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1 | INTRODUCTION

For any algebra A over a commutative ring k, we consider the Lie algebra of k-linear derivations
on A. The subspace of integrable derivations was introduced by Hasse and Schmidt in [12], and has
since been important in geometry and commutative algebra, especially in regards to deformations,
jet spaces, and automorphism groups [21, 22, 29].

More recently, integrable derivations have been used as source of invariants in representation
theory [8, 18]. The first Hochschild cohomology Lie algebra HH'(A), consisting of all derivations
modulo inner derivations, is a critically important invariant, and the subspace HHilm(A) spanned
by integrable derivations is the main object of interest in this work. This class of derivations is
known to have good invariance properties: Farkas, Geiss and Marcos prove that HHilm(A) is an
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invariant under Morita equivalences [8], and Linckelmann proves, for self-injective algebras, that
HHilm(A) is an invariant under stable equivalences of Morita type [18].

In the first part of this work, we survey some results of Gerstenhaber on integrable derivations
[10], which seem not to be well-known. Building on this, we prove that for Artin algebras, the
integrable derivations form a (restricted) Lie algebra.

Theorem A (See Corollary 1). If A is an Artin algebra over a commutative Artinian ring k, then
HHilm(A) is a Lie subalgebra of HH'(A). If moreover A contains a field of characteristic p, then
HH_ (A) is a restricted Lie subalgebra of HH'(A).

We also show that this (restricted) Lie algebra is invariant under derived equivalences and stable
equivalences of Morita type, extending the work of Farkas, Geiss and Marcos [8] and Linckelmann
[18].

Theorem B (See Theorem 2). Let A and B be two finite-dimensional split algebras over a field k.
Assume either that A and B are derived equivalent, or that A and B are self-injective and stably
equivalent of Morita type. Then HHilm(A) = HHilm(B) as Lie algebras, and this is an isomorphism
of restricted Lie algebras if k is of positive characteristic.

In the second part of this work, we answer several questions posed in [8] and [17] about inte-
grable derivations on group algebras. We show by example that the Lie algebra of integrable
derivations is not always solvable for every block of a finite group, proving a negative answer
to [17, Question 8.2].

Theorem C (See Theorem 4). Let k be a field of characteristic p > 3. Let P be an elementary abelian
p-group of rank greater than 1. Then HHiln ((kP) is not solvable.

By [8, Theorem 2.2], the group algebra of a finite p-group, over a field of characteristic p, always
admits a non-integrable derivation. The authors of this work ask whether this is true of all finite
groups with order divisible by p, and our next example shows that this is not the case.

Theorem D (See Theorem 8). Let k a field of characteristic p > 3 and let kS, be the group algebra
of the symmetric group on p letters. Then dim,(HH' (kS ,)) = 1 and HH' (kS ) = HHilnt(kSp).

Along the way, in Theorem 5, we give a formula for the dimension of HH!(kS,) for any n.
The same formula has also been obtained independently in the recent work [4]. The first part of
Theorem 8, that dim; (HH' (kS p)) =1, is an immediate consequence.

Outline

The sections of this paper can be read independently. In Section 2, we survey parts of the work
of Gerstenhaber on integrable derivations and note some consequences. Here we prove Theo-
rems A and B. The main result of Section 3 is Theorem C that provides the first counter-example.
In Section 4, we give a formula for the dimension of HH!(kS, ). The main result in Section 5
is Theorem D that provides the second counter-example. The Appendix contains a dictionary
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explaining the more general terminology used by Gerstenhaber in [10], and how it relates to the
setting considered here.

2 | INTEGRABLE DERIVATIONS

Let A be an algebra over a commutative ring k, and let Der(A) denote the space of k-linear deriva-
tions on A. Gerstenhaber investigated integral derivations in [10], but as his work was written
in substantial generality, in the language of ‘composition complexes’, many of its results are not
well-known. In this section, we present some of the results of [10] in more familiar terms (but
in particular Lemma 1 and its consequences are new to this work). The main result of this sec-
tion is that if A is an Artin algebra, the class of integrable derivations forms a Lie subalgebra
of Der(A).

To define integrable derivations we consider the k-algebras A[¢]/(t") and their limit A [¢]]. We
denote by Aut, (A[¢]/(t")) the group of k[t]/(¢")-algebra automorphisms « that yield the identity
modulo t. Any such automorphism can be expanded

a=id+oyt +ayt® + - +a,_ "t

for some k-linear maps «; : A — A. The first of these, a,, is a derivation on A, and in general
the maps satisfy o;(xy) = xa;(y) + ot; ()a;_; (¥) + -+ + a;(x)y for all i. A sequence «ay, ..., 0,
of linear endomorphisms of A satisfying these identities is called a Hasse-Schmidt derivation of
order n. One similarly interprets elements &« € Aut, (A [t])) as infinite sequences «;, @,, ... of linear
endomorphisms of A, and these are called Hasse-Schmidt derivations of infinite order. These were
studied in [12] under the name higher derivation.

Extending this slightly, we set Aut,,(A[t]/(¢t")) to be the group of k[t]/(¢")-algebra automor-
phisms o that yield the identity modulo t™. Any such automorphism can be expanded

o = id +0, 1" + oty T+ e oo, 1T

forsomea; : A — A.Thefirst non-vanishing coefficient «,, is always a derivation on A. The same
goes for the power series algebra A [|t] and the corresponding automorphisms in Aut,,,(A[t]).

Definition 1 [10, 12, 26]. A k-linear derivation D on A is called [m, n)-integrable if there is an
automorphism a € Aut,,(A[t]/(t")) such that D = «,,,. We say that D is [m, oo)-integrable if it is
[m, n)-integrable for all n. And we say that D is [m, co]-integrable if there is an automorphism
a € Aut,,(A[t]) such that D = «,,,. We will write

Dery,, ,)(A) = { k-linear [m, n)-integrable derivations on A },
and we will use similar notation for [m, c0)- and [m, co]-integrable derivations.
The derivations that are [1, co]-integrable are simply known as integrable, and we will also use

the notation Der;, (A) = Dery o(A).

Remark 1. The [m,n)-integrable derivations are closed under addition and subtraction,
that is, Der[,, ,)(A) is an additive subgroup of Der(A). If a,a’ € Aut,, (A[t]/(t")) then the



2620 | BRIGGS and RUBIO Y DEGRASSI

automorphisms
aa’ =id+(a, +a "+ and a' =id—a, 1" + -

are witness to fact that a,, + «/, and —a,, are [m, n)-integrable. The same argument holds for
[m, 00)- and [m, co]-integrable derivations.

In the case m = 1, Der|; ,)(A) is moreover a submodule of Der(A) over Z(A), the centre of A.
This can be seen from the automorphism

id+za;t + z%a,t* + -
that exists for any a € Aut,(A[t]/(t")) and z € Z(A).

Remark 2. All inner derivations are integrable. Indeed if a € A, then 1 + at is a unit in A [t]] and
the automorphism ad(1 + at) = id +[a, —]t + --- shows that [a, —] is integrable.

Remark 3. Integrable derivations preserve the Jacobson radical (see [8, Corollary 2.1]). However,
the converse is not true. Let k be a field of characteristic 2 and A = k[x, y]/(x?, y?). Consider the
derivation yd, where d, is the unique k-linear derivation such that d,(x) = 1and d,(y) = 0. Then
yd, isnot an integrable derivation but it preserves the Jacobson radical. Indeed, assume that yd, is
integrable. Then there exists an automorphism a such that 0 = a(x?) = a(x)? = y*t> + --- which
is a contradiction.

Definition 2. The first Hochschild cohomology of A over k is the quotient HH'(A) of Der(A) by
the space of inner derivations. We denote by HHilm(A) the image of Der;,(A) in HH!(A). By the
previous two remarks, a class in Hochschild cohomology is integrable if and only if all or any one
of its representatives is integrable.

Remark 4. 1If D and D’ are derivations that are [m, n)-integrable and [m’, n)-integrable, respec-
tively, then the commutator [D, D’]is an [m + m/, n)-integrable derivation. Indeed, a computation
shows that

. !
=id+(apal, —al a0

ad’a "
for a € Aut,, (A[t]/(t")) and o’ € Aut,, (A[t]/(t™)).

If A contains a field of characteristic p, then the pth power of any derivation is again a deriva-
tion, and together with the commutator bracket this gives Der(A) the structure of a restricted Lie
algebra. If D is an [m, n)-integrable derivation then DP? is a [ pm, n)-integrable derivation. Indeed,
this time one computes

af =id +ab tP™ + ...
for o € Aut,,(A[t]/(t")). This structure is studied in [26].

This remark shows that [m, n)-integrable derivations arise even if one is interested only in
[1, n)-integrable derivations.
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Gerstenhaber works locally in [10], assuming that k is an algebra over Z , (the integers localised
at p) for some prime p. Using the next lemma, in which we write k, =k ® , Z,and A, = A ®;,
Z p,, we can readily reduce to this case. Readers interested in algebras over local rings or fields can
disregard the lemma.

Lemma 1. Let A be a Noether algebra over a commutative Noetherian ring k. A k-linear derivation
on A is [m, n)-integrable if and only if for all primes p, the induced k ,-linear derivation on A, is
[m, n)-integrable.

Proof. The forward implication is clear. Conversely, assume that for each prime p there is an
automorphism a = id +a,,,t"™ + - + o, _1 """ in Aut,, (A, [t]/(t")) such that &, = D.

Consider the element (a;) € @l":_,i Homkp (Ap, Ap). As k is Noetherian and A is finitely gen-
erated as a k-module, @)~} Homy, (A,,A)) = @ Homy (A, A)),, and therefore there is a
sequence (f5;) € @g}l Hom, (A, A) and an integer u coprime to p such that (a;) = (%) in
@:’:_nlq Homkp (Ap, Ap), and we can assume that 8, = uD. There is then an equality

id+um o, t" + -+ u" o, 7 = id U™ B, e U B, ]
in Aut,, (Ap[t]/(¢")). In particular, for each m < i < n the Hasse-Schmidt identity

U Bi(xy) — u T Bi(v) — U T (B () = e — U T Bi(x)y = 0

holds, when interpreted in Homkp (Ap ®kp Ap,Ap); here o; = 5; = 0if 0 < i < m, by convention.
As HomkP(Ap B, A, A,) = Homy (A ® A, A), we may find an integer v; coprime to p such
that

v [ Bi(xy) = U T X () = U B (OB () = - = u T (Y] = 0
holds in Hom (A ®; A, A). Nowsetv = v,, --- U,,_;. It follows that the sequence
(vmum—lﬁm’ s Un—lun—Zﬁn_l)

satisfies the Hasse-Schmidt identities in Hom; (A ®; A, A) for all m <i < n, and therefore
defines an element of Aut,,(A[t]/(t")). Now set

yp =id +0MmIB M 4 028, " and w, =v"u"
(up until now our notation has not indicated the dependence on p). Note that w,D = vt
by construction.
The ideal (w, : pisa prime) C Z contains for each prime p an element coprime to p, and it
is consequently the unit ideal. This means there are primes p,, ..., p; and integers a, ..., a; such

thata,w, + -+ aq;w, = 1. The automorphism

p Pi

Y =7y ¥y € Aut,(Alt]/(")
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has as its t" coefficient aw, D+ - +aiwpiD = D. Therefore, y shows that D is [m,n)-
integrable. Ol

Certainly all [m, co]-integrable derivations are [m, oo )-integrable. It seems to be open in gen-
eral whether the inclusion Der,, .,)(4) C Der|,, ,(4) can be strict. However, the next result,
essentially due to Gerstenhaber, shows that equality holds for Artin algebras.

Lemma 2. Let A be an Artin algebra over a commutative Artinian ring k. A k-linear derivation on
A is [1, co)-integrable if and only if it is [1, oo |-integrable.

Proof. By Lemma 1, we may assume that k is an algebra over Z ,, so that the results of [10] apply.
As Der(A) is an Artinian k-module, the sequence of submodules Dery; ,,)(A) must eventually sta-
bilise, and so there is an n such that Der|; ,)(A) = Der[; )(A). The proof of [10, Theorem 5] shows
that this implies Dery; ,)(A) = Dery; ,,(A) (the statement of [10, Theorem 5] is the seemingly
weaker equality Derj; .y (A) = [J,,, Derjy, o1(4)). O

It is easy to show that a [1, co]-integrable derivation is [m, oo ]-integrable for every m (see [27,
Theorem 3.6.6]). The next result of Gerstenhaber’s shows that the converse is also true.

Theorem 1. Let A be an Artin algebra over a commutative Artinian ring k and let m € N. A k-linear
derivation on A is [1, oo ]-integrable if and only it is [m, co]-integrable.

Proof. By Lemma 1, we may assume that k is an algebra over Z,,. Let D be an [m, co]-integrable
derivation on A. By Lemma 2, there is an n such that Dery; ,)(A) = Der; ,1(A), so it suffices to
show that D is [1, n)-integrable. There is an automorphism
a = id +Dt"™ + o, 1" + o 4y, £
in Aut,,,(A[t]/(t™"*+1)), and applying [10, Theorem 3] to this yields an automorphism
I m ! 2m !/ smn
o =id+Dt" + o, "+t t
involving only powers of t™. Replacing t™ with ¢ finishes the proof. O

At this point we can deduce that Der;,(A) = Der|; ,,(A) forms a Lie algebra; this was originally
proven by Gerstenhaber [10, Corollary 1], assuming that k = k, for some prime p.

Corollary 1. If A is an Artin algebra over a commutative Artinian ring k, then Der;,(A) is a Lie
subalgebra of Der(A), and if moreover A contains a field of characteristic p, then Der;,(A) is a
restricted Lie subalgebra of Der(A). By the same token, HHilnt(A) is a (restricted) Lie subalgebra of
HH!(A).

Proof. This follows from Remark 4 and Theorem 1. O

The class of integrable derivations is known to have good invariance properties, and we may
use Corollary 1 to upgrade these invariance results to statements about Lie algebras. The next
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result builds on the work of Rouquier, Huisgen-Zimmermann, Saorin, Keller, and Linckelmann.
When k has characteristic zero all derivations are integrable, so that HHilm(A) = HH'(A), and the
theorem is well-known in this case.

Theorem 2. Let A and B two finite-dimensional split algebras over a field k. Assume either that A
and B are derived equivalent, or that A and B are self-injective and stably equivalent of Morita type.
Then HHilm(A) = HHilm(B) as Lie algebras, and this is an isomorphism of restricted Lie algebras if
k is of positive characteristic.

Proof. Assume first that A and B are derived equivalent. The identity component Out(A)° of
the group scheme of outer automorphisms of A is a derived invariant by [13, 25]. Therefore, the
set

Outl (A [[t]] )o = {f € Homk—scheme(spec(k [[t]] )’ OUt(A)o) . f(O) = 1}

is a derived invariant as well, and we have Out, (A [[t]))° = Out, (B[])°.

AsHH(A) = Exti‘oIp ® (A, A) the first Hochschild cohomology is also a derived invariant, and
we have HH'(A) = HH!(B).

Both isomorphisms above are realised by tensoring with a complex of A-B bimodules [23], and
it follows that the map below is a derived invariant:

T Outl(A [[t]])o —_— HHl(A) (C( =id +ayt + (x2[2 + ) - a.

Therefore, the image HHilm(A) = im(7) is a derived invariant as well (cf. the proof of [18, Theorem
5.1] for a similar argument). The fact that the isomorphism HHilm(A) = HHilm(B) is one of Lie
algebras now follows from Corollary 1 and [16, section 4]. In positive characteristic this respects
the p-power structure by [15, (3.2)] combined with [5, Theorem 2].

For the case of self-injective algebras that are stably equivalent of Morita type, there is by
[18, Theorem 5.1] an isomorphism HHilm(A) & HHilm(B) induced by a transfer map, and this is
an isomorphism of restricted Lie algebras by Corollary 1 together with [26, Theorem 1.1] and
[5, Theorem 1]. O

2.1 | Obstructions to integrability
The results of [10] are proven using an obstruction theory for integrability, which we explain now.
For any automorphism o« = id +oyt! + - + a,,_; "' in Aut,(A[t]/(¢")) we define a k-linear

map obs(x) : A ® A — A by the rule

obs(@)(x ® y) = ot ()1 () + - + &y (X)ot; ().

Viewed as a degree 2 element in the Hochschild cochain complex C*(A), one checks that 655(05)
is a cycle, and therefore defines a cohomology class

obs(a) = [655(0()] in HH?(A).
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To extend « to an element of Aut, (A[t]/(t"*!)), we must find a k-linear endomorphism «,, : A —
A satisfying the Hasse-Schmidt identity

ay(xy) = X, (y) + &y ()t (V) + -+ + @, (X)y.
This may be rearranged and formulated using the Hochschild cochain complex:
d(ar,) = obs(ar) in C2(A).

We obtain the statement of [10, Proposition 5]: an automorphism o € Aut,(A[t]/(t")) can be
extended to Aut, (A[t]/(t"1)) if and only if obs(«) = 0.

For any [m, n)-integrable derivation D, there is by definition an automorphism o = id +c,,,t" +
- a,_1t"1in Aut,,(A[t]/(t")) with a,, = D. The above result shows that if obs(a) = 0, then
D is [m,n + 1)-integrable. We caution that D being [m, n + 1)-integrable does not necessarily
imply that obs(a) = 0, only that some automorphism in Aut,,(A[t]/(t")) extending id +Dt™
is unobstructed.

The obstruction order of an automorphism a in Aut,(A[t]/(t))) is n if it admits an exten-
sion to an automorphism in Aut,(A[¢]/(¢")), but admits no extension to an automorphism in
Aut, (A[t] /"))

Gerstenhaber proves the following two facts about the above obstruction theory.

Theorem 3 [10, Theorem 1, Theorem 2, and Corollary 1]. Let A be an algebra over a commutative
ring k.

(1) Ifa,a’ € Auty(A[t]/(t")) then obs(aa’) = obs(a) + obs(a’) in HH%(A).
(2) Assume k =k, for some prime p. If D is a derivation then the obstruction order of id +Dt is (if
finite) of the form p€. Moreover, in this case the obstruction order of id +Dt™ is mp©.

Because of (2), a derivation D is said to have obstruction exponent e if id +Dt has obstruction
order p°.

To give an example of how the obstruction theory is applied we use it to give Gerstenhaber’s
beautiful proof of the analogue of Corollary 1 for finitely integrable derivations (which are
especially connected with jet spaces).

Corollary 2 [10]. If A is a Noether algebra over a commutative Noetherian ring k, then Dery; ,,(A)
is a Lie subalgebra of Der(A), and if moreover A contains a field of characteristic p, then Derpy ,y(A)
is a restricted Lie subalgebra of Der(A).

Proof. By Lemma 1, we may assume that k = k,, so that Theorem 3 part (2) applies and
Derpy ,)(A) = Derll,p,;)(A) where p° is the smallest power of p that is at least n. Therefore, we
may assume that n = p°.

Take D,D’ € Derp; ,)(A) and suppose that D=q; and D'=a; for two a,a’€
Aut, (A[t]/(tP")). As in Remark 4 the automorphism aa’aa’~! shows that [D,D’] is [2, p®)-
integrable. However, by Theorem 3 part (1) we have obs(a’a~'a’~!) = 0, therefore [D,D’] is
in fact [2, p® + 1)-integrable. By Theorem 3 part (2), it must therefore be [2, 2p€)-integrable, as
2p°~! < p® + 1. By [10, Theorem 3], this implies that [D, D’] is [1, p®)-integrable.
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A similar argument yields the second claim, as obs(a?) = p obs(a) = 0 using Theorem 3 part

M. O

Remark 5. Linckelmann considers a more general notion of integrable derivation in [18], replacing
k(t] with any discrete valuation ring. It would be interesting to develop the obstruction theory
using this definition, and to see whether the results above extend to this context as well.

3 | COUNTER-EXAMPLES TO SOLVABILITY
Notation

For the next three sections, we denote by S,, the symmetric group on n letters, by A, the alternating
group and by C,, the cyclic group of order n. When dealing with groups we use the superscript
notation for the n-fold direct product and we denote by H X N the semidirect product of N and
H. We denote by k a field and by k* its additive group.

In this section, we give a counter-example concerning the solvability of integrable derivations.

Question 1 [17, Question 8.2]. When is the Lie algebra HHilm(A) solvable?

In the same article, Linckelmann suggests that, based on examples, HHilm(A) should be a solv-
able Lie algebra if A is a block of a finite group algebra kG over an algebraically closed field of
prime characteristic. We provide a negative answer to this suggestion by considering the group
algebra kP of an elementary abelian p-group P of rank greater than 1. In this case the group algebra
kP coincides with its unique block.

Theorem 4. Let k be a field of characteristic p > 3. Let P be an elementary abelian p-group of rank
greater than 1. Then HHilm(kP) is not solvable.

Proof. Let P be an elementary abelian p-group of rank n > 1. Note that A :=kP =
k[xy, ... ,xn]/(xf, ., XP). For each a = (ay,a,,...,a,) € N", set x* = xflxgz o xp" and set J =
{(ay, 05, ..., ) EN"| 0 < o; < p}. A basis of A is given by x%, where a € J.

Then HH'(A) is a Jacobson-Witt algebra [14] and it admits a basis {x#d, }' | where 9, is the
unique k-linear derivation such that d, (x;) = §; ; where §; ; denotes the Kronecker symbol.

Note that HHilm(A) has the same k-basis of HH'(A) excluding the set of derivations {6xi }?:1. To
prove that x,.axi ,for1 < i < n,isanintegrable derivation we use the automorphism o = id +xl-6xit
€ Aut,(A[t]); it is easy to check that this is a well-defined automorphism. As the space of inte-
grable derivations is a module over A = Z(A), the rest of the derivations in the basis, aside from
{6xi}?=1, are integrable as well. The derivations 6xi for 1 < i < n (and any non-trivial linear com-
bination of them) do not preserve the Jacobson radical, hence they are not integrable (see [8,
Corollary 2.1]).

Let f,e, b be a basis of 3[,(k) satistying [e,f] = b, [h, f] = —2f, and [B, e] = 2e. The derived
subalgebra of HHilm(A) contains the Lie algebra 8l,(k) via the map sending | to x,0, =
[X20,,, %10, ], B to x,0, — X0, =[x,0,,,X,0, |, and e to x;d,, =[x,0, ,x,0, ] Note that
81,(k) in characteristic different from 2 is not solvable. The statement follows. O
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4 | THE FIRST HOCHSCHILD COHOMOLOGY OF THE SYMMETRIC
GROUP

In this section, we give a formula for the dimension of HH! (kS,,). We start by recalling some basic
facts on the representation theory of the symmetric group.

Definition 3. A partition of a non-negative integer  is a decreasing sequence of positive integers
Ay > A, > ... > A, > 0 and positive integers ey, ..., e; such that such that e;4; + --- + e A = n. We
use the notation A = (/1?1, ,/1?5), and we say that A, is the ith part of A, and e; is the multiplicity
of 1;. We denote by P(n) the set of all partitions of n.

We recall that the conjugacy classes of S,, are in bijection with the partitions of n, with the
conjugacy class of an element x corresponding to the partition 4 determined by the cycle type of
x. Thatis, if x = ¢ ..., -y - €5 in disjoint cycle notation (including cycles of length one),
where each ¢; ; is a cycle of length 4;, then 4 = (/1‘131 s AL,

We begin by computing HH!(kS,,) using the centraliser decomposition of Hochschild cohomol-
ogy. We note that as S,,/A,, is a trivial group when n = 1 and a cyclic group of order 2 otherwise,
the dimensions of the vector spaces below depend on whether or not k has characteristic 2.

Theorem 5. Let k a field of characteristic p and let S, the symmetric group on n letters. Then we
have the following decomposition:

HH'(kS,) = P Hom(H(C/li X (S, /Ag)): k+>.

A€P(n) i=1

Proof. Using the decomposition of HH!(kS,,) into the direct sum of the first group cohomology
of centraliser subgroups we have:

HH'(kS,) = @ H'(Cs,(x).k)= @ Hom(Cs, (x),k"),

AeP(n) AEP(n)

where x is a representative element in each conjugacy class of kS,  parameterised by 1. The first
step is to study the centraliser Cg (x). As consequence of the fact that conjugation permutes cycles
of the same length we have that Cg (x) = I, c 2, ¢ Se, where 2 denotes the wreath product of C;,
by S, In fact, there are two groups that sit inside Cg_ (x) and that generate Cs, (x). The first one is
E :=8, x - XS5, and the second is [];_, lel, It is easy to check that Cg (x) = Hle(Ci’; X S,.)
where S, acts on the direct product C;‘ by permutation.

The next step is to study the abelianisation of Cs, (x). Note that the derived subgroup of Cy ()
is given by

N

H[c,ll_ 2S,,C;. 1S, ]

i=1

In general, the derived subgroup of a semi-direct product N X H is equal to ([N, N][N,H]) X
[H,H]. In our case H = S, and N = Cj‘ So, [Sei,Sei] = A, and [N,N] = 1. It is easy to check
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that [Cflf, S,.] is isomorphic to Cif_l. Hence,
1 L

[C), 28, Cy 28, 1= C5!

n A

Consequently the abelianisation of Cs, (x) is isomorphic to

N
[]ccs, x5, /A
i=1

The statement follows. [l

Lemma 3. Let p be a prime, and n a non-negative integer. The number of parts of length divisible
by p in all partitions of n, counted without multiplicity, is equal to the number of parts of length p in
all partitions of n, counted with multiplicity.

Proof. Using the notation 1 = (Ail, ,/1?5) for a partition of n, we consider the set S; of pairs
{(4,e) with some 4; = pand 1 < e < ¢;}, and the set S, of pairs {(1,4;) with p|4,;}. We define a
function S, — S, by the rule (1,e) » (1, ep), where 1’ = (1%, ..., (ep)®, ..., p~¢, ... ,A) and
where ¢/ = e; +1if 1; = ep was already a part of 4, or ¢’ = 1 if not (that is, take e parts of size
p and make them one part of size ep). One can define an inverse S, — S; that takes (1, 4;) to
(A',e = 4;/p), where ' = (/lil, ,/ll.e"_l, e UL ,/1?), where u = e; if p = 1; was already a
part of A, otherwise u = 0 (that is, take one part of size ep and make it e parts of size p). As
|S;| is the number of parts of length p in all partitions of n, and |S,| is the number of parts of
length divisible by p in all partitions of n (without multiplicity), the lemma is established by these

inverse bijections. O

Theorem 6. If the characteristic of the field k is different from 2, then

HH!(kS,,) = @ Hom(HCﬂi,k‘L).

A€eP(n) plA;

Therefore, dim, (HH'(kS,))) is equal to the total number of parts, counted without multiplicity,
divisible by p in all partitions of n. It has generating series

1
Q-

> dimmy (HEH! (5, )" = - iptp I

n=0 nz1

Proof. In Theorem 5, the term S, /A, will not contribute because the characteristic of the field is
greater than 2 and S, /Aei is either trivial or isomorphic to C,. This yields the first statement.
We also learn that dim;, (HH!(kS,,)) is equal to the total number of parts divisible by p in all
partitions of n, counted without multiplicity. By Lemma 3, this the number of times p occurs as a
partin a partition of n. The generating series for this sequence can be found in [24]. More precisely,
we can associate to any sequence (q;) the function on partitions L(1) := Y a;x;, where x; is the
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number of parts of size i in A4; then [24, eq. 23, p. 185] reads

n 1
Zt Z L(/l) Z —th >J;Il(1_tn)‘

nz0 AeP(n) (n>1

If we take a,=1 and a; = 0 for i # p then we obtain the desired series. O

Theorem 7. Ifk is a field of characteristic 2 then

Y dimy (HH'(kS,)i" = t2 H

n=0 n>1
Proof. By Theorem 5,

HH'(kS,) = P Hom(HCli,kJr)@Hom(HCz,k+>.

A€eP(n) 2|14; e;>2

So, the computation of dim, (HH'(kS,,)) splits into two parts. For the first summand we count the
number of parts in partitions of » that are divisible by 2; as in the proof of Theorem 6 this is given
by the generating series

For the second summand we must count the number of parts with multiplicity 2 or more in all
partitions of n. In the usual formula for the total number of partitions

Z _H(l—t")

n=0,AeP(n) nx1

(cf. [24]), the factor 1/(1 — t!) = (1 + ' 4+ t* + ---) corresponds to parts of length i, with a term ¢
contributing 1 to the coefficient of 1 if A contains a part of length i with multiplicity e. To modify
this formula to count partitions with a chosen part of multiplicity e > 2, we simply replace this
factor with t% /(1 — t) = (t? 4 t3 + t* + ...). In total we get

i 1 _
Z<t2H(1—t”)>_ 1- t2H 1—t”)

i>1 nx1 nx1

The statement of the theorem follows. O

An element x in a finite group is p-regular if its order is coprime to p, and otherwise it is called
p-singular. In the case of S,,, the p-singular elements are those containing at least one cycle of
length divisible by p. In other words, the corresponding partition contains a part divisible by p.
We write SP(n) for the set of all partitions of n corresponding to conjugacy classes of p-singular
elements.
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Corollary 3. Ifk is a field of characteristic p then dim, (HH'(kS,)) > |SP(n)|.
Finally, in the next section we will need the following fact.
Corollary 4. Ifk is a field of characteristic p > 2 then dimk(HHl(kSp)) =1

Proof. By Theorem 5, we just need to count the number of parts of length p in all partitions of p,
and there is clearly just one. [l

Remark 6. Recently, the authors of [4] have also computed dim,(HH!(kS,)) in terms of
generating functions.

5 | COUNTER-EXAMPLES TO THE EXISTENCE OF
NON-INTEGRABLE DERIVATIONS

In this section, we answer a question considered by Farkas, Geiss and Marcos.

Question 2 [8]. Let G be a finite group and let k be a field such that char(k) divides the order of
G, must kG admit a non-integrable derivation?

As all inner derivations are integrable, a necessary condition that should hold in order to state
the previous question is the following: let G be a finite group and assume the characteristic of
the field k divides the order of G. Then HH'(kG) # 0. This has been shown in [9] using the
classification of finite simple groups.

The authors state their question in terms of the automorphism group scheme, writing that It
is tempting to conjecture that kG does not have a smooth automorphism group scheme [8, below
Theorem 2.2]. Their question is equivalent to Question 2 by [8, Theorem 1.2]: the automorphism
group scheme of a finite-dimensional algebra A is smooth if and only if every derivation on A
is integrable.

In the following theorem, we exhibit a family of counter-examples for any algebraically closed
field of prime characteristic greater than 2.

Theorem 8. Let k a field of characteristic p > 3 and let kS, be the group algebra of the symmetric
group on p letters. Then HH'(kS ») has a k-basis given by a single integrable derivation.

The first part of Theorem 8 will follow from Corollary 4. To prove that the only outer derivation
in HH!(kS ) isintegrable, we will use the fact that the only non-semisimple block of kS , is derived
equivalent to a symmetric Nakayama algebra.

We recall some basic results about blocks of symmetric groups.

A node (i, j) in the Young diagram [4] of A forms part of the rim if (i + 1, j + 1) & [1]. A p-
hook in 4 is a connected part of the rim of [1] consisting of exactly p nodes, whose removal leaves
the Young diagram a partition. The p-core of 4, usually denoted by y (1), is the partition obtained
by repeatedly removing all p-hooks from A. The number of p-hooks we remove is the p-weight
of A, usually denoted by w. It is easy to note that the p-core of a partition is well-defined, that
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is, is independent of the way in which we remove the p-hooks. The blocks of group algebras of
symmetric groups are determined by p-cores and weights:

Theorem 9 (Nakayama Conjecture). The blocks of the symmetric group S, are labelled by pairs
(7, w), wherey is a p-core and w is the associated p-weight such thatn = |y| + pw. Hence, the Specht
module S* lies in the block labelled by (v, w) of kS,, if and only if A has p-core y and weight w.

Note that the statement above holds also for the simple modules, see the paragraph after [7,
Theorem 8.3.1]. It is easy to see that blocks of weight 0 are matrix algebras and blocks of weight 1
have cyclic defect group.

Background in Brauer graph algebras can be found, for example, in [28]. The details about the
importance of Brauer tree algebras in modular representation can be found in [3]. For further
background in the modular representation theory of finite groups, see [19] and [20].

A particularly nice class of self-injective algebras are the self-injective Nakayama algebras. For
background on Nakayama algebras, see, for example, [2, Chapter V] and [1, Chapter IV.2]. The
symmetric Nakayama algebra having e simple modules and Loewy length em + 1 is a Brauer tree
algebra with respect to the Brauer star with e vertices and with exceptional multiplicity em. It is
worth noting that not every Brauer tree algebra is isomorphic is a symmetric Nakayama algebra,
however, a result due to Rickard [23] shows that every Brauer tree algebra is derived equivalent
to a symmetric Nakayama algebra, see also [30, Theorem 6.10.1].

Theorem 10. Let k be a field and let A be a Brauer tree algebra associated to a Brauer tree with e
edges and with exceptional multiplicity m. Then A is derived equivalent to the symmetric Nakayama
algebra N*.

We have all the ingredients in hand needed to prove Theorem 8:

Proof of Theorem 8. The principal block of kS ,, denoted by B, has cyclic defect C}, and the number
of simple modules of B is p — 1. This follows by Nakayama Conjecture because there are p — 1
partitions having the same p-core of the partition representing the trivial module. The weight of
By is 1 hence Bj, has cyclic defect C ,« for some d. In this case B, is a Brauer tree algebra for a
Brauer tree with p — 1 edges and exceptional multiplicity 1, see after [7, Example 5.1.4]. Hence, B,
has cyclic defect C,. By Theorem 10 we have that By, is derived equivalent to the Nakayama algebra

N 5 :i. The Gabriel quiver associated with N' ﬁ j has a set of vertices given by {e;}; !

_, andithasp—1

arrows {ai}f):_ll such that t(a;) = s(a;,,) = e;,, fori# p—1and t(ap_l) = s(a;). The rest of the
blocks of kS, are matrix algebras because they have weight 0. Therefore, HH!(kS DE HHY(N ﬁ j ),

1

1) by the derived invariance of

and this restricts to an isomorphism HH. (kS,) = HHilm(Ni -
integrable derivations.

The first Betti number B(Q) of the underying graph of Nﬁ j is 1. This is because the Gabriel
quiver is connected, the number of edgesis p — 1, the number of vertices is p — 1 and consequently
B =(p-1)—-(p—-1)+1=1.As Nﬁj is monomial, by [6, Theorem C] we have that the max-
imal total rank is 1 and it is easy to see that the map f sending a; to a; and sending any other

arrow to zero is a diagonal outer derivation. From Corollary 4, we have dim, (HH' (kS b ) =1.We
deduce that there are no other outer derivations. Recall that N 5 :i is the bound quiver algebra

kCp,_1/Jp-1,p—1 Where J

p—1,p—1 is the ideal in the path algebra kC,,_, generated by the composi-
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tion of p consecutive arrows. Let p; = (@, ... a,_1a; = 0). Then any other relation that generates
theideal J,_, ,_, is given by the path that starts and ends at q; for every 2 < i < n. We construct
the automorphism a = id +ft € Aut(A[¢t]]). This k [t]]-automorphism preserves the relations. We
check for p; because for the rest of generating relations the proof is similar. We have

a(ay ...ap_qa;) = alay) .. ala,_ala;) = (a; + a;t)a, ... a,_i(a; + a;t)

= (al e ap_l + al .. a _1t)(a1 + (11[) = 0.

p

Therefore, f is integrable and the statement follows. O

Remark 7. Note that in order to construct the previous counter-example we have considered a
Gabriel quiver without loops. In [8], the authors consider p-groups, which are local algebras,
hence all the arrows are loops.

APPENDIX: GERSTENHABER’S COMPOSITION COMPLEXES

In Section 2, we used results of Gerstenhaber [10] to establish facts about the Lie algebra of integral
derivations on an algebra. In this Appendix, we survey the more general definitions in [10] and
compare them with the context of Section 2.

Definition A.1[10]. Let k be a commutative ring. A composition complex C over k is a sequence
C%,C1, ... of k-modules, and for each m,n and 0 < i < m — 1 a bilinear composition operation

C"xC" = C™ L (f,9) = foug,
as well as for each m, n a bilinear cup product operation

C"XC" =™ (f,g) = f — g,
satisfying, for any f € C"*, g € C™ and h € C', the conditions

(foig)ojh = (fojh)oiri1h 1f0 <
foi(goj_ih) ifi <

and

(foh)—g  if0<i<
f—(go,_,h) ifm<gi<m+n-1

f— g)ojh = {

We further assume that the cup product of C is associative, and that there is unit element 1 € C!
such that loyf = fo;,1 = fforany f € C" and0<i<m—1.

The key example of a composition complex is the Hochschild cochain complex of a k-algebra
A:

C"(A) = Hom(A®",A) with fo,g= fo(1® ® ¢ ® 1®™I"1)
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for f € C" and g € C™, and with the usual cup product

(f ~ g)(xl ® ® xn+m) = f(xl ® o ® xn)g(xn+1 ® o ® xn+m)'

Other examples of composition complexes given in [10] are the singular cochain complex of a
topological space, and the cobar construction on a Hopf algebra. In general, one can work with
any composition complex mimicking constructions that are standard for the Hochschild cochain
complex, as the next definition shows.

Definition A.2 [10]. We provide a brief dictionary between the context of this paper and that of
composition complexes.

(1) For f € C™ and g € C™ we define the circle product and the bracket

m-—1

fog= Z(_l)i(n—l)foig, [fogl=fog-— (_1)(m—1)(n_1)gof

i=0

in C™*+"=1 These correspond to the usual circle product and Gerstenhaber bracket when C =
C*(A).

(2) We call m =1 — 1 € C? the multiplication element of C, in the case of the Hochschild
cochain complex this is the multiplication map A ® A — A. We then define a differential

on C by the rule d(f) = [m, f], and C becomes a complex C° i C! i C? i --- In particu-
lar, we obtain cohomology groups H!(C). When C = C*(A), these yield the usual Hochschild
differential and Hochschild cohomology groups HH'(A).

(3) A derivation in C is a degree one cycle D € Der(A) = Z!(C) = ker(C' — C?). An automor-
phism in C is an element a € C!, invertible with respect to the circle product, such that
aom = o — a. When C = C*(A), these correspond to derivations and automorphisms of the
k-algebra A.

(4) By base change, C gives rise to a composition complex C[t]] over the ring k[t]. A one-
parameter family of automorphisms in C is an automorphism in C[[t]], and we write
Aut, (C[t])) for the set of one-parameter families of automorphisms of the forma = 1 + ot +
a,t? + -+ A derivation D € Der(C) is called integrable if D = a; for some a € Aut,(C[t]).
One can similarly define [m, n)-integrable derivations for any m, n by considering automor-
phisms in C[t]/(t"). Once again, if C = C*(A) this yields the usual notion of integrable
derivation.

(5) Finally, ifa € Aut;(C[t]/(t")), the obstruction theory of Subsection 2.1 can be generalised by
setting obs(a) = [a; — a,_; + =+ + a,_; — a;] € HX(C).

With these definitions in place, the results stated in Section 2 all hold at the generality of
any composition complex. As Gerstenhaber was primarily concerned with automorphisms and
derivations, which can be understood from the first few degrees, the results of [10] are stated even
more generally for composition complexes truncated in degree 2. That is, k-modules C°, C!, C?
having the structure and properties of Definition A.1 to the extent that they are meaningful.

Remark A.1. In modern terminology, a composition complex is the same thing as a non-symmetric
operad with multiplication [11]. For example, the composition complex C*(A) is the endomor-
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phism operad of A. In [11], Gerstenhaber and Voronov explain how any non-symmetric operad
with multiplication inherits the structure of a B -algebra. This construction mirrors some of the
ideas from Definition A.2; in particular, they construct the bracket (1) and differential (2) exactly
as was done originally in [10]. Conversely there are many interesting examples of operads with
multiplication (for example, the Kontsevich operad used in [11]), and each can be considered as a
composition complex, which thereby obtains a notion of integrable derivation and an obstruction
theory as in Definition A.2.
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