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Abstract

Building on work of Gerstenhaber, we show that the

space of integrable derivations on an Artin algebra ý

forms a Lie algebra, and a restricted Lie algebra ifý con-

tains a field of characteristic ý. We deduce that the space

of integrable classes in HH1(ý) forms a (restricted) Lie

algebra that is invariant under derived equivalences, and

under stable equivalences of Morita type between self-

injective algebras. We also provide negative answers to

questions about integrable derivations posed by Linck-

elmann and by Farkas, Geiss and Marcos. Along the

way, we compute the first Hochschild cohomology of the

group algebra of any symmetric group.

MSC 2020

16E40, 20C05 (primary), 13N15, 16W25, 17B30, 20B30 (secondary).

1 INTRODUCTION

For any algebra ý over a commutative ring ý, we consider the Lie algebra of ý-linear derivations

oný. The subspace of integrable derivationswas introduced byHasse and Schmidt in [12], and has

since been important in geometry and commutative algebra, especially in regards to deformations,

jet spaces, and automorphism groups [21, 22, 29].

More recently, integrable derivations have been used as source of invariants in representation

theory [8, 18]. The first Hochschild cohomology Lie algebraHH1(ý), consisting of all derivations

modulo inner derivations, is a critically important invariant, and the subspaceHH1
int
(ý) spanned

by integrable derivations is the main object of interest in this work. This class of derivations is

known to have good invariance properties: Farkas, Geiss and Marcos prove that HH1
int
(ý) is an
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invariant under Morita equivalences [8], and Linckelmann proves, for self-injective algebras, that

HH1
int
(ý) is an invariant under stable equivalences of Morita type [18].

In the first part of this work, we survey some results of Gerstenhaber on integrable derivations

[10], which seem not to be well-known. Building on this, we prove that for Artin algebras, the

integrable derivations form a (restricted) Lie algebra.

Theorem A (See Corollary 1). If ý is an Artin algebra over a commutative Artinian ring ý, then

HH1
int
(ý) is a Lie subalgebra of HH1(ý). If moreover ý contains a field of characteristic ý, then

HH1
int
(ý) is a restricted Lie subalgebra ofHH1(ý).

Wealso show that this (restricted) Lie algebra is invariant under derived equivalences and stable

equivalences ofMorita type, extending thework of Farkas, Geiss andMarcos [8] and Linckelmann

[18].

Theorem B (See Theorem 2). Let ý and ý be two finite-dimensional split algebras over a field ý.

Assume either that ý and ý are derived equivalent, or that ý and ý are self-injective and stably

equivalent of Morita type. Then HH1
int
(ý) g HH1

int
(ý) as Lie algebras, and this is an isomorphism

of restricted Lie algebras if ý is of positive characteristic.

In the second part of this work, we answer several questions posed in [8] and [17] about inte-

grable derivations on group algebras. We show by example that the Lie algebra of integrable

derivations is not always solvable for every block of a finite group, proving a negative answer

to [17, Question 8.2].

TheoremC (See Theorem 4). Let ý be a field of characteristic ý ~ 3. Let ÿ be an elementary abelian

ý-group of rank greater than 1. ThenHH1
int
(ýÿ) is not solvable.

By [8, Theorem 2.2], the group algebra of a finite ý-group, over a field of characteristic ý, always

admits a non-integrable derivation. The authors of this work ask whether this is true of all finite

groups with order divisible by ý, and our next example shows that this is not the case.

Theorem D (See Theorem 8). Let ý a field of characteristic ý ~ 3 and let ýÿý be the group algebra

of the symmetric group on ý letters. Then dimý(HH
1(ýÿý)) = 1 andHH

1(ýÿý) = HH
1
int
(ýÿý).

Along the way, in Theorem 5, we give a formula for the dimension of HH1(ýÿÿ) for any ÿ.

The same formula has also been obtained independently in the recent work [4]. The first part of

Theorem 8, that dimý(HH
1(ýÿý)) = 1, is an immediate consequence.

Outline

The sections of this paper can be read independently. In Section 2, we survey parts of the work

of Gerstenhaber on integrable derivations and note some consequences. Here we prove Theo-

rems A and B. The main result of Section 3 is Theorem C that provides the first counter-example.

In Section 4, we give a formula for the dimension of HH1(ýÿÿ). The main result in Section 5

is Theorem D that provides the second counter-example. The Appendix contains a dictionary
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explaining the more general terminology used by Gerstenhaber in [10], and how it relates to the

setting considered here.

2 INTEGRABLE DERIVATIONS

Letý be an algebra over a commutative ring ý, and letDer(ý) denote the space of ý-linear deriva-

tions on ý. Gerstenhaber investigated integral derivations in [10], but as his work was written

in substantial generality, in the language of 8composition complexes9, many of its results are not

well-known. In this section, we present some of the results of [10] in more familiar terms (but

in particular Lemma 1 and its consequences are new to this work). The main result of this sec-

tion is that if ý is an Artin algebra, the class of integrable derivations forms a Lie subalgebra

of Der(ý).

To define integrable derivations we consider the ý-algebras ý[ý]7(ýÿ) and their limit ýçýè. We
denote by Aut1(ý[ý]7(ý

ÿ)) the group of ý[ý]7(ýÿ)-algebra automorphisms ÿ that yield the identity

modulo ý. Any such automorphism can be expanded

ÿ = id+ÿ1ý + ÿ2ý
2 +ï + ÿÿ21ý

ÿ21

for some ý-linear maps ÿÿ 6 ý ³ ý. The first of these, ÿ1, is a derivation on ý, and in general

the maps satisfy ÿÿ(ýÿ) = ýÿÿ(ÿ) + ÿ1(ý)ÿÿ21(ÿ) +ï + ÿÿ(ý)ÿ for all ÿ. A sequence ÿ1, & , ÿÿ21
of linear endomorphisms of ý satisfying these identities is called a Hasse3Schmidt derivation of

order ÿ. One similarly interprets elements ÿ * Aut1(ýçýè) as infinite sequences ÿ1, ÿ2, & of linear
endomorphisms ofý, and these are calledHasse3Schmidt derivations of infinite order. Thesewere

studied in [12] under the name higher derivation.

Extending this slightly, we set Autÿ(ý[ý]7(ý
ÿ)) to be the group of ý[ý]7(ýÿ)-algebra automor-

phisms ÿ that yield the identity modulo ýÿ. Any such automorphism can be expanded

ÿ = id+ÿÿý
ÿ + ÿÿ+1ý

ÿ+1 +ï + ÿÿ21ý
ÿ21

for some ÿÿ 6 ý ³ ý. The first non-vanishing coefficient ÿÿ is always a derivation oný. The same

goes for the power series algebra ýçýè and the corresponding automorphisms in Autÿ(ýçýè).

Definition 1 [10, 12, 26]. A ý-linear derivation ÿ on ý is called [ÿ, ÿ)-integrable if there is an

automorphism ÿ * Autÿ(ý[ý]7(ý
ÿ)) such that ÿ = ÿÿ. We say that ÿ is [ÿ,>)-integrable if it is

[ÿ, ÿ)-integrable for all ÿ. And we say that ÿ is [ÿ,>]-integrable if there is an automorphism

ÿ * Autÿ(ýçýè) such that ÿ = ÿÿ. We will write

Der[ÿ,ÿ)(ý) =
{
ý-linear [ÿ, ÿ)-integrable derivations on ý

}
,

and we will use similar notation for [ÿ,>)- and [ÿ,>]-integrable derivations.

The derivations that are [1,>]-integrable are simply known as integrable, and we will also use

the notation Derint(ý) = Der[1,>](ý).

Remark 1. The [ÿ, ÿ)-integrable derivations are closed under addition and subtraction,

that is, Der[ÿ,ÿ)(ý) is an additive subgroup of Der(ý). If ÿ, ÿ2 * Autÿ(ý[ý]7(ý
ÿ)) then the
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automorphisms

ÿÿ2 = id+(ÿÿ + ÿ
2
ÿ)ý

ÿ +ï and ÿ21 = id2ÿÿý
ÿ +ï

are witness to fact that ÿÿ + ÿ
2
ÿ and 2ÿÿ are [ÿ, ÿ)-integrable. The same argument holds for

[ÿ,>)- and [ÿ,>]-integrable derivations.

In the case ÿ = 1, Der[1,ÿ)(ý) is moreover a submodule of Der(ý) over Z(ý), the centre of ý.

This can be seen from the automorphism

id+ÿÿ1ý + ÿ
2ÿ2ý

2 +ï

that exists for any ÿ * Aut1(ý[ý]7(ý
ÿ)) and ÿ * Z(ý).

Remark 2. All inner derivations are integrable. Indeed if ÿ * ý, then 1 + ÿý is a unit in ýçýè and
the automorphism ad(1 + ÿý) = id+[ÿ, 2]ý +ï shows that [ÿ, 2] is integrable.

Remark 3. Integrable derivations preserve the Jacobson radical (see [8, Corollary 2.1]). However,

the converse is not true. Let ý be a field of characteristic 2 and ý = ý[ý, ÿ]7(ý2, ÿ3). Consider the

derivation ÿÿý where ÿý is the unique ý-linear derivation such that ÿý(ý) = 1 and ÿý(ÿ) = 0. Then

ÿÿý is not an integrable derivation but it preserves the Jacobson radical. Indeed, assume that ÿÿý is

integrable. Then there exists an automorphism ÿ such that 0 = ÿ(ý2) = ÿ(ý)2 = ÿ2ý2 +ïwhich

is a contradiction.

Definition 2. The first Hochschild cohomology of ý over ý is the quotientHH1(ý) of Der(ý) by

the space of inner derivations. We denote by HH1
int
(ý) the image of Derint(ý) in HH

1(ý). By the

previous two remarks, a class in Hochschild cohomology is integrable if and only if all or any one

of its representatives is integrable.

Remark 4. If ÿ and ÿ2 are derivations that are [ÿ, ÿ)-integrable and [ÿ2, ÿ)-integrable, respec-

tively, then the commutator [ÿ, ÿ2] is an [ÿ +ÿ2, ÿ)-integrable derivation. Indeed, a computation

shows that

ÿÿ2ÿ21ÿ221 = id+(ÿÿÿ
2
ÿ2
2 ÿ2

ÿ2
ÿÿ)ý

ÿ+ÿ2 +ï

for ÿ * Autÿ(ý[ý]7(ý
ÿ)) and ÿ2 * Autÿ2(ý[ý]7(ý

ÿ)).

If ý contains a field of characteristic ý, then the ýth power of any derivation is again a deriva-

tion, and together with the commutator bracket this gives Der(ý) the structure of a restricted Lie

algebra. If ÿ is an [ÿ, ÿ)-integrable derivation then ÿý is a [ýÿ, ÿ)-integrable derivation. Indeed,

this time one computes

ÿý = id+ÿ
ý
ÿý

ýÿ +ï

for ÿ * Autÿ(ý[ý]7(ý
ÿ)). This structure is studied in [26].

This remark shows that [ÿ, ÿ)-integrable derivations arise even if one is interested only in

[1, ÿ)-integrable derivations.
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Gerstenhaber works locally in [10], assuming that ý is an algebra over%ý (the integers localised

at ý) for some prime ý. Using the next lemma, in which we write ýý = ý ·% %ý and ýý = ý·%

%ý, we can readily reduce to this case. Readers interested in algebras over local rings or fields can

disregard the lemma.

Lemma 1. Letý be a Noether algebra over a commutative Noetherian ring ý. A ý-linear derivation

on ý is [ÿ, ÿ)-integrable if and only if for all primes ý, the induced ýý-linear derivation on ýý is

[ÿ, ÿ)-integrable.

Proof. The forward implication is clear. Conversely, assume that for each prime ý there is an

automorphism ÿ = id+ÿÿý
ÿ +ï + ÿÿ21ý

ÿ21 in Autÿ(ýý[ý]7(ý
ÿ)) such that ÿÿ = ÿ.

Consider the element (ÿÿ) *
+ÿ21

ÿ=ÿHomýý
(ýý, ýý). As ý is Noetherian and ý is finitely gen-

erated as a ý-module,
+ÿ21

ÿ=ÿHomýý
(ýý, ýý) g (

+ÿ21
ÿ=ÿHomý(ý,ý))ý, and therefore there is a

sequence (ÿÿ) *
+ÿ21

ÿ=ÿHomý(ý,ý) and an integer ÿ coprime to ý such that (ÿÿ) = (
ÿÿ
ÿ
) in

+ÿ21
ÿ=ÿHomýý

(ýý, ýý), and we can assume that ÿÿ = ÿÿ. There is then an equality

id+ÿÿÿÿý
ÿ +ï + ÿÿ21ÿÿ21ý

ÿ21 = id+ÿÿ21ÿÿý
ÿ +ï + ÿÿ22ÿÿ21ý

ÿ21

in Autÿ(ýý[ý]7(ý
ÿ)). In particular, for eachÿ � ÿ < ÿ the Hasse3Schmidt identity

ÿÿ21ÿÿ(ýÿ) 2 ÿ
ÿ21ýÿÿ(ÿ) 2 ÿ

ÿ22ÿÿ(ý)ÿÿ2ÿ(ÿ) 2ï 2 ÿÿ21ÿÿ(ý)ÿ = 0

holds, when interpreted inHomýý
(ýý ·ýý

ýý, ýý); here ÿÿ = ÿÿ = 0 if 0 < ÿ < ÿ, by convention.

As Homýý
(ýý ·ýý

ýý, ýý) g Homý(ý ·ý ý,ý)ý we may find an integer ÿÿ coprime to ý such

that

ÿÿ
[
ÿÿ21ÿÿ(ýÿ) 2 ÿ

ÿ21ýÿÿ(ÿ) 2 ÿ
ÿ22ÿÿ(ý)ÿÿ2ÿ(ÿ) 2ï 2 ÿÿ21ÿÿ(ý)ÿ

]
= 0

holds in Homý(ý ·ý ý,ý). Now set ÿ = ÿÿï ÿÿ21. It follows that the sequence

(ÿÿÿÿ21ÿÿ, & , ÿ
ÿ21ÿÿ22ÿÿ21)

satisfies the Hasse3Schmidt identities in Homý(ý ·ý ý,ý) for all ÿ � ÿ < ÿ, and therefore

defines an element of Autÿ(ý[ý]7(ý
ÿ)). Now set

ÿý = id+ÿ
ÿÿÿ21ÿÿý

ÿ +ï + ÿÿ21ÿÿ22ÿÿ21ý
ÿ21 and ýý = ÿ

ÿÿÿ

(up until now our notation has not indicated the dependence on ý). Note thatýýÿ = ÿ
ÿÿÿ21ÿÿ

by construction.

The ideal (ýý 6 ý is a prime) ¦ % contains for each prime ý an element coprime to ý, and it

is consequently the unit ideal. This means there are primes ý1, & , ýÿ and integers ÿ1, & , ÿÿ such

that ÿ1ýý1 +ï + ÿÿýýÿ = 1. The automorphism

ÿ = ÿ
ÿ1
ý1

ï ÿ
ÿÿ
ýÿ
* Autÿ(ý[ý]7(ý

ÿ))
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has as its ýÿ coefficient ÿ1ýý1ÿ +ï + ÿÿýýÿÿ = ÿ. Therefore, ÿ shows that ÿ is [ÿ, ÿ)-

integrable. ¥

Certainly all [ÿ,>]-integrable derivations are [ÿ,>)-integrable. It seems to be open in gen-

eral whether the inclusion Der[ÿ,>)(ý) ¦ Der[ÿ,>](ý) can be strict. However, the next result,

essentially due to Gerstenhaber, shows that equality holds for Artin algebras.

Lemma 2. Let ý be an Artin algebra over a commutative Artinian ring ý. A ý-linear derivation on

ý is [1,>)-integrable if and only if it is [1,>]-integrable.

Proof. By Lemma 1, we may assume that ý is an algebra over %ý, so that the results of [10] apply.

As Der(ý) is an Artinian ý-module, the sequence of submodules Der[1,ÿ)(ý)must eventually sta-

bilise, and so there is an ÿ such thatDer[1,ÿ)(ý) = Der[1,>)(ý). The proof of [10, Theorem 5] shows

that this implies Der[1,>)(ý) = Der[1,>](ý) (the statement of [10, Theorem 5] is the seemingly

weaker equality Der[1,>)(ý) =
ã
ÿ Der[ÿ,>](ý)). ¥

It is easy to show that a [1,>]-integrable derivation is [ÿ,>]-integrable for every ÿ (see [27,

Theorem 3.6.6]). The next result of Gerstenhaber9s shows that the converse is also true.

Theorem1. Letý be anArtin algebra over a commutative Artinian ring ý and letÿ * 5. A ý-linear

derivation on ý is [1,>]-integrable if and only it is [ÿ,>]-integrable.

Proof. By Lemma 1, we may assume that ý is an algebra over %ý. Let ÿ be an [ÿ,>]-integrable

derivation on ý. By Lemma 2, there is an ÿ such that Der[1,ÿ)(ý) = Der[1,>](ý), so it suffices to

show that ÿ is [1, ÿ)-integrable. There is an automorphism

ÿ = id+ÿýÿ + ÿÿ+1ý
ÿ+1 +ï + ÿÿÿý

ÿÿ

in Autÿ(ý[ý]7(ý
ÿÿ+1)), and applying [10, Theorem 3] to this yields an automorphism

ÿ2 = id+ÿýÿ + ÿ22ÿý
2ÿ +ï + ÿ2ÿÿý

ÿÿ

involving only powers of ýÿ. Replacing ýÿ with ý finishes the proof. ¥

At this pointwe can deduce thatDerint(ý) = Der[1,>](ý) forms a Lie algebra; thiswas originally

proven by Gerstenhaber [10, Corollary 1], assuming that ý = ýý for some prime ý.

Corollary 1. If ý is an Artin algebra over a commutative Artinian ring ý, then Derint(ý) is a Lie

subalgebra of Der(ý), and if moreover ý contains a field of characteristic ý, then Derint(ý) is a

restricted Lie subalgebra of Der(ý). By the same token, HH1
int
(ý) is a (restricted) Lie subalgebra of

HH1(ý).

Proof. This follows from Remark 4 and Theorem 1. ¥

The class of integrable derivations is known to have good invariance properties, and we may

use Corollary 1 to upgrade these invariance results to statements about Lie algebras. The next
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result builds on the work of Rouquier, Huisgen-Zimmermann, Saorín, Keller, and Linckelmann.

When ý has characteristic zero all derivations are integrable, so thatHH1
int
(ý) = HH1(ý), and the

theorem is well-known in this case.

Theorem 2. Let ý and ý two finite-dimensional split algebras over a field ý. Assume either that ý

and ý are derived equivalent, or thatý and ý are self-injective and stably equivalent of Morita type.

Then HH1
int
(ý) g HH1

int
(ý) as Lie algebras, and this is an isomorphism of restricted Lie algebras if

ý is of positive characteristic.

Proof. Assume first that ý and ý are derived equivalent. The identity component Out(ý)ç of

the group scheme of outer automorphisms of ý is a derived invariant by [13, 25]. Therefore, the

set

Out1(ýçýè)ç = {ÿ * Homý-scheme(Spec(ýçýè), Out(ý)ç) 6 ÿ(0) = 1}

is a derived invariant as well, and we have Out1(ýçýè)ç g Out1(ýçýè)ç.
AsHH1(ý) g Ext1

ýop·ý
(ý,ý) the first Hochschild cohomology is also a derived invariant, and

we have HH1(ý) g HH1(ý).

Both isomorphisms above are realised by tensoring with a complex ofý-ý bimodules [23], and

it follows that themap below is a derived invariant:

ÿ6 Out1(ýçýè)ç ÷HH1(ý) (ÿ = id+ÿ1ý + ÿ2ý
2 +ï) § ÿ1.

Therefore, the imageHH1
int
(ý) = im(ÿ) is a derived invariant as well (cf. the proof of [18, Theorem

5.1] for a similar argument). The fact that the isomorphism HH1
int
(ý) g HH1

int
(ý) is one of Lie

algebras now follows from Corollary 1 and [16, section 4]. In positive characteristic this respects

the ý-power structure by [15, (3.2)] combined with [5, Theorem 2].

For the case of self-injective algebras that are stably equivalent of Morita type, there is by

[18, Theorem 5.1] an isomorphism HH1
int
(ý) g HH1

int
(ý) induced by a transfer map, and this is

an isomorphism of restricted Lie algebras by Corollary 1 together with [26, Theorem 1.1] and

[5, Theorem 1]. ¥

2.1 Obstructions to integrability

The results of [10] are proven using an obstruction theory for integrability, which we explain now.

For any automorphism ÿ = id+ÿ1ý
1 +ï + ÿÿ21ý

ÿ21 in Aut1(ý[ý]7(ý
ÿ)) we define a ý-linear

map obs(ÿ)6 ý · ý ³ ý by the rule

Þobs(ÿ)(ý · ÿ) = ÿ1(ý)ÿÿ21(ÿ) +ï + ÿÿ21(ý)ÿ1(ÿ).

Viewed as a degree 2 element in theHochschild cochain complexÿ7(ý), one checks that Þobs(ÿ)

is a cycle, and therefore defines a cohomology class

obs(ÿ) = [Þobs(ÿ)] in HH2(ý).
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To extend ÿ to an element ofAut1(ý[ý]7(ý
ÿ+1)), wemust find a ý-linear endomorphism ÿÿ 6 ý ³

ý satisfying the Hasse3Schmidt identity

ÿÿ(ýÿ) = ýÿÿ(ÿ) + ÿ1(ý)ÿÿ21(ÿ) +ï + ÿÿ(ý)ÿ.

This may be rearranged and formulated using the Hochschild cochain complex:

ÿ(ÿÿ) = Þobs(ÿ) in ÿ2(ý).

We obtain the statement of [10, Proposition 5]: an automorphism ÿ * Aut1(ý[ý]7(ý
ÿ)) can be

extended to Aut1(ý[ý]7(ý
ÿ+1)) if and only if obs(ÿ) = 0.

For any [ÿ, ÿ)-integrable derivationÿ, there is by definition an automorphismÿ = id+ÿÿý
ÿ +

ïÿÿ21ý
ÿ21 in Autÿ(ý[ý]7(ý

ÿ)) with ÿÿ = ÿ. The above result shows that if obs(ÿ) = 0, then

ÿ is [ÿ, ÿ + 1)-integrable. We caution that ÿ being [ÿ, ÿ + 1)-integrable does not necessarily

imply that obs(ÿ) = 0, only that some automorphism in Autÿ(ý[ý]7(ý
ÿ)) extending id+ÿýÿ

is unobstructed.

The obstruction order of an automorphism ÿ in Aut1(ý[ý]7(ý
ÿ)) is ÿ if it admits an exten-

sion to an automorphism in Aut1(ý[ý]7(ý
ÿ)), but admits no extension to an automorphism in

Aut1(ý[ý]7(ý
ÿ+1)).

Gerstenhaber proves the following two facts about the above obstruction theory.

Theorem 3 [10, Theorem 1, Theorem 2, and Corollary 1]. Let ý be an algebra over a commutative

ring ý.

(1) If ÿ, ÿ2 * Aut1(ý[ý]7(ý
ÿ)) then obs(ÿÿ2) = obs(ÿ) + obs(ÿ2) inHH2(ý).

(2) Assume ý = ýý for some prime ý. If ÿ is a derivation then the obstruction order of id+ÿý is (if

finite) of the form ýÿ. Moreover, in this case the obstruction order of id+ÿýÿ isÿýÿ.

Because of (2), a derivation ÿ is said to have obstruction exponent ÿ if id+ÿý has obstruction

order ýÿ.

To give an example of how the obstruction theory is applied we use it to give Gerstenhaber9s

beautiful proof of the analogue of Corollary 1 for finitely integrable derivations (which are

especially connected with jet spaces).

Corollary 2 [10]. If ý is a Noether algebra over a commutative Noetherian ring ý, then Der[1,ÿ)(ý)

is a Lie subalgebra ofDer(ý), and if moreoverý contains a field of characteristic ý, thenDer[1,ÿ)(ý)

is a restricted Lie subalgebra of Der(ý).

Proof. By Lemma 1, we may assume that ý = ýý, so that Theorem 3 part (2) applies and

Der[1,ÿ)(ý) = Der[1,ýÿ)(ý) where ý
ÿ is the smallest power of ý that is at least ÿ. Therefore, we

may assume that ÿ = ýÿ.

Take ÿ,ÿ2 * Der[1,ýÿ)(ý) and suppose that ÿ = ÿ1 and ÿ2 = ÿ2
1

for two ÿ, ÿ2 *

Aut1(ý[ý]7(ý
ýÿ )). As in Remark 4 the automorphism ÿÿ2ÿ21ÿ221 shows that [ÿ, ÿ2] is [2, ýÿ)-

integrable. However, by Theorem 3 part (1) we have obs(ÿ2ÿ21ÿ221) = 0, therefore [ÿ, ÿ2] is

in fact [2, ýÿ + 1)-integrable. By Theorem 3 part (2), it must therefore be [2, 2ýÿ)-integrable, as

2ýÿ21 < ýÿ + 1. By [10, Theorem 3], this implies that [ÿ, ÿ2] is [1, ýÿ)-integrable.
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A similar argument yields the second claim, as obs(ÿý) = ý obs(ÿ) = 0 using Theorem 3 part

(1). ¥

Remark 5. Linckelmann considers amore general notion of integrable derivation in [18], replacing

ýçýè with any discrete valuation ring. It would be interesting to develop the obstruction theory
using this definition, and to see whether the results above extend to this context as well.

3 COUNTER-EXAMPLES TO SOLVABILITY

Notation

For the next three sections,we denote by ÿÿ the symmetric group onÿ letters, byýÿ the alternating

group and by ÿÿ the cyclic group of order ÿ. When dealing with groups we use the superscript

notation for the ÿ-fold direct product and we denote by ÿ êý the semidirect product of ý and

ÿ. We denote by ý a field and by ý+ its additive group.

In this section, we give a counter-example concerning the solvability of integrable derivations.

Question 1 [17, Question 8.2]. When is the Lie algebra HH1
int
(ý) solvable?

In the same article, Linckelmann suggests that, based on examples,HH1
int
(ý) should be a solv-

able Lie algebra if ý is a block of a finite group algebra ýÿ over an algebraically closed field of

prime characteristic. We provide a negative answer to this suggestion by considering the group

algebra ýÿ of an elementary abelianý-groupÿ of rank greater than 1. In this case the group algebra

ýÿ coincides with its unique block.

Theorem 4. Let ý be a field of characteristic ý ~ 3. Let ÿ be an elementary abelian ý-group of rank

greater than 1. ThenHH1
int
(ýÿ) is not solvable.

Proof. Let ÿ be an elementary abelian ý-group of rank ÿ > 1. Note that ý 6= ýÿ g

ý[ý1, & , ýÿ]7(ý
ý
1
, & , ý

ý
ÿ ). For each ÿ = (ÿ1, ÿ2, & , ÿÿ) * 5

ÿ, set ýÿ = ý
ÿ1
1
ý
ÿ2
2

ïý
ÿÿ
ÿ and set ý =

{(ÿ1, ÿ2, & , ÿÿ) * 5
ÿ | 0 � ÿÿ < ý}. A basis of ý is given by ýÿ, where ÿ * ý.

Then HH1(ý) is a Jacobson3Witt algebra [14] and it admits a basis {ýÿÿýÿ }
ÿ
ÿ=1

where ÿýÿ is the

unique ý-linear derivation such that ÿýÿ (ýÿ) = ÿÿ,ÿ where ÿÿ,ÿ denotes the Kronecker symbol.

Note thatHH1
int
(ý) has the same ý-basis ofHH1(ý) excluding the set of derivations {ÿýÿ }

ÿ
ÿ=1
. To

prove that ýÿÿýÿ , for 1 � ÿ � ÿ , is an integrable derivationwe use the automorphismÿ = id+ýÿÿýÿ ý

* Aut1(ýçýè); it is easy to check that this is a well-defined automorphism. As the space of inte-
grable derivations is a module over ý = Z(ý), the rest of the derivations in the basis, aside from

{ÿýÿ }
ÿ
ÿ=1
, are integrable as well. The derivations ÿýÿ for 1 � ÿ � ÿ (and any non-trivial linear com-

bination of them) do not preserve the Jacobson radical, hence they are not integrable (see [8,

Corollary 2.1]).

Let ÿ, ÿ, ý be a basis of ýý2(ý) satisfying [ÿ, ÿ] = ý, [ý, ÿ] = 22ÿ, and [ý, ÿ] = 2ÿ. The derived

subalgebra of HH1
int
(ý) contains the Lie algebra ýý2(ý) via the map sending ÿ to ý2ÿý1 =

[ý2ÿý1 , ý1ÿý1], ý to ý1ÿý1 2 ý2ÿý2 = [ý1ÿý2 , ý2ÿý1], and ÿ to ý1ÿý2 = [ý1ÿý2 , ý2ÿý2]. Note that

ýý2(ý) in characteristic different from 2 is not solvable. The statement follows. ¥
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4 THE FIRST HOCHSCHILD COHOMOLOGY OF THE SYMMETRIC
GROUP

In this section, we give a formula for the dimension ofHH1(ýÿÿ). We start by recalling some basic

facts on the representation theory of the symmetric group.

Definition 3. A partition of a non-negative integer ÿ is a decreasing sequence of positive integers

ÿ1 > ÿ2 > & > ÿý > 0 and positive integers ÿ1, & , ÿý such that such that ÿ1ÿ1 +ï + ÿýÿý = ÿ. We

use the notation ÿ = (ÿ
ÿ1
1
, & , ÿ

ÿý
ý ), and we say that ÿÿ is the ÿth part of ÿ, and ÿÿ is the multiplicity

of ÿÿ . We denote by þ(ÿ) the set of all partitions of ÿ.

We recall that the conjugacy classes of ÿÿ are in bijection with the partitions of ÿ, with the

conjugacy class of an element ý corresponding to the partition ÿ determined by the cycle type of

ý. That is, if ý = ý1,1&ý1,ÿ1 &ýý,1 &ýý,ÿý in disjoint cycle notation (including cycles of length one),

where each ýÿ,ÿ is a cycle of length ÿÿ , then ÿ = (ÿ
ÿ1
1
, & , ÿ

ÿý
ý ).

We begin by computingHH1(ýÿÿ) using the centraliser decomposition ofHochschild cohomol-

ogy. We note that as ÿÿ7ýÿ is a trivial group when ÿ = 1 and a cyclic group of order 2 otherwise,

the dimensions of the vector spaces below depend on whether or not ý has characteristic 2.

Theorem 5. Let ý a field of characteristic ý and let ÿÿ the symmetric group on ÿ letters. Then we

have the following decomposition:

HH1(ýÿÿ) g
+

ÿ*þ(ÿ)

Hom

(
ý/

ÿ=1

(ÿÿÿ × (ÿÿÿ7ýÿÿ )), ý
+

)
.

Proof. Using the decomposition of HH1(ýÿÿ) into the direct sum of the first group cohomology

of centraliser subgroups we have:

HH1(ýÿÿ) =
+

ÿ*þ(ÿ)

H1(ÿÿÿ (ý), ý) =
+

ÿ*þ(ÿ)

Hom(ÿÿÿ (ý), ý
+),

where ý is a representative element in each conjugacy class of ýÿÿ parameterised by ÿ. The first

step is to study the centraliserÿÿÿ (ý). As consequence of the fact that conjugation permutes cycles

of the same length we have that ÿÿÿ (ý) =
/ý
ÿ=1 ÿÿÿ b ÿÿÿ where b denotes the wreath product of ÿÿÿ

by ÿÿÿ . In fact, there are two groups that sit inside ÿÿÿ (ý) and that generate ÿÿÿ (ý). The first one is

ý 6= ÿÿ1 ×ï × ÿÿý and the second is
/ý
ÿ=1 ÿ

ÿÿ
ÿÿ
. It is easy to check that ÿÿÿ (ý) =

/ý
ÿ=1(ÿ

ÿÿ
ÿÿ
ê ÿÿÿ )

where ÿÿÿ acts on the direct product ÿ
ÿÿ
ÿÿ
by permutation.

The next step is to study the abelianisation of ÿÿÿ (ý). Note that the derived subgroup of ÿÿÿ(ý)
is given by

ý/

ÿ=1

[ÿÿÿ b ÿÿÿ , ÿÿÿ b ÿÿÿ ].

In general, the derived subgroup of a semi-direct product ý êÿ is equal to ([ý,ý][ý,ÿ])ê

[ÿ,ÿ]. In our case ÿ = ÿÿÿ and ý = ÿ
ÿÿ
ÿÿ
. So, [ÿÿÿ , ÿÿÿ ] = ýÿÿ and [ý,ý] = 1. It is easy to check
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that [ÿ
ÿÿ
ÿÿ
, ÿÿÿ ] is isomorphic to ÿ

ÿÿ21

ÿÿ
. Hence,

[ÿÿÿ b ÿÿÿ , ÿÿÿ b ÿÿÿ ] g ÿ
ÿÿ21

ÿÿ
ê ýÿÿ .

Consequently the abelianisation of ÿÿÿ (ý) is isomorphic to

ý/

ÿ=1

(ÿÿÿ × ÿÿÿ7ýÿÿ ).

The statement follows. ¥

Lemma 3. Let ý be a prime, and ÿ a non-negative integer. The number of parts of length divisible

by ý in all partitions of ÿ, counted without multiplicity, is equal to the number of parts of length ý in

all partitions of ÿ, counted with multiplicity.

Proof. Using the notation ÿ = (ÿ
ÿ1
1
, & , ÿ

ÿý
ý ) for a partition of ÿ, we consider the set ÿ1 of pairs

{(ÿ, ÿ) with some ÿÿ = ý and 1 � ÿ � ÿÿ}, and the set ÿ2 of pairs {(ÿ, ÿÿ) with ý|ÿÿ}. We define a
function ÿ1 ³ ÿ2 by the rule (ÿ, ÿ) § (ÿ2, ÿý), where ÿ2 = (ÿ

ÿ1
1
, & , (ÿý)ÿ

2
, & , ýÿÿ2ÿ, & , ÿ

ÿý
ý ) and

where ÿ2 = ÿÿ + 1 if ÿÿ = ÿý was already a part of ÿ, or ÿ
2 = 1 if not (that is, take ÿ parts of size

ý and make them one part of size ÿý). One can define an inverse ÿ2 ³ ÿ1 that takes (ÿ, ÿÿ) to

(ÿ2, ÿ = ÿÿ7ý), where ÿ
2 = (ÿ

ÿ1
1
, & , ÿ

ÿÿ21

ÿ
, & , ýÿ+ÿ, & , ÿ

ÿý
ý ), where ÿ = ÿÿ if ý = ÿÿ was already a

part of ÿ, otherwise ÿ = 0 (that is, take one part of size ÿý and make it ÿ parts of size ý). As

|ÿ1| is the number of parts of length ý in all partitions of ÿ, and |ÿ2| is the number of parts of
length divisible by ý in all partitions of ÿ (without multiplicity), the lemma is established by these

inverse bijections. ¥

Theorem 6. If the characteristic of the field ý is different from 2, then

HH1(ýÿÿ) g
+

ÿ*þ(ÿ)

Hom

(
/

ý|ÿÿ
ÿÿÿ , ý

+

)
.

Therefore, dimý(HH
1(ýÿÿ)) is equal to the total number of parts, counted without multiplicity,

divisible by ý in all partitions of ÿ. It has generating series

3

ÿ~0

dimý(HH
1(ýÿÿ))ý

ÿ =
ýý

1 2 ýý

/

ÿ~1

1

(1 2 ýÿ)
.

Proof. In Theorem 5, the term ÿÿÿ7ýÿÿ will not contribute because the characteristic of the field is

greater than 2 and ÿÿÿ7ýÿÿ is either trivial or isomorphic to ÿ2. This yields the first statement.

We also learn that dimý(HH
1(ýÿÿ)) is equal to the total number of parts divisible by ý in all

partitions of ÿ, counted without multiplicity. By Lemma 3, this the number of times ý occurs as a

part in a partition ofÿ. The generating series for this sequence can be found in [24].More precisely,

we can associate to any sequence (ÿÿ) the function on partitions ÿ(ÿ) 6=
3
ÿÿÿÿ , where ÿÿ is the
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number of parts of size ÿ in ÿ; then [24, eq. 23, p. 185] reads

3

ÿ~0

ýÿ
3

ÿ*þ(ÿ)

ÿ(ÿ) =

(
3

ÿ~1

ÿÿý
ÿ

1 2 ýÿ

)
/

ÿ~1

1

(1 2 ýÿ)
.

If we take ÿý = 1 and ÿÿ = 0 for ÿ b ý then we obtain the desired series. ¥

Theorem 7. If ý is a field of characteristic 2 then

3

ÿ~0

dimý(HH
1(ýÿÿ))ý

ÿ =
2ý2

1 2 ý2

/

ÿ~1

1

(1 2 ýÿ)
.

Proof. By Theorem 5,

HH1(ýÿÿ) g
+

ÿ*þ(ÿ)

Hom

(
/

2|ÿÿ
ÿÿÿ , ý

+

)
·Hom

(
/

ÿÿ~2

ÿ2, ý
+

)
.

So, the computation of dimý(HH
1(ýÿÿ)) splits into two parts. For the first summand we count the

number of parts in partitions of ÿ that are divisible by 2; as in the proof of Theorem 6 this is given

by the generating series

ý2

1 2 ý2

/

ÿ~1

1

(1 2 ýÿ)
.

For the second summand we must count the number of parts with multiplicity 2 or more in all

partitions of ÿ. In the usual formula for the total number of partitions

3

ÿ~0,ÿ*þ(ÿ)

ýÿ =
/

ÿ~1

1

(1 2 ýÿ)

(cf. [24]), the factor 17(1 2 ýÿ) = (1 + ýÿ + ý2ÿ +ï) corresponds to parts of length ÿ, with a term ýÿÿ

contributing 1 to the coefficient of ÿ if ÿ contains a part of length ÿ with multiplicity ÿ. To modify

this formula to count partitions with a chosen part of multiplicity ÿ ~ 2, we simply replace this

factor with ý2ÿ7(1 2 ýÿ) = (ý2ÿ + ý3ÿ + ý4ÿ +ï). In total we get

3

ÿ~1

(
ý2ÿ

/

ÿ~1

1

(1 2 ýÿ)

)
=

ý2

1 2 ý2

/

ÿ~1

1

(1 2 ýÿ)
.

The statement of the theorem follows. ¥

An element ý in a finite group is ý-regular if its order is coprime to ý, and otherwise it is called

ý-singular. In the case of ÿÿ, the ý-singular elements are those containing at least one cycle of

length divisible by ý. In other words, the corresponding partition contains a part divisible by ý.

We write ÿþ(ÿ) for the set of all partitions of ÿ corresponding to conjugacy classes of ý-singular

elements.
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Corollary 3. If ý is a field of characteristic ý then dimý(HH
1(ýÿÿ)) ~ |ÿþ(ÿ)|.

Finally, in the next section we will need the following fact.

Corollary 4. If ý is a field of characteristic ý > 2 then dimý(HH
1(ýÿý)) = 1.

Proof. By Theorem 5, we just need to count the number of parts of length ý in all partitions of ý,

and there is clearly just one. ¥

Remark 6. Recently, the authors of [4] have also computed dimý(HH
1(ýÿÿ)) in terms of

generating functions.

5 COUNTER-EXAMPLES TO THE EXISTENCE OF
NON-INTEGRABLE DERIVATIONS

In this section, we answer a question considered by Farkas, Geiss and Marcos.

Question 2 [8]. Let ÿ be a finite group and let ý be a field such that char(ý) divides the order of

ÿ, must ýÿ admit a non-integrable derivation?

As all inner derivations are integrable, a necessary condition that should hold in order to state

the previous question is the following: let ÿ be a finite group and assume the characteristic of

the field ý divides the order of ÿ. Then HH1(ýÿ) b 0. This has been shown in [9] using the

classification of finite simple groups.

The authors state their question in terms of the automorphism group scheme, writing that It

is tempting to conjecture that ýÿ does not have a smooth automorphism group scheme [8, below

Theorem 2.2]. Their question is equivalent to Question 2 by [8, Theorem 1.2]: the automorphism

group scheme of a finite-dimensional algebra ý is smooth if and only if every derivation on ý

is integrable.

In the following theorem, we exhibit a family of counter-examples for any algebraically closed

field of prime characteristic greater than 2.

Theorem 8. Let ý a field of characteristic ý ~ 3 and let ýÿý be the group algebra of the symmetric

group on ý letters. ThenHH1(ýÿý) has a ý-basis given by a single integrable derivation.

The first part of Theorem 8 will follow from Corollary 4. To prove that the only outer derivation

inHH1(ýÿý) is integrable, wewill use the fact that the only non-semisimple block ofýÿý is derived

equivalent to a symmetric Nakayama algebra.

We recall some basic results about blocks of symmetric groups.

A node (ÿ, ÿ) in the Young diagram [ÿ] of ÿ forms part of the rim if (ÿ + 1, ÿ + 1) + [ÿ]. A ý-

hook in ÿ is a connected part of the rim of [ÿ] consisting of exactly ý nodes, whose removal leaves

the Young diagram a partition. The ý-core of ÿ, usually denoted by ÿ(ÿ), is the partition obtained

by repeatedly removing all ý-hooks from ÿ. The number of ý-hooks we remove is the ý-weight

of ÿ, usually denoted by ý. It is easy to note that the ý-core of a partition is well-defined, that



2630 BRIGGS and RUBIO Y DEGRASSI

is, is independent of the way in which we remove the ý-hooks. The blocks of group algebras of

symmetric groups are determined by ý-cores and weights:

Theorem 9 (Nakayama Conjecture). The blocks of the symmetric group ÿÿ are labelled by pairs

(ÿ, ý), where ÿ is aý-core andý is the associatedý-weight such thatÿ = |ÿ| + ýý. Hence, the Specht
module ÿÿ lies in the block labelled by (ÿ, ý) of ýÿÿ if and only if ÿ has ý-core ÿ and weight ý.

Note that the statement above holds also for the simple modules, see the paragraph after [7,

Theorem 8.3.1]. It is easy to see that blocks of weight 0 are matrix algebras and blocks of weight 1

have cyclic defect group.

Background in Brauer graph algebras can be found, for example, in [28]. The details about the

importance of Brauer tree algebras in modular representation can be found in [3]. For further

background in the modular representation theory of finite groups, see [19] and [20].

A particularly nice class of self-injective algebras are the self-injective Nakayama algebras. For

background on Nakayama algebras, see, for example, [2, Chapter V] and [1, Chapter IV.2]. The

symmetric Nakayama algebra having ÿ simple modules and Loewy length ÿÿ + 1 is a Brauer tree

algebra with respect to the Brauer star with ÿ vertices and with exceptional multiplicity ÿÿ. It is

worth noting that not every Brauer tree algebra is isomorphic is a symmetric Nakayama algebra,

however, a result due to Rickard [23] shows that every Brauer tree algebra is derived equivalent

to a symmetric Nakayama algebra, see also [30, Theorem 6.10.1].

Theorem 10. Let ý be a field and let A be a Brauer tree algebra associated to a Brauer tree with ÿ

edges and with exceptional multiplicityÿ. Thený is derived equivalent to the symmetric Nakayama

algebraýÿÿÿ .

We have all the ingredients in hand needed to prove Theorem 8:

Proof of Theorem 8. The principal block of ýÿý, denoted byý0, has cyclic defectÿý and the number

of simple modules of ý0 is ý 2 1. This follows by Nakayama Conjecture because there are ý 2 1

partitions having the same ý-core of the partition representing the trivial module. The weight of

ý0 is 1 hence ý0 has cyclic defect ÿýý for some ý. In this case ý0 is a Brauer tree algebra for a

Brauer tree with ý 2 1 edges and exceptional multiplicity 1, see after [7, Example 5.1.4]. Hence, ý0
has cyclic defectÿý. By Theorem 10we have thatý0 is derived equivalent to theNakayama algebra

ý
ý21
ý21

. TheGabriel quiver associatedwithý
ý21
ý21

has a set of vertices given by {ÿÿ}
ý21
ÿ=1

and it hasý 2 1

arrows {ÿÿ}
ý21
ÿ=1

such that ý(ÿÿ) = ý(ÿÿ+1) = ÿÿ+1 for ÿ b ý 2 1 and ý(ÿý21) = ý(ÿ1). The rest of the

blocks ofýÿý arematrix algebras because theyhaveweight 0. Therefore,HH
1(ýÿý) g HH

1(ý
ý21
ý21

),

and this restricts to an isomorphism HH1
int
(ýÿý) g HH

1
int
(ý

ý21
ý21

) by the derived invariance of

integrable derivations.

The first Betti number ÿ(ý) of the underying graph of ý
ý21
ý21

is 1. This is because the Gabriel

quiver is connected, the number of edges isý 2 1, the number of vertices isý 2 1 and consequently

ÿ(ý) = (ý 2 1) 2 (ý 2 1) + 1 = 1. Asý
ý21
ý21

is monomial, by [6, TheoremC] we have that themax-

imal total rank is 1 and it is easy to see that the map ÿ sending ÿ1 to ÿ1 and sending any other

arrow to zero is a diagonal outer derivation. From Corollary 4, we have dimý(HH
1(ýÿý)) = 1. We

deduce that there are no other outer derivations. Recall that ý
ý21
ý21

is the bound quiver algebra

ýÿý217ýý21,ý21 where ýý21,ý21 is the ideal in the path algebra ýÿý21 generated by the composi-



ON THE LIE ALGEBRA STRUCTURE OF INTEGRABLE DERIVATIONS 2631

tion of ý consecutive arrows. Let ÿ1 = (ÿ1&ÿý21ÿ1 = 0). Then any other relation that generates

the ideal ýý21,ý21 is given by the path that starts and ends at ÿÿ for every 2 � ÿ � ÿ. We construct

the automorphism ÿ = id+ÿý * Aut(ýçýè). This ýçýè-automorphism preserves the relations.We

check for ÿ1 because for the rest of generating relations the proof is similar. We have

ÿ(ÿ1&ÿý21ÿ1) = ÿ(ÿ1) &ÿ(ÿý21)ÿ(ÿ1) = (ÿ1 + ÿ1ý)ÿ2 &ÿý21(ÿ1 + ÿ1ý)

= (ÿ1&ÿý21 + ÿ1 &ÿý21ý)(ÿ1 + ÿ1ý) = 0.

Therefore, ÿ is integrable and the statement follows. ¥

Remark 7. Note that in order to construct the previous counter-example we have considered a

Gabriel quiver without loops. In [8], the authors consider ý-groups, which are local algebras,

hence all the arrows are loops.

APPENDIX: GERSTENHABER9S COMPOSITION COMPLEXES

In Section 2, we used results of Gerstenhaber [10] to establish facts about the Lie algebra of integral

derivations on an algebra. In this Appendix, we survey the more general definitions in [10] and

compare them with the context of Section 2.

Definition A.1 [10]. Let ý be a commutative ring. A composition complex ÿ over ý is a sequence

ÿ0, ÿ1, & of ý-modules, and for eachÿ, ÿ and 0 � ÿ � ÿ 2 1 a bilinear composition operation

ÿÿ × ÿÿ ³ ÿÿ+ÿ21 (ÿ, g) § ÿçÿg ,

as well as for eachÿ, ÿ a bilinear cup product operation

ÿÿ × ÿÿ ³ ÿÿ+ÿ (ÿ, g) § ÿ # g ,

satisfying, for any ÿ * ÿÿ, g * ÿÿ and / * ÿý, the conditions

(ÿçÿg)çÿ/ =

{
(ÿçÿ/)çÿ+ý21/ if 0 � ÿ � ÿ 2 1

ÿçÿ(gçÿ2ÿ/) if ÿ � ÿ � ÿ 2 1,

and

(ÿ # g)çÿ/ =

{
(ÿçÿ/) # g if 0 � ÿ � ÿ 2 1

ÿ # (gçÿ2ÿ/) ifÿ � ÿ � ÿ + ÿ 2 1.

We further assume that the cup product of ÿ is associative, and that there is unit element 1 * ÿ1

such that 1ç0ÿ = ÿçÿ1 = ÿ for any ÿ * ÿ
ÿ and 0 � ÿ � ÿ 2 1.

The key example of a composition complex is the Hochschild cochain complex of a ý-algebra

ý:

ÿÿ(ý) = Hom(ý·ÿ, ý) with ÿçÿg = ÿç(1
·ÿ · g · 1·ÿ2ÿ21)
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for ÿ * ÿÿ and g * ÿÿ, and with the usual cup product

(ÿ # g)(ý1 ·ï· ýÿ+ÿ) = ÿ(ý1 ·ï· ýÿ)g(ýÿ+1 ·ï· ýÿ+ÿ).

Other examples of composition complexes given in [10] are the singular cochain complex of a

topological space, and the cobar construction on a Hopf algebra. In general, one can work with

any composition complex mimicking constructions that are standard for the Hochschild cochain

complex, as the next definition shows.

Definition A.2 [10]. We provide a brief dictionary between the context of this paper and that of

composition complexes.

(1) For ÿ * ÿÿ and g * ÿÿ we define the circle product and the bracket

ÿ ç g =

ÿ213

ÿ=0

(21)ÿ(ÿ21)ÿçÿg , [ÿ, g] = ÿ ç g 2 (21)(ÿ21)(ÿ21)gçÿ

in ÿÿ+ÿ21. These correspond to the usual circle product and Gerstenhaber bracket when ÿ =

ÿ7(ý).

(2) We call ÿ = 1 # 1 * ÿ2 the multiplication element of ÿ, in the case of the Hochschild

cochain complex this is the multiplication map ý·ý ³ ý. We then define a differential

on ÿ by the rule ÿ(ÿ) = [ÿ, ÿ], and ÿ becomes a complex ÿ0
ÿ
�³ ÿ1

ÿ
�³ ÿ2

ÿ
�³ï In particu-

lar, we obtain cohomology groupsHÿ(ÿ). When ÿ = ÿ7(ý), these yield the usual Hochschild

differential and Hochschild cohomology groups HHÿ(ý).

(3) A derivation in ÿ is a degree one cycle ÿ * Der(ý) = ý1(ÿ) = ker(ÿ1 ³ ÿ2). An automor-

phism in ÿ is an element ÿ * ÿ1, invertible with respect to the circle product, such that

ÿçÿ = ÿ # ÿ. When ÿ = ÿ7(ý), these correspond to derivations and automorphisms of the

ý-algebra ý.

(4) By base change, ÿ gives rise to a composition complex ÿçýè over the ring ýçýè. A one-

parameter family of automorphisms in ÿ is an automorphism in ÿçýè, and we write

Aut1(ÿçýè) for the set of one-parameter families of automorphisms of the form ÿ = 1 + ÿ1ý +

ÿ2ý
2 +ï A derivation ÿ * Der(ÿ) is called integrable if ÿ = ÿ1 for some ÿ * Aut1(ÿçýè).

One can similarly define [ÿ, ÿ)-integrable derivations for any ÿ, ÿ by considering automor-

phisms in ÿ[ý]7(ýÿ). Once again, if ÿ = ÿ7(ý) this yields the usual notion of integrable

derivation.

(5) Finally, if ÿ * Aut1(ÿ[ý]7(ý
ÿ)), the obstruction theory of Subsection 2.1 can be generalised by

setting obs(ÿ) = [ÿ1 # ÿÿ21 +ï + ÿÿ21 # ÿ1] * H
2(ÿ).

With these definitions in place, the results stated in Section 2 all hold at the generality of

any composition complex. As Gerstenhaber was primarily concerned with automorphisms and

derivations, which can be understood from the first few degrees, the results of [10] are stated even

more generally for composition complexes truncated in degree 2. That is, ý-modules ÿ0, ÿ1, ÿ2

having the structure and properties of Definition A.1 to the extent that they are meaningful.

RemarkA.1. Inmodern terminology, a composition complex is the same thing as a non-symmetric

operad with multiplication [11]. For example, the composition complex ÿ7(ý) is the endomor-
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phism operad of ý. In [11], Gerstenhaber and Voronov explain how any non-symmetric operad

with multiplication inherits the structure of a B>-algebra. This construction mirrors some of the

ideas from Definition A.2; in particular, they construct the bracket (1) and differential (2) exactly

as was done originally in [10]. Conversely there are many interesting examples of operads with

multiplication (for example, the Kontsevich operad used in [11]), and each can be considered as a

composition complex, which thereby obtains a notion of integrable derivation and an obstruction

theory as in Definition A.2.
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