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Abstract

Charcoal rot of sorghum (CRS) is a significant disease affecting sorghum crops,
with limited genetic resistance available. The causative agent, Macrophomina phase-
olina (Tassi) Goid, is a highly destructive fungal pathogen that targets over 500
plant species globally, including essential staple crops. Utilizing field image data
for precise detection and quantification of CRS could greatly assist in the prompt
identification and management of affected fields and thereby reduce yield losses.
The objective of this work was to implement various machine learning algorithms
to evaluate their ability to accurately detect and quantify CRS in red-green-blue
images of sorghum plants exhibiting symptoms of infection. EfficientNet-B3 and a
fully convolutional network emerged as the top-performing models for image clas-
sification and segmentation tasks, respectively. Among the classification models
evaluated, EfficientNet-B3 demonstrated superior performance, achieving an accu-
racy of 86.97%, a recall rate of 0.71, and an F1 score of 0.73. Of the segmentation
models tested, FCN proved to be the most effective, exhibiting a validation accu-
racy of 97.76%, a recall rate of 0.68, and an F1 score of 0.66. As the size of

Abbreviations: Al artificial intelligence; AZMET, Arizona Meteorologial Network; BCE, binary cross entropy; CNN, convolutional neural network; CRF,
conditional random field; CRS, charcoal rot of sorghum; EMS, ethyl methanesulfonate; FCN, fully convolutional network; FN, false negative; FP, false
positive; GPU, graphics processing unit; IOU, intersection over union; ITS, internal transcribed spacer; MAC, Maricopa Agricultural Center; ML, machine

learning; NLB, northern leaf blight of corn; NN, neural network; PDA, potato dextrose agar; R-CNN, region-based convolutional neural network; RGB,
red-green-blue; SVWC, soil volumetric water content; TN, true negative; TP, true positive; UAV, unoccupied aerial vehicle; WL, water-limited; WW,

well-watered.
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1 | INTRODUCTION

The impacts of plant biotic stresses pose a significant risk
to sustainable agricultural production and threaten the avail-
ability of nutritious calories to a growing world population.
Globally, plant diseases are directly responsible for yield
losses ranging from 10% to 40% across major staple crops
that provide ~50% of the calorie intake among humans
(Savary et al., 2019). Further compounding cropping system
challenges created by biotic stressors is the presence and inter-
action with abiotic stresses such as heat and drought (Desaint
et al.,, 2021; Pandey et al., 2015; Ramegowda & Senthil-
Kumar, 2015; H. Zhang & Sonnewald, 2017). Collectively,
these factors further exacerbate the challenges facing crop
production and highlight the need for resistant crop cultivars
capable of mitigating these factors (Kissoudis et al., 2014).
This urgent need for improved cultivars is further highlighted
by the aridification of agricultural lands which will increase
and intensify the effects of abiotic and biotic stresses (Over-
peck & Udall, 2020); these environmental changes will likely
disrupt and alter the geographic distribution and abundance of
crop pathogens (Chakraborty et al., 2000; Delgado-Baquerizo
et al., 2020; Newbery et al., 2016).

Traditional plant breeding methods have relied on the visual
assessment and scoring of germplasm subjected to infection,
either naturally or artificially inoculated, to identify genotypes
with varying levels of disease resistance (Bernardo, 2014; St
Clair, 2010). However, visual assessment by trained experts
is subject to human biases and errors that reduce the preci-
sion, accuracy, and repeatability of disease rating resulting
in decreased selection accuracy, heritability, and genetic gain
(Bock et al., 2009; Poland & Nelson, 2011), which, in turn,
lengthens the development of cultivars that can cope with
biotic and abiotic stresses. To overcome these limitations,
machine learning (ML) and artificial intelligence (AI) algo-
rithms, in conjunction with high-throughput phenotyping, can
be leveraged to conduct automated and rapid assessment of
images of diseased plants/tissue to provide more accurate and
reliable scoring of relevant plant germplasm (DeChant et al.,
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the image patches increased, both models’ validation scores increased linearly, and
their inference time decreased exponentially. This trend could be attributed to larger
patches containing more information, improving model performance, and fewer
patches reducing the computational load, thus decreasing inference time. The mod-
els, in addition to being immediately useful for breeders and growers of sorghum,
advance the domain of automated plant phenotyping and may serve as a foundation
for drone-based or other automated field phenotyping efforts. Additionally, the mod-
els presented herein can be accessed through a web-based application where users

can easily analyze their own images.

2017; Lu et al., 2021; Pauli et al., 2016; Singh et al., 2016).
These data can aid in breeding by enabling direct selection
or by identifying genes or alleles conferring pathogen resis-
tance. They also allow growers to detect disease and plant
stress early, facilitating prompt mitigation.

Macrophomina phaseolina (Tassi) Goid is a pluriparous
plant pathogen impacting over 500 plant species in more than
100 plant families, including cereals, legumes, vegetables,
and fruits throughout the world (Kunwar et al., 1986; Marquez
etal.,2021). M. phaseolina is a necrotrophic soilborne fungus
native to the Sonoran Desert soil (Mihail et al., 1989, 1992)
but is also widely distributed in the United States. It survives
and spreads primarily as black microsclerotia in diseased root
and stem debris as well as in soil after decay of infected
plant material (Bhattacharya & Samaddar, 1976). Microscle-
rotia infection of root tissue occurs at temperatures ranging
from 20 to 40°C, affecting plants at different developmental
stages, including seedling, young, and mature phases (Collins
et al., 1991; Hsi, 1956). Disease development is influenced
largely by drought stress and low soil moisture (Odvody &
Dunkle, 1979). Under favorable environmental conditions, M.
phaseolina invades the vascular system, disrupting the normal
function of water and nutrient transport to the leaves, causing
visible symptoms such as wilting and premature leaf death.
Symptom onset varies with host species, cultivar, growth
stage, and environment. Seedlings can be infected early, but
symptoms typically appear during drought stress or physio-
logical stress at later stages such as pollination or grain filling.
Initial symptoms include wilted grayish-white leaves, reduced
vigor, and scattered premature plant death. However, these
symptoms are not unique to M. phaseolina and can be mis-
taken for drought stress, frost damage, early senescence, root
rot, and Fusarium rot.

Sorghum [Sorghum bicolor (L.) Moench] is a key cereal
crop that also serves as a host species for M. phaseolina.
Globally, sorghum is the fifth most widely grown cereal crop,
trailing maize, rice, wheat, and barley, and is a staple food
crop for millions living in semi-arid regions (Hossain et al.,
2022). Sorghum is gaining popularity given its innate ability
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to produce grain on marginal land and areas that lack suf-
ficient irrigation water needed for row crops such as maize,
and because of its diverse utility as a food, feed, and biofuel
crop (Ndlovu et al., 2021; Rai et al., 2016; Rooney et al.,
2007; Tang et al., 2018; Yang et al., 2022). The range of
sorghum’s end uses combined with its innate genotypic and
phenotypic diversity is helping to position this crop as a sus-
tainable solution to agricultural production in the face of
climate change (Boatwright et al., 2022; Chadalavada et al.,
2021). However, for sorghum production acreage to increase,
resistance to charcoal rot of sorghum (CRS, M. phaseolina
infection in sorghum) is needed as CRS causes a variety
of symptoms including root rot, soft stalk, early lodging of
plants, premature drying of stalk, reduced head size, and
poor filling of grain (Hsi, 1956). Charcoal rot symptoms and
agronomic impacts significantly lower crop performance and
profitability. Sorghum typically grows in arid regions, which
are susceptible to water stress, leading to both biotic and abi-
otic stresses that reduce yield. These stresses cause similar
visible symptoms, making it difficult to distinguish between
them.

An automated tool that can distinguish between CRS and
drought stress in sorghum leaves would be beneficial for
researchers and crop managers in dry regions. This tool
could be image based and deployable on unoccupied aerial
vehicles (UAVs) or smartphones. Utilizing hardware and soft-
ware advancements to create lightweight algorithms for edge
devices would allow for in-field data processing. With the
advent of powerful computation devices, specifically graph-
ical processing units (GPUs), and recent advancements in
ML and Al algorithms, many domain scientists have started
to use neural networks (NNs) to detect, locate, and quantify
many features, including disease, in various image modali-
ties (Amsaveni & Albert Singh, 2013; Mechria et al., 2019;
Siar & Teshnehlab, 2019). The class of NNs that are widely
applied to this application is known as convolutional neural
networks (CNNs) (LeCun, 2015). By learning useful features
from image data automatically, these CNNs can perform clas-
sification or detection tasks more effectively than the older
approach of manual feature extraction (Rybski et al., 2010).
The CNNs have also been used for the detection, classifi-
cation, and segmentation of similar foliar diseases in other
crop species. In DeChant et al. (2017), the authors proposed
a computational pipeline of CNNs for classifying images
of field-grown maize images to determine the presence or
absence of maize northern leaf blight (NLB). Expanding on
this work, Stewart et al. (2019) trained a mask region-based
convolutional neural network (mask R-CNN) for segmenting
maize images acquired by UAVs into healthy and NLB-
affected tissues. In Wu et al. (2019), the authors proposed
a sliding window approach for generating heat maps high-
lighting regions in the aerial images of maize fields affected
by the NLB. Wu et al. (2019) and Wiesner-Hanks et al.
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Core Ideas

* Automated phenotyping tools are required for the
efficient detection and quantification of charcoal
rot of sorghum.

¢ Classification and segmentation models can dis-
tinguish between concurrent plant stresses with
similar symptoms.

* Larger image patch sizes generally improve model
performance and reduce processing time.

(2019) proposed a combination of CNNs and conditional ran-
dom fields (CRFs) to segment maize images into normal
and NLB-affected regions. For early plant disease detection,
hyperspectral imaging is being increasingly utilized as an
alternative to RGB images, given its ability to offer unique
spectral signatures and valuable insights into plant health
(Mertens et al., 2021; Yu et al., 2018; G. Zhang et al., 2022).
However, its complexity and high computational demands
present challenges, hindering its full implementation in agri-
culture (Cheshkova, 2022; Okyere et al., 2023). Meanwhile,
standard RGB cameras simplify the process and broaden the
application of disease detection methods from research to
commercial agriculture.

In the present study, we propose two CNN-based
approaches for quantifying CRS in RGB images captured
of field-grown sorghum under drought stress conditions
and compare the performance of the two methods. The first
approach, which involves a set of classification models,
determines the presence of CRS in images by classifying
small-sized patches. The second approach carries out pixel-
wise classification or semantic segmentation on the images.
We evaluate the performance of these two approaches to
determine which is more capable of detecting and quantify-
ing CRS as well as provide computational benchmarks for
deployment by end users. We also provide a high-quality
labeled dataset for classification and segmentation tasks
as well as our code for the benefit of other researchers to
improve upon our work. To reduce the barrier to entry, a web
application is provided that allows end users to deploy all
models in the present study.

2 | MATERIALS AND METHODS

2.1 | Data and field experiments

A population of ethyl methanesulfonate (EMS)-mutagenized
BTx623 sorghum, the genotype used for the generation of
the sorghum reference genome, consisting of 430 individuals
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(Addo-Quaye et al., 2018; Paterson et al., 2009) was eval-
uated at the Maricopa Agricultural Center (MAC) of the
University of Arizona located in Maricopa, AZ (33°04'37" N,
111°58'26” W, elevation 358 m) in 2020. EMS, an organosul-
fur compound, was used as a chemical mutagen to induce
random point mutations primarily through guanine alkylation
(Addo-Quaye et al., 2018; Yan et al., 2021). The population
was grown under contrasting irrigation conditions represent-
ing well-watered (WW) and water-limited (WL) conditions.
The trial was planted on June 17 (day 169, Julian calen-
dar) in a partially replicated, incomplete block design with
240 of the lines replicated within each of the two irrigation
treatments, while 190 lines were only observed once per irri-
gation treatment. The order of entries within each irrigation
treatment was randomized. To reduce edge effects, the wild-
type BTx623 sorghum cultivar was planted at the perimeter
of each irrigation treatment. Experimental units were one-
row plots, 3.5 m in length with a 0.5-m alley at the end of
each plot and inter-row spacing of 0.76 m; plots were thinned
to a density of five plants per plot (1 plant per 0.7 linear
meter) after crop establishment, at approximately V5 growth
stage. The soil type is a Casa Grande sandy loam (fine-loamy,
mixed, superactive, hyperthermic Typic Natrargids). Con-
ventional sorghum cultivation practices (fertilizer application
rate/amount, weed/insect control, etc.) for the desert South-
west were employed (Ottman, 2016). Meteorological data
were obtained from an automated Arizona Meteorological
Network weather station (cals.arizona.edu/AZMET/06.htm)
located on the premise of MAC and 738 m from the field
(Brown, 1989). Crop irrigation was performed using sub-
surface drip irrigation with pressure compensated drip tape
(DripNet PC; Netafim) buried at a depth of ~0.15 m beneath
the soil surface, directly underneath the plants. Soil volumet-
ric water content (SVWC) was monitored on a biweekly basis
using a field-calibrated neutron moisture probe (Model 503;
Campbell Pacific Nuclear) with measurements taken in 0.2-
m increments from a depth of 0.1- 1.9 m. Each sorghum
genotype was evaluated under two irrigation treatments: 23%
SVWC (WW conditions) and 15% SVWC (WL conditions).
These values were based on measures of soil water-holding
capacity at the study site and observation of plants, with
those at 15% SVWC maintaining core function but showing
stress via measures of leaf gas exchange and photosynthetic
efficiency (Thorp et al., 2017; Pauli, unpublished data).

2.2 | Disease presence and description

Symptomatic disease tissue was observed in the field trial
~5 weeks after planting with plants exhibiting typical signs
of wilting and root rot (Figure 1). Initially, about 15% of
research plots showed severe wilting symptoms; however, this
slowly increased as the season progressed, and ultimately
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~70% of the research plots exhibited some level of infection.
The presence of similar symptoms was also confirmed pre-
viously in 2019 and 2017 within the same field as used for
the present work. To confirm pathogen presence and identity,
symptomatic plants, with visible leaf symptoms, were dug up
from the field plots ensuring that roots remained attached to
the plant while avoiding damage to the roots. All sampled
plants were placed in plastic bags and kept cool until they
could be transported to the University of Arizona’s Extension
Plant Pathology lab in Tucson, AZ.

Since microsclerotia are not visible in the stem, isolation
was made using putatively infected root and stem tissues
(Figure 1C.D). Tissue samples, measuring 7 X 7 X 3 mm,
were cut from the margin between the diseased and seemingly
healthy tissues. These tissue samples were surface sterilized
by soaking in 75% ethanol for 5 s, 1% sodium hypochlorite
for 1 min, rinsed well with sterile distilled water, and dried on
sterile filter paper in a laminar hood. Each sterile tissue sample
was plated onto potato dextrose agar (PDA) plates and water
agar plates. Plates were incubated at 25°C in the dark until fun-
gal colonies were observed. Colonies were subcultured onto
PDA plates and incubated at 25°C for 4 days. Hyphal tip sub-
cultures were obtained for each isolate from the colony margin
and subcultured onto fresh PDA. Morphological character-
istics were observed on three isolates on 2-week-old PDA
cultures. Based on the culture morphology on PDA, all three
isolates were tentatively identified as M. phaseolina (Figure
S1). To confirm its identity, genomic DNA was extracted from
mycelial mats of three isolates using DNeasy Plant Pro Kit
(Qiagen Inc.) according to the manufacturer’s instructions.
The internal transcribed spacer (ITS) region of the rRNA gene
was amplified with primers ITS1/ITS4, and three nucleotide
sequences were obtained. A BLASTN search revealed that
sample sequences shared a 100% match with sequences of
M. phaseolina in the NCBI GenBank Database (Sayers et al.,
2022).

2.3 | Plant imaging

2.3.1 | Image capture

Images of both visibly infected and noninfected sorghum
plants were taken 51 days after planting, equating to the GS-
1 vegetative (germination to panicle initiation) growth stage
(Roozeboom & Prasad, 2019). Images were collected from
both the WW and WL irrigation treatments. A total of 1400
high-resolution, JPEG-formatted images 5184 X 3456 and
2336 x 1752 pixels were taken of sorghum plants within
the field using a Canon Rebel T6 camera (Canon) and a
Sony Alpha a6000 (Sony), respectively. The camera operators
walked through the field, and images were taken at random to
include a variety of angles, lighting conditions, background
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FIGURE 1

Symptoms of young sorghum plants infected with charcoal rot of sorghum (CRS), a fungal disease caused by M. phaseolina. (A)

Grayish white appearance of young plants in a field in Maricopa, Arizona. (B) Close up of a young sorghum plant displaying symptoms of CRS,

including leaf curling and hooking, chlorosis, and necrosis. (C) Discoloration of stem vascular tissue. (D) rotting of roots.

features, and zoom settings. The angle of capture was var-
ied to encompass a broad spectrum of viewpoints, including
low-angle shots, where the camera was tilted upward, and
high-angle shots, with the camera angled downward. The
image capture settings of both cameras were set to auto
adjust (aperture, shutter speed, and ISO speed) to ensure
adequate and unbiased image capture given the number of
images that had to be taken. Images were captured between
10:00 and 14:00 on a single day (August 7, 2020), during
which solar radiation varied from 2.42 to 3.42 MJ/m? (Table
S1). The images captured both non-plant background ele-
ments (control) and sorghum plants displaying three distinct
states: CRS infection, abiotic stress (drought), and absence of
biotic and abiotic symptoms (healthy) (Figure S2). Collected
images were uploaded to the CyVerse Data Store for further
processing (Devisetty et al., 2016).

The 1400 CRS-impacted sorghum images were imported
into the image labeling platform Labelbox (https://labelbox.
com/) and annotated by researchers trained in CRS identifica-
tion. Researchers were instructed to label the area exhibiting

symptoms of CRS by drawing high-fidelity polygons around
CRS-affected sorghum plant tissue. After annotation, images
were reviewed and validated by a second set of experts and
randomly split into three different sets: training (60%, 840
images), validation (20%, 280 images), and test (20%, 280
images). Images in the training set were used for model
development and training, whereas images in the valida-
tion set were used to optimize model hyperparameters, and
finally, images in the test set were used for reporting the
final performance and accuracy. The manually labeled images
represented diverse field conditions, irrigation treatments,
number of plants within an image, resolution, and image col-
lection conditions creating a diverse representation of the
pathology of CRS-impacted tissue with respect to real-world
conditions that would be encountered either in a sorghum pro-
duction or research setting. Several pre-processing steps were
carried out during model training, which included transforma-
tions of color space and generation of image patches. Using
the polygons, binary masks were generated for each image and
then the images alongside their corresponding masks were
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separately split into smaller square image patches of different
sizes (32 % 32, 64 x 64, 128 x 128, 256 x 256, and 512 X 512
pixels); this reduction in size was undertaken to test the effect
of patch size on the model performance and accuracy (Figure
S3). Among these patches, those that had at least one pixel
annotated as CRS were then considered positive samples for
the classification task. The same number of patches were ran-
domly selected among the images without CRS to keep the
three image datasets (training, validation, and test) balanced.

2.3.2 | Image analysis

Two different classes of ML models were applied to the
dataset to assess and describe CRS-affected foliage: classifi-
cation, which determines the presence or absence of CRS for
a given patch, and segmentation, which highlights the regions
affected by CRS and quantifies the amount of CRS detected in
the images. Six classification models were trained and evalu-
ated with respect to their ability to classify patches containing
plants exhibiting CRS symptoms. The classification models
implemented were ResNet18 (He et al., 2016); MobileNetV3
small, small custom, and large versions (Koonce, 2021b); and
EfficientNet-B3 and EfficientNet-B4 (Koonce, 2021a). All
of these models were initially trained and evaluated under
the same conditions (same set of hyperparameters) on image
patches of size 256 X 256 pixels, and the best performing
model was selected for further optimization over the range of
patch sizes listed above. Finally, the top image patch classi-
fication model was used to approximately quantify the area
of the affected regions of each image in the test set. It is
important to note that this was performed on the basis of
image patches within the overall image and not on a per pixel
basis. For image segmentation, three models were trained
and evaluated including U-NET (Ronneberger et al., 2015),
fully convolutional network (FCN) (Long et al., 2015), and
DeepLabV3 (Chen et al., 2017). All models were trained and
evaluated on image patch sizes of 256 X 256 pixels. Like
the classification approach, the best performing model was
then selected for further optimization over the range of patch
sizes. Finally, the best performing models, with respect to
classification and segmentation, were used to detect or quan-
tify the regions, respectively, affected by CRS in the full-size
images.

2.4 | Model training

2.4.1 | Model evaluation

To evaluate performance during the training and development
of the classification models, binary cross entropy (BCE) was
used as a loss function for classification (Ho & Wookey, 2020;
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Milletari et al., 2016; Salehi et al., 2017). The BCE calculates
the negative logarithm of the prediction error to penalize the
model for incorrect predictions, as defined by the following
equation:

BCE (p,y) = —y xlog(p) = (1 —y) xlog(1 = p), (D

where y is the ground truth, integer label associated with the
image, and p is the prediction of the model. The models output
a prediction between zero and one, with penalties increasing
exponentially for larger prediction errors.

To evaluate the performance of the segmentation models,
the Dice coefficient was used (Ho & Wookey, 2020; Milletari
et al., 2016; Salehi et al., 2017). The Dice coefficient, a dif-
ferentiable form of the Intersection over Union metric, was
used as the loss function for semantic segmentation. It calcu-
lates the ratio of the intersecting area of the predicted mask
and the ground truth to their combined area, as defined by the
following equation:

2 X|Y nP|

Dice (Y, P) = Y 11 Pl

; @

where Y is the ground truth mask and P is the predicted mask.
The closer this value is to one, the more similar the prediction
mask is to the ground truth.

The accuracy, precision, recall, and F1 score were com-
puted for both classification and segmentation models to
compare model performance. Accuracy, which is the propor-
tion of correct predictions out of all predictions, is derived
from the counts of true positives (TP), false positives (FP),
true negatives (TN), and false negatives (FN), as defined by
the following equation:

TP + TN

TP + TN + FP + FN’ ©)

Accuracy =

While accuracy is a common metric for model perfor-
mance, it can be skewed by unbalanced datasets. To avoid bias
toward the majority class, we also used metrics that are less
sensitive to dataset composition, including precision, recall,
and F1 score, as defined by the following equations:

Precision = _TP , “4)
TP + FP
TP
Recall = ————, 5
T TP BN ©)

Fl =2x Prec?s?on X Recall’ )
Precision + Recall

where Precision is the ratio of true positives to predicted pos-
itives, Recall is the ratio of true positives to actual positives,
and F1 is the harmonic mean of these two. These metrics
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collectively assess model performance, but the best perform-
ing models were chosen based on their F1 score.

Models were trained on two computing nodes: the first was
an AMD EPYC 7542 32-Core processor (Advanced Micro
Devices, Inc.), 1008 GB of RAM, and two NVIDIA A-100
40 GB graphical processing unit (GPU; NVIDIA Corpora-
tion); and the second node was an Intel Xeon Gold 6146
CPU @ 3.20 GHz 12-Core processor (Intel Corporation), 188
GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU
(NVIDIA Corporation). The learning rate was 1 x 10~ and
3 x 10 for classification and segmentation tasks, respec-
tively. A batch size of 32 with Adam optimizer was used for
both classification and segmentation (Z. Zhang, 2018). Mod-
els were trained for 50 epochs, and early stopping was used to
avoid overfitting.

The objective of the classification models is to categorize
each image patch based on the presence or absence of CRS. If
the model predicts the presence of CRS in a single patch, the
image is labeled as CRS-affected. On the other hand, the seg-
mentation models aim to classify each pixel within an image
patch based on the presence or absence of CRS. The segmen-
tation model quantifies the number of CRS-affected pixels
per patch and reports the sum of CRS-affected pixels for each
image. The algorithm generates a results data file containing
the image name and prediction results. For classification mod-
els, the prediction result is a binary “True” or “False” value for
the presence or absence of CRS, respectively. For segmenta-
tion models, the prediction results are the percentage of pixels
classified as CRS compared to the total number of pixels in the
image. For both classification and segmentation models, the
total processing time for each image, which is the camulative
sum of the processing times for all individual patches within a
single image, is also provided. Inference time was reported as
the overall length of time from the model receiving an image
patch to producing a segmentation or classification prediction.

2.4.2 | Evaluation of image patch size on
accuracy and processing time

After the initial model evaluation experiments (i.e., training
and evaluation of the classification and segmentation mod-
els on image patches sizes of 256 X 256 pixels), the best
performing model with respect to F1 score on the validation
dataset was selected from both classification and segmen-
tation classes of models evaluated. These two models, one
each from the classification and segmentation type, were then
trained and evaluated on the datasets with different image
patch sizes (32 X 32, 64 X 64, 128 x 128, 256 x 256, and
512 x 512 pixels) to assess the effect of image patch size on
the model performance. Time benchmarking was performed
on the aforementioned AMD EPYC server. In addition to
the model performance on the test set, inference times were
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measured and reported. The code for training, inference, and
evaluation of model performance can be accessed at https://
github.com/phytooracle/charcoal-dryrot-quantification.

3 | RESULTS

3.1 | Model training

Nine models, including six classification and three segmen-
tation, were trained to detect and segment the presence of
CRS-affected sorghum plant tissue in images collected under
field conditions (Figure 1). The two top-performing mod-
els, EfficientNet-B3 and FCN, were able to distinguish and
quantify, respectively, plant tissue that was exhibiting signs
of CRS compared to plant tissue that was demonstrating the
effects of drought stress. The ability to distinguish between
CRS and drought stress is critical given that the pathology of
CRS closely resembles that of drought stress making accurate
discernments between the two challenging.

3.2 | Model performance
3.2.1 | Assessing model performance and
identification of top-performing models

Models were assessed on recall, accuracy, and F1 score, but
F1 score was the main criterion for selection. The best per-
forming model for the classification of image patches that
contained at least one pixel of CRS-labeled plant tissue was
EfficientNet-B3. This model had an accuracy of 86.97% and
an F1 score of 0.73 (Table 1, Figure 2). The classification
model with the lowest performance was ResNetl8 with an
accuracy of 82.62% and corresponding F1 score of 0.65. With
respect to the other two classes of models tested, their average
performance across models was as follows: MobileNet: accu-
racy of 84.99% and F1 score of 0.69; EfficientNet: accuracy
of 86.44% and F1 Score of 0.72. EfficientNet-B3 had higher
accuracy and F1 score so it was selected as the superior model
(Table 1).

Given the results of the classification models and that
CRS-affected tissue could be identified by ML algorithms,
we next evaluated if the disease-affected regions could be
segmented from the images. The expansion of our analy-
ses to segmentation was driven by the question of whether
desiccated tissue due to drought stress, which is similar in
appearance to CRS-affected tissue, could reliably be distin-
guished. With respect to model accuracy, both DeepLabV3
and FCN performed comparably with validation F1 scores
of 0.65 and 0.66, respectively (Table 1). Of the two mod-
els, FCN had higher validation recall and F1 score, so it
was selected as the superior model (Table 1). U-NET gave
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TABLE 1
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Results of model training and testing on image patch sizes of 256 X 256 pixels for both tasks of classification and segmentation for

different models in the respective categories. Values that are highlighted in bold represent the top performing models for each task, as determined by

the validation F1-score.

Validation accuracy

Task/loss function Model name (%)

Classification/BCE ResNet18 82.62
MobileNetV3 small 85.47
MobileNetV3 small custom  84.65
MobileNetV3 large 84.84
EfficientNet-B3 86.97
EfficientNet-B4 85.91

Segmentation/dice U-NET 97.49
FCN 97.76
DeepLabV3 97.93

Abbreviations: BCE, binary cross entropy; FCN, fully convolutional network.

TABLE 2

Validation

precision Validation recall  Validation F1
0.75 0.61 0.65
0.78 0.68 0.70
0.78 0.66 0.69
0.77 0.64 0.68
0.80 0.71 0.73
0.78 0.68 0.71
0.69 0.62 0.62
0.69 0.68 0.66
0.72 0.65 0.65

Impact of image patch size on model performance, as assessed using the validation set, for EfficientNet-B3, a classification model,

and fully convolutional network (FCN), a segmentation model. Values that are highlighted in bold represent the top performing patch size for each

task, as determined by the validation F1-score.

Validation accuracy

Model name Task Patch size (%)

EfficientNet-B3 Classification 32 86.55
64 92.51
128 89.77
256 84.97
512 83.76

FCN Segmentation 32 95.13
64 95.57
128 97.12
256 97.80
512 98.48

the lowest performance metrics with a validation F1 score
of 0.62.

3.2.2 | Assessing the impact of image patch
size on model performance

Next, we investigated the influence of image patch size on
model performance to better understand how downstream
applications, such as deployment on drone- or mobile-based
phenotyping platforms, could be impacted by changes in
image patch size. For both EfficientNet-B3 and FCN mod-
els run on the validation image set, there was a near linear
increase in validation F1, recall, and precision scores as the
image patch size increased from 32 X 32 pixels to the final
size tested of 512 x 512 pixels (Table 2). One exception to
this observed trend were the results for validation accuracy.

Validation Validation
precision Validation recall F1
0.04 0.01 0.02
0.29 0.23 0.25
0.50 0.42 0.44
0.79 0.63 0.68
0.89 0.83 0.84
0.16 0.13 0.14
0.22 0.15 0.17
0.43 0.38 0.39
0.71 0.65 0.65
0.83 0.77 0.79

For the FCN model, the validation accuracy results increased
from 95.13% to 98.48% for image patch sizes of 32-512
pixels, respectively. However, the EfficientNet-B3 exhibited
contrasting results. The highest validation accuracy occurred
for image patch size of 64 X 64 pixels and was 92.51%. For
the following patch sizes of 128, 256, and 512 pixels, the val-
idation accuracy decreased to 89.77%, 84.97%, and 83.76%,
respectively.

3.2.3 | Assessing the impact of image patch
size on image processing time

In light of the impact that image patch size had on the per-
formance metrics of the respective models, we next wanted
to investigate how the patch sizes impacted image process-
ing time as this is another significant factor with respect to
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Model Results

Input Image Prediction

Detected 45.17%

FIGURE 2 Comparison and deployment of classification and segmentation models. (A) Comparison of the identification of charcoal rot of

sorghum (CRS) by the classification model EfficientNet-B3 and the segmentation model fully convolution network (FCN). Ground truth,

hand-labeled images are in the center column, while the EfficientNet-B3 and FCN model outputs are on the left- and right-hand sides, respectively.

For EfficientNet-B3, image patches of size 512 x 512 are highlighted since the model only classifies whether or not the image contains CRS-affected

pixels. The FCN model, which performs segmentation, highlights the specific pixels that are affected with CRS closely resembling the results of the

hand-labeled, ground truth data. Both models were trained on image patch sizes of 512 X 512 pixels. (B) A Streamlit application for easy deployment

of all classification and segmentation models presented here. The application allows users to (i) select a model; (ii) upload an image or select one

from the image gallery of test set images; and (iii) obtain model results including processing time, detection status, and percentage of pixels with

CRS. The application can be accessed at https://charcoal-dryrot-quantification.streamlit.app/.

algorithm deployment. Both models exhibited an exponen-
tial decrease in mean processing time with increasing image
patch size. For the 32, 64, 128, 256, and 512 patch sizes,
the mean processing times were 263.34, 65.60, 24.85, 9.63,
and 4.15 s and 518.09, 204.70, 70.52, 29.13, and 18.98 s for
EfficientNet-B3 and FCN, respectively (Figure 3). Compar-
ing the mean processing time within a model, we found that
all processing times were significantly different (p < 0.05)
for each image patch size level. Additionally, there was min-
imal variation observed for mean processing time for both
models and image patch sizes; only FCN at 32 and 64 pixels
exhibited any appreciable variation. With respect to the indi-
vidual models themselves, it was not surprising to find that

EfficientNet-B3, the classification model, was nearly twice as
fast as the FCN, segmentation model, given the difference in
tasks they perform.

324 |
set

Evaluation of model performance on test

With model training and validation completed, we next pro-
ceeded to evaluate how the respective models performed on
the test data set—the holdout image set. For the classifica-
tion model EfficientNet-B3, the highest F1 score obtained was
0.70 for the 256-pixel image patch size. This is in contrast to
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FIGURE 3

Relationship between image patch size and processing time in seconds for the EfficientNet-B3 classification model and the fully

convolutional network (FCN) segmentation model. Different letters indicate significant differences among patch size processing times based on

one-way analysis of variance followed by Tukey’s post hoc test (p < 0.05). Error bars represent standard deviation.

the F1 score of 0.83 for the 512-pixel image patch size that
was observed with the validation image set. With respect to
accuracy, EfficientNet-B3 exhibited a near linear decrease in
accuracy on the test image set with increasing patch size; how-
ever, the overall accuracy values were higher on the test image
set compared to the validation image set (92.47% vs. 87.51%,
respectively). For the segmentation model FCN, the highest
F1 score on the validation image set was 0.77 obtained on the
512-pixel image patch size; this also corresponded to an accu-
racy of 98.48%. On the test image set, the FCN model also
obtained the largest F1 score on the 512-pixel image patch
size—an F1 of 0.80 with a corresponding accuracy of 99.43%.
With respect to all FCN performance metrics, the same trend
was observed for both the validation and test image sets,
namely that the metrics all improved with increasing image
patch size. With respect to the image processing time, the
same trends were observed for the test image set as for the val-
idation set—an approximately exponential decrease in mean
processing time per image as the image patch size increased.
Additionally, and not surprisingly, the FCN model’s mean
processing time was still much slower than the EfficientNet-
B3 model. With respect to the individual models, the mean
processing time for the image patches varied between the two
models (Figure 3). The EfficientNet-B3 model had fairly con-
sistent processing time per image patch with an average of
0.03 tenths of second across image patch sizes, whereas for
the FCN model, the mean processing times for image patch
sizes of 32, 64, 128, 256, and 512 were 0.02, 0.06, 0.08, 0.12,
and 0.35 tenths of second, respectively (Table 3).

3.3 | Model deployment

The algorithm generates a data file of results, which includes
the processing time (inference), the model’s prediction (True
or False for classification), and the percentage of pixels
predicted as CRS. Alongside the results data file, visual
representations of the predictions are also produced. The
predictions of CRS from the classification model are depicted
in each patch of the full image (Figure 2A, left). In contrast,
the segmentation model’s predictions are illustrated at the
pixel level, emphasizing the specific regions of the leaves
affected by CRS (Figure 2A, right). Users can select to run all
classification and segmentation model classes tested here. In
this case, the algorithm outputs a summary data file including
the model’s name, patch size, and processing time for each,
similar to the results data file. The images for training, testing,
and validation, both in their original and annotated forms, are
available at https://data.cyverse.org/dav-anon/iplant/projects/
phytooracle/season_11_sorghum_yr_2020/level_0/charcol_
rot_sorghum/dry_rot_raw.tar.gz. The code to train models and
run inference are available on GitHub at https://github.com/
phytooracle/charcoal-dryrot-quantification. To enhance the
usability of these tools, the models have been incorporated
into a Streamlit application that is publicly accessible at
https://charcoal-dryrot-quantification.streamlit.app/. The
application can also be executed locally by utilizing the
associated Docker container: https://hub.docker.com/r/phyto
oracle/charcoal-dryrot-quantification. All  models pre-
sented in the current study were integrated as a module in
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Performance metrics for EfficientNet-B3, a classification model, and fully convolutional network (FCN), a segmentation model,

with respect to the different size image patches (in pixels) and the time it took to process the whole image (seconds) as well as per image patch

(tenths of second). Values that are highlighted in bold represent the top performing patch size for each task, as determined by the test F1-score.

Model name Task Patch size  Accuracy (%)

EfficientNet-B3 Classification 32 97.51
64 96.38
128 94.47
256 92.74
512 81.24

FCN Segmentation 32 97.90
64 98.81
128 98.99
256 99.19
512 99.43

Mean
processing time

Mean
processing time

Precision Recall F1 (image) (patch)
0.66 0.11 0.19 2532 0.02
0.52 0.77 0.62 5842 0.02
0.54 0.79 0.64 19.38 0.02
0.64 0.77 070 6.42 0.03
0.53 0.88 0.66 2.27 0.05
0.37 0.69 0.48 311.93 0.02
0.58 0.56 057 192.15 0.06
0.61 0.79 0.69 65.96 0.08
0.67 0.83 0.74  25.95 0.12
0.77 0.84 080 17.17 0.35

the PhytoOracle phenotyping workflow manager: https://
github.com/phytooracle/automation/blob/main/yaml_files/
other/crs_detection.yaml. The code and data are released
under the open-source MIT license.

4 | DISCUSSION
4.1 | The need of phenotyping tools for
detecting biotic stress

Charcoal rot of sorghum, a disease caused by the soilborne
fungal pathogen M. phaseolina, poses a significant threat
to sorghum, a critical grain crop. The pathogen, M. phase-
olina, thrives in hot, dry conditions, which often coincide
with the peak growing periods for sorghum in the southwest
United States. As a result, areas with substantial sorghum
production often experience high incidences of CRS, lead-
ing to considerable crop losses and economic impact (Kaur
et al., 2012; Marquez et al., 2021). Effective management
of CRS is therefore crucial to ensure the sustainability of
sorghum production in these regions. Early detection of CRS
is required for crop management systems for sorghum produc-
tion and breeding improvement programs. As such, a major
challenge is shifting CRS detection and quantification from
manual visual assessment to automated, image-based pheno-
typing approaches. Handheld and drone-based RGB cameras
provide low cost solutions, providing that they are accurate,
precise, and efficient computer vision and AI/ML algorithms
to process those data. This method not only allows for the
detection and quantitative evaluation of disease severity but
also supports the high-throughput screening of disease resis-
tance variations in cultivars. Moreover, it acts as a crucial data

gathering tool, potentially offering comprehensive insights
into the prevalence, distribution, and effects of CRS across
different environments.

To address the need for disease detection methods, two
classes of algorithms were evaluated for the classification
and segmentation of CRS. These algorithms were applied to
RGB images of BTx623 sorghum, which were mutagenized
with EMS, resulting in a phenotypically diverse popula-
tion. The image dataset captured this phenotypic diversity,
thereby broadening the applicability of our models to other
genotypes. The algorithms comprised six and three base mod-
els of CNNs, respectively. Our objective was to create and
assess models that meet the varied demands of sorghum
researchers, breeders, and producers. The classification algo-
rithm was the most efficient, requiring fewer computational
resources for deployment. This enables a rapid assessment
of CRS-affected tissues and is adaptable for use in the field
on portable devices such as smartphones or drones. Users
can efficiently identify CRS affected plants for near real-
time decision-making. On the other hand, the segmentation
algorithm is more computationally intensive and currently
requires dedicated computing resources. Users need to send
images to off-field hardware to quantify the relative amount
of above-ground affected plant tissues. To address this lim-
itation, we developed a web application that can efficiently
deploy both classification and segmentation models on mul-
tiple devices, including cell phones. Tools like these will
enable breeders to select genotypes with improved resistance
more effectively, potentially leading to increased future yield
gains. Furthermore, these tools are directly applicable to crop
management, as they can assess the severity of the disease
and aid in planning treatment strategies such as control point

spraying.
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4.2 | Model types for plant disease detection
and quantification

For CRS detection in images, binary classification can be
applied on image patches. Alternatively, semantic segmen-
tation can be used to quantify the ratio of pixels identified
as CRS versus non-CRS. In this study, models representing
each approach were trained and tested to evaluate perfor-
mance metrics and assess suitability for the task of detecting
and quantifying CRS. For classification, ResNetl8 (He
et al.,, 2016), MobileNetV3 small, custom small and large
(Koonce, 2021b), and EfficientNet-B3 and EfficientNet-B4
(Koonce, 2021a) were implemented; for segmentation, U-
NET (Ronneberger et al., 2015), FCN (Long et al., 2015), and
DeepLabV3 (Chen et al., 2017) were used. Each approach
has advantages and disadvantages: classification models are
generally faster, while segmentation models are often more
accurate and have higher performance based on F1 score in
particular.

4.2.1 | Classification models

In ResNetl8, stacks of convolutional layers alongside Max
Pooling (Wu & Gu, 2015), Batch Normalization (Ioffe &
Szegedy, 2015), and other auxiliary layers are combined in a
feed forward network. The number 18 refers to the number
of learnable layers. In addition, residual or skip connec-
tions are added between these blocks to (i) facilitate dealing
with the vanishing gradient problem and (ii) to help the
model learn more efficiently by having the capability of skip-
ping some of the layers if necessary. Developed by Google,
MobileNetV3 models are designed for use on mobile devices
and other embedded systems such as UAVs (A. G. Howard
et al., 2017). These models are built out of depth-wise sepa-
rable convolutions, a form of factorized convolutional layers
that enables filters to be shared across channels, reducing
the number of filters needed to improve computational effi-
ciency. MobileNetV3 is the latest iteration of the MobileNet
(A. Howard et al., 2019). Small and Large MobileNets have
a trade-off between latency and accuracy with the final layer
of the MobileNetV3 Small and Large consisting of 576 and
1280 output neurons, respectively. To investigate the impact
of reducing neuron count on performance, we customized
MobileNetV3 Small by modifying the number of neurons in
the last block of the model. This model has extra dense lay-
ers to reduce the number of output neurons more gradually
from 576-288 to 64—1 neuron. Tan and Le (2019) proposed a
compound scaling method for scaling the depth, width, and
resolution of neural network layers in a way to efficiently
achieve better performance. They observed that while scaling
up networks’ width, depth, and resolution generally improves
accuracy because of higher network capacity, the dimension-
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ality of the network needs to be adjusted properly in order to
maximize these improvements on metrics while minimizing
overfitting to the training data. In their study, they propose
a relationship between the scaling ratios for each dimension
of the network which can be used to uniformly scale up
the network to increase its efficiency and accuracy. Using
their proposed relationship between the dimensions, they
provide eight different architectures, namely EfficientNet-
BO-EfficientNet-B7. In this study, we tested EfficientNet-B3
and EfficientNet-B4 based on the results presented in their
study.

4.2.2 | Segmentation models

FCNs (Long et al., 2015) provide an end-to-end model for
semantic segmentation of images with arbitrary sizes. Prior
to FCNs, semantic segmentation used to be done by sliding
a classification model over the entire image to get predic-
tions for each pixel. U-NET is a fully convolutional neural
network that has an encoder—decoder structure. It was devel-
oped by Ronneberger et al. (2015) to address the problem of
semantic segmentation in biomedical images and uses skip
connections. The encoder transforms the input image into
a latent space with lower dimension and the decoder trans-
forms the latent space into the output image, usually with
the same dimension as the input. Our implementation varies
slightly in architecture from the original paper where we
used established best practices of adding padding to preserve
input dimensions between downsampling and upsampling and
added batch normalization between convolution layers and
the Relu activation functions. DeepLabV3 (Chen et al., 2017)
utilizes a novel method for enlarging the field of view of
the convolution kernels to incorporate multi-scale context of
images. This improves semantic segmentation results by using
the atrous convolution (Holschneider et al., 1990).

4.3 | Optimizing model performance and
addressing limitations

4.3.1 | Effects of image patch size on
performance and processing time

Processing time and model performance are closely linked to
the size of image patches. When dealing with larger patches,
the results are typically faster. This is likely due to larger
patches containing more information, allowing the model to
make decisions based on a broader context. This can be par-
ticularly beneficial for classification tasks, where the goal
is to categorize the entire image or large regions of it. For
instance, in crop disease detection, larger patches could help
quickly identify whether a particular disease is present or
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absent in a field. On the other hand, smaller patches, while
resulting in slower performance, can provide a more detailed
assessment of the image. This can be especially useful when
the goal is to assess the severity of a condition, such as the
extent of disease in a crop field. Smaller patches allow for
a more granular analysis, which can help quantify the extent
of the disease and guide targeted interventions. Importantly,
the choice of patch size in image analysis can significantly
impact model performance, including the F1 score, a mea-
sure of a model’s accuracy. In the case of EfficientNet-B3, a
patch size of 512 was found to yield the highest validation F1
score (Table 3). This suggests that this patch size is optimal
for balancing the trade-off between precision and recall in the
model’s predictions. Interestingly, this patch size also has the
fastest processing time per image (Figure 3). This means that
not only does it provide accurate results, but it does so effi-
ciently, making it a good choice for applications where both
accuracy and speed are important. Similarly, for the FCN, a
patch size of 512 results in the highest validation and test
F1 score (Table 2, Table 3). This larger patch size allows
the model to capture more contextual information, which can
improve the accuracy of its predictions. Moreover, this patch
size also has the fastest processing time per image, making
it an efficient choice for image analysis tasks (Figure 3). Our
results indicate that the selection of patch size influences mod-
els, impacting accuracy and processing time. This necessitates
an optimization strategy for patch size selection, guided by
task-specific requirements and performance metrics.

In the current study, EfficientNet-B3 and FCN performed
best for the classification and segmentation of CRS, respec-
tively (Table 1). As expected, processing time for a single
image decreased as image patch size increased due to fewer
patches being needed per image, thereby reducing the com-
putational load. While one may expect that increased patch
size will result in decreased sensitivity, our results showed that
the largest patch size tested for classification had the highest
validation precision, recall, and F1 scores (Table 2). This is
likely due to having more likelihood of dry rot being present
in a larger patch. Therefore, the false positive rate would be
lower compared to a smaller patch size, as we classify a pre-
diction as a TP even if there’s only a single pixel of dry rot
present in the patch. It should be noted that the validation
accuracy was the lowest for the largest patch size for classifi-
cation. Classification models work by assigning a single label
to the entire image. These models are designed to focus on
the most important features in the image that are relevant to
the classification task. An increase in image patch size could
introduce additional details and noise, such as background
soil and neighboring plants, that may interfere with the main
features, potentially leading to a decrease in validation accu-
racy. The increase in validation accuracy as the image patch
size grows could be attributed to the additional context and
detail that larger patches offer for the model to assess, thereby
enhancing its performance.
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4.3.2 | Limitations of models

The results presented here increase the utility of these models
for the classification and segmentation of CRS from image
data, with the EfficientNet-B3 model taking ~6.4 s to pro-
cess an image with a patch-size of 256 X 256 pixels and the
FCN model taking ~17.2 s. These benchmarks utilized high-
end GPUs, which are not currently deployable in the field.
However, as GPU-based architectures continue to advance,
the ability to run these models in the field using aerial-based
or portable computing devices should be available in the
near-term future, providing researchers, breeders, and grow-
ers the opportunity to detect and quantify CRS in real time
using automated crop phenotyping systems (Owens et al.,
2008). Although existing models can be implemented on
ground-based phenotyping systems equipped with powerful
computers, the deployment of these models on UAVs is not yet
feasible at scale. This limitation is primarily due to the inten-
sive computational demands of the models, which surpass the
hardware currently mountable on UAVs. Specifically, these
models often need powerful GPUs to operate efficiently. The
GPUs can perform parallel operations, making them ideal for
the complex calculations and large data volumes involved in
ML. However, the physical characteristics of GPUs, such as
their size, weight, and power consumption, make them cur-
rently unsuitable for mounting on UAVs, which have strict
limitations on payload capacity and power supply. Given the
expected progress in hardware technology, it is reasonable
to anticipate that these models could be deployed on UAVs
in the near future. It is therefore essential for research, like
that presented here, to concentrate on the development, train-
ing, and refinement of models to prepare them for widespread
deployment on UAVs in the future.

Another significant limitation of these models is the poten-
tial for ambiguity with other diseases or abiotic stresses.
Models may sometimes struggle to distinguish between the
disease of interest and other diseases or stress conditions
with similar symptoms. This could lead to false positives or
negatives, impacting the accuracy of the model. The results
presented here highlight the feasibility to discriminate het-
erogenous symptoms, namely drought and CRS, on a single
leaf. Nonetheless, additional studies are required to determine
whether this is applicable to other pairs of heterogeneous
symptoms.

The quantification of disease tissue predicted in a given
image presents some challenges. The segmentation algorithm
calculates the percentage of CRS relative to the entire image,
not just the plant tissue. This approach was chosen because
masking out the soil using vegetation indices could intro-
duce errors, and, as a result, the reported result would be
an amalgamation of various errors stemming from both the
index calculation and the model prediction, complicating the
interpretation and differentiation of these errors. The impor-
tance of having an unbiased and multi-dimensional system
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for quantifying plant disease instead of relying on human
scoring is also worth noting. The process of human scoring
can accumulate a variety of errors, particularly when mul-
tiple individuals are involved, as it can lead to subjectivity
and inconsistency. An automated, unbiased system can pro-
vide more consistent and reliable results. Such a system could
process large amounts of data quickly, making it a valuable
tool for large-scale disease monitoring and management.

The field design employed in our research, while stan-
dard for such research studies, may not perfectly mirror the
conditions of sorghum cultivation. Nevertheless, the models
developed in this study can be adapted to offer benefits to
breeders and growers under their specific circumstances. It
is worth noting that our planting density, which was reduced
to five plants per plot post-establishment, is less than typi-
cally seen in production settings. This reduction allowed for
the incorporation of a greater number of control images, such
as soil, plot stakes, and other background elements, into our
study. The inclusion of these control images improves the
robustness of our models through increased image diversity,
potentially equipping them to effectively differentiate CRS
from other non-living objects and various stressors, includ-
ing drought stress. Despite the discrepancy with production
settings, our methodology provides tools that can be adapted
to a variety of agricultural contexts. To facilitate this, labeled
images are shared to enable researchers to modify or extend
existing or future models, and a web application was devel-
oped for breeders and growers to assess the applicability of
our models to their specific circumstances.

4.3.3 | The importance of user-friendly
phenotyping tools

Increasing the accessibility and integration of trained mod-
els is essential. Platforms such as CyVerse, Streamlit, and
PhytoOracle facilitate model use, encouraging adoption by
non-experts and driving innovation. Open access to code
and models, along with integration into web applications
and workflow managers like PhytoOracle, enables efficient
model deployment to large datasets (Gonzalez et al., 2023).
This approach broadens user engagement and advances
technological democratization.

S | CONCLUSION

As the quantitative and qualitative results suggest, quantify-
ing CRS in images using NN is a difficult task because of the
similarity between the symptoms of water deficit stress (i.e.,
drought) and CRS. However, in this study, we proposed two
approaches for this task using classification and segmentation
models and showed that quantifying CRS in plants exhibiting

GONZALEZ ET AL.

concurrent drought stress symptoms, despite being a difficult
task, can be accomplished with a high level of accuracy. We
showed that the segmentation models outperform the clas-
sification models in quantifying CRS. An extensive set of
experiments were conducted to assess the effect of patch size
on the processing time and performance of the models. We
found that a patch size of 256 is suitable for classification, and
a patch size of 512 yields the best results for the segmentation
models. The models were integrated into existing phenomics
pipelines and a web application for user-friendly deployment
of trained models on various platforms.

AUTHOR CONTRIBUTIONS

Emmanuel M. Gonzalez: Conceptualization, data cura-
tion; formal analysis; investigation; methodology; resources;
software; validation; visualization; writing—original draft;
writing—review and editing. Ariyan Zarei: Conceptu-
alization; data curation; formal analysis; investigation;
methodology; resources; software; validation; visualization;
writing—original draft; writing—review and editing. Sebas-
tian Calleja: Data curation; Formal analysis; investigation;
methodology; validation; writing—original draft; writing—
review and editing. Clay Christenson: Data curation; formal
analysis; investigation; methodology; validation; visualiza-
tion; writing—original draft; writing—review and editing.
Bruno Rozzi: Investigation; methodology; writing—original
draft; writing—review and editing. Jeffrey Demieville:
Investigation; methodology; validation; writing—original
draft; writing—review and editing. Jiahuai Hu: Investiga-
tion; methodology; writing—original draft; writing—review
and editing. Andrea L. Eveland: Conceptualization; fund-
ing acquisition; investigation; methodology; project admin-
istration; resources; supervision; writing—original draft;
writing—review and editing. Brian Dilkes: Conceptual-
ization; funding acquisition; investigation; methodology;
project administration; supervision; writing—original draft;
writing—review and editing. Kobus Barnard: Concep-
tualization; funding acquisition; investigation; methodol-
ogy; project administration; supervision; writing—original
draft; writing—review and editing. Eric Lyons: Conceptu-
alization; funding acquisition; investigation; methodology;
project administration; supervision; writing—original draft;
writing—review and editing. Duke Pauli: Conceptualization;
data curation; formal analysis; funding acquisition; inves-
tigation; methodology; project administration; resources;
software; supervision; validation; visualization; writing—
original draft; writing—review and editing.

ACKNOWLEDGMENTS

‘We would like to give our sincere gratitude to Cristian Salazar,
Travis Simmons, Holly Ellingson, Victoria Ramsay, Brenda
Esmeralda Jimenez, Hanna April Lawson, Hassan Alnamer,
Jordan Pettiford, Michele Cosi, and Robert Strand for their

25U001T SUOWWI0)) 2ANEAI) d[qeatidde oy Aq PatIdAOS aIE SAIIIE V() 1SN JO SA[NI 10§ AIRIQIT AUIUQ AD[IAL UO (SUOIPUOD-PUE-SULINY W00 Ko 1Ay Ae1qauljuoy/:sdiy) SUONIPUOS) puE Suwa] ) 998 “[b70/30/20] U0 A1eiqry auruo Kopip “Areiqr vuozuy O Ansiaatun £q 01 102-2dd/z00101/10p/wod Kajia K1eiqiounuossasot/:sdiy woxy paproumoq ‘1 707 ‘€0LZ8LST



GONZALEZ ET AL.

assistance in image annotation and assistance with the field
experiment.

FUNDING INFORMATION

This project was supported by the Department of Energy
Advanced Research Agency-Energy award number DE-
ARO0001101, Department of Energy Biological and Environ-
mental Research award number DE-SC0020401, and National
Science Foundation CyVerse project award number DBI-
1743442. Support to Pauli was also provided by NSF-PGRP
(Award # 2102120 and 2023310), NSF DBI (Award #
2019674 and 1743442), and Cotton Incorporated award num-
bers 18-384, 20-720, 21-830, and 23-890. Support to Lyons
was provided by NSF-PGRP (Awards # IOS — 2023310 and
10S - 1849708).

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The images used for training, validation, and testing the
model can be accessed at https://data.cyverse.org/dav-anon/
iplant/projects/phytooracle/season_11_sorghum_yr_2020/
level_O/charcol_rot_sorghum/dry_rot_raw.tar.gz. The code
for model training and inference is available at https://
github.com/phytooracle/charcoal-dryrot-quantification.

The models in this study can be deployed on a Streamlit
app at https://charcoal-dryrot-quantification.streamlit.app/.
The Docker container to run the Streamlit app locally is
available at https://hub.docker.com/r/phytooracle/charcoal-
dryrot-quantification. The models were integrated as a
module in the PhytoOracle phenotyping workflow man-
ager: https://github.com/phytooracle/automation/blob/main/
yaml_files/other/crs_detection.yaml.

ORCID

Emmanuel M. Gonzalez ‘® https://orcid.org/0000-0002-
3021-9842

Ariyan Zarei '© https://orcid.org/0000-0002-3670-2472
Sebastian Calleja ‘® https://orcid.org/0000-0001-9401-4494
Clay Christenson @ https://orcid.org/0009-0005-4034-7433
Bruno Rozzi © https://orcid.org/0009-0008-2945-2103
Jeffrey Demieville ® https://orcid.org/0000-0002-7725-7379
Jiahuai Hu ‘® https://orcid.org/0000-0003-1107-5414

Andrea L. Eveland ® https://orcid.org/0000-0003-4825-1282
Brian Dilkes (© https://orcid.org/0000-0003-2799-954X
Kobus Barnard ® https://orcid.org/0000-0002-8568-9518

Eric Lyons © https://orcid.org/0000-0002-3348-8845
Duke Pauli ® https://orcid.org/0000-0002-8292-2388
REFERENCES

Addo-Quaye, C., Tuinstra, M., Carraro, N., Weil, C., & Dilkes, B. P.
(2018). Whole-genome sequence accuracy is improved by replica-

The Plant Phenome Journal ..

15 of 18

tion in a population of mutagenized sorghum. G3 (Bethesda), 8(3),
1079-1094. https://doi.org/10.1534/g3.117.300301

Amsaveni, V., & Albert Singh, N. (2013). Detection of brain tumor
using neural network. 2013 Fourth international conference on com-
puting, communications and networking technologies (ICCCNT),
Tiruchengode, India. https://doi.org/10.1109/iccent.2013.6726524

Bernardo, R. (2014). Essentials of plant breeding. Stemma Press.

Bhattacharya, M., & Samaddar, K. R. (1976). Epidemiological studies
on jute diseases. Plant and Soil, 44(1), 27-36. https://doi.org/10.1007/
BF00016952

Boatwright, J. L., Lucas Boatwright, J., Sapkota, S., Jin, H., Schnable,
J. C., Brenton, Z., Boyles, R., & Kresovich, S. (2022). Sorghum
Association Panel whole-genome sequencing establishes cornerstone
resource for dissecting genomic diversity. The Plant Journal, 111(3),
888-904. https://doi.org/10.1111/tpj.15853

Bock, C. H., Parker, P. E., Cook, A. Z., Riley, T., & Gottwald, T. R.
(2009). Comparison of assessment of citrus canker foliar symptoms
by experienced and inexperienced raters. Plant Disease, 93(4), 412—
424. https://doi.org/10.1094/PDIS-93-4-0412

Brown, P. W. (1989). Accessing the Arizona meteorological network
(AZMET) by computer (Extension report No. 8733). University of
Arizona. https://ag.arizona.edu/AZMET/az-data.htm

Chadalavada, K., Kumari, B. D. R., & Kumar, T. S. (2021). Sorghum
mitigates climate variability and change on crop yield and quality.
Planta, 253(5), 113. https://doi.org/10.1007/s00425-021-03631-2

Chakraborty, S., Tiedemann, A. V., & Teng, P. S. (2000). Climate
change: Potential impact on plant diseases. Environmental Pollution,
108(3), 317-326. https://doi.org/10.1016/S0269-7491(99)00210-9

Chen, L.-C., Papandreou, G., Schroff, F., & Adam, H. (2017). Rethinking
atrous convolution for semantic image segmentation. https://doi.org/
10.48550/ARXIV.1706.05587

Cheshkova, A. F. (2022). A review of hyperspectral image analysis
techniques for plant disease detection and identification. Vavilovskii
Zhurnal Genetiki i Selektsii, 26(2), 202-213.

Collins, D. J., Wyllie, T. D., & Anderson, S. H. (1991). Biological activ-
ity of Macrophomina phaseolina in soil. Soil Biology & Biochemistry,
23(5), 495-496.

DeChant, C., Wiesner-Hanks, T., Chen, S., Stewart, E. L., Yosinski, J.,
Gore, M. A., Nelson, R. J., & Lipson, H. (2017). Automated iden-
tification of northern leaf blight-infected maize plants from field
imagery using deep learning. Phytopathology, 107(11), 1426-1432.
https://doi.org/10.1094/PHYTO-11-16-0417-R

Delgado-Baquerizo, M., Guerra, C. A., Cano-Diaz, C., Egidi, E., Wang,
J.-T., Eisenhauer, N., Singh, B. K., & Maestre, F. T. (2020). The
proportion of soil-borne pathogens increases with warming at the
global scale. Nature Climate Change, 10(6), 550-554. https://doi.org/
10.1038/s41558-020-0759-3

Desaint, H., Aoun, N., Deslandes, L., Vailleau, F., Roux, F., & Berthomé,
R. (2021). Fight hard or die trying: When plants face pathogens under
heat stress. The New Phytologist, 229(2), 712—734. https://doi.org/10.
1111/nph.16965

Devisetty, U. K., Kennedy, K., Sarando, P., Merchant, N., & Lyons,
E. (2016). Bringing your tools to CyVerse discovery environment
using docker. FI1000Research, 5, 1442. https://doi.org/10.12688/
f1000research.8935.1

Gonzalez, E. M., Zarei, A., Hendler, N., Simmons, T., Zarei, A.,
Demieville, J., Strand, R., Rozzi, B., Calleja, S., Ellingson, H.,
Cosi, M., Davey, S., Lavelle, D. O., Truco, M. J., Swetnam, T. L.,
Merchant, N., Michelmore, R. W., Lyons, E., & Pauli, D. (2023).
PhytoOracle: Scalable, modular phenomics data processing pipelines.

d ‘1 ‘vT0T “€0LTSLST

ssosot/:sdny woxy popeo]

2SUdOIT suowwo)) danea1) a[qearidde ayy £q pauIdA0S A1 SO[OIIE V() (2SN JO SA[NI 10§ AIRIQIT SUIUQ AS[IA UO (SUOHIPUOD-PUEB-SULID)/WI0d K[1m " AreIqijour[uo//:sdny) suonipuo)) pue swd ] oy 098 *[$202/80/20] uo A1eiqry auruQ Lo[ip ‘Areiqr euoziry jO Ansioatun) £q 0110z zfdd/z001°01/10p/woo Kajim:,


https://data.cyverse.org/dav-anon/iplant/projects/phytooracle/season_11_sorghum_yr_2020/level_0/charcol_rot_sorghum/dry_rot_raw.tar.gz
https://data.cyverse.org/dav-anon/iplant/projects/phytooracle/season_11_sorghum_yr_2020/level_0/charcol_rot_sorghum/dry_rot_raw.tar.gz
https://data.cyverse.org/dav-anon/iplant/projects/phytooracle/season_11_sorghum_yr_2020/level_0/charcol_rot_sorghum/dry_rot_raw.tar.gz
https://github.com/phytooracle/charcoal-dryrot-quantification
https://github.com/phytooracle/charcoal-dryrot-quantification
https://charcoal-dryrot-quantification.streamlit.app/
https://hub.docker.com/r/phytooracle/charcoal-dryrot-quantification
https://hub.docker.com/r/phytooracle/charcoal-dryrot-quantification
https://github.com/phytooracle/automation/blob/main/yaml_files/other/crs_detection.yaml
https://github.com/phytooracle/automation/blob/main/yaml_files/other/crs_detection.yaml
https://orcid.org/0000-0002-3021-9842
https://orcid.org/0000-0002-3021-9842
https://orcid.org/0000-0002-3021-9842
https://orcid.org/0000-0002-3670-2472
https://orcid.org/0000-0002-3670-2472
https://orcid.org/0000-0001-9401-4494
https://orcid.org/0000-0001-9401-4494
https://orcid.org/0009-0005-4034-7433
https://orcid.org/0009-0005-4034-7433
https://orcid.org/0009-0008-2945-2103
https://orcid.org/0009-0008-2945-2103
https://orcid.org/0000-0002-7725-7379
https://orcid.org/0000-0002-7725-7379
https://orcid.org/0000-0003-1107-5414
https://orcid.org/0000-0003-1107-5414
https://orcid.org/0000-0003-4825-1282
https://orcid.org/0000-0003-4825-1282
https://orcid.org/0000-0003-2799-954X
https://orcid.org/0000-0003-2799-954X
https://orcid.org/0000-0002-8568-9518
https://orcid.org/0000-0002-8568-9518
https://orcid.org/0000-0002-3348-8845
https://orcid.org/0000-0002-3348-8845
https://orcid.org/0000-0002-8292-2388
https://orcid.org/0000-0002-8292-2388
https://doi.org/10.1534/g3.117.300301
https://doi.org/10.1109/icccnt.2013.6726524
https://doi.org/10.1007/BF00016952
https://doi.org/10.1007/BF00016952
https://doi.org/10.1111/tpj.15853
https://doi.org/10.1094/PDIS-93-4-0412
https://ag.arizona.edu/AZMET/az-data.htm
https://doi.org/10.1007/s00425-021-03631-2
https://doi.org/10.1016/S0269-7491(99)00210-9
https://doi.org/10.48550/ARXIV.1706.05587
https://doi.org/10.48550/ARXIV.1706.05587
https://doi.org/10.1094/PHYTO-11-16-0417-R
https://doi.org/10.1038/s41558-020-0759-3
https://doi.org/10.1038/s41558-020-0759-3
https://doi.org/10.1111/nph.16965
https://doi.org/10.1111/nph.16965
https://doi.org/10.12688/f1000research.8935.1
https://doi.org/10.12688/f1000research.8935.1

16 of 18 The Plant Phenome Journal ..

Frontiers in Plant Science, 14, 1112973. https://doi.org/10.3389/fpls.
2023.1112973

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning
for image recognition. 2016 IEEE conference on computer vision and
pattern recognition (CVPR), Las Vegas, NV, USA. https://doi.org/10.
1109/cvpr.2016.90

Ho, Y., & Wookey, S. (2020). The real-world-weight cross-entropy loss
function: Modeling the costs of mislabeling. IEEE Access, 8, 4806—
4813. https://doi.org/10.1109/ACCESS.2019.2962617

Holschneider, M., Kronland-Martinet, R., Morlet, J., & Tchamitchian,
P. (1990). A real-time algorithm for signal analysis with the help
of the wavelet transform. In J. M. Combes, A. Grossmann, & P.
Tchamitchian (Eds.), Inverse problems and theoretical imaging (pp.
286-297). Springer. https://doi.org/10.1007/978-3-642-75988-8_28

Hossain, M. S., Islam, M. N., Rahman, M. M., Mostofa, M. G., & Khan,
M. A. R. (2022). Sorghum: A prospective crop for climatic vulnera-
bility, food and nutritional security. Journal of Agriculture and Food
Research, 8, 100300. https://doi.org/10.1016/j.jafr.2022.100300

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand,
T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient convo-
lutional neural networks for mobile vision applications. http://arxiv.
org/abs/1704.04861

Howard, A., Sandler, M., & Chu, G. (2019). Searching for mobilenetv3.
IEEE/CVF International Conference on Computer Vision (ICCV) (pp.
1314-1324). IEEE. https://doi.org/10.1109/ICCV.2019.00140

Hsi, C. H. (1956). Stalk rots of sorghum in eastern New Mexico. Plant
Disease Reporter, 40(5), 369-376.

Toffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep
network training by reducing internal covariate shift. https://doi.org/
10.48550/ARXIV.1502.03167

Kaur, S., Dhillon, G. S., Brar, S. K., Vallad, G. E., Chand, R., & Chauhan,
V. B. (2012). Emerging phytopathogen Macrophomina phaseolina:
Biology, economic importance and current diagnostic trends. Critical
Reviews in Microbiology, 38(2), 136-151. https://doi.org/10.3109/
1040841X.2011.640977

Kissoudis, C., van de Wiel, C., Visser, R. G. F., & van der Linden,
G. (2014). Enhancing crop resilience to combined abiotic and biotic
stress through the dissection of physiological and molecular crosstalk.
Frontiers in Plant Science, 5, 207. https://doi.org/10.3389/fpls.2014.
00207

Koonce, B. (2021a). EfficientNet. Convolutional neural networks with
swift for tensorflow (pp. 109-123). Apress. https://doi.org/10.1007/
978-1-4842-6168-2_10

Koonce, B. (2021b). MobileNetV3. Convolutional neural networks with
swift for tensorflow (pp. 125-144). Apress. https://doi.org/10.1007/
978-1-4842-6168-2_11

Kunwar, I. K., Singh, T., Machado, C. C., & Sinclair, J. (1986).
Histopathology of soybean seed and seedling infection by
Macrophomina  phaseolina.  Phytopathology, 76, 532-535.
https://www.apsnet.org/publications/phytopathology/backissues/
Documents/1986Articles/Phyto76n05_532.PDF

LeCun, Y. (2015). Deep learning & convolutional networks. 2015 IEEE
hot chips 27 symposium (HCS), Cupertino, CA, USA. https://doi.org/
10.1109/hotchips.2015.7477328

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional net-
works for semantic segmentation. 2015 IEEE conference on computer
vision and pattern recognition (CVPR), Boston, MA, USA. https://
doi.org/10.1109/cvpr.2015.7298965

GONZALEZ ET AL.

Lu, J,, Tan, L., & Jiang, H. (2021). Review on convolutional neural net-
work (CNN) applied to plant leaf disease classification. Collection
FAO: Agriculture, 11(8), 707.

Marquez, N., Giachero, M. L., Declerck, S., & Ducasse, D. A. (2021).
Macrophomina phaseolina: General characteristics of pathogenic-
ity and methods of control. Frontiers in Plant Science, 12, 634397.
https://doi.org/10.3389/fpls.2021.634397

Mechria, H., Gouider, M., & Hassine, K. (2019). Breast cancer
detection using deep convolutional neural network. Proceedings of
the 11th international conference on agents and artificial intelli-
gence (Vol. 2, pp. 655-660). SciTePress. https://doi.org/10.5220/
0007386206550660

Mertens, S., Verbraeken, L., Sprenger, H., Demuynck, K., Maleux, K.,
Cannoot, B., De Block, J., Maere, S., Nelissen, H., Bonaventure, G.,
Crafts-Brandner, S. J., Vogel, J. T., Bruce, W., Inz¢, D., & Wuyts, N.
(2021). Proximal hyperspectral imaging detects diurnal and drought-
induced changes in maize physiology. Frontiers in Plant Science, 12,
640914. https://doi.org/10.3389/fpls.2021.640914

Mihail, J. D., Orum, T. V., Alcorn, S. M., & Stroehlein, J. L. (1989).
Macrophomina phaseolina in the Sonoran Desert. Canadian Journal
of Botany. Journal Canadien de Botanique, 67(1), 76-82.

Mihail, J. D., Ramussen, S. L., & Turner, B. C. (1992). Macrophom-
ina phaseolina: A soilborne pathogen of Salicornia bigelovii in a
marine habitat. Plant Disease, 76, 751-752. https://pascal-francis.
inist.fr/vibad/index.php?action=getRecordDetail&idt=5611485

Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net: Fully convolu-
tional neural networks for volumetric medical image segmentation.
2016 Fourth International Conference on 3D vision (3DV) (pp.
565-571). IEEE. https://doi.org/10.1109/3DV.2016.79

Ndlovu, E., van Staden, J., & Maphosa, M. (2021). Morpho-
physiological effects of moisture, heat and combined stresses on
Sorghum bicolor [Moench (L.)] and its acclimation mechanisms.
Plant Stress, 2, 100018. https://doi.org/10.1016/j.stress.2021.100018

Newbery, F., Qi, A., & Fitt, B. D. (2016). Modelling impacts of climate
change on arable crop diseases: Progress, challenges and applications.
Current Opinion in Plant Biology, 32, 101-109. https://doi.org/10.
1016/j.pbi.2016.07.002

Odvody, G. N., & Dunkle, L. D. (1979). Charcoal stalk rot of sorghum:
Effect of environment on host-parasite relations. Phytopathology, 69,
250-254. https://www.apsnet.org/publications/phytopathology/
backissues/Documents/1979Articles/Phyto69n03_250.PDF
https://doi.org/10.1094/Phyto-69-250

Okyere, F. G., Cudjoe, D., Sadeghi-Tehran, P., Virlet, N., Riche, A.
B., Castle, M., Greche, L., Simms, D., Mhada, M., Mohareb, F., &
Hawkesford, M. J. (2023). Modeling the spatial-spectral characteris-
tics of plants for nutrient status identification using hyperspectral data
and deep learning methods. Frontiers in Plant Science, 14, 1209500.
https://doi.org/10.3389/fpls.2023.1209500

Ottman, M. J. (2016). Growing grain sorghum in Arizona. https://
repository.arizona.edu/handle/10150/625542

Overpeck, J. T., & Udall, B. (2020). Climate change and the aridification
of North America [Review of Climate change and the aridification of
North Americal. Proceedings of the National Academy of Sciences of
the United States of America, 117(22), 11856—11858. https://doi.org/
10.1073/pnas.2006323117

Owens, J. D., Houston, M., Luebke, D., Green, S., Stone, J. E., & Phillips,
J. C. (2008). GPU Computing. Proceedings of the IEEE, 96(5), 879—
899. https://doi.org/10.1109/JPROC.2008.917757

d ‘1 ‘vT0T “€0LTSLST

9508//:5d)Y WOy papeoy

2SUdOIT suowwo)) danea1) a[qearidde ayy £q pauIdA0S A1 SO[OIIE V() (2SN JO SA[NI 10§ AIRIQIT SUIUQ AS[IA UO (SUOHIPUOD-PUEB-SULID)/WI0d K[1m " AreIqijour[uo//:sdny) suonipuo)) pue swd ] oy 098 *[$202/80/20] uo A1eiqry auruQ Lo[ip ‘Areiqr euoziry jO Ansioatun) £q 0110z zfdd/z001°01/10p/woo Kajim:,


https://doi.org/10.3389/fpls.2023.1112973
https://doi.org/10.3389/fpls.2023.1112973
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/cvpr.2016.90
https://doi.org/10.1109/ACCESS.2019.2962617
https://doi.org/10.1007/978-3-642-75988-8_28
https://doi.org/10.1016/j.jafr.2022.100300
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://doi.org/10.1109/ICCV.2019.00140
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.48550/ARXIV.1502.03167
https://doi.org/10.3109/1040841X.2011.640977
https://doi.org/10.3109/1040841X.2011.640977
https://doi.org/10.3389/fpls.2014.00207
https://doi.org/10.3389/fpls.2014.00207
https://doi.org/10.1007/978-1-4842-6168-2_10
https://doi.org/10.1007/978-1-4842-6168-2_10
https://doi.org/10.1007/978-1-4842-6168-2_11
https://doi.org/10.1007/978-1-4842-6168-2_11
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1986Articles/Phyto76n05_532.PDF
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1986Articles/Phyto76n05_532.PDF
https://doi.org/10.1109/hotchips.2015.7477328
https://doi.org/10.1109/hotchips.2015.7477328
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.1109/cvpr.2015.7298965
https://doi.org/10.3389/fpls.2021.634397
https://doi.org/10.5220/0007386206550660
https://doi.org/10.5220/0007386206550660
https://doi.org/10.3389/fpls.2021.640914
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5611485
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=5611485
https://doi.org/10.1109/3DV.2016.79
https://doi.org/10.1016/j.stress.2021.100018
https://doi.org/10.1016/j.pbi.2016.07.002
https://doi.org/10.1016/j.pbi.2016.07.002
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1979Articles/Phyto69n03_250.PDF
https://www.apsnet.org/publications/phytopathology/backissues/Documents/1979Articles/Phyto69n03_250.PDF
https://doi.org/10.1094/Phyto-69-250
https://doi.org/10.3389/fpls.2023.1209500
https://repository.arizona.edu/handle/10150/625542
https://repository.arizona.edu/handle/10150/625542
https://doi.org/10.1073/pnas.2006323117
https://doi.org/10.1073/pnas.2006323117
https://doi.org/10.1109/JPROC.2008.917757

GONZALEZ ET AL.

Pandey, P., Ramegowda, V., & Senthil-Kumar, M. (2015). Shared and
unique responses of plants to multiple individual stresses and stress
combinations: Physiological and molecular mechanisms. Frontiers in
Plant Science, 6, 723. https://doi.org/10.3389/fpls.2015.00723

Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood,
J., Gundlach, H., Haberer, G., Hellsten, U., Mitros, T., Poliakov, A.,
Schmutz, J., Spannagl, M., Tang, H., Wang, X., Wicker, T., Bharti, A.
K., Chapman, J., Feltus, F. A., Gowik, U., ... Rokhsar, D. S. (2009).
The Sorghum bicolor genome and the diversification of grasses.
Nature, 457(7229), 551-556. https://doi.org/10.1038/nature07723

Pauli, D., Chapman, S. C., Bart, R., Topp, C. N., Lawrence-Dill, C. J.,
Poland, J., & Gore, M. A. (2016). The quest for understanding phe-
notypic variation via integrated approaches in the field environment.
Plant Physiology, 172(2), 622—634.

Poland, J. A., & Nelson, R. J. (2011). In the eye of the beholder: The
effect of rater variability and different rating scales on QTL mapping.
Phytopathology, 101(2), 290-298. https://doi.org/10.1094/PHY TO-
03-10-0087

Rai, K. M., Thu, S. W., Balasubramanian, V. K., Cobos, C. J., Disasa, T.,
& Mendu, V. (2016). Identification, characterization, and expression
analysis of cell wall related genes in sorghum bicolor (L.) Moench,
a food, fodder, and biofuel crop. Frontiers in Plant Science, 7, 1287.
https://doi.org/10.3389/fpls.2016.01287

Ramegowda, V., & Senthil-Kumar, M. (2015). The interactive effects of
simultaneous biotic and abiotic stresses on plants: Mechanistic under-
standing from drought and pathogen combination. Journal of Plant
Physiology, 176, 47-54. https://doi.org/10.1016/j.jplph.2014.11.008

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional
networks for biomedical image segmentation. In N. Navab, J. Horneg-
ger, W. Wells, & A. Frangi (Eds.), Lecture notes in computer science
(pp. 234-241). Springer. https://doi.org/10.1007/978-3-319-24574-
428

Rooney, W. L., Blumenthal, J., Bean, B., & Mullet, J. E. (2007).
Designing sorghum as a dedicated bioenergy feedstock. Biofuels,
Bioproducts & Biorefining, 1(2), 147-157.

Roozeboom, K. L., & Prasad, P. V. V. (2019). Sorghum growth
and development. Sorghum (pp. 155-172). Soil Science Society of
America.

Rybski, P. E., Huber, D., Morris, D. D., & Hoffman, R. (2010). Visual
classification of coarse vehicle orientation using Histogram of Ori-
ented Gradients features. 2010 IEEE intelligent vehicles symposium,
La Jolla, CA, USA. https://doi.org/10.1109/ivs.2010.5547996

Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017). Tversky loss
function for image segmentation using 3D fully convolutional deep
networks. In Q. Wang, Y. Shi, H. Suk, & K. Suzuki (Eds.), Machine
learning in medical imaging (pp. 379-387). Springer. https://doi.org/
10.1007/978-3-319-67389-9_44

Savary, S., Willocquet, L., Pethybridge, S. J., Esker, P., McRoberts, N.,
& Nelson, A. (2019). The global burden of pathogens and pests on
major food crops. Nature Ecology & Evolution, 3(3), 430-439.

Sayers, E. W., Bolton, E. E., Brister, J. R., Canese, K., Chan, J., Comeau,
D. C., Connor, R., Funk, K., Kelly, C., Kim, S., Madej, T., Marchler-
Bauer, A., Lanczycki, C., Lathrop, S., Lu, Z., Thibaud-Nissen, F.,
Murphy, T., Phan, L., Skripchenko, Y., ... Sherry, S. T. (2022).
Database resources of the national center for biotechnology informa-
tion. Nucleic Acids Research, 50(D1), D20-D26. https://doi.org/10.
1093/nar/gkab1112

Siar, M., & Teshnehlab, M. (2019). Brain tumor detection using deep
neural network and machine learning algorithm. 2019 9th interna-

The Plant Phenome Journal ..

17 of 18

tional conference on computer and knowledge engineering (ICCKE),
Mashhad, Iran. https://doi.org/10.1109/iccke48569.2019.8964846

Singh, A., Ganapathysubramanian, B., Singh, A. K., & Sarkar, S. (2016).
Machine learning for high-throughput stress phenotyping in plants.
Trends in Plant Science, 21(2), 110-124. https://doi.org/10.1016/].
tplants.2015.10.015

St Clair, D. A. (2010). Quantitative disease resistance and quantitative
resistance Loci in breeding. Annual Review of Phytopathology, 48,
247-268. https://doi.org/10.1146/annurev-phyto-080508-081904

Stewart, E. L., Wiesner-Hanks, T., Kaczmar, N., DeChant, C., Wu, H.,
Lipson, H., Nelson, R. J., & Gore, M. A. (2019). Quantitative phe-
notyping of northern leaf blight in UAV images using deep learning.
Remote Sensing, 11(19), 2209. https://doi.org/10.3390/rs11192209

Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for
convolutional neural networks. International Conference on Machine
Learning, 97, 6105-6114. http://proceedings.mlr.press/v97/tan19a.
html

Tang, C., Li, S., Li, M., & Xie, G. H. (2018). Bioethanol potential of
energy sorghum grown on marginal and arable lands. Frontiers in
Plant Science, 9, 440. https://doi.org/10.3389/fpls.2018.00440

Thorp, K. R., Hunsaker, D. J., Bronson, K. F., Andrade-Sanchez, P.,
& Barnes, E. M. (2017). Cotton irrigation scheduling using a crop
growth model and FAO-56 methods: Field and simulation studies.
Transactions of the ASABE, 60(6), 2023-2039. https://doi.org/10.
13031/trans.12323

Wiesner-Hanks, T., Wu, H., Stewart, E., DeChant, C., Kaczmar, N.,
Lipson, H., Gore, M. A., & Nelson, R. J. (2019). Millimeter-level
plant disease detection from aerial photographs deep learning and
crowdsourced data. Frontiers in Plant Science, 10, 1550. https://doi.
org/10.3389/fpls.2019.01550

Wu, H., & Gu, X. (2015). Max-pooling dropout for regularization of
convolutional neural networks. In S. Arik, T. Huang, W. Lai, & Q.
Liu (Eds.), Neural information processing (pp. 46-54). Springer.
https://doi.org/10.1007/978-3-319-26532-2_6

Wu, H., Wiesner-Hanks, T., Stewart, E. L., DeChant, C., Kaczmar, N.,
Gore, M. A., Nelson, R. J., & Lipson, H. (2019). Autonomous detec-
tion of plant disease symptoms directly from aerial imagery. The
Plant Phenome Journal, 2(1), 1-9. https://doi.org/10.2135/tppj2019.
03.0006

Yan, W., Deng, X. W.,, Yang, C., & Tang, X. (2021). The genome-
wide EMS Mutagenesis bias correlates with sequence context and
chromatin structure in rice. Frontiers in Plant Science, 12, 579675.
https://doi.org/10.3389/fpls.2021.579675

Yang, Q., Van Haute, M., Korth, N., Sattler, S. E., Toy, J., Rose, D. J.,
Schnable, J. C., & Benson, A. K. (2022). Genetic analysis of seed traits
in Sorghum bicolor that affect the human gut microbiome. Nature
Communications, 13(1), 5641. https://doi.org/10.1038/s41467-022-
33419-1

Yu, K., Anderegg, J., Mikaberidze, A., Karisto, P., Mascher, F.,
McDonald, B. A., Walter, A., & Hund, A. (2018). Hyperspectral
canopy sensing of wheat Septoria tritici blotch disease. Fron-
tiers in Plant Science, 9, 1195. https://doi.org/10.3389/fpls.2018.
01195

Zhang, G., Xu, T., Tian, Y., Feng, S., Zhao, D., & Guo, Z. (2022).
Classification of rice leaf blast severity using hyperspectral imag-
ing. Scientific Reports, 12(1), 19757. https://doi.org/10.1038/s41598-
022-22074-7

Zhang, H., & Sonnewald, U. (2017). Differences and commonalities of
plant responses to single and combined stresses. The Plant Journal:

d ‘1 ‘vT0T “€0LTSLST

9508//:5d)Y WOy papeoy

25U001] SUOWIWI0)) 2ANEAI) d[qeatidde oy Aq PaUIdAOS 1B SAANIE V() 1SN JO SA[NI 10} AIRIQIT AUIUQ AD[IAL U0 (SUOIPUOD-PUE-SULINY,WOd" o[ 1Ay ATeIqu[aul[uo//:sdiy) SUOHIPUO,) PUE SUd] ) 998 “[b707/30/20] U0 A1eiqr] aurue Aopip ‘Aieiqr euozuy JO Ansoatun £q 01 102°2fdd/z001°01/10p/woo Ko


https://doi.org/10.3389/fpls.2015.00723
https://doi.org/10.1038/nature07723
https://doi.org/10.1094/PHYTO-03-10-0087
https://doi.org/10.1094/PHYTO-03-10-0087
https://doi.org/10.3389/fpls.2016.01287
https://doi.org/10.1016/j.jplph.2014.11.008
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ivs.2010.5547996
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1007/978-3-319-67389-9_44
https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.1109/iccke48569.2019.8964846
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1016/j.tplants.2015.10.015
https://doi.org/10.1146/annurev-phyto-080508-081904
https://doi.org/10.3390/rs11192209
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
https://doi.org/10.3389/fpls.2018.00440
https://doi.org/10.13031/trans.12323
https://doi.org/10.13031/trans.12323
https://doi.org/10.3389/fpls.2019.01550
https://doi.org/10.3389/fpls.2019.01550
https://doi.org/10.1007/978-3-319-26532-2_6
https://doi.org/10.2135/tppj2019.03.0006
https://doi.org/10.2135/tppj2019.03.0006
https://doi.org/10.3389/fpls.2021.579675
https://doi.org/10.1038/s41467-022-33419-1
https://doi.org/10.1038/s41467-022-33419-1
https://doi.org/10.3389/fpls.2018.01195
https://doi.org/10.3389/fpls.2018.01195
https://doi.org/10.1038/s41598-022-22074-7
https://doi.org/10.1038/s41598-022-22074-7

18 of 18 The Plant Phenome Journal .

For Cell and Molecular Biology, 90(5), 839-855. https://doi.org/10.
1111/tpj.13557

Zhang, Z. (2018). Improved Adam optimizer for deep neural networks
[Paper presentation]. 2018 IEEE/ACM 26th International Symposium
on Quality of Service IWQoS), Banff, Canada. https://doi.org/10.
1109/IWQ0S.2018.8624183

SUPPORTING INFORMATION
Additional supporting information can be found online in the
Supporting Information section at the end of this article.

GONZALEZ ET AL.

How to cite this article: Gonzalez, E., Zarei, A.,
Calleja, S., Christenson, C., Rozzi, B., Demieville, J.,
Hu, J., Eveland, A. L., Dilkes, B., Barnard, K., Lyons,
E., & Pauli, D. (2024). Quantifying leaf symptoms of
sorghum charcoal rot in images of field-grown plants
using deep neural networks. The Plant Phenome
Journal, 7, €20110.
https://doi.org/10.1002/ppj2.20110

d ‘1 ‘vT0T “€0LTSLST

ssasor,sdng woxy papeoy

2SUdOIT suowwo)) danea1) a[qearidde ayy £q pauIdA0S A1 SO[OIIE V() (2SN JO SA[NI 10§ AIRIQIT SUIUQ AS[IA UO (SUOHIPUOD-PUEB-SULID)/WI0d K[1m " AreIqijour[uo//:sdny) suonipuo)) pue swd ] oy 098 *[$202/80/20] uo A1eiqry auruQ Lo[ip ‘Areiqr euoziry jO Ansioatun) £q 0110z zfdd/z001°01/10p/woo Kajim:,


https://doi.org/10.1111/tpj.13557
https://doi.org/10.1111/tpj.13557
https://doi.org/10.1109/IWQoS.2018.8624183
https://doi.org/10.1109/IWQoS.2018.8624183
https://doi.org/10.1002/ppj2.20110

	Quantifying leaf symptoms of sorghum charcoal rot in images of field-grown plants using deep neural networks
	Abstract
	1 | INTRODUCTION
	2 | MATERIALS AND METHODS
	2.1 | Data and field experiments
	2.2 | Disease presence and description
	2.3 | Plant imaging
	2.3.1 | Image capture
	2.3.2 | Image analysis

	2.4 | Model training
	2.4.1 | Model evaluation
	2.4.2 | Evaluation of image patch size on accuracy and processing time


	3 | RESULTS
	3.1 | Model training
	3.2 | Model performance
	3.2.1 | Assessing model performance and identification of top-performing models
	3.2.2 | Assessing the impact of image patch size on model performance
	3.2.3 | Assessing the impact of image patch size on image processing time
	3.2.4 | Evaluation of model performance on test set

	3.3 | Model deployment

	4 | DISCUSSION
	4.1 | The need of phenotyping tools for detecting biotic stress
	4.2 | Model types for plant disease detection and quantification
	4.2.1 | Classification models
	4.2.2 | Segmentation models

	4.3 | Optimizing model performance and addressing limitations
	4.3.1 | Effects of image patch size on performance and processing time
	4.3.2 | Limitations of models
	4.3.3 | The importance of user-friendly phenotyping tools


	5 | CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENTS
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	DATA AVAILABILITY STATEMENT

	ORCID
	REFERENCES
	SUPPORTING INFORMATION


