery et al., 2016).

Traditional plant breedingmethods have relied on the visual

assessment and scoring of germplasm subjected to infection,

either naturally or artificially inoculated, to identify genotypes

with varying levels of disease resistance (Bernardo, 2014; St

Clair, 2010). However, visual assessment by trained experts

is subject to human biases and errors that reduce the preci-

sion, accuracy, and repeatability of disease rating resulting

in decreased selection accuracy, heritability, and genetic gain

(Bock et al., 2009; Poland & Nelson, 2011), which, in turn,

lengthens the development of cultivars that can cope with

biotic and abiotic stresses. To overcome these limitations,

machine learning (ML) and artificial intelligence (AI) algo-

rithms, in conjunction with high-throughput phenotyping, can

be leveraged to conduct automated and rapid assessment of

images of diseased plants/tissue to provide more accurate and

reliable scoring of relevant plant germplasm (DeChant et al.,

2017; Lu et al., 2021; Pauli et al., 2016; Singh et al., 2016).

These data can aid in breeding by enabling direct selection

or by identifying genes or alleles conferring pathogen resis-

tance. They also allow growers to detect disease and plant

stress early, facilitating prompt mitigation.

Macrophomina phaseolina (Tassi) Goid is a pluriparous

plant pathogen impacting over 500 plant species in more than

100 plant families, including cereals, legumes, vegetables,

and fruits throughout the world (Kunwar et al., 1986;Marquez

et al., 2021).M. phaseolina is a necrotrophic soilborne fungus
native to the Sonoran Desert soil (Mihail et al., 1989, 1992)

but is also widely distributed in the United States. It survives

and spreads primarily as black microsclerotia in diseased root

and stem debris as well as in soil after decay of infected

plant material (Bhattacharya & Samaddar, 1976). Microscle-

rotia infection of root tissue occurs at temperatures ranging

from 20 to 40˚C, affecting plants at different developmental

stages, including seedling, young, and mature phases (Collins

et al., 1991; Hsi, 1956). Disease development is influenced

largely by drought stress and low soil moisture (Odvody &

Dunkle, 1979). Under favorable environmental conditions,M.
phaseolina invades the vascular system, disrupting the normal

function of water and nutrient transport to the leaves, causing

visible symptoms such as wilting and premature leaf death.

Symptom onset varies with host species, cultivar, growth

stage, and environment. Seedlings can be infected early, but

symptoms typically appear during drought stress or physio-

logical stress at later stages such as pollination or grain filling.

Initial symptoms include wilted grayish-white leaves, reduced

vigor, and scattered premature plant death. However, these

symptoms are not unique to M. phaseolina and can be mis-

taken for drought stress, frost damage, early senescence, root

rot, and Fusarium rot.

Sorghum [Sorghum bicolor (L.) Moench] is a key cereal

crop that also serves as a host species for M. phaseolina.
Globally, sorghum is the fifth most widely grown cereal crop,

trailing maize, rice, wheat, and barley, and is a staple food

crop for millions living in semi-arid regions (Hossain et al.,

2022). Sorghum is gaining popularity given its innate ability
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to produce grain on marginal land and areas that lack suf-

ficient irrigation water needed for row crops such as maize,

and because of its diverse utility as a food, feed, and biofuel

crop (Ndlovu et al., 2021; Rai et al., 2016; Rooney et al.,

2007; Tang et al., 2018; Yang et al., 2022). The range of

sorghum’s end uses combined with its innate genotypic and

phenotypic diversity is helping to position this crop as a sus-

tainable solution to agricultural production in the face of

climate change (Boatwright et al., 2022; Chadalavada et al.,

2021). However, for sorghum production acreage to increase,

resistance to charcoal rot of sorghum (CRS, M. phaseolina
infection in sorghum) is needed as CRS causes a variety

of symptoms including root rot, soft stalk, early lodging of

plants, premature drying of stalk, reduced head size, and

poor filling of grain (Hsi, 1956). Charcoal rot symptoms and

agronomic impacts significantly lower crop performance and

profitability. Sorghum typically grows in arid regions, which

are susceptible to water stress, leading to both biotic and abi-

otic stresses that reduce yield. These stresses cause similar

visible symptoms, making it difficult to distinguish between

them.

An automated tool that can distinguish between CRS and

drought stress in sorghum leaves would be beneficial for

researchers and crop managers in dry regions. This tool

could be image based and deployable on unoccupied aerial

vehicles (UAVs) or smartphones. Utilizing hardware and soft-

ware advancements to create lightweight algorithms for edge

devices would allow for in-field data processing. With the

advent of powerful computation devices, specifically graph-

ical processing units (GPUs), and recent advancements in

ML and AI algorithms, many domain scientists have started

to use neural networks (NNs) to detect, locate, and quantify

many features, including disease, in various image modali-

ties (Amsaveni & Albert Singh, 2013; Mechria et al., 2019;

Siar & Teshnehlab, 2019). The class of NNs that are widely

applied to this application is known as convolutional neural

networks (CNNs) (LeCun, 2015). By learning useful features

from image data automatically, these CNNs can perform clas-

sification or detection tasks more effectively than the older

approach of manual feature extraction (Rybski et al., 2010).

The CNNs have also been used for the detection, classifi-

cation, and segmentation of similar foliar diseases in other

crop species. In DeChant et al. (2017), the authors proposed

a computational pipeline of CNNs for classifying images

of field-grown maize images to determine the presence or

absence of maize northern leaf blight (NLB). Expanding on

this work, Stewart et al. (2019) trained a mask region-based

convolutional neural network (mask R-CNN) for segmenting

maize images acquired by UAVs into healthy and NLB-

affected tissues. In Wu et al. (2019), the authors proposed

a sliding window approach for generating heat maps high-

lighting regions in the aerial images of maize fields affected

by the NLB. Wu et al. (2019) and Wiesner-Hanks et al.

Core Ideas
∙ Automated phenotyping tools are required for the

efficient detection and quantification of charcoal

rot of sorghum.

∙ Classification and segmentation models can dis-

tinguish between concurrent plant stresses with

similar symptoms.

∙ Larger image patch sizes generally improve model

performance and reduce processing time.

(2019) proposed a combination of CNNs and conditional ran-

dom fields (CRFs) to segment maize images into normal

and NLB-affected regions. For early plant disease detection,

hyperspectral imaging is being increasingly utilized as an

alternative to RGB images, given its ability to offer unique

spectral signatures and valuable insights into plant health

(Mertens et al., 2021; Yu et al., 2018; G. Zhang et al., 2022).

However, its complexity and high computational demands

present challenges, hindering its full implementation in agri-

culture (Cheshkova, 2022; Okyere et al., 2023). Meanwhile,

standard RGB cameras simplify the process and broaden the

application of disease detection methods from research to

commercial agriculture.

In the present study, we propose two CNN-based

approaches for quantifying CRS in RGB images captured

of field-grown sorghum under drought stress conditions

and compare the performance of the two methods. The first

approach, which involves a set of classification models,

determines the presence of CRS in images by classifying

small-sized patches. The second approach carries out pixel-

wise classification or semantic segmentation on the images.

We evaluate the performance of these two approaches to

determine which is more capable of detecting and quantify-

ing CRS as well as provide computational benchmarks for

deployment by end users. We also provide a high-quality

labeled dataset for classification and segmentation tasks

as well as our code for the benefit of other researchers to

improve upon our work. To reduce the barrier to entry, a web

application is provided that allows end users to deploy all

models in the present study.

2 MATERIALS AND METHODS

2.1 Data and field experiments

A population of ethyl methanesulfonate (EMS)-mutagenized

BTx623 sorghum, the genotype used for the generation of

the sorghum reference genome, consisting of 430 individuals
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(Addo-Quaye et al., 2018; Paterson et al., 2009) was eval-

uated at the Maricopa Agricultural Center (MAC) of the

University of Arizona located in Maricopa, AZ (33˚04′37″ N,

111˚58′26″ W, elevation 358 m) in 2020. EMS, an organosul-

fur compound, was used as a chemical mutagen to induce

random point mutations primarily through guanine alkylation

(Addo-Quaye et al., 2018; Yan et al., 2021). The population

was grown under contrasting irrigation conditions represent-

ing well-watered (WW) and water-limited (WL) conditions.

The trial was planted on June 17 (day 169, Julian calen-

dar) in a partially replicated, incomplete block design with

240 of the lines replicated within each of the two irrigation

treatments, while 190 lines were only observed once per irri-

gation treatment. The order of entries within each irrigation

treatment was randomized. To reduce edge effects, the wild-

type BTx623 sorghum cultivar was planted at the perimeter

of each irrigation treatment. Experimental units were one-

row plots, 3.5 m in length with a 0.5-m alley at the end of

each plot and inter-row spacing of 0.76 m; plots were thinned

to a density of five plants per plot (1 plant per 0.7 linear

meter) after crop establishment, at approximately V5 growth

stage. The soil type is a Casa Grande sandy loam (fine-loamy,

mixed, superactive, hyperthermic Typic Natrargids). Con-

ventional sorghum cultivation practices (fertilizer application

rate/amount, weed/insect control, etc.) for the desert South-

west were employed (Ottman, 2016). Meteorological data

were obtained from an automated Arizona Meteorological

Network weather station (cals.arizona.edu/AZMET/06.htm)

located on the premise of MAC and 738 m from the field

(Brown, 1989). Crop irrigation was performed using sub-

surface drip irrigation with pressure compensated drip tape

(DripNet PC; Netafim) buried at a depth of ∼0.15 m beneath

the soil surface, directly underneath the plants. Soil volumet-

ric water content (SVWC) was monitored on a biweekly basis

using a field-calibrated neutron moisture probe (Model 503;

Campbell Pacific Nuclear) with measurements taken in 0.2-

m increments from a depth of 0.1– 1.9 m. Each sorghum

genotype was evaluated under two irrigation treatments: 23%

SVWC (WW conditions) and 15% SVWC (WL conditions).

These values were based on measures of soil water-holding

capacity at the study site and observation of plants, with

those at 15% SVWC maintaining core function but showing

stress via measures of leaf gas exchange and photosynthetic

efficiency (Thorp et al., 2017; Pauli, unpublished data).

2.2 Disease presence and description

Symptomatic disease tissue was observed in the field trial

∼5 weeks after planting with plants exhibiting typical signs

of wilting and root rot (Figure 1). Initially, about 15% of

research plots showed severe wilting symptoms; however, this

slowly increased as the season progressed, and ultimately

∼70% of the research plots exhibited some level of infection.

The presence of similar symptoms was also confirmed pre-

viously in 2019 and 2017 within the same field as used for

the present work. To confirm pathogen presence and identity,

symptomatic plants, with visible leaf symptoms, were dug up

from the field plots ensuring that roots remained attached to

the plant while avoiding damage to the roots. All sampled

plants were placed in plastic bags and kept cool until they

could be transported to the University of Arizona’s Extension

Plant Pathology lab in Tucson, AZ.

Since microsclerotia are not visible in the stem, isolation

was made using putatively infected root and stem tissues

(Figure 1C,D). Tissue samples, measuring 7 × 7 × 3 mm,

were cut from the margin between the diseased and seemingly

healthy tissues. These tissue samples were surface sterilized

by soaking in 75% ethanol for 5 s, 1% sodium hypochlorite

for 1 min, rinsed well with sterile distilled water, and dried on

sterile filter paper in a laminar hood. Each sterile tissue sample

was plated onto potato dextrose agar (PDA) plates and water

agar plates. Plates were incubated at 25˚C in the dark until fun-

gal colonies were observed. Colonies were subcultured onto

PDA plates and incubated at 25˚C for 4 days. Hyphal tip sub-

cultures were obtained for each isolate from the colonymargin

and subcultured onto fresh PDA. Morphological character-

istics were observed on three isolates on 2-week-old PDA

cultures. Based on the culture morphology on PDA, all three

isolates were tentatively identified as M. phaseolina (Figure

S1). To confirm its identity, genomic DNAwas extracted from

mycelial mats of three isolates using DNeasy Plant Pro Kit

(Qiagen Inc.) according to the manufacturer’s instructions.

The internal transcribed spacer (ITS) region of the rRNA gene

was amplified with primers ITS1/ITS4, and three nucleotide

sequences were obtained. A BLASTN search revealed that

sample sequences shared a 100% match with sequences of

M. phaseolina in the NCBI GenBank Database (Sayers et al.,
2022).

2.3 Plant imaging

2.3.1 Image capture

Images of both visibly infected and noninfected sorghum

plants were taken 51 days after planting, equating to the GS-

1 vegetative (germination to panicle initiation) growth stage

(Roozeboom & Prasad, 2019). Images were collected from

both the WW and WL irrigation treatments. A total of 1400

high-resolution, JPEG-formatted images 5184 × 3456 and

2336 × 1752 pixels were taken of sorghum plants within

the field using a Canon Rebel T6 camera (Canon) and a

Sony Alpha a6000 (Sony), respectively. The camera operators

walked through the field, and images were taken at random to

include a variety of angles, lighting conditions, background
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F IGURE 1 Symptoms of young sorghum plants infected with charcoal rot of sorghum (CRS), a fungal disease caused by M. phaseolina. (A)
Grayish white appearance of young plants in a field in Maricopa, Arizona. (B) Close up of a young sorghum plant displaying symptoms of CRS,

including leaf curling and hooking, chlorosis, and necrosis. (C) Discoloration of stem vascular tissue. (D) rotting of roots.

features, and zoom settings. The angle of capture was var-

ied to encompass a broad spectrum of viewpoints, including

low-angle shots, where the camera was tilted upward, and

high-angle shots, with the camera angled downward. The

image capture settings of both cameras were set to auto

adjust (aperture, shutter speed, and ISO speed) to ensure

adequate and unbiased image capture given the number of

images that had to be taken. Images were captured between

10:00 and 14:00 on a single day (August 7, 2020), during

which solar radiation varied from 2.42 to 3.42 MJ/m2 (Table

S1). The images captured both non-plant background ele-

ments (control) and sorghum plants displaying three distinct

states: CRS infection, abiotic stress (drought), and absence of

biotic and abiotic symptoms (healthy) (Figure S2). Collected

images were uploaded to the CyVerse Data Store for further

processing (Devisetty et al., 2016).

The 1400 CRS-impacted sorghum images were imported

into the image labeling platform Labelbox (https://labelbox.

com/) and annotated by researchers trained in CRS identifica-

tion. Researchers were instructed to label the area exhibiting

symptoms of CRS by drawing high-fidelity polygons around

CRS-affected sorghum plant tissue. After annotation, images

were reviewed and validated by a second set of experts and

randomly split into three different sets: training (60%, 840

images), validation (20%, 280 images), and test (20%, 280

images). Images in the training set were used for model

development and training, whereas images in the valida-

tion set were used to optimize model hyperparameters, and

finally, images in the test set were used for reporting the

final performance and accuracy. The manually labeled images

represented diverse field conditions, irrigation treatments,

number of plants within an image, resolution, and image col-

lection conditions creating a diverse representation of the

pathology of CRS-impacted tissue with respect to real-world

conditions that would be encountered either in a sorghum pro-

duction or research setting. Several pre-processing steps were

carried out duringmodel training, which included transforma-

tions of color space and generation of image patches. Using

the polygons, binarymasks were generated for each image and

then the images alongside their corresponding masks were
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separately split into smaller square image patches of different

sizes (32 × 32, 64 × 64, 128 × 128, 256 × 256, and 512 × 512

pixels); this reduction in size was undertaken to test the effect

of patch size on the model performance and accuracy (Figure

S3). Among these patches, those that had at least one pixel

annotated as CRS were then considered positive samples for

the classification task. The same number of patches were ran-

domly selected among the images without CRS to keep the

three image datasets (training, validation, and test) balanced.

2.3.2 Image analysis

Two different classes of ML models were applied to the

dataset to assess and describe CRS-affected foliage: classifi-

cation, which determines the presence or absence of CRS for

a given patch, and segmentation, which highlights the regions

affected by CRS and quantifies the amount of CRS detected in

the images. Six classification models were trained and evalu-

ated with respect to their ability to classify patches containing

plants exhibiting CRS symptoms. The classification models

implemented were ResNet18 (He et al., 2016); MobileNetV3

small, small custom, and large versions (Koonce, 2021b); and

EfficientNet-B3 and EfficientNet-B4 (Koonce, 2021a). All

of these models were initially trained and evaluated under

the same conditions (same set of hyperparameters) on image

patches of size 256 × 256 pixels, and the best performing

model was selected for further optimization over the range of

patch sizes listed above. Finally, the top image patch classi-

fication model was used to approximately quantify the area

of the affected regions of each image in the test set. It is

important to note that this was performed on the basis of

image patches within the overall image and not on a per pixel

basis. For image segmentation, three models were trained

and evaluated including U-NET (Ronneberger et al., 2015),

fully convolutional network (FCN) (Long et al., 2015), and

DeepLabV3 (Chen et al., 2017). All models were trained and

evaluated on image patch sizes of 256 × 256 pixels. Like

the classification approach, the best performing model was

then selected for further optimization over the range of patch

sizes. Finally, the best performing models, with respect to

classification and segmentation, were used to detect or quan-

tify the regions, respectively, affected by CRS in the full-size

images.

2.4 Model training

2.4.1 Model evaluation

To evaluate performance during the training and development

of the classification models, binary cross entropy (BCE) was

used as a loss function for classification (Ho&Wookey, 2020;

Milletari et al., 2016; Salehi et al., 2017). The BCE calculates

the negative logarithm of the prediction error to penalize the

model for incorrect predictions, as defined by the following

equation:

BCE (𝑝, 𝑦) = −𝑦 × log (𝑝) − (1 − 𝑦) × log (1 − 𝑝) , (1)

where y is the ground truth, integer label associated with the

image, and p is the prediction of themodel. Themodels output

a prediction between zero and one, with penalties increasing

exponentially for larger prediction errors.

To evaluate the performance of the segmentation models,

the Dice coefficient was used (Ho &Wookey, 2020; Milletari

et al., 2016; Salehi et al., 2017). The Dice coefficient, a dif-

ferentiable form of the Intersection over Union metric, was

used as the loss function for semantic segmentation. It calcu-

lates the ratio of the intersecting area of the predicted mask

and the ground truth to their combined area, as defined by the

following equation:

Dice (𝑌 , 𝑃 ) =
2 × |𝑌 ∩ 𝑃 |

|𝑌 |+|𝑃 |
, (2)

where Y is the ground truth mask and P is the predicted mask.

The closer this value is to one, the more similar the prediction

mask is to the ground truth.

The accuracy, precision, recall, and F1 score were com-

puted for both classification and segmentation models to

compare model performance. Accuracy, which is the propor-

tion of correct predictions out of all predictions, is derived

from the counts of true positives (TP), false positives (FP),

true negatives (TN), and false negatives (FN), as defined by

the following equation:

Accuracy = TP + TN
TP + TN + FP + FN

. (3)

While accuracy is a common metric for model perfor-

mance, it can be skewed by unbalanced datasets. To avoid bias

toward the majority class, we also used metrics that are less

sensitive to dataset composition, including precision, recall,

and F1 score, as defined by the following equations:

Precision = TP
TP + FP

, (4)

Recall = TP
TP + FN

, (5)

F1 = 2 × Precision × Recall
Precision + Recall

, (6)

where Precision is the ratio of true positives to predicted pos-

itives, Recall is the ratio of true positives to actual positives,

and F1 is the harmonic mean of these two. These metrics
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collectively assess model performance, but the best perform-

ing models were chosen based on their F1 score.

Models were trained on two computing nodes: the first was

an AMD EPYC 7542 32-Core processor (Advanced Micro

Devices, Inc.), 1008 GB of RAM, and two NVIDIA A-100

40 GB graphical processing unit (GPU; NVIDIA Corpora-

tion); and the second node was an Intel Xeon Gold 6146

CPU@ 3.20 GHz 12-Core processor (Intel Corporation), 188

GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU

(NVIDIA Corporation). The learning rate was 1 × 10−3 and

3 × 10−4 for classification and segmentation tasks, respec-

tively. A batch size of 32 with Adam optimizer was used for

both classification and segmentation (Z. Zhang, 2018). Mod-

els were trained for 50 epochs, and early stopping was used to

avoid overfitting.

The objective of the classification models is to categorize

each image patch based on the presence or absence of CRS. If

the model predicts the presence of CRS in a single patch, the

image is labeled as CRS-affected. On the other hand, the seg-

mentation models aim to classify each pixel within an image

patch based on the presence or absence of CRS. The segmen-

tation model quantifies the number of CRS-affected pixels

per patch and reports the sum of CRS-affected pixels for each

image. The algorithm generates a results data file containing

the image name and prediction results. For classificationmod-

els, the prediction result is a binary “True” or “False” value for

the presence or absence of CRS, respectively. For segmenta-

tion models, the prediction results are the percentage of pixels

classified as CRS compared to the total number of pixels in the

image. For both classification and segmentation models, the

total processing time for each image, which is the cumulative

sum of the processing times for all individual patches within a

single image, is also provided. Inference time was reported as

the overall length of time from the model receiving an image

patch to producing a segmentation or classification prediction.

2.4.2 Evaluation of image patch size on
accuracy and processing time

After the initial model evaluation experiments (i.e., training

and evaluation of the classification and segmentation mod-

els on image patches sizes of 256 × 256 pixels), the best

performing model with respect to F1 score on the validation

dataset was selected from both classification and segmen-

tation classes of models evaluated. These two models, one

each from the classification and segmentation type, were then

trained and evaluated on the datasets with different image

patch sizes (32 × 32, 64 × 64, 128 × 128, 256 × 256, and

512 × 512 pixels) to assess the effect of image patch size on

the model performance. Time benchmarking was performed

on the aforementioned AMD EPYC server. In addition to

the model performance on the test set, inference times were

measured and reported. The code for training, inference, and

evaluation of model performance can be accessed at https://

github.com/phytooracle/charcoal-dryrot-quantification.

3 RESULTS

3.1 Model training

Nine models, including six classification and three segmen-

tation, were trained to detect and segment the presence of

CRS-affected sorghum plant tissue in images collected under

field conditions (Figure 1). The two top-performing mod-

els, EfficientNet-B3 and FCN, were able to distinguish and

quantify, respectively, plant tissue that was exhibiting signs

of CRS compared to plant tissue that was demonstrating the

effects of drought stress. The ability to distinguish between

CRS and drought stress is critical given that the pathology of

CRS closely resembles that of drought stress making accurate

discernments between the two challenging.

3.2 Model performance

3.2.1 Assessing model performance and
identification of top-performing models

Models were assessed on recall, accuracy, and F1 score, but

F1 score was the main criterion for selection. The best per-

forming model for the classification of image patches that

contained at least one pixel of CRS-labeled plant tissue was

EfficientNet-B3. This model had an accuracy of 86.97% and

an F1 score of 0.73 (Table 1, Figure 2). The classification

model with the lowest performance was ResNet18 with an

accuracy of 82.62% and corresponding F1 score of 0.65. With

respect to the other two classes of models tested, their average

performance across models was as follows: MobileNet: accu-

racy of 84.99% and F1 score of 0.69; EfficientNet: accuracy

of 86.44% and F1 Score of 0.72. EfficientNet-B3 had higher

accuracy and F1 score so it was selected as the superior model

(Table 1).

Given the results of the classification models and that

CRS-affected tissue could be identified by ML algorithms,

we next evaluated if the disease-affected regions could be

segmented from the images. The expansion of our analy-

ses to segmentation was driven by the question of whether

desiccated tissue due to drought stress, which is similar in

appearance to CRS-affected tissue, could reliably be distin-

guished. With respect to model accuracy, both DeepLabV3

and FCN performed comparably with validation F1 scores

of 0.65 and 0.66, respectively (Table 1). Of the two mod-

els, FCN had higher validation recall and F1 score, so it

was selected as the superior model (Table 1). U-NET gave
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TABLE 1 Results of model training and testing on image patch sizes of 256 × 256 pixels for both tasks of classification and segmentation for

different models in the respective categories. Values that are highlighted in bold represent the top performing models for each task, as determined by

the validation F1-score.

Task/loss function Model name
Validation accuracy
(%)

Validation
precision Validation recall Validation F1

Classification/BCE ResNet18 82.62 0.75 0.61 0.65

MobileNetV3 small 85.47 0.78 0.68 0.70

MobileNetV3 small custom 84.65 0.78 0.66 0.69

MobileNetV3 large 84.84 0.77 0.64 0.68

EfficientNet-B3 86.97 0.80 0.71 0.73
EfficientNet-B4 85.91 0.78 0.68 0.71

Segmentation/dice U-NET 97.49 0.69 0.62 0.62

FCN 97.76 0.69 0.68 0.66
DeepLabV3 97.93 0.72 0.65 0.65

Abbreviations: BCE, binary cross entropy; FCN, fully convolutional network.

TABLE 2 Impact of image patch size on model performance, as assessed using the validation set, for EfficientNet-B3, a classification model,

and fully convolutional network (FCN), a segmentation model. Values that are highlighted in bold represent the top performing patch size for each

task, as determined by the validation F1-score.

Model name Task Patch size
Validation accuracy
(%)

Validation
precision Validation recall

Validation
F1

EfficientNet-B3 Classification 32 86.55 0.04 0.01 0.02

64 92.51 0.29 0.23 0.25

128 89.77 0.50 0.42 0.44

256 84.97 0.79 0.63 0.68

512 83.76 0.89 0.83 0.84
FCN Segmentation 32 95.13 0.16 0.13 0.14

64 95.57 0.22 0.15 0.17

128 97.12 0.43 0.38 0.39

256 97.80 0.71 0.65 0.65

512 98.48 0.83 0.77 0.79

the lowest performance metrics with a validation F1 score

of 0.62.

3.2.2 Assessing the impact of image patch
size on model performance

Next, we investigated the influence of image patch size on

model performance to better understand how downstream

applications, such as deployment on drone- or mobile-based

phenotyping platforms, could be impacted by changes in

image patch size. For both EfficientNet-B3 and FCN mod-

els run on the validation image set, there was a near linear

increase in validation F1, recall, and precision scores as the

image patch size increased from 32 × 32 pixels to the final

size tested of 512 × 512 pixels (Table 2). One exception to

this observed trend were the results for validation accuracy.

For the FCN model, the validation accuracy results increased

from 95.13% to 98.48% for image patch sizes of 32–512

pixels, respectively. However, the EfficientNet-B3 exhibited

contrasting results. The highest validation accuracy occurred

for image patch size of 64 × 64 pixels and was 92.51%. For

the following patch sizes of 128, 256, and 512 pixels, the val-

idation accuracy decreased to 89.77%, 84.97%, and 83.76%,

respectively.

3.2.3 Assessing the impact of image patch
size on image processing time

In light of the impact that image patch size had on the per-

formance metrics of the respective models, we next wanted

to investigate how the patch sizes impacted image process-

ing time as this is another significant factor with respect to
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F IGURE 2 Comparison and deployment of classification and segmentation models. (A) Comparison of the identification of charcoal rot of

sorghum (CRS) by the classification model EfficientNet-B3 and the segmentation model fully convolution network (FCN). Ground truth,

hand-labeled images are in the center column, while the EfficientNet-B3 and FCN model outputs are on the left- and right-hand sides, respectively.

For EfficientNet-B3, image patches of size 512 × 512 are highlighted since the model only classifies whether or not the image contains CRS-affected

pixels. The FCN model, which performs segmentation, highlights the specific pixels that are affected with CRS closely resembling the results of the

hand-labeled, ground truth data. Both models were trained on image patch sizes of 512 × 512 pixels. (B) A Streamlit application for easy deployment

of all classification and segmentation models presented here. The application allows users to (i) select a model; (ii) upload an image or select one

from the image gallery of test set images; and (iii) obtain model results including processing time, detection status, and percentage of pixels with

CRS. The application can be accessed at https://charcoal-dryrot-quantification.streamlit.app/.

algorithm deployment. Both models exhibited an exponen-

tial decrease in mean processing time with increasing image

patch size. For the 32, 64, 128, 256, and 512 patch sizes,

the mean processing times were 263.34, 65.60, 24.85, 9.63,

and 4.15 s and 518.09, 204.70, 70.52, 29.13, and 18.98 s for

EfficientNet-B3 and FCN, respectively (Figure 3). Compar-

ing the mean processing time within a model, we found that

all processing times were significantly different (p < 0.05)

for each image patch size level. Additionally, there was min-

imal variation observed for mean processing time for both

models and image patch sizes; only FCN at 32 and 64 pixels

exhibited any appreciable variation. With respect to the indi-

vidual models themselves, it was not surprising to find that

EfficientNet-B3, the classification model, was nearly twice as

fast as the FCN, segmentation model, given the difference in

tasks they perform.

3.2.4 Evaluation of model performance on test
set

With model training and validation completed, we next pro-

ceeded to evaluate how the respective models performed on

the test data set—the holdout image set. For the classifica-

tionmodel EfficientNet-B3, the highest F1 score obtainedwas

0.70 for the 256-pixel image patch size. This is in contrast to
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F IGURE 3 Relationship between image patch size and processing time in seconds for the EfficientNet-B3 classification model and the fully

convolutional network (FCN) segmentation model. Different letters indicate significant differences among patch size processing times based on

one-way analysis of variance followed by Tukey’s post hoc test (p < 0.05). Error bars represent standard deviation.

the F1 score of 0.83 for the 512-pixel image patch size that

was observed with the validation image set. With respect to

accuracy, EfficientNet-B3 exhibited a near linear decrease in

accuracy on the test image set with increasing patch size; how-

ever, the overall accuracy values were higher on the test image

set compared to the validation image set (92.47% vs. 87.51%,

respectively). For the segmentation model FCN, the highest

F1 score on the validation image set was 0.77 obtained on the

512-pixel image patch size; this also corresponded to an accu-

racy of 98.48%. On the test image set, the FCN model also

obtained the largest F1 score on the 512-pixel image patch

size—an F1 of 0.80 with a corresponding accuracy of 99.43%.

With respect to all FCN performance metrics, the same trend

was observed for both the validation and test image sets,

namely that the metrics all improved with increasing image

patch size. With respect to the image processing time, the

same trends were observed for the test image set as for the val-

idation set—an approximately exponential decrease in mean

processing time per image as the image patch size increased.

Additionally, and not surprisingly, the FCN model’s mean

processing time was still much slower than the EfficientNet-

B3 model. With respect to the individual models, the mean

processing time for the image patches varied between the two

models (Figure 3). The EfficientNet-B3 model had fairly con-

sistent processing time per image patch with an average of

0.03 tenths of second across image patch sizes, whereas for

the FCN model, the mean processing times for image patch

sizes of 32, 64, 128, 256, and 512 were 0.02, 0.06, 0.08, 0.12,

and 0.35 tenths of second, respectively (Table 3).

3.3 Model deployment

The algorithm generates a data file of results, which includes

the processing time (inference), the model’s prediction (True

or False for classification), and the percentage of pixels

predicted as CRS. Alongside the results data file, visual

representations of the predictions are also produced. The

predictions of CRS from the classification model are depicted

in each patch of the full image (Figure 2A, left). In contrast,

the segmentation model’s predictions are illustrated at the

pixel level, emphasizing the specific regions of the leaves

affected by CRS (Figure 2A, right). Users can select to run all

classification and segmentation model classes tested here. In

this case, the algorithm outputs a summary data file including

the model’s name, patch size, and processing time for each,

similar to the results data file. The images for training, testing,

and validation, both in their original and annotated forms, are

available at https://data.cyverse.org/dav-anon/iplant/projects/

phytooracle/season_11_sorghum_yr_2020/level_0/charcol_

rot_sorghum/dry_rot_raw.tar.gz. The code to trainmodels and

run inference are available on GitHub at https://github.com/

phytooracle/charcoal-dryrot-quantification. To enhance the

usability of these tools, the models have been incorporated

into a Streamlit application that is publicly accessible at

https://charcoal-dryrot-quantification.streamlit.app/. The

application can also be executed locally by utilizing the

associated Docker container: https://hub.docker.com/r/phyto

oracle/charcoal-dryrot-quantification. All models pre-

sented in the current study were integrated as a module in
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TABLE 3 Performance metrics for EfficientNet-B3, a classification model, and fully convolutional network (FCN), a segmentation model,

with respect to the different size image patches (in pixels) and the time it took to process the whole image (seconds) as well as per image patch

(tenths of second). Values that are highlighted in bold represent the top performing patch size for each task, as determined by the test F1-score.

Model name Task Patch size Accuracy (%) Precision Recall F1

Mean
processing time
(image)

Mean
processing time
(patch)

EfficientNet-B3 Classification 32 97.51 0.66 0.11 0.19 253.2 0.02

64 96.38 0.52 0.77 0.62 58.42 0.02

128 94.47 0.54 0.79 0.64 19.38 0.02

256 92.74 0.64 0.77 0.70 6.42 0.03
512 81.24 0.53 0.88 0.66 2.27 0.05

FCN Segmentation 32 97.90 0.37 0.69 0.48 311.93 0.02

64 98.81 0.58 0.56 0.57 192.15 0.06

128 98.99 0.61 0.79 0.69 65.96 0.08

256 99.19 0.67 0.83 0.74 25.95 0.12

512 99.43 0.77 0.84 0.80 17.17 0.35

the PhytoOracle phenotyping workflow manager: https://

github.com/phytooracle/automation/blob/main/yaml_files/

other/crs_detection.yaml. The code and data are released

under the open-source MIT license.

4 DISCUSSION

4.1 The need of phenotyping tools for
detecting biotic stress

Charcoal rot of sorghum, a disease caused by the soilborne

fungal pathogen M. phaseolina, poses a significant threat

to sorghum, a critical grain crop. The pathogen, M. phase-
olina, thrives in hot, dry conditions, which often coincide

with the peak growing periods for sorghum in the southwest

United States. As a result, areas with substantial sorghum

production often experience high incidences of CRS, lead-

ing to considerable crop losses and economic impact (Kaur

et al., 2012; Marquez et al., 2021). Effective management

of CRS is therefore crucial to ensure the sustainability of

sorghum production in these regions. Early detection of CRS

is required for crop management systems for sorghum produc-

tion and breeding improvement programs. As such, a major

challenge is shifting CRS detection and quantification from

manual visual assessment to automated, image-based pheno-

typing approaches. Handheld and drone-based RGB cameras

provide low cost solutions, providing that they are accurate,

precise, and efficient computer vision and AI/ML algorithms

to process those data. This method not only allows for the

detection and quantitative evaluation of disease severity but

also supports the high-throughput screening of disease resis-

tance variations in cultivars. Moreover, it acts as a crucial data

gathering tool, potentially offering comprehensive insights

into the prevalence, distribution, and effects of CRS across

different environments.

To address the need for disease detection methods, two

classes of algorithms were evaluated for the classification

and segmentation of CRS. These algorithms were applied to

RGB images of BTx623 sorghum, which were mutagenized

with EMS, resulting in a phenotypically diverse popula-

tion. The image dataset captured this phenotypic diversity,

thereby broadening the applicability of our models to other

genotypes. The algorithms comprised six and three base mod-

els of CNNs, respectively. Our objective was to create and

assess models that meet the varied demands of sorghum

researchers, breeders, and producers. The classification algo-

rithm was the most efficient, requiring fewer computational

resources for deployment. This enables a rapid assessment

of CRS-affected tissues and is adaptable for use in the field

on portable devices such as smartphones or drones. Users

can efficiently identify CRS affected plants for near real-

time decision-making. On the other hand, the segmentation

algorithm is more computationally intensive and currently

requires dedicated computing resources. Users need to send

images to off-field hardware to quantify the relative amount

of above-ground affected plant tissues. To address this lim-

itation, we developed a web application that can efficiently

deploy both classification and segmentation models on mul-

tiple devices, including cell phones. Tools like these will

enable breeders to select genotypes with improved resistance

more effectively, potentially leading to increased future yield

gains. Furthermore, these tools are directly applicable to crop

management, as they can assess the severity of the disease

and aid in planning treatment strategies such as control point

spraying.
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4.2 Model types for plant disease detection
and quantification

For CRS detection in images, binary classification can be

applied on image patches. Alternatively, semantic segmen-

tation can be used to quantify the ratio of pixels identified

as CRS versus non-CRS. In this study, models representing

each approach were trained and tested to evaluate perfor-

mance metrics and assess suitability for the task of detecting

and quantifying CRS. For classification, ResNet18 (He

et al., 2016), MobileNetV3 small, custom small and large

(Koonce, 2021b), and EfficientNet-B3 and EfficientNet-B4

(Koonce, 2021a) were implemented; for segmentation, U-

NET (Ronneberger et al., 2015), FCN (Long et al., 2015), and

DeepLabV3 (Chen et al., 2017) were used. Each approach

has advantages and disadvantages: classification models are

generally faster, while segmentation models are often more

accurate and have higher performance based on F1 score in

particular.

4.2.1 Classification models

In ResNet18, stacks of convolutional layers alongside Max

Pooling (Wu & Gu, 2015), Batch Normalization (Ioffe &

Szegedy, 2015), and other auxiliary layers are combined in a

feed forward network. The number 18 refers to the number

of learnable layers. In addition, residual or skip connec-

tions are added between these blocks to (i) facilitate dealing
with the vanishing gradient problem and (ii) to help the

model learn more efficiently by having the capability of skip-

ping some of the layers if necessary. Developed by Google,

MobileNetV3 models are designed for use on mobile devices

and other embedded systems such as UAVs (A. G. Howard

et al., 2017). These models are built out of depth-wise sepa-

rable convolutions, a form of factorized convolutional layers

that enables filters to be shared across channels, reducing

the number of filters needed to improve computational effi-

ciency. MobileNetV3 is the latest iteration of the MobileNet

(A. Howard et al., 2019). Small and Large MobileNets have

a trade-off between latency and accuracy with the final layer

of the MobileNetV3 Small and Large consisting of 576 and

1280 output neurons, respectively. To investigate the impact

of reducing neuron count on performance, we customized

MobileNetV3 Small by modifying the number of neurons in

the last block of the model. This model has extra dense lay-

ers to reduce the number of output neurons more gradually

from 576–288 to 64–1 neuron. Tan and Le (2019) proposed a

compound scaling method for scaling the depth, width, and

resolution of neural network layers in a way to efficiently

achieve better performance. They observed that while scaling

up networks’ width, depth, and resolution generally improves

accuracy because of higher network capacity, the dimension-

ality of the network needs to be adjusted properly in order to

maximize these improvements on metrics while minimizing

overfitting to the training data. In their study, they propose

a relationship between the scaling ratios for each dimension

of the network which can be used to uniformly scale up

the network to increase its efficiency and accuracy. Using

their proposed relationship between the dimensions, they

provide eight different architectures, namely EfficientNet-

B0–EfficientNet-B7. In this study, we tested EfficientNet-B3

and EfficientNet-B4 based on the results presented in their

study.

4.2.2 Segmentation models

FCNs (Long et al., 2015) provide an end-to-end model for

semantic segmentation of images with arbitrary sizes. Prior

to FCNs, semantic segmentation used to be done by sliding

a classification model over the entire image to get predic-

tions for each pixel. U-NET is a fully convolutional neural

network that has an encoder–decoder structure. It was devel-

oped by Ronneberger et al. (2015) to address the problem of

semantic segmentation in biomedical images and uses skip

connections. The encoder transforms the input image into

a latent space with lower dimension and the decoder trans-

forms the latent space into the output image, usually with

the same dimension as the input. Our implementation varies

slightly in architecture from the original paper where we

used established best practices of adding padding to preserve

input dimensions between downsampling and upsampling and

added batch normalization between convolution layers and

the Relu activation functions. DeepLabV3 (Chen et al., 2017)

utilizes a novel method for enlarging the field of view of

the convolution kernels to incorporate multi-scale context of

images. This improves semantic segmentation results by using

the atrous convolution (Holschneider et al., 1990).

4.3 Optimizing model performance and
addressing limitations

4.3.1 Effects of image patch size on
performance and processing time

Processing time and model performance are closely linked to

the size of image patches. When dealing with larger patches,

the results are typically faster. This is likely due to larger

patches containing more information, allowing the model to

make decisions based on a broader context. This can be par-

ticularly beneficial for classification tasks, where the goal

is to categorize the entire image or large regions of it. For

instance, in crop disease detection, larger patches could help

quickly identify whether a particular disease is present or

 25782703, 2024, 1, D
ow

nloaded from
 https://acsess.onlinelibrary.w

iley.com
/doi/10.1002/ppj2.20110 by U

niversity O
f A

rizona Library, W
iley O

nline Library on [02/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



GONZALEZ ET AL. 13 of 18

absent in a field. On the other hand, smaller patches, while

resulting in slower performance, can provide a more detailed

assessment of the image. This can be especially useful when

the goal is to assess the severity of a condition, such as the

extent of disease in a crop field. Smaller patches allow for

a more granular analysis, which can help quantify the extent

of the disease and guide targeted interventions. Importantly,

the choice of patch size in image analysis can significantly

impact model performance, including the F1 score, a mea-

sure of a model’s accuracy. In the case of EfficientNet-B3, a

patch size of 512 was found to yield the highest validation F1

score (Table 3). This suggests that this patch size is optimal

for balancing the trade-off between precision and recall in the

model’s predictions. Interestingly, this patch size also has the

fastest processing time per image (Figure 3). This means that

not only does it provide accurate results, but it does so effi-

ciently, making it a good choice for applications where both

accuracy and speed are important. Similarly, for the FCN, a

patch size of 512 results in the highest validation and test

F1 score (Table 2, Table 3). This larger patch size allows

the model to capture more contextual information, which can

improve the accuracy of its predictions. Moreover, this patch

size also has the fastest processing time per image, making

it an efficient choice for image analysis tasks (Figure 3). Our

results indicate that the selection of patch size influencesmod-

els, impacting accuracy and processing time. This necessitates

an optimization strategy for patch size selection, guided by

task-specific requirements and performance metrics.

In the current study, EfficientNet-B3 and FCN performed

best for the classification and segmentation of CRS, respec-

tively (Table 1). As expected, processing time for a single

image decreased as image patch size increased due to fewer

patches being needed per image, thereby reducing the com-

putational load. While one may expect that increased patch

size will result in decreased sensitivity, our results showed that

the largest patch size tested for classification had the highest

validation precision, recall, and F1 scores (Table 2). This is

likely due to having more likelihood of dry rot being present

in a larger patch. Therefore, the false positive rate would be

lower compared to a smaller patch size, as we classify a pre-

diction as a TP even if there’s only a single pixel of dry rot

present in the patch. It should be noted that the validation

accuracy was the lowest for the largest patch size for classifi-

cation. Classification models work by assigning a single label

to the entire image. These models are designed to focus on

the most important features in the image that are relevant to

the classification task. An increase in image patch size could

introduce additional details and noise, such as background

soil and neighboring plants, that may interfere with the main

features, potentially leading to a decrease in validation accu-

racy. The increase in validation accuracy as the image patch

size grows could be attributed to the additional context and

detail that larger patches offer for the model to assess, thereby

enhancing its performance.

4.3.2 Limitations of models

The results presented here increase the utility of these models

for the classification and segmentation of CRS from image

data, with the EfficientNet-B3 model taking ∼6.4 s to pro-

cess an image with a patch-size of 256 × 256 pixels and the

FCN model taking ∼17.2 s. These benchmarks utilized high-

end GPUs, which are not currently deployable in the field.

However, as GPU-based architectures continue to advance,

the ability to run these models in the field using aerial-based

or portable computing devices should be available in the

near-term future, providing researchers, breeders, and grow-

ers the opportunity to detect and quantify CRS in real time

using automated crop phenotyping systems (Owens et al.,

2008). Although existing models can be implemented on

ground-based phenotyping systems equipped with powerful

computers, the deployment of thesemodels onUAVs is not yet

feasible at scale. This limitation is primarily due to the inten-

sive computational demands of the models, which surpass the

hardware currently mountable on UAVs. Specifically, these

models often need powerful GPUs to operate efficiently. The

GPUs can perform parallel operations, making them ideal for

the complex calculations and large data volumes involved in

ML. However, the physical characteristics of GPUs, such as

their size, weight, and power consumption, make them cur-

rently unsuitable for mounting on UAVs, which have strict

limitations on payload capacity and power supply. Given the

expected progress in hardware technology, it is reasonable

to anticipate that these models could be deployed on UAVs

in the near future. It is therefore essential for research, like

that presented here, to concentrate on the development, train-

ing, and refinement of models to prepare them for widespread

deployment on UAVs in the future.

Another significant limitation of these models is the poten-

tial for ambiguity with other diseases or abiotic stresses.

Models may sometimes struggle to distinguish between the

disease of interest and other diseases or stress conditions

with similar symptoms. This could lead to false positives or

negatives, impacting the accuracy of the model. The results

presented here highlight the feasibility to discriminate het-

erogenous symptoms, namely drought and CRS, on a single

leaf. Nonetheless, additional studies are required to determine

whether this is applicable to other pairs of heterogeneous

symptoms.

The quantification of disease tissue predicted in a given

image presents some challenges. The segmentation algorithm

calculates the percentage of CRS relative to the entire image,

not just the plant tissue. This approach was chosen because

masking out the soil using vegetation indices could intro-

duce errors, and, as a result, the reported result would be

an amalgamation of various errors stemming from both the

index calculation and the model prediction, complicating the

interpretation and differentiation of these errors. The impor-

tance of having an unbiased and multi-dimensional system
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for quantifying plant disease instead of relying on human

scoring is also worth noting. The process of human scoring

can accumulate a variety of errors, particularly when mul-

tiple individuals are involved, as it can lead to subjectivity

and inconsistency. An automated, unbiased system can pro-

vide more consistent and reliable results. Such a system could

process large amounts of data quickly, making it a valuable

tool for large-scale disease monitoring and management.

The field design employed in our research, while stan-

dard for such research studies, may not perfectly mirror the

conditions of sorghum cultivation. Nevertheless, the models

developed in this study can be adapted to offer benefits to

breeders and growers under their specific circumstances. It

is worth noting that our planting density, which was reduced

to five plants per plot post-establishment, is less than typi-

cally seen in production settings. This reduction allowed for

the incorporation of a greater number of control images, such

as soil, plot stakes, and other background elements, into our

study. The inclusion of these control images improves the

robustness of our models through increased image diversity,

potentially equipping them to effectively differentiate CRS

from other non-living objects and various stressors, includ-

ing drought stress. Despite the discrepancy with production

settings, our methodology provides tools that can be adapted

to a variety of agricultural contexts. To facilitate this, labeled

images are shared to enable researchers to modify or extend

existing or future models, and a web application was devel-

oped for breeders and growers to assess the applicability of

our models to their specific circumstances.

4.3.3 The importance of user-friendly
phenotyping tools

Increasing the accessibility and integration of trained mod-

els is essential. Platforms such as CyVerse, Streamlit, and

PhytoOracle facilitate model use, encouraging adoption by

non-experts and driving innovation. Open access to code

and models, along with integration into web applications

and workflow managers like PhytoOracle, enables efficient

model deployment to large datasets (Gonzalez et al., 2023).

This approach broadens user engagement and advances

technological democratization.

5 CONCLUSION

As the quantitative and qualitative results suggest, quantify-

ing CRS in images using NNs is a difficult task because of the

similarity between the symptoms of water deficit stress (i.e.,

drought) and CRS. However, in this study, we proposed two

approaches for this task using classification and segmentation

models and showed that quantifying CRS in plants exhibiting

concurrent drought stress symptoms, despite being a difficult

task, can be accomplished with a high level of accuracy. We

showed that the segmentation models outperform the clas-

sification models in quantifying CRS. An extensive set of

experiments were conducted to assess the effect of patch size

on the processing time and performance of the models. We

found that a patch size of 256 is suitable for classification, and

a patch size of 512 yields the best results for the segmentation

models. The models were integrated into existing phenomics

pipelines and a web application for user-friendly deployment

of trained models on various platforms.
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