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Abstract

Adverse weather events can significantly compromise the availability and eco-
nomics of a wind farm. This paper focuses on rotor icing detection, which
constitutes a major challenge in wind farm operation. When ice accumulates
on wind turbine blades, it causes substantial generation losses, operational
disruptions, and safety hazards to the personnel, assets, and equipment in
a wind farm. Alerts about early signs of rotor icing can assist operators in
proactively initiating icing mitigation measures. To this end, we propose
a machine-learning-based framework that effectively learns the unique sig-
natures of icing events. The framework effectively extracts salient features
by condensing the multivariate turbine sensor data into a small-sized subset
of information-rich descriptors. Those, along with power-curve-derived fea-
tures, are used to train a deep-learning-based model that flags icing events
and estimates icing probabilities. We also propose a new loss measure, called
the icing power loss error (IPLE), that realistically quantifies the expected
icing-related power losses. Our experiments show that the proposed frame-
work achieves up to 96.4% accuracy in flagging icing events, while keeping
the number of false alarms at minimum. When compared to prevalent data-
driven benchmarks, up to 18.7% reduction in power loss estimation error is
realized.

Keywords: Icing Detection, Machine Learning, Condition Monitoring,
Wind Power.

1. Introduction

Wind energy is evolving into a dominant source of electricity genera-
tion worldwide, primarily attributed to its numerous environmental benefits
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and rapidly falling costs [1]. Enabling wind energy to unlock larger pene-
tration levels will be contingent on enhancing the resilience of wind farms
against adverse weather events [2]. One promising solution is to invest in
intelligent turbine controls and smart operations and maintenance (O&M)
decision support systems that can aid wind farm operators in minimizing
extreme weather impacts on overall plant availability and economics [3, 4].
Along those lines, this paper specifically addresses the data-driven monitor-
ing of rotor icing, which refers to the formation and accumulation of ice on
the rotor of a wind turbine. Due to its impact on the aerodynamic efficiency
of the blades, rotor icing can cause substantial reduction in the power output
of a wind turbine, as well as in its structural reliability [5, 6]. Ice throw from
wind turbine blades also presents safety hazards to nearby personnel, assets,
equipment, and facilities [7]. It is thus important for wind farm operators
to have an icing monitoring system in place that effectively flags early signs
of rotor icing before it massively disrupts wind farm operations. Icing alerts
can assist the operators in initiating proactive icing mitigation measures in
time, e.g., dispatching icing removal services, initiating de-icing technologies,
or at the least, timely shutting down the turbines to hedge against increased
safety hazards and minimize post-event downtime and recovery efforts [8, 9].

The utility of an effective icing monitoring system is relevant to wind
turbines in cold and mild climates alike. Understandably, turbines located in
cold climates frequently experience icing events and may already have some
icing protection technology (IPT) in place (e.g., anti- or de-icing solutions).
Hence, an effective icing monitoring system would be used as part of their
routine operations to proactively trigger those IPTs. On the other hand,
turbines in milder climates may also benefit from an icing monitoring system.
Because significant winterization investments for those turbines may not be
economically justified, an effective icing monitoring system offers a low-cost,
high-value solution against extreme cold weather events, especially in light
of their escalating rates in recent years. A relevant example is the 2021
Texas blackout events, which have spurred large-scale debates about the
vulnerability of wind turbines to extreme cold weather [10].

The International Energy Agency (IEA)’s Task 19 is one of the largest
collaborative initiatives to date to address icing-related challenges in wind
farms [11]. For rotor icing, it recommends power-curve-based, data-driven
approaches that act on sensor data from Supervisory Control and Data Ac-
quisition (SCADA) systems to issue icing alarms for de-icing activation and
power loss estimation. The main challenge therein is to attain a sensible
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Figure 1: Impact of rotor icing on a wind turbine’s power output. The key challenge is to
disentangle, as early as possible, icing events (red triangles) from inherent randomness in
a turbine’s power production (light grey circles).

balance between false and missed alarms, especially in light of the inherent
stochasticity in a wind turbine’s power production. Figure 1 shows the im-
pact of icing on the power output of a wind turbine, where the blue curve
depicts the production under normal conditions (the non-iced power curve)
on top of the actual measurements (grey circles), whereas red triangles de-
note icing events. A monitoring system that is too conservative can mistake
the random variations around a power curve (due to weather, control set-
tings, measurement uncertainty, etc.) as icing events, resulting in too many
false alarms, gradually eliminating the trust in the system. In contrast, a
monitoring system that is too liberal often results in a delayed (or missed)
detection, significantly compromising its utility to farm operators.

The literature on rotor icing monitoring can be broadly grouped into
two categories: direct and indirect approaches. Direct approaches rely on
dedicated sensor technologies, collectively referred to as “icing detectors,”
to measure and detect rotor icing [12]. Often installed on rotor blades, the
essence of icing detectors is to identify changes in some physical characteris-
tics of the blade relative to its surrounding environment that are triggered by
icing events. The large majority of available technologies therein are suited
for measuring meteorological and instrumental icing, whereas fewer sensing



technologies are available for rotor icing, which has a shorter incubation and
ablation time, making it harder to detect, let-alone predict [13]. Exam-
ples of such technologies include piezo-electric and fibre-optic accelerators
glued inside the blade to measure changes in eigen frequencies and natural
oscillations [14, 15], retrofit sensors taped on the blade surface to measure
icing-induced changes in impedance and capacitance [16], thermal infrared
sensors that measure the surface-emitted radiance under icing versus non-
icing conditions [17], as well as approaches based on ultrasonic guided waves
[18]. The IEA Task 19 report on ice detection guidelines provides extensive
details on the various technologies and their measuring principles [12].

Contrary to the direct rotor icing detectors reviewed above, indirect ap-
proaches rely on standard SCADA data, without the need for specialized
sensing technologies. We distinguish between two clusters of indirect ap-
proaches, which are fundamentally different in essence. The first cluster is
what we refer to as “power curve monitoring approaches,” where the goal
is to pre-establish a non-iced power curve that characterizes the power out-
put of a wind turbine under normal operational conditions (see for example
the blue curve in Figure 1), and then monitor the incoming observations for
significant deviations from that benchmark [19, 20, 21, 22, 23|. A relevant ex-
ample is the T19iceloss method proposed by the IEA’s Task 19, which entails
a set of power-curve-derived rules that flags the power output observations
that fall outside certain thresholds of the non-iced power curve [24]. Along
the same line, methods based on statistical process monitoring and residual
diagnostics have also been explored. Albeit not tailored to icing detection,
those monitoring methods are designed to signal any statistically significant
divergence from the pre-established power curve baseline [25, 26, 27, 28].

The second cluster of indirect approaches draws on the advancements in
machine learning (ML) to learn the unique signatures of icing events from
historical wind turbine data. Unlike the first cluster, those methods may
or may not involve a dedicated step of constructing a non-iced power curve,
and typically entail a supervised learning model (e.g., a classifier) which
directly acts on SCADA data to distinguish icing from non-icing events.
Among those, wavelet-based methods [29], deep learning [30, 31, 32, 33],
transfer learning [34], contrastive learning [35], tree- and kernel-based classi-
fiers [36, 37, 38, 39, 40, 41, 42] have been explored. Few recent studies further
investigated the potential of ML-based approaches in directly acting on image
data, possibly in conjunction with SCADA measurements [43, 44, 45].

For a wind farm operator, the decision of whether to adopt a direct or in-
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direct approach (or both) depends on several factors, including the goal of the
icing monitoring task (e.g., performance loss estimation, anti- and de-icing
mitigation, ice fall and throw risk assessment), the desired level of sensitivity,
budget and resource constraints, among others. One particular advantage of
indirect approaches is their marginal operational cost since they operate on
SCADA data that are already collected by any modern wind turbine (i.e.,
they do not require any sensor installations or retrofits). Nevertheless, indi-
rect approaches come with their own set of challenges. In specific, to unlock
the value of an indirect approach, one needs to address the following key
question: how to “mine” the complexr and hidden signatures of icing events
from large streams of multivariate (and often noisy) SCADA data?” De-
spite the recent advancements in this space, our review of the literature (See
Table 1 for a representative set of related works) reveals three key areas of
improvement, which constitute the focus of this paper:

e Modeling auto- and cross-correlations in SCADA data: SCADA data is
naturally structured as a multivariate time series (i.e. multiple variables
or “channels” observed over time), and hence, naturally exhibit auto-
and cross-correlations. Auto-correlations refer to temporal dependence
within a channel. Cross-correlations, on the other hand, refer to the
inter-relationship across distinct channels. Those complex dependen-
cies, if effectively modeled, can furnish a desirable “learning bias” for
ML methods to enhance their ability to learn and predict icing events.

e [njecting power curve physics: The large majority of ML-based icing
monitoring methods frame the learning task as a classification prob-
lem that directly acts on SCADA data as input features. This ap-
proach does not fully leverage the well-established knowledge about
the physics of wind power generation (encoded in a power curve), and
hence may be prone to mistake the systematic, weather-driven varia-
tions in a turbine’s power output as icing occurrences. On the other
hand, power curve monitoring approaches, by design, encode the power
curve physics in their pre-established, non-iced benchmark, but do not
fully unleash the “learning via data” aspect of ML. A hybrid approach,
like the one pursued in this paper, can potentially harness the strengths
of both paradigms for enhanced monitoring capabilities.

o A unified framework for icing detection and prediction: Most existing
approaches are primarily focused on detecting icing events after they



Table 1: The contribution of the proposed framework relative to a representative subset of
the icing monitoring literature. In the last column, “A” denotes auto-correlations, whereas
“C” denotes cross-correlations.
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occur. A relatively under-explored area is to anticipate rotor icing ex-
ante [30, 46]. Unlike existing efforts that either focus on the detection
or prediction aspects of the problem, we propose a unified framework
that can be easily tailored to operate under any (or both) of those two
modes depending on the operator’s preference, without sacrificing the
overall monitoring system effectiveness.

With the above three issues in mind, we propose an ML-based approach,
which we call the Tensor-based IcinG dEtection and pRediction method, or
in short TIGER. A defining aspect of our framework is to regard the SCADA
data as a series of tensors (a high-dimensional generalization of a matrix).
This enables us to leverage tensor projection approaches to condense the
high-dimensional multivariate SCADA time series into a low-dimensional set
of descriptors that encapsulates rich information about their complex auto-
and cross-dependencies. Those condensed descriptors are then combined
with power-curve-derived features that encode the power curve physics, and



the combined set is used as input to drive a deep learning model that effec-
tively signals rotor icing occurrences and estimates icing probabilities. We
also propose a new loss measure, which we dub as the icing power loss er-
ror (IPLE). Motivated by the lack of a unified mechanism to assess icing
monitoring methods, IPLE provides a realistic and rigorous quantification
of icing-related power losses, beyond simple classification metrics (like accu-
racy), thereby furnishing a valuable evaluation tool for wind farm operators
to benchmark and compare data-driven icing monitoring solutions.

The remainder of this paper is organized as follows. Section 2 introduces
the problem and presents two possible operational modes for TIGER: diag-
nostic and prognostic and the building blocks of TIGER, which is followed by
Section 3 where evaluations, results, and discussions are presented. Finally,
Section 4 concludes the paper.

2. Methodology

2.1. Problem Motivation and Definition

We assume that at the current time ¢, the farm operator has access to
historical wind turbine data of k variables (e.g., wind power, wind speed,
temperature), all the way back till t — h+ 1, where h € Z* is a time window
of relevance. Specifically, we denote by S € R¥" 1= [s;_,,1,...,8;] the
multivariate time series formed by the k£ x h matrix for which the (/,j)th
entry constitutes the jth measurement of the [th variable, such that [ €
{1,...,k} and j € {t — h+1,...,t}. In addition, we assume that the wind
farm operator has access to historical icing records encoded in the vector
Y = [Yi—ns1, .- ye|T, such that y; € {0,1} denotes the occurrence of an icing
event at time 7. Next, we present two modes of operation for TIGER: a
diagnostic and a prognostic mode.

2.1.1. Diagnostic mode: Icing detection

Here, the goal is to timely detect an icing event as soon as it occurs (i.e.,
in real- or near-real-time). In other words, we seek to determine whether s,
(the k-dimensional vector representing the Ath column of S) corresponds to
an icing event. In mathematical terms, we seek a functional mapping f(-),
which optimally assigns labels (or probabilities) on the basis of the SCADA
observations in S and the icing records up to ¢t — 1:

f(8elSs Yenss s Y1) = ye € {0, 1} (1)



2.1.2. Prognostic mode: Icing prediction

Unlike the diagnostic mode, we here attempt to anticipate an icing event
before it actually occurs. In addition to using historical observations, fu-
ture forecasts about the SCADA variables are assumed to be available. In
other words, we assume the operator has access to a larger input matrix
S € RFx(h+u) . [St—ni1y--+,8t, 841y« St4u), Wwhere u € Z7T is the forecast
horizon, and 8;,, denotes a forecast of the true (but unknown) value of s;1,,
such that ¢ € {1,...,u}. In the wind industry, those forecasts are typically
available to the wind farm operator and are obtained using statistical meth-
ods [47], numerical weather predictions [48], or a combination thereof [49].
The prognostic problem is similar to the diagnostic problem except that it
uses S instead of S, and that it assumes y; has already been observed:

f(étJrq’Sa Yt—ht1s - Yt) = Yerq € {0,1} V. (2)

Next, we start by a brief overview of tensor projection notation, then
proceed to introduce the TIGER framework.

2.2. Low-rank Tensor Projection

A tensor is the generalization of a matrix to a higher dimension, and
is typically described in terms of its order (or rank) and mode(s). An N-
order tensor can be represented as T € RI-xInX-XIN guch that I, is
the dimension of the nth mode. Since tensors, by definition, are higher-
dimensional objects, tensor projection is the task of representing a tensor
in terms of lower-dimensional objects (e.g., simpler tensors, vectors, scalars)
that encode its most relevant information content. One of the simplest forms
of tensor projection is the so-called elementary multilinear projection (EMP),
which, as shown in (3), projects T into a scalar = through N unit projection
vectors denoted by v, v® .. o),

2= (T, V) ={(T,vWovPo.. ov™M)=
T X1 ’U(I)T X9 ’U(2)T ... XN 'U(N)T, (3)
Hv(”)H =1forn=1,2,...,N,
where V € RI12X-xIn g the tensor formed by the outer product of the N

unit projection vectors, such that ¥V = v o v@ o ... 0 v™ . In (3), |
denotes the Euclidean norm, and (7,V) is the inner product of 7 and V,



which is defined as:

I I In
<T7 V) = Z Z s Z tiliz--~iNUi1i2--~iN' (4)
i1=112=1 IN

In many settings, one has to analyze a set of tensor samples denoted
by {71, 72, ..., Tu}. For example, in image processing, tensor samples may
correspond to different images collected over time, where each image is re-
garded as a three-order tensor. The uncorrelated multilinear principal com-
ponent analysis (UMPCA) is a tensor-to-vector (TVP) projection approach
[50, 51, 52] which maps the mth tensor sample 7,,, where m € {1,..., M},
into a vector subspace R (L < Hfj:l I,,) through a series of L EMPs:

N L7 k
For =T ¥, {vé ,nzl,...,N}z Vm, (5)
=1
where f,, € RY denotes the vector of feature values extracted by UMPCA,
such that its ¢th entry, f,,(¢), is the projection of 7, via the ¢th EMP:

{vé”)T,n =1,... ,N}, as in (6).

o

Fn(0) = Ton X, {vgn ,n—l...,N}. (6)

Similar in concept to principal component analysis (PCA), UMPCA finds
L

T
the L most “informative” EMPs (or projection vectors) {vén) ,n=1...,N }
=1
that maximize the projected variance, while ensuring the extracted features

are uncorrelated:

M
[of n =1, N} = argmax 3" (ul0) - i)’
m=1

subi (7T, (n) —
ject to v, v, =1 (7)
Z?Zj _ 5@
AN
¢,je{l,...,L},

where f, = & SM_ fm(€). In (7), 2, denotes the £th coordinate vector, such
that the mth projected sample using the /th EMP is equivalent to the mth



element of the ¢th coordinate vectors: i.e., zo(m) = f,,(¢). The Kronecker
delta, dy;, is defined as dp; = 1(¢ = j), where 1(-) is the indicator function.
The optimization in (7) is solved heuristically and results in L projection
vectors, such that L < min {min, {I,,} , M}, which define the set of tensor-
based extracted features, f,,.

2.8. The TIGER Framework

We introduce the overall framework of TIGER in Figure 2. The frame-
work comprises five steps in total: (S1) Data input and processing; (S2)
Power-curve-based feature extraction; (S3) Reshaping the SCADA data into
tensor samples; (§4) Feature extraction via tensor projection; and (S5) Prob-
abilistic classification. The details of each step are outlined below.

§1: Data Input & Processing §3: Reshaping the SCADA Data into Tensor Samples
Wind Power \O/O\O Temperature Wind Speed /(x
O/O\o/o O\/.\._/\. I O s ‘ T ROHI

[
S$2: Power-curve-based Feature Extraction D — B
T e R*E+1)xA .

0 non-icing, | |
1 Icingeventclassa, .
C;=
2
3

T E R+ xhxM|

Non-iced
Power
Curve

Vi t—h—1,...,t
Icing event class b, ded nooortdy ‘

Icing event class ¢, S4: Tensor-Based Feature Extraction

4 < Power losses

/ due to icing

Deep Learning Classifier §5: Probabilistic ML-Based Tensor Tensor

Classification WT ] m
2y {}’V T @ Fr € RIM Fog € ROM
g | Icing Event i Non-icing |
_N—rr—

Time (Sample Index)

Detection Probability

Figure 2: Framework of TIGER starting from data input and processing (S1); Power-
curve related feature extraction (S2); Reshaping the SCADA data into tensor samples
(83); Tensor-based feature extraction (S4); and Probabilistic ML classification (S5).

(S1) Data Input & Processing: TIGER takes as input the raw 10-min
SCADA data consisting of (at least) the following & = 3 variables: wind
speed ws, wind power w,, and nacelle temperature Ty, (More variables can
be added if available). For the diagnostic mode, only historical data are used.
For the prognostic mode, those are augmented by a set of k-dimensional
forecasts. For notational consistency, this section presents the diagnostic
mode, but all steps performed therein are exactly similar to those in the
prognostic mode.
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We first perform a density correction for w,, as recommended in the IEC
61400-12-1 standard [53]:

1
Pstd 3
Tstd
Psite

Tsite (8)

T, ass88 3
= w, X ( (1225577 x 1075 x H)525588> ,

site

Wgite = Ws X

where wgte is the corrected wind speed, T4 is the standard temperature
of 15°C (288.15 K) corresponding to air density of 1.225 kg/m? at sea level
Pyq = 101325 Pa ambient air pressure, and H is the site elevation above sea
level. The calibrated wind speed wsi, now replaces wy in the input dataset.
We refer to this dataset hereinafter as S € R¥*",

(S§2) Power-curve-based feature extraction: We engineer a subset of fea-
tures that encode the power curve physics. We first start by constructing
a “non-iced” power curve. This is a power curve that is constructed solely
using the non-icing data records (Refer to the blue curve in Figure 1 as
an example). For that, we use the method of bins, as per the IEC 61400-
12-1 standard’s recommendation [53], although other multi-input statistical
methods can equally be used [54, 55]. The gth percentile of the non-iced
power within the dth bin, denoted as w{(d), is determined using the non-iced
records within that bin.

The TEA T19iceloss method categorizes icing events into three classes,
corresponding to three physically meaningful manifestations of rotor icing.
To capture those different icing categories, we define a new feature, C; € Z,
as in (9).

non-icing,
Icing event class a,

Vie{t—h+1,..t}. 9
Icing event class b, { } (9)

w NN = O

Icing event class c,

The description of icing event classes a, b, and ¢, are defined in detail in [11],
and are briefly described as follows: (A) Icing event class a: If Ty < 0°C
and w, < w}f(d) for at least 30 minutes, then this signals the start of an
icing event class a. If w, > w,°(d) for 30 minutes or longer, icing event class
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a ends. For all observations between the start and end of this icing event,
we set C; = 1. (B) Icing event class b: If Ty < 0°C and w, < w,"(d) for
10 minutes resulting in a shut down (defined as w, < 0.5wj, for at least 20
minutes), then icing event class b begins, where wy is the turbine’s rated
power. This typically corresponds with a turbine that has ceased to operate
due to icing. This icing event ends when w, > w;O(d) for 30 minutes or
longer. For all observations between the start and end of this icing event,
we set C; = 2. (C) Icing event class c¢: If Tyye < 0°C and w, > @)°(d)
for 30 minutes or more, then icing event class c¢ starts. In practice, this
is correspondent to a heated anemometer, which results in overproduction
measurements. If w, < wjjo(d) for 30 minutes or more, then this icing event
ends. For all observations between the start and end of this icing event, we
set C; = 3. (D) Non-icing event: For all observations that do not satisfy
any of the conditions listed above for classes a, b, or ¢, we set C; = 0.
The augmented dataset including the feature C' is now called S and is a
multivariate time series comprising & + 1 features: wgite, Wy, Tsite, and C'.

(S3) Reshaping SCADA data into tensor samples: We reshape the mul-
tivariate time series S into a set of tensor samples, Tq,..., Tpr. As shown in
Figure 3, two parameters are used: r which determines the “time length” of
each sample (i.e. how many time stamps are included), and AT, which is the
inter-sample time between two consecutive tensor samples. For demonstra-
tion, Figure 3 depicts » = 4 time units and A7 = 5. In this paper, we set
r = 12 intervals of 10-min each (i.e., 2 hours), since this roughly corresponds
to the time frame of relevance for operational monitoring of icing events (For
example, T19iceloss uses 30-min as a minimal threshold for declaring icing
events). We also set AT = 1, so that two consecutive tensor samples overlap
in all but one time stamp. This helps us generate the maximum number of
tensor samples, M, and hence, a larger dataset for ML training.

(S84) Tensor-Based Feature Eztraction: The previous step enables us to
enact tensor projection approaches in order to extract low-dimensional ex-
planatory features from the multivariate SCADA data. Here, we use UMPCA
(See Section 2.1) to compress the mth tensor sample 7, using (7) into L =4
features. This creates the feature matrix Fr € RY*M . We also engineer
additional features related to the within-sample dispersion of each tensor
sample, as estimated by the standard deviation of the jth tensor feature (for
j€{1,...,k}; we exclude C'). We find that those features are able descriptors
of icing events. This generates the feature matrix Fgq € R¥*M . Doing this for
Ti, ..., Try forms our final (L + k)-feature matrix F € REFF*M — [F.r Fyq].
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Figure 3: Reshaping S into tensor samples, 71, ..., Tas. The parameters » and AT dictate
the number and dimension of the tensor samples. For demonstration, we have » = 4 and
AT =5 in the Figure, although in this work, we use r =12 and AT = 1.

(S5) Probabilistic ML Classification: In the final step, we train a classifier
to map the feature matrix F to the icing labels y. Here, we tailor a deep-
learning-based classifier, TabNet [56], for the icing detection problem. We
provide here a high-level description of TabNet but refer the reader to [56]
for more details. TabNet is a recently proposed architecture that consists of
multiple sequential steps that feed into each other. Two integral components
of TabNet are a feature transformer and an attentive transfer. The feature
transformer is composed of a series of blocks (linear and non-linear transfor-
mations), each containing fully connected (FC) layers, batch normalization
(BN) layers, and gated linear units (GLU) which aids the model in learning
complex, non-linear representations of the data. The blocks are stacked to-
gether such that each block receives the transformed output of the previous
block, allowing for a deep processing of the input features.

Leveraging the refined feature representations from the feature trans-
former, The attentive transformer then starts with a FC linear transforma-
tion, followed by a BN layer, and a sparsemax layer. The output of the
attentive transformer then feeds into an attention mask which ensures that
only a subset of “relevant” features are effectively used, increasing the learn-
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ing efficiency and interpertability of the classifier. A linear mapping is used
to get the final output mapping.

3. Results and Discussion

We first start by describing the dataset and experimental setup used in
this work, then proceed to present and discuss the results of our numerical
experiments.

3.1. Data Description and Fxperimental Setup

The data used in this work is a set of SCADA data that has been syn-
thetically generated by the IEA Task 19 as part of their T19iceloss method
development to accelerate and benchmark icing monitoring research [57]. The
dataset spans one year and contains 10-min records of wind speed, nacelle
temperature, wind direction, and wind power, along with corresponding ic-
ing occurrences. The dataset includes two icing events (a total of 1691 icing
records), which occurred over a time span of 11.6 days and 3.5 hours, respec-
tively. We used all the available variables from our raw dataset, with the
exception of wind direction, that is, £ = 3. We point out, however, that our
approach is able to accommodate more variables if needed and/or available.

We divide the data into training and testing sets based on the proportion
of icing records, such that our training data has 70% of the icing records
(70% %1691 = 1184 icing samples). To avoid class imbalance, we select 1184
non-icing observations (the same as the number of icing observations) for
inclusion in the training set. As a result, the training set contained a total of
2368 samples (1184 icing records + 1184 non-icing records). For the test set,
we include the remaining icing samples (30% %1691 = 507 icing samples),
and augment them by a sample of non-icing records that is three times the
size of the icing test set (3 x 507 = 1521 non-icing samples). That way, the
test set has n, = 2028 samples (507 icing records + 1521 non-icing records).

We compare TIGER to five prevalent data-driven benchmarks that are
representative of the literature on data-driven icing monitoring. The first
benchmark is a power curve monitoring (PCM) approach which is a variant
of the T'19iceloss method where we first construct a non-iced power curve, and
then classify an observation as an icing record if it belongs to one of the icing
classes defined by the T19iceloss method [11]. The second benchmark is an
ambient temperature threshold rule, which works as follows: we calculate the
95th percentile of the ambient temperature and set that as the threshold. For
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a test observation, if the ambient temperature is below the threshold value,
we flag it as an icing event, otherwise it is deemed as non-icing. We refer to
this temperature-threshold-based benchmark as TTD.

The next three benchmarks represent prevalent ML classifiers which we
directly train on the (normalized) raw SCADA data. The first classifier is
TabNet [56], which has been explained in Section 2. The two other classi-
fiers are Support Vector Machines (SVM) and Extreme Gradient Boosting
(XGBoost) [58]. For SVM, we use an RBF kernel, which is a popular kernel
choice, and perform randomized parameter optimization to determine the
penalty coefficient, for which the best-fitting value was found to be 16.3.
For training TabNet, we utilized grid search to identify the optimal hyper-
parameters, selecting a dimension of the attention feature layer of 6 and a
dimension of the decision prediction layer of 16, with a batch size of 64. The
model was trained over 10 epochs using batch gradient descent, with a learn-
ing rate of 0.01. For PCM, we construct the non-iced power curve using the
full non-icing dataset (without the under-sampling step) since PCM does not
suffer from class imbalance as in ML classifiers.

We compare all models via four evaluation metrics that are standard in
the ML literature: accuracy, precision, recall, and F; score. Accuracy is
the fraction of correct predictions, defined as A(y;, ;) = n% S L (9 = w),
where 1(-) is the indicator function, whereas g; € {0,1} is the ith classi-
fied output. Precision, Pr(y;,y;), measures the proportion of correct posi-
tive classifications, whereas recall, R(y;, ), evaluates the proportion of ic-
ing occurrences that were flagged. If we let ¢tp and fp denote the num-
ber of true and false positives, respectively, and fn denote the number of
false negatives, then Pr(y;, ;) = (tpi—pfp), wherga§ R(ys, 9:) = tpipfn. The
F} score computes the harmonic mean of precision and recall, such that
Fi(yi, ;) =2 X %, to provide an aggregate evaluation of a clas-
sifier’s ability to balance Ealvse and missed alarms.

3.2. Diagnostic Mode Results

Table 2 shows the results of the diagnostic mode. Few key insights can
be drawn: First, it appears that ML-based approaches (SVM, XGBoost,
TabNet, and TIGER) outperform those based on power curve monitoring
(PCM) and the temperature threshold method (TTD). We believe that this
is due to the ability of ML-based methods to learn the complex dependencies
and unique icing signatures from the historical data. In terms of Fj score,
TIGER outperforms PCM and TTD by 12.7% and 12.2%, respectively.
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Table 2: Diagnostic mode: Out-of-sample performance of PCM, TTD, SVM, XGBoost,
TabNet, and TIGER. Bold-faced values denote best performance.

PCM | TTD | SVM | XGBoost | TabNet | TIGER
Accuracy | .901 | .898 | .926 943 943 961
Precision | .749 | .724 | .783 841 .839 .885
Recall 911 | .959 | .970 .953 957 .970
Fy score | .822 | .825 | .867 .894 .894 .926

Second, the results in Table 2 show that increasing the sophistication of
the classifier invoked within TIGER leads to enhanced detection of the icing
signatures. This is evident by how XGBoost and TabNet (both state-of-
the-art classifers) outperform a traditional kernel-based method like SVM.
Finally, the results demonstrate that TIGER, owing to the combination of
its ability to extract information-rich features (both power-curve- and tensor-
based), along with leveraging a powerful attention-based classifier (TabNet),
is able to outperform all methods considered, whether ML- or power-curve-
based. In terms of F; score, improvements from TIGER range from 6.8%
(relative to SVM) to 3.58% relative to TabNet (its closest competitor).

A deeper look into the confusion matrices of the competing methods,
shown in Figure 4, further demonstrates the effectiveness of TIGER. Here,
TIGER has a significantly lower number of false positives (fp) relative to its
competitors (64 FPs, 93 for TabNet, 91 for XGBoost, 136 for SVM, 155 for
PCM, and 185 for TTD). In practice, a low rate of false alarms is extremely
important for establishing the trust in the monitoring system. TIGER also
maintains the lowest number of false negatives (fn), on par with SVM (15
FNs, relative to 22 for TabNet, 24 for XGBoost, 21 for TTD, and 45 for
PCM). Understandably, a smaller number of false negatives (i.e., missed
alarms) is pivotal to establish the utility of a monitoring system.

Finally, we would like to examine the improvements realized by modeling
the auto- and cross-correlations, which is an integral piece of TIGER. To
do so, we add an extra benchmark that is similar to TIGER, except that it
replaces the tensor-based feature extraction step therein with a PCA-based
one acting on the same multivariate time series SCADA data (where PCA
refers to Principal Component Analysis). We call this additional benchmark:
TabNet™t. In Figure 5, we compare two of the most influential raw features,
namely, wind speed and ambient temperature (panel a), against PCA-based
features used in TabNet™ (panel b), and tensor-based features used in TIGER
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Figure 4: Diagnostic mode results: Confusion matrices for PCM (a), TTD (b), SVM (c),
XGBoost (d), TabNet (e), and TIGER (f). Relative to all methods, TIGER yields the
best icing detection performance as evident by the low off-diagonal entries.

(panel c¢). It is evident that the tensor-based features in TIGER exhibit
significantly greater separability between the two classes. This distinction
explains the enhanced classification performance achieved by TIGER. As a
result, TabNet™, which solely relies on PCA for feature extraction, leads to
negligible improvement over its base version, TabNet (F} score = .895).

3.3. Prognostic Mode Results

For the prognostic mode, we follow the same procedure as in the diag-
nostic mode, except that, we use the data matrix S (instead of S) which
comprises both the SCADA measurements up to time ¢, as well as u-hour
ahead forecasts of ws, w,, and Ty;.. Another difference is that the definition
of what constitutes an icing record is slightly different. In the diagnostic
mode, we have y; = 1 when an icing event occurs at the i¢th time stamp.
However, in the prognostic mode, we have y; = 1 when an icing event occurs
at any time during the interval [z, i+ u], where u € Z* is the forecast horizon.

Here, we focus on short-term forecasting (i.e., 1-hour ahead in 10-min
resolution). To mimic the impact of forecast errors, we add a zero-mean
Gaussian noise to the true values (assumed to be unknown) of the SCADA
variables. Specifically, we assume S, = St + €144 ¥V ¢ € {1,...,u}, where
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Figure 5: Illustration of normalized features. (a): Raw features; (b) PCA-based features;
(c¢) Tensor-based Features. The latter demonstrate greater explanatory power in distin-
guishing icing from non-icing classes.

€14 is the vector of forecast errors at t + ¢, generated from N(0,%X.,),

0lowg, O 0
where Xy, = 8 0.100TSite . 10 , such that oy, or,,., and o, are the
. O'wp

in-sample standard deviations of wgite, Tsite, and w,, respectively. We then
apply a set of post-processing steps to ensure that the non-negativity of some
of the input variables, and to preserve the governing speed-to-power physical
conversion relationship (in terms of cut-in, rated, and cut-out speeds). In
practice, those simulated forecasts would be replaced by their real-world
counterparts which are typically available to the wind farm operator at time
t [59].

Table 3 shows the results of the prognostic mode for 1-hour-ahead fore-
casting, i.e., u = 60 minutes Again, TIGER is shown to noticeably outper-
form its competitors across all metrics, attesting to its merit in not only
detecting icing events, but also anticipating them ez-ante. Comparing the
performance in the short-term prediction task shown in Table 3 relative to
that in the detection task shown in Table 2 suggests that, with the excep-
tion of TabNet, all the methods that do no encode the power curve physics
(namely, TTD, SVM, XGBoost) are impacted by forecast errors, i.e., they
all experienced a drop in performance in accuracy and F} score. In contrast,
TIGER appears to be robust to forecast errors.

3.4. Estimating Icing Probabilities

A key advantage of TabNet (and other similar classifiers) is our ability
to derive icing probabilities using a final sigmoid activation function in its
output layer, ensuring that the model’s output, P(y | F), falls within the
range [0,1]. This output represents the probability that a given input F
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Table 3: Prognostic mode: Out-of-sample performance of PCM, TTD, SVM, XGBoost,
TabNet, and TIGER. Bold-faced values denote best performance.

PCM | TTD | SVM | XGBoost | TabNet | TIGER
Accuracy | .909 | .888 | .915 942 948 .964
Precision | .772 | .707 | .750 .824 .840 878
Recall 905 | 942 | 991 974 976 .994
F} score 833 | .807 | .854 .893 903 .932
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Figure 6: Diagnostic mode: Icing probabilities issued via TIGER. A video demonstrating
the evolution of those probabilities is included in the supplementary material (SM-1).

belongs to the positive class y.

Figure 6 shows an illustration of the icing probabilities issued via TIGER,
suggesting high confidence in its detection output, wherein the estimated
probabilities are typically highest during icing periods (red-shaded back-
ground), and lowest during periods of non-icing (green-shaded background).
A video demonstrating the evolution of those probabilities over time is in-
cluded in the supplementary material appended with this article (SM-1).
Those probabilistic predictions can be of high value to wind farm operators
in informing their icing mitigation decisions. For example, given the pro-
jected icing probability, and depending on the operator’s attitude towards
risk (e.g., averse, tolerant), the operator can either wait on initiating icing
mitigation measures until the probability of icing is high enough, or vice-
versa.

3.5. Icing-related Production Loss Estimation

Quantifying icing-related production losses is highly relevant for produc-
tivity and cost analysis in wind farms [60, 19]. To do so, two relevant metrics
are introduced: the detected power loss (PL) and the false power loss (FPL).
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Both quantities can be computed using the predicted classes as in (10).
PL(C) =) " 1[§i(C) = 1]y = 1] Pret — P, (10)
i=1
where PL is the total power loss and C is the classification model (e.g., PCM
or TIGER) used to issue the icing detections, {7;(C)}i,. The quantities P
and P,,s denote the reference non-iced power and the observed power values,
respectively. Similarly, we compute the FPL as follows:
FPL(C) =Y _1[§:(C) = 1ly; = 0)| Pret — Ponl- (11)
i=1
For an effective monitoring system, PL(C) would be as close as possible
to the actual power loss, denoted by P Ly, and obtained by replacing ;(C)
by the true values, i.e., y; Vi in (10), while FPL(C) would be as minimal as
possible (zero would correspond to no false positives).
Making use of PL(C) and FPL(C), we propose a new loss measure which
can be used by operators to compare different icing monitoring systems. We
call it the icing power loss error (IPLE) and is defined as:

IPLE(C) =« |PL(C) — PLyyu| + (1 — a)FPL(C), (12)
Detected Pov?z?er Loss Error False ng’ver Loss

where the first term estimates the difference between the detected power
losses by the classifier versus the actual power losses, whereas the second term
represents the false power losses due to incorrect detections by the classifier.
The coefficient « € [0, 1] dictates the weight assigned to error types I and II
(false vs. missed alarm), depending on the operator’s preference.

Using a = 0.5, Figure 7 compares various icing detection methods in
terms of the power loss detection error, the false power loss, and the to-
tal icing-related power loss error (IPLE). It is clear that TIGER provides
significant margins of improvement relative to its competitors in accurately
estimating icing-related power losses. In specific, TIGER reduces the power
loss estimation error by 18.72% relative to XGBoost (its closest competitor).

4. Conclusion and Future Directions

Rotor icing causes significant power losses as well as potential reliability
and safety hazards in wind farms. An ML-based icing monitoring framework,
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Figure 7: Estimation of power losses for various icing detection methods. TIGER achieves
the lowest errors in terms of power loss detection, false power losses, and total icing-related
power loss (IPLE).

called TIGER, has been proposed in this paper. By reshaping the SCADA
data into tensor samples, TIGER is able to project high-dimensional multi-
variate time series into a subset of low-dimensional, information-rich features.
When combined with other physically meaningful power-curve-derived pre-
dictors, the integrated feature set is used to drive a probabilistic deep learning
model that learns the signatures of icing events and estimates icing probabili-
ties and power losses. The superiority and robustness of TIGER in detecting
and predicting rotor icing have been demonstrated using extensive numer-
ical experiments, as well as through a newly proposed loss measure which
realistically and rigorously quantifies the icing-related power losses.

This work can be extended in several ways—Two of which are briefly
listed below. The first direction is to explore how our approach can be ex-
tended for longer-term icing predictions. Here, we only focused on short-term
horizons but longer horizons (e.g., a day ahead) are relevant for other op-
erational purposes like electricity markets. For example, in the 2021 TX
blackout, market prices surged by 9,000 times their pre-storm levels. Ex-
tending the forecast horizon would indeed go beyond purely data-driven
approaches, and instead require the careful development of icing-adjusted
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physical-statistical models that make use of tailored numerical weather pre-
dictions [61, 62]. The second direction is to integrate the proposed method
within a decision-theoretic framework for maintenance optimization [63] to
rigorously assess the economic value of effective icing monitoring on key op-
erational metrics, including system cost, downtime, and reliability.

Supplementary Materials

SM-1 is a video showing the evolution of rotor icing probabilities during
icing and non-icing periods.
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Appendix

The nomenclature for the key variables and parameters used in this paper

is presented in Table 4.
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Table 4: Nomenclature

Notation | Definition
k Number of SCADA variables (or channels) considered
Yt Whether or not an icing event has occurred at time ¢
Sy A vector of kK SCADA variables at time ¢
Situ Forecast of the true (but unknown) value of s;,,
S A matrix denoting the multivariate time series of SCADA data
S A matrix denoting the multivariate time series of SCADA data and forecasts
U Forecast horizon
t Current time
T mth tensor sample
N Number of tensor projection vectors
M Number of tensor samples
™ nth unit projection vector
L Number of elementary multilinear projections (EMPs)
I Vector of feature values extracted by UMPCA
Z0 fth coordinate vector
I, Dimension of the nth mode of a tensor
Wy Wind speed
wp, Wind power
Tiite Nacelle temperature
Wsite Density-corrected wind speed
Tita Standard temperature
Piq Sea level ambient air pressure
H Site elevation above sea level
C; The value of the power-curve-derived feature at time ¢
wi(d) The gth percentile of the non-iced power within the dth bin
r Time length of a tensor sample
AT Inter-sample time between two consecutive tensor samples
Fr Feature matrix extracted by tensor projection
F.q Within-sample dispersion feature matrix used in TIGER
F Final feature matrix used in TIGER
€iiq Vector of forecast errors at t 4 ¢
Owaee In-sample standard deviations of wsite
Ol In-sample standard deviations of Ty
T, In-sample standard deviations of w,
Pt The reference non-iced power value
Pos The observed power value
« Weight of error types I and II in the proposed IPLE measure
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