
PAPER ACCEPTED, AUGUST 2023 1

Joint Optimization of Production and Maintenance
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Long-Term Needs of Wind Energy Operation
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Abstract—The rapid increase in scale and sophistication of off-
shore wind (OSW) farms poses a critical challenge related to the
cost-effective operation and management of wind energy assets.
A defining characteristic of this challenge is the economic trade-
off between two concomitant processes: power production (the
primary driver of short-term revenues), and asset degradation
(the main determinant of long-term expenses). Traditionally, ap-
proaches to optimize production and maintenance in wind farms
have been conducted in isolation. In this paper, we conjecture
that a joint optimization of those two processes, achieved by
rigorously modeling their short- and long-term dependencies, can
unlock significant economic benefits for wind farm operators.
In specific, we propose a decision-theoretic framework, rooted
in stochastic optimization, which seeks a sensible balance of
how wind loads are leveraged to harness short-term electricity
generation revenues, versus alleviated to hedge against longer-
term maintenance expenses. Extensive numerical experiments
using real-world data confirm the superior performance of our
approach, in terms of several operational performance metrics,
relative to methods that tackle the two problems in isolation.

Index Terms—Offshore Wind Energy, Operations and Main-
tenance, Stochastic Optimization, Turbine Control.

I. INTRODUCTION

DESPITE its rapid growth, the large-scale penetration of
offshore wind (OSW) into modern-day power systems

is contingent on innovative solutions to reduce its operations
and maintenance (O&M) expenditures. To wind farm oper-
ators, lowering O&M costs hinges on solutions to two ma-
jor challenges: (1) Maintenance scheduling—to minimize the
long-term maintenance requirements of OSW energy assets,
and (2) Production optimization—to maximize the short-term
electricity generation revenues for a fleet of OSW turbines.

Solutions to the first challenge primarily seek optimal main-
tenance schedules by monitoring, and further predicting, the
degradation status of wind energy assets, and then determining
when and where to commit a repair action. The ultimate goal
is to prolong the assets’ useful life and reduce their long-
term maintenance expenses [1]–[4]. There has been a rich
literature on maintenance optimization for (offshore) wind
farms, which can be broadly grouped into two main clusters:
time-based (TBS) and condition-based (CBS) strategies. TBS
refer to periodic policies that identify an optimal window
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(or frequency) for maintenance decisions [5]. CBS, on the
other hand, heavily rely on real-time sensory data to inform
maintenance scheduling decisions [6], [7], and are often linked
to the concept of “smart maintenance” in the broader context
of asset management [8].

In parallel to maintenance optimization, the second chal-
lenge, i.e. production optimization, mostly entails turbine
control strategies that maximize the short-term power capture
of a fleet of wind turbines (WTs) [9]. Based on the control
mechanism, those include pitch [10], torque [11], and yaw
control [12]. Yaw-based optimization, which is the focus of
this work, adjusts the orientation of the WT’s rotor to max-
imize its power production, and has been shown to increase
turbine- and farm-level production by up to 13% [13]–[15].

To date, those two operational challenges, namely main-
tenance and production optimization, have been mostly ad-
dressed in isolation, perhaps due to the different time scales at
which their respective decisions are made. In reality, however,
those two problems are intrinsically coupled: Short-term pro-
duction decisions have long-term maintenance implications,
and vice-versa. On one hand, the overwhelming majority of
turbine control strategies often prioritize short-term power
gains with little (or no) consideration of the accumulating
structural degradation (and ultimately, maintenance expenses)
which unfold due to those turbine control actions. On the
other hand, maintenance optimization strategies, by and large,
optimize for long-term, production-agnostic maintenance ob-
jectives, potentially forfeiting substantial, shorter-term produc-
tion gain opportunities. This trade-off gives rise to an under-
explored research question addressed in this work: Can we
propose a decision-theoretic framework that balances how
wind loads are leveraged to harness short-term electricity
generation revenues, versus alleviated to hedge against longer-
term failure risks and maintenance expenses?

In response, we propose POSYDON (short for production-
optimized stochastic opportunistic maintenance scheduler with
yaw decision control). Primarily rooted in stochastic program-
ming, POSYDON jointly optimizes production and mainte-
nance decisions in tandem, thereby balancing the short- and
long-term financial targets of wind farm operation. In doing
so, POSYDON equips the operators with the capability to
either prioritize short-term production gains relative to long-
term maintenance savings when economically justified, or
conversely, de-prioritize short-term production gains to hedge
against the failure risks of critically degraded assets.

There have been a number of recent research efforts to
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couple maintenance and production decisions in (offshore)
wind farms. In the maintenance optimization literature, the
so-called “opportunistic maintenance” is a class of mainte-
nance models which optimally groups maintenance actions,
primarily to share setup costs, but also to optimize revenue-
and availability-related objectives [4], [16]. For example, [17],
[18] propose opportunistic models that consider the impact of
maintenance opportunities on power production and revenues.
Along the same line, [19] propose a dynamic scheduling
approach with variable reliability thresholds to balance short-
term production revenues and long-term reliability objec-
tives. Coupling maintenance and economic dispatch decisions
has also been proposed to maximize short- and long-term
profitability of OSW farms [20]. Yet, none of those efforts
explicitly model short-term production control decisions (e.g.,
yaw optimization), let alone the implications of such decisions
on longer-term asset health, and ultimately, on the pursuant
maintenance schedules, as we propose herein.

In parallel, there is an active line of research in the pro-
duction optimization literature on yaw-based load alleviation,
wherein non-zero yaw misalignment (YM) is introduced to
balance the power production and structural loading acting
on critical wind turbine components [21]–[23]. Our work
extends those emerging efforts by going beyond short-term
load alleviation objectives and instead, rigorously modeling
the long-term maintenance implications (i.e., failure risks and
costs) incurred by those short-term control strategies.

In summary, the contributions of this work are as follows:
(C1) We propose a stochastic mixed integer linear program-

ming (MILP) formulation, referred to as POSYDON,
which takes probabilistic forecasts about environmental
and operational parameters (e.g., wind, wave, electricity
prices, asset degradation), and outputs a set of (long-term)
maintenance schedules and (short-term) yaw control deci-
sions, which jointly maximize the OSW farm profitability.

(C2) To achieve C1, we propose a novel predictive model
to forecast the long-term degradation and failure risk
of a WT, which uniquely links the structural loads in-
curred by short-term yaw decisions to their long-term
maintenance implications. Similarly, we rely on a state-
of-the-art predictive model to estimate a WT’s power
output as a function of yaw decisions (among other
variables). Combined, those two predictive models offer a
unique predictive-prescriptive coupling—where decisions
impact predictions and vice-versa—thereby enabling the
degradation and wind power uncertainties to be modeled
as decision-dependent entities in POSYDON [24].

(C3) We derive key insights, analyses, and findings that
demonstrate how POSYDON, through its rigorous model-
ing of short- and long-term decisions, outperforms single-
faceted strategies that separately optimize production
or maintenance, across several O&M metrics, including
downtime, utilization, and total costs. Those insights are
derived through extensive experiments on real-world data
from the United States (US) NY/NJ Bight—where several
GW-scale projects are in-development. We believe that
those insights and analyses can be directly useful to the
rising OSW sector in the US and elsewhere.

The remainder of this paper is structured as follows. In
Section II, we present our yaw-dependent degradation model
to predict the failure risks in WT assets. In Section III,
we present the mathematical formulation of POSYDON. In
Section IV, we describe our experimental setup, along with the
optimization results. We then conclude the paper in Section V.

II. YAW-DEPENDENT DEGRADATION MODELING

There is an active literature on predictive modeling to
forecast the health condition of WTs [25]. The essence of those
so-called “degradation models” is to regard the data collected
by turbine-mounted sensors (e.g., vibration, temperature) as
degradation signals which are used to predict the remaining
useful life (RUL) of a WT. Our contribution herein is to
propose the first degradation model that rigorously considers
the impact of short-term, yaw-induced loading on the RUL
predictions of a WT. Those “yaw-dependent” RUL predictions
will be used as input to the optimization model in Section III,
thereby enabling the linkage between the short- and long-term
production and maintenance decisions addressed in this work.

In specific, we propose a two-stage degradation modelling
approach. In the first stage, we formulate a baseline degrada-
tion model for a WT operating under “baseline” (or nominal)
conditions. Those baseline conditions represent the typical
loading incurred by a WT during its normal operation. This is
discussed in Section II.A. Understandably, WTs do not often
experience the baseline conditions, but instead are subjected
to time-varying loads, due to, on one hand, the change in the
WT’s environment (e.g., variations in wind speeds), and on
the other hand, due to the yaw control decisions, which either
increase or decrease the loads relative to baseline conditions.
Hence, in the second stage, the baseline degradation model is
expanded to consider the impact of those time-varying loads
through a time-transformed degradation model, which maps
the baseline degradation level (under constant loading) into an
“actual” degradation level (considering time-varying loading).
This is presented in detail in Section II.B.

Without loss of generality, we focus on degradation in WT
blades. Blades are major contributors to the downtime and
maintenance requirements in OSW farms, with repair costs
that can reach up to $95K/failure [26]. We specifically model
the blade root flapwise bending moment (FBM), which is a
main driver of fatigue-induced blade failures [27]. In addition
to degradation signals, we consider the wind speed and yaw
misalignment (YM) as inputs to our predictive degradation
model, as both of those variables are known to highly impact
FBM [13], [21], [28], [29]. Hereinafter, we denote wind speed
and yaw misalignment as ν and γ̃, respectively.

A. Baseline degradation model

The baseline model describes the blade degradation under
constant nominal loading. We define nominal conditions as (i)
mean wind speed ν0, and (ii) perfect yaw misalignment γ̃0.
We call the random process by which the blade degrades under
baseline conditions as the “baseline degradation process,”
which is denoted by {A0(t); t ≥ 0}, and modeled as in (1).

A0(t) = α0 + β0t+ ϵ(t;σ), (1)
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where α0 and β0 represent the initial amplitude and the
baseline degradation rate, respectively. The term ϵ(t;σ) is
Brownian error, i.e. ϵ(t) = σW (t), denoting the process
noise. The functional form in (1) is is a prevalent choice in
the parametric degradation modeling literature, and has been
shown to effectively describe the degradation of a broad range
of failure processes [30]–[33].

Given a set of observed degradation signals collected during
the WT operation, dt = (d1, ..., dt), we can then follow a
Bayesian approach to continuously update the degradation
model parameters, in light of dt. Letting π(α0) and π(β0)
denote the prior distributions of α0 and β0 respectively, then
the joint posterior distribution of α0 and β0, denoted by
π′(α0, β0) can be estimated as in (2).

π
′
(α0, β0) = P (dt|α0, β0)π(α0)π(β0)/P (dt), (2)

where P (dt|α0, β0) is the likelihood function, and P (dt) is
a normalization constant. If we assume Gaussian priors for
π(α0) and π(β0), then the posterior distribution π′(α0, β0)
can be fully characterized in closed-form as a bivariate
normal distribution, i.e., π′(α0, β0) ∼ N

(
µµµ,ΣΣΣ

)
, such that

µµµ = (µα0 , µβ0) and ΣΣΣ =

[
δ2α0 r
r δ2β0

]
. If we define the

failure time T 0, as the first time A0(t) crosses a certain
failure threshold Λ, then the nominal RUL distribution can
be shown to follow an Inverse Gaussian distribution, i.e.,

λ0 ∼ N−1

(
Λ−dtc

µβ0
,
(
Λ−dtc

σ

)2)
, where dct is the observed

degradation at the observation time tc. Proof and discussion
about this class of degradation models are found in [2].

B. Time transformation model

The baseline model in Section II.A. assumes that the WT
“always” experiences nominal loading. In reality, WT blades
are subject to time-varying loads largely due to the variations
in wind speeds and yaw decisions. We assume that those time-
varying loads directly impact the rate and diffusion of the
degradation process, namely β0 and σ. As such, we model
the “actual” rate and diffusion of the degradation process
as β0Ψ(ϕ(t; γ̃, ν)) and σ [Ψ(ϕ(t; γ̃, ν))]

1
2 , respectively. Here,

Ψ(·) is a parametric function that expresses how higher
loads (due to deviations from baseline conditions) accelerate
(or decelerate) the degradation process. Specifically, in the
baseline case, we have Ψ(ϕ(t; γ̃0, ν0)) = 1. Conversely,
aggressive loading means Ψ(ϕ(t; γ̃, ν)) > 1, implying faster-
than-nominal degradation (i.e. the WT is expected to fail
sooner), whereas Ψ(ϕ(t; γ̃, ν)) < 1 implies slower-than-
nominal degradation process (i.e., longer expected RULs).

In light of that, the actual amplitude of the degradation
signal at time t, denoted by A(t), is formulated as:

A(t) = α0 +

∫ t

0

β0 ·Ψ
(
ϕ(z; γ̃, ν)

)
dz

+

∫ t

0

σ ·
[
Ψ
(
ϕ(z; γ̃, ν)

)] 1
2 dW (z). (3)

Lemma 1. For the degradation model defined in (3), the
corresponding RUL, denoted by λ, has an inverse Gaussian

distribution, i.e., λ ∼ N−1
(
τ(t)|a0, b0

)
, t ≥ 0, where τ(t) =∫ t

0
Ψ(ϕ(z; γ̃, ν))dz, a0 = Λ−dtc

µβ0
, and b0 =

(
Λ−dtc

σ

)2
.

The proof of Lemma 1 is provided in Appendix A. To eluci-
date the essence of Lemma 1 and how it acts as a “time trans-
formation,” we provide a simple example with three cases. In
the first case, let us consider a WT operating in baseline condi-
tions, i.e. γ̃0, ν0. Hence, we would have Ψ(ϕ(t; γ̃0, ν0)) = 1.
The second case considers higher-than-baseline loading con-
ditions γ̃h, νh, such that Ψ(ϕ(t; γ̃h, νh)) = 2. The third case
entails lower-than-baseline loading conditions γ̃l, νl, resulting
in Ψ(ϕ(t; γ̃l, νl)) = 1

2 . The result in Lemma 1 entails mapping
the calendar time t into a transformed time τ(t), wherein
the mapping is governed by the parametric function Ψ(·).
For the above example, the values of Ψ(·) imply that two
days of operation in baseline conditions is equivalent to one
day of operation in high loading conditions, and four days
of operation in low loading conditions, that is, we have
2Ψ(ϕ(t; γ̃0, ν0)) = Ψ(ϕ(t; γ̃h, νh)) = 4Ψ(ϕ(t; γ̃l, νl)).

A key aspect of this time transformation idea is to specify
Ψ(ϕ(t; γ̃, ν)) so that it best represents the degradation process
given the loading up to time t, i.e., {ϕ(z; γ̃, ν) : 0 ≤ z ≤ t}.
To do so, we follow a two-step procedure: In the first step
(S1), we find the impact of ν and γ̃ on the structural loads,
i.e., {γ̃, ν} → ϕ(t; γ̃, ν). In the second step (S2), we find
the impact of loading on the degradation, i.e., ϕ(t; γ̃, ν) →
Ψ(ϕ(t; γ̃, ν)). For S1, we directly use the data from [21]
where the the load variation, namely the values of the function
ϕ(.), are provided at various inputs of ν and γ̃.

The second step, S2, is less straightforward. Here, we make
use of the S-N curves, which relate the observed stress level
to the number of cycles to failure, N , as expressed in (4).

N =

[
1

C1
S(t; γ̃, ν)

]−C2

∼
[
1

C1
ϕ(t; γ̃, ν)

]−C2

, (4)

where C1 and C2 are the effective single cycle strength and
fatigue strength exponent factors of the blades, respectively.
The value of C2 depends on the blade material. Using the S-
N curve relationship in (4) and the conclusions of Lemma 1,
we can evaluate the impact of loading variations on the number
of cycles, relative to those obtained under nominal conditions,
as described in (5), which finds the number of cycles added
or removed, relative to the nominal case.

φ(t; γ̃, ν) :=
N

N0
=

[
ϕ(t; γ̃, ν)

ϕ(t; γ̃0, ν0)

]−C2

, (5)

where ϕ(t; γ̃0, ν0) denotes the baseline load variations, while
N0 is the corresponding number of cycles to failure under
nominal conditions. Thus, φ(.) denotes the relative change
in the number of cycles until failure due to deviations in
wind speed and yaw misalignment relative to the nominal
conditions, which directly translates to the relative gain/loss
in RUL. That is, if a WT has a nominal RUL, λ0, then, its
“actual” RUL is predicted at time t as in (6).

λ︸︷︷︸
Actual RUL

= λ0︸︷︷︸
Baseline RUL

+

∫ t

tc

(
1− 1

φ(z; γ̃, ν)

)
dz︸ ︷︷ ︸

RUL gain/loss due to changes in v and γ̃

. (6)
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Letting f(·) = 1
φ(·) , and approximating the integral in (6)

by a sum yields a tractable expression for the actual, yaw-
dependent RUL prediction, as shown in (7).

λ = λ0 +
t∑

z=tc

(1− f(z; γ̃, ν)). (7)

III. OPTIMIZATION MODEL

POSYDON is formulated as a stochastic MILP, with a
scenario set denoted by S . We assume that an OSW farm
consists of NI WTs, with i ∈ {1, ..., NI} denoting the WT’s
index. POSYDON considers two planning horizons: a day-
ahead short-term horizon (STH) with hourly index t ∈ T , and
a long-term horizon (LTH), with daily index d ∈ D, up to ND
days. The separation into short- and long-term horizons aligns
with the standard practice in wind farm O&M scheduling [34].

A. Decision Variables

The decision variables in POSYDON are categorized into
production and maintenance decisions, as detailed below:

1) Production Decisions:
• γt,i,j ∈ {0, 1} denotes whether the jth yaw misalignment

(YM) level is selected at time t for the ith WT.
• γL

d,i,j,s ∈ {0, 1} denotes whether the jth YM level is
selected at day d for the ith WT and sth scenario.

2) Maintenance Decisions:
• mt,i ∈ {0, 1} denotes whether the ith WT is selected for

maintenance at time t.
• mL

d,i,s ∈ {0, 1} denotes whether the ith WT is selected
for maintenance at day d under the sth scenario.

Two key assumptions are: (i) we discretize the YM (origi-
nally a continuous variable) into discrete levels, j ∈ {1, ..., J}
for mathematical tractability. That is, γ (the discrete decision
variable) denotes the level of YM to which γ̃ (the continuous
YM) belongs. To that end, we impose the constraints in (8)
and (9) to ensure that at most one YM level is selected at a
time; and (ii) In practice, yaw updates are made at finer time
intervals based on local wind direction variations [35]. Our
yaw decisions can thus be considered as recommendations for
the average YM level during the corresponding time periods.∑

j∈J
γt,i,j ≤ 1 ∀t ∈ T , i ∈ I, (8)

∑
j∈J

γL
d,i,j,s ≤ 1 ∀d ∈ D, i ∈ I, s ∈ S. (9)

B. Embedding the RUL Predictions in the Optimization

The yaw-dependent RUL predictions obtained in (7) are
embedded into the optimization model through (10), wherein
the RUL (in days) of the ith WT and sth scenario, denoted
by λi,s is equal to the nominal RUL, λ0

i,s, adjusted by the
RUL gain/loss due to changes in YM decisions and the wind
speed. The parameter Ft,i,j,s denotes the relative RUL change
from the baseline conditions, and represents a realization of
the function f(t; γ̃, ν) at time t, for the ith WT, under the jth
YM decision, and sth scenario—Recall (7).

The binary parameter ζ0i,s denotes the operational status
of the ith WT in the STH assuming nominal conditions. In
specific, ζ0i,s = 1 when at least one day is left in the ith WT’s
nominal RUL estimate, i.e., when λ0

i,s ≥ 1. The same holds
for the LTH, i.e., ζ0,Ld,i,s = 1 iff λ0

i,s ≥ d.

λi,s = λ0
i,s +

Day-ahead equivalent RUL gain/loss︷ ︸︸ ︷
ζ0i,s
24
·
∑
t∈T

1−
∑
j∈J

γt,i,j · Ft,i,j,s


+
∑
d∈D

ζ0,Ld,i,s ·

1−
∑
j∈J

γL
d,i,j,s · FL

d,i,j,s


︸ ︷︷ ︸

LTH equivalent RUL gain/loss

∀i ∈ I, s ∈ S.

(10)

Similarly, binary variables ζi,s and ζLd,i,s denote the opera-
tional status of the ith WT under the actual conditions, in the
STH and the LTH, respectively, as defined in (11)-(14).

ζi,s ≤ λi,s, ∀i ∈ I, s ∈ S, (11)

λi,s − 1 ≤ M · ζi,s, ∀i ∈ I, s ∈ S, (12)

d · ζLd,i,s ≤ λi,s, ∀d ∈ D, i ∈ I, s ∈ S, (13)

λi,s − d ≤ M · ζLd,i,s, ∀d ∈ D, i ∈ I, s ∈ S, (14)

where M is an arbitrary large number. In (13), if λi,s, is less
than d days in scenario s, then ζLd,i,s is forced to zero (i.e.,
the turbine fails at day d). Otherwise, ζLd,i,s = 1, as enforced
by (14). The same holds for the STH through (11) and (12).

C. Objective Function

The objective function of POSYDON is shown in (15), and
consists of four terms: the day-ahead profit, the long-term
profit, the expected cost of prolonged interruptions, and the
expected end-of-horizon cost. In the following sub-sections
(T1-T4), we describe each of those terms separately.

max
m,γγγ,mL,γγγL

{ short-term profit︷ ︸︸ ︷
lSTH +

long-term profit︷ ︸︸ ︷∑
d∈D

lLTH
d

− 1

NS
·
∑
s∈S

∑
i∈I

[ prolonged interruptions︷ ︸︸ ︷
Us · wi,s + Ys · bi,s

−Cλ ·
( RUL gain︷︸︸︷

λi,s −

cycle days lost due to early maintenance︷ ︸︸ ︷
λ0
i,s ·

∑
t∈T

mt,i −
∑
d∈D

(λ0
i,s − d) ·mL

d,i,s

)
︸ ︷︷ ︸

end of horizon cost

]}

(15)

(T1) Short-term profit, lSTH : The short-term profit is de-
fined in (16) as the difference between the day-ahead operating
revenue and the maintenance costs. The revenue is calculated
as the product of the generated power, pt,i,s, and the hourly
electricity market price κt,s. The maintenance costs comprise
four components: (i) crew cost charged at the crew hourly rate
Cx, where xt,i,s ∈ {0, 1} denotes whether a crew is dispatched
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to the ith WT at time t for the sth scenario; (ii) overtime cost
charged at a rate of Cq , where qs ∈ Z+ denotes the overtime
hours worked in the STH; and (iii) daily vessel rentals at a
daily rate of Cr; and (iv) repair cost (explained below).

lSTH =
1

NS

∑
s∈S

[∑
i∈I

∑
t∈T

(

operating revenue︷ ︸︸ ︷
κt,s · pt,i,s −

crew cost︷ ︸︸ ︷
Cx · xt,i,s)

− Cq · qs︸ ︷︷ ︸
overtime cost

]
−
∑
i∈I

∑
t∈T

(1− ρi) · ξi · αm
t,i︸ ︷︷ ︸

repair cost

− Cr · r︸ ︷︷ ︸
vessel cost

. (16)

The repair cost entails the parameters ρi ∈ {0, 1} and
ξi ∈ R+. The former denotes whether a maintenance task
has already been initiated in a previous day but is yet to be
completed. In this case, repair costs are deactivated, as they
have already been paid for in a previous day. The paramater ξi
is a maintenance criticality coefficient which adjusts the weight
of the maintenance cost. The variable αm

t,i ∈ R+ linearizes the
product of ci ·mt,i, and is controlled by the additional set of
linear constraints (17)-(19), where variable ci ∈ R+ is the
“dynamic maintenance cost (DMC)” rate, which balances the
trade-off between early and late maintenance actions, and is an
explicit function of the RUL, λi,s, of the WT asset. Derivation
and discussion on ci is deferred to Appendix B.

αm
t,i ≤ M ·mt,i ∀t ∈ T , i ∈ I (17)

αm
t,i ≤ ci ∀t ∈ T , i ∈ I (18)

αm
t,i ≥ ci −M · (1−mt,i) ∀t ∈ T , i ∈ I (19)

(T2) Long-term profit, lLTH : The LTH profit in (20) is sim-
ilar to the STH profit, except for the crew work hours which
are calculated as the expected mission time, BL

d,i,s, which is
the projected duration of a maintenance task considering both
the repair time and the WT access conditions. Estimation of
BL

d,i,s from actual wind/wave data is detailed in [16].

lLTH
d =

1

NS

∑
s∈S

{∑
i∈I

[ operating revenue︷ ︸︸ ︷
κL
d,s · pLd,i,s −

repair cost︷ ︸︸ ︷
(1− ρi) · ξi · αm,L

d,i,s

−Cx ·BL
d,i,s ·mL

d,i,s︸ ︷︷ ︸
crew cost

]
−Cr · rLd,s︸ ︷︷ ︸

vessel cost

− Cq · qLd,s︸ ︷︷ ︸
overtime cost

}
∀ d ∈ D

(20)

Similar to the STH profit, αm,L
d,i,s ∈ R+, serves as an alias for

the non-linear product cd,i · mL
d,i,s, controlled by (21)-(23),

where cd,i is the LTH DMC rate—Refer to Appendix B.

αm,L
d,i,s ≤ M ·mL

d,i,s ∀d ∈ D, i ∈ I, s ∈ S (21)

αm,L
d,i,s ≤ cLd,i ∀d ∈ D, i ∈ I, s ∈ S (22)

αm,L
d,i,s ≥ cLd,i −M · (1−mL

d,i,s) ∀d ∈ D, i ∈ I, s ∈ S (23)

(T3) Prolonged Interruptions: This term captures the cost
associated with the maintenance tasks that may be initiated in
the STH but would have to be interrupted and (later) completed
in the LTH due to unfavorable weather conditions. We let
wi,s ∈ {0, 1} denote the occurrence of such event, such that
Us ·wi,s represents the corresponding upfront costs (e.g. extra
vessel rental costs). The variable bi,s ∈ Z+ is the remaining
time to complete the unfinished maintenance task in the LTH,
while the parameter Ys denotes the cost of additional hourly
revenue losses until the maintenance is completed.

(T4) End of Horizon Cost: This term encodes the benefit
of prolonging the RUL of the WTs beyond the optimization
horizon (that is, beyond the LTH), in order to discourage
the optimization from unnecessarily scheduling premature
preventive maintenance tasks within the foreseeable future,
especially if the WT has plenty of buffer in its RUL prediction.
This is primarily controlled by the parameter Cλ ($/day)
which approximates the economic gain/loss per day of RUL.

D. Other Constraints

The remaining constraints, used to model different aspects
of O&M in an OSW farm, are listed as follows.

Maintenance constraints: The equality in (24) forces a
maintenance to be scheduled either in the STH or the LTH.∑

t∈T
mt,i +

∑
d∈D

mL
d,i,s = θi ∀ i ∈ I, s ∈ S, (24)

where θi ∈ {0, 1} denotes whether the ith WT requires
maintenance in the near future, and is determined as in (25).

Nθ − λi,s ≤ M · θi ∀ i ∈ I, s ∈ S, (25)

such that Nθ is parameter denoting the lower time threshold
for the RUL scenarios, below which, the ith WT has to be
scheduled for maintenance in the optimization horizon.

Once a maintenance task is initiated at time t for the ith
WT, then it would be under maintenance for a period of time
computed as the minimum between the remaining time in
the STH, which is 24 − t, and the mission time Bt,i,s. This
is expressed in (26), where ut̃,i,s = 1 denotes a WT under
maintenance at time t̃.

min{24,t+Bt,i,s}∑
t̃=t

ut̃,i,s ≥ min{24− t, Bt,i,s} ·mt,i

∀t ∈ T , i ∈ I, s ∈ S. (26)

If that maintenance task is not completed within the STH,
then bi,s ∈ Z+, as shown in (27), denotes the remaining time
required to complete it in the LTH, while wi,s ∈ {0, 1}, as
shown in (28), denotes the occurrence of such event and is only
set to 1 once bi,s > 0. This is the case where the “prolonged
interruption” term in (15) is activated.

bi,s ≥
∑
t∈T

mt,i · [Bt,i,s − 24 + t]+ ∀i ∈ I, s ∈ S, (27)

bi,s ≤ M · wi,s ∀i ∈ I, s ∈ S. (28)

The maintenance crew, once dispatched, is occupied until
the maintenance is completed or their shift ends by the time
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of last sunlight, tD, as shown in (29). An upper bound on the
number of crews is set to Nx (crews), as shown in (30).

xt,i,s ≥ ut,i,s −
t

tD
∀t ∈ T , i ∈ I, s ∈ S, (29)∑

i∈I
xt,i,s ≤ Nx ∀t ∈ T , s ∈ S. (30)

Turbine availability and power constraints: A failed WT
(i.e., one which has not been maintained at or before its
RUL), or a WT currently undergoing maintenance, remains
unavailable until a maintenance action is completed. In case
of the STH, this can be expressed as in (31).

yt,i,s ≤

WT operational status︷ ︸︸ ︷
ζi,s · (1− ρi) +

availability restored after maintenance︷ ︸︸ ︷
24 ·

∑
t̃∈T mt̃,i −

∑
t̃∈T (t̃ ·mt̃,i)

24− t
∀t ∈ T , i ∈ I, s ∈ S. (31)

The first term of the right hand side in (31) denotes whether
the turbine is in a failed state at the beginning of the STH, or
if a maintenance task has been initiated in a previous day. In
case λi,s < 1, then the turbine fails (ζi = 0), and can only
return to its former operational status once a CM action is
performed, guaranteed by the second term in the right hand
side. A similar constraint for the LTH is shown in (32).

yLd,i,s ≤ ζLd,i,s · (1− ρi) +
ND −

∑
d̃∈D(d̃ ·mL

d̃,i,s
)

ND − d

∀d ∈ D, i ∈ I, s ∈ S. (32)

A WT under maintenance remains unavailable until the task
is completed, which is ensured by (33).

yt,i,s ≤ 1− ut,i,s ∀t ∈ T , i ∈ I, s ∈ S. (33)

To compute the power output, we utilize the yaw-adjusted
additive multivariate kernel (YAMK) method proposed in [36].
The YAMK approach extends kernel-based multivariate power
curve models [37], [38] by integrating YM as an exogenous
input via a local polynomial regression formulation. The
output of YAMK is the expected scaled power output, ft,i,j,s,
as function of wind speed and YM. This is expressed in (34),
where R denotes the WT rated capacity (in MW).

pt,i,s ≤ R ·
∑
j∈J

(γt,i,j · ft,i,j,s) ∀t ∈ T , i ∈ I, s ∈ S. (34)

Likewise, the daily power output pLd,i,s is defined in (35),
where fL

d,i,j,s ∈ [0, 1] is the daily yaw-dependent scaled power.

pLd,i,s ≤ 24 · R ·
∑
j∈J

(γL
d,i,j,s · fL

d,i,j,s) ∀d ∈ D, i ∈ I, s ∈ S.

(35)
The power output of the WT is constrained by its availability.
For the STH, this is expressed by (36).

pt,i,s ≤ R · yt,i,s ∀t ∈ T , i ∈ I, s ∈ S. (36)

For the LTH, this is expressed by (37).

pLd,i,s ≤ 24 · R · yLd,i,s ∀d ∈ D, i ∈ I, s ∈ S. (37)

To account for the impact of PM actions on the power output
in the LTH, we use (38) as an approximation, where fmax,L

d,i,s is
the maximum scaled power output given the wind conditions.

pLd,i,s ≤ R·fmax,L
d,i,s ·(24−B

L
d,i,s·mL

d,i,s) ∀d ∈ D, i ∈ I, s ∈ S.
(38)

Resource constraints: Vessels are rented daily only if a
maintenance task has been scheduled at that day. This is
enforced via (39)-(40), for the STH and LTH, respectively.

M · r ≥
∑
t∈T

∑
i∈I

mt,i, (39)

M · rLd,s ≥
∑
i∈I

mL
d,i,s ∀d ∈ D, s ∈ S. (40)

The total work hours of the maintenance crews, cannot
exceed Nq (hour/crew), as we show in (41). Otherwise,
overtime hours, tracked by variable qs ∈ R+, are incurred
and compensated at a higher rate determined by Cq ($/hour).
An upper bound of NH limits the total number of overtime
hours in the STH, as expressed in (42).∑

t∈T ,i∈I
xt,i,s ≤ Nx ·Nq + qs ∀s ∈ S, (41)

qs ≤ NH ∀s ∈ S. (42)

A similar set of constraints is introduced for the LTH. A task
that has started but not finished in the STH is prioritized to
be picked up again at the first day of the LTH (d = 1). This
is expressed in (43) where BL

d=1,i,s ·mL
d=1,i,s + bi,s denotes

the total work hours in the first day of the LTH (the sum
of the mission times and the remaining maintenance time of
unfinished tasks). A similar constraint in (44) is imposed for
the remaining days of the LTH, i.e., for d ∈ {2, ..., ND}.
Finally, (45) limits the total overtime hours in the LTH.∑
i∈I

[
BL

1,i,s ·mL
1,i,s + bi,s

]
≤ Nx ·Nq + qL1,s ∀s ∈ S, (43)

∑
i∈I

[
BL

d,i,s ·mL
d,i,s

]
≤ Nx·Nq+qLd,s ∀d ∈ {2, ..., ND}, s ∈ S,

(44)
qLd,s ≤ NH ∀d ∈ D, s ∈ S. (45)

IV. NUMERICAL EXPERIMENTS

We start this section by a description of the data and
experimental setup used to evaluate the effectiveness of our
proposed approach. We then present the results and discussion.

A. Data Description

We use real-world met-ocean data and numerical weather
predictions (NWPs) from the U.S. NY/NJ Bight—a region
where several large-scale OSW projects are currently in-
development [39]. In specific, wind speed and wave height
data are obtained from a recently deployed (and publicly
available) measurement campaign by NYSERDA [40]. Co-
located NWPs for wind speed and wave height are obtained
from the RU-WRF [41] and WAVEWATCH III [42] models,
respectively. Electricity price data are obtained from PJM
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Figure 1. Yaw-dependent power curve obtained using the YAMK method
[36]. Yellow points are the actual observations on which the power curve is
trained; The cyan surface represents the hyperplane formed by the estimated
power curve; Blue lines show the discrete power curves used by POSYDON.

Data Miner III [43] at node COMED (node id: 33092371).
Forecasts for the same node are obtained by the LEAR method
proposed in [44]. The processed datasets have an hourly
resolution, spanning from August 12, 2019 to April 29, 2020.
Scenarios for all aforementioned variables are generated using
a probabilistic forecasting method discussed in [16] and based
on a Gaussian Process framework [45], [46]. The resulting
scenarios (or trajectories) naturally encode the temporal de-
pendencies of the uncertain input parameters.

The power production parameters, namely ft,i,j,s and fL
d,i,j,s

are obtained by plugging in the wind speed and YM levels
to the yaw-dependent power curve model obtained using the
YAMK method proposed in [36], as shown in Figure 1. For the
degradation signals, we use experimental vibration data from a
rotating machinery, subjected to accelerated life testing, which
are described in detail in [47].Simulated FBM load data as
function of wind speed and YM are obtained from [21]. The
relative change in RUL that is used to characterize Ft,i,j,s

and FL
d,i,j,s is estimated using (5), and is illustrated in Figure

2, wherein wind speed and YM combinations that alleviate
the loading and, therefore, extend the RUL (F < 1), are
colored in blue, whereas the combinations that increase the
loading, thereby decreasing the RUL (F > 1), are colored
in red. At nominal loading conditions (γ̃0 = 0°, ν0 = 10
ms−1), the RUL is neither extended, nor reduced from the
nominal case (F = 1). Regions with extreme RUL losses
(F >> 1) would translate to extreme loading levels, and
consequently, immediate failure. Hence, those regions are
naturally avoided by the optimization solver as it significantly
inflates the maintenance costs.

B. Experimental Setup

Two sets of experiments are conducted. The first case study
considers a 5-WT OSW farm. This small test case allows us to
extract meaningful (and visual) insights about the performance
of POSYDON. The second case study considers a 50-WT
OSW farm, aiming to validate POSYDON in a realistic OSW

Figure 2. RUL change, relative to the nominal case, as a function of the
wind speed and the YM decisions. This table was created by implementing
our proposed approach in Section II on the loading data from [21].

Table I
PARAMETER VALUES USED FOR THE TWO SETS OF EXPERIMENTS

Notation Parameter Value
CPM Preventive maintenance cost $4, 000
CCM Corrective maintenance cost $10, 000
Nx Maximum # of crews 2 crews
Cx Crew hourly rate $250/hour
Cq Overtime hourly rate $125/hour
Nq Maximum # of regular work hours 8 hours
H Maximum # of overtime work hours 8 hours
Cr Daily vessel rental cost $2, 500/day

νmax Wind speed safety threshold 15 m/s
ηmax Wave height safety threshold 1.8 m
tR Time of first light 6:00 am
tD Time of last sunlight 9:00 pm
Cλ End of horizon cost coefficient $30/day

farm setting. Table I shows the parameter values in our exper-
iments, which were largely based on the experimental setup
in [16]. With the exception of Cλ, all parameter selections
therein are made in light of credible prior studies on OSW
O&M practices—See [16] for an elaborate discussion. The
end of horizon cost coefficient, Cλ is estimated as the daily
weighted average of the repair costs reported in [26]. We set
NS = 50 scenarios and NJ = 7 YM levels of 5° width,
centered at 0°. A rolling optimization horizon of 10 days is
considered, i.e., ND = 9 days, as the wind forecast quality
largely reduces beyond that horizon [48], [49]. Once a solution
is obtained, we slide forward by one day and re-optimize. We
repeat the sliding process for 238 days.

POSYDON is compiled in Python and solved using the
Gurobi (v 9.1.2) solver for a relative optimality gap of 0.1%
and a time limit of 30 minutes, on a server with two 14-core
Intel Xeon CPUs with a base frequency of 2.60 GHz each,
and total RAM of 128 GB. The mean solution times for the
5- and 50-WT cases are 3.27 and 20.26 minutes, respectively.
A pseudocode detailing the implementation of POSYDON is
presented in Appendix C.
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C. Results

The following benchmarks are used to evaluate POSYDON:
(i) STOCHOS: an adaptation of a state-of-the-art oppor-
tunistic maintenance optimization model in [16], where YM
decisions are not considered, and hence are set to 0°. In
this way, this benchmark would be equivalent to separately
optimizing maintenance (using STOCHOS) and then max-
imizing production (irrespective of degradation) by always
seeking minimal YM; (ii) DET: the deterministic counterpart
of POSYDON, primarily used to showcase the value of consid-
ering uncertainty in OSW operations; (iii) TBS: Maintenance
and production are optimized separately. For maintenance, we
use a standard time-based (also called periodic) strategy with
60-day intervals, and the YM decision is always set at 0°.

1) The 5-WT Case Study: Figure 3 depicts the degradation
profiles and the maintenance schedules for all competing
models, namely: POSYDON, STOCHOS, DET, and TBS.
Looking at Figure 3, few key insights can be drawn. First,
we can immediately see how the maintenance cycles in the
strategies that jointly optimize production and maintenance
(POSYDON and DET) are relatively longer than those that
do not (STOCHOS and TBS). This is because the joint opti-
mization approach is able to tolerate—whenever economically
justified—non-zero YM, thus partially sacrificing short-term
power revenues for the more economically attractive target of
prolonging the RUL, especially for critically degraded WTs.
In contrast, the faster degradation in STOCHOS, incurred by
always aggressively seeking for perfect YM, irrespective of
the ensuing accumulating degradation, appears to be short-
sighted, leading to more frequent maintenance requirements
on the long-run.

Second, by comparing the maintenance schedules of POSY-
DON and STOCHOS, we can see that the former groups main-
tenance tasks more effectively. This is despite both POSYDON
and STOCHOS being, by design, ‘opportunistic” strategies,
i.e., they are both designed to incentivize the grouping of
maintenance tasks when economically justified (e.g., to share
maintenance setup costs or harness periods of low winds).
The key distinguishing feature that enables POSYDON to
achieve a more efficient grouping is its ability to loosely
control the degradation process through YM decisions. In
contrast to STOCHOS, POSYDON attempts to synchronise
the degradation profiles for WTs sharing similar degradation
levels, thereby achieving better grouping. However, to fully
harness this ability, incorporating the forecast uncertainty in
the decision-making process is key to hedge against the impact
of forecast errors. That is evident from the superior grouping
performance of POSYDON relative to DET.

Table II shows the quantitative performance of all bench-
marks in the 5-WT case across several O&M metrics, namely
total costs, revenue losses, production losses, total num-
ber of maintenance tasks, number of corrective maintenance
tasks, and number of vessel rentals. Importantly, POSYDON
achieves significant cost improvements relative to its com-
petitors, in particular 41.8% reduction relative to STOCHOS,
60.0% reduction relative to DET, and 77.7% relative to TBS.

We also note that production losses are one of the primary

Figure 3. The maintenance schedules for the 5-WT case study using POSY-
DON, STOCHOS, DET, and TBS. Stars indicate an initiated maintenance task
for the respective WT. Solid lines denote the true RUL profiles. For stochastic
models (POSYDON and STOCHOS), shaded regions show the mean ±1
standard deviation of the RUL scenarios, whereas dashed lines in POSYDON,
STOCHOS, and DET show the correspondent point RUL forecasts.

Table II
COMPARISON OF O&M METRICS FOR THE 5-WT CASE

O&M Strategy
O&M Metric POSYDON STOCHOS DET TBS
Total Cost (K$) 159.3 273.8 398.4 715.0
Revenue Koss (K$) 74.4 121.6 283.5 475.8
Production Loss (GWh) 1.5 2.5 5.8 9.7
Maintenance Outages 12 18 11 20
Of which Corrective 0 3 4 8
# of Vessel Rentals 7 14 11 28
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determinants of POSYDON’s superior performance. Com-
pared to STOCHOS, POSYDON achieves 40.0% reduction
in production losses. This is especially interesting given that
STOCHOS primarily employs a short-term production max-
imization strategy (seeking perfect YM). However, the long-
term reductions in downtime due to prolonged RULs achieved
by POSYDON significantly outweighs the benefits of aggres-
sively harnessing short-term production gains. Over the span
of the 238 days, POSYDON requires 12 maintenance tasks
(none of which are corrective, i.e., post-failure), as opposed
to the 15 preventive and 3 corrective maintenance tasks for
STOCHOS, which translate to larger economic losses due to
higher maintenance costs and frequent repair shutdowns. It is
also worth noting that, although DET requires a slightly lower
number of maintenance tasks (11 compared to 12 for POSY-
DON), 4 of those 11 tasks are corrective, which are much
costlier than preventive actions, and are primarily attributed
to DET’s inability to recognize the forecast uncertainties, and
hence, having to react to unexpected failures.

2) The 50-WT case: Similar insights can be drawn from
the second case study. Looking at Table III, we see that
POSYDON leads to solutions which are more than 20% better
in terms of total cost, while yielding 17% smaller production
losses relative to STOCHOS (its closest competitor). Again,
this is attributed to the increased maintenance requirements of
STOCHOS, which ultimately inflates its overall O&M costs.

The 50-WT case study can provide further interesting
insights on the interplay between the short- and long-term
considerations. Here, we added three additional O&M metrics
that are more relevant to the 50-WT case: (i) The total
downtime (in days); (ii) the downtime incurred due to ac-
cessibility limitations (i.e., a WT that needs maintenance, yet
is inaccessible due to harsh weather conditions); and (iii)
lost cycle days per task as a proxy for the cost of early
maintenance (i.e., how long further the WT was expected to
still operate had it not been shut down for maintenance). An-
alyzing those metrics, we observe that both stochastic models
(i.e. POSYDON and STOCHOS) are the least impacted by
access-related interruptions. Yet, with its ability to loosely
control the WT degradation, POSYDON more effectively
evades periods where maintenance must be performed during
periods of unfavorable weather conditions, thus resulting in
significantly lower access-related downtime. We also find that
POSYDON yields the smallest number of lost cycle days per
task, which practically means that the other strategies are more
prone to committing pre-mature/early maintenance actions,
thus unnecessarily incurring significant production losses.

Interestingly, although DET has similar maintenance re-
quirements to POSYDON in both case studies, the production
loss it experiences is even higher than that of STOCHOS. In
addition to its risk-taking attitude which typically leads to an
increased number of corrective tasks, a major drawback of
DET lies in its inherent assumption of perfect information.
We particularly observe that DET is highly impacted by wind
forecasting errors for two reasons: (1) wrongly forecasting
the WT access state (which is a function of the wind and
wave forecasts), and hence having to delay the now-infeasible
maintenance actions; and (2) the non-linear form of the power

Table III
COMPARISON OF O&M METRICS FOR THE 50-WT CASE

O&M Strategy
O&M Metric POSYDON STOCHOS DET TBS
Total Cost (M$) 2.5 3.1 3.6 6.1
Revenue Loss (M$) 1.6 1.9 2.7 4.4
Production Loss (GWh) 32.0 38.7 54.9 88.2
Downtime (days) 190.2 247.4 328.8 504.3
Access Downtime (days) 158.2 215.4 296.8 455.2
Lost Cycle Days/Task 7.8 9.7 9.3 22.8
Maintenance Outages 107 155 103 173
Of which Corrective 9 14 11 58
# of Vessel Rentals 64 86 62 137

curve, which inflates the wind speed forecast errors when
translated to the power domain. Combined, this leads DET to
make decisions that over-prioritize the long-term maintenance
expenses of the WT, which significantly compromises its
shorter-term power production revenues.

Finally, we notice that TBS performs poorly across all O&M
metrics in both sets of experiments. This is the result of its
rigidness with respect to the WT’s health condition, as well
as its inability to opportunistically group maintenance actions,
leading to an inflated number of vessel rentals with little
utilization rate and high production losses. Although TBS has
the highest maintenance frequency, it results in a significantly
higher number of failures, pointing to the poor performance
of O&M strategies that consider rigid maintenance intervals,
sans sensory information, especially in an OSW environment.

V. CONCLUSIONS

In this work, we proposed an opportunistic decision-
theoretic framework to jointly optimize production and main-
tenance decisions in an OSW farm, and ultimately lower
its O&M expenses. Based on a stochastic MILP framework,
POSYDON effectively links the impact of short-term produc-
tion decisions on long-term maintenance expenses, and vice-
versa. The merit of this co-optimization approach is illustrated
through a set of real-world experiments, wherein POSYDON
demonstrates significant improvements in terms of several
O&M metrics, relative to a set of prevalent benchmarks.

Beyond this work, we are currently investigating how to in-
tegrate additional decision dependencies into POSYDON, such
as multi-turbine dependencies induced by wake interactions
and spatial effects. We also do believe that the O&M models
and formulations proposed herein can be transferable to other
forms of renewable energy generation that bear similarities
with OSW. In addition to land-based wind farms, similar short-
and long-term trade-offs exist in wave energy converters,
where accessibility, loads, and turbine control decisions are
key factors impacting their economic effectiveness [50].
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PROOF OF LEMMA 1

Proof. Scaling property of the Brownian Motion dictates that
for any s > 0, the process {s−1/2W (st) : t ≥ 0} is equivalent
to a basis Brownian Motion process at time t. Evidently, it fol-
lows that

∫ t

0
σ·
[
Ψ
(
ϕ(z; γ̃, ν)

)] 1
2 dW (z) becomes equivalent to

σ ·W (τ(t)), where τ(t) =
∫ t

0

[
Ψ
(
ϕ(z; γ̃, ν)

)]
dz. Similarly,∫ t

0
β0 · Ψ

(
ϕ(z; γ̃, ν)

)
dz =

∫ τ(t)

0
β0. Given the equivalence

of drift and Brownian error terms, A(t) becomes equivalent
to A0(τ(t)). Recall that, we define the RUL λ as the first
time period that the degradation signal A(t) reaches a failure
threshold Λ, i.e. λ = min (t|A(t) ≥ Λ). Given the above def-
inition and equivalence of A(t) and A0(τ(t)), the probability
of survival until time t can be written as follows: P (λ > t) =
P (sup0≤s≤t {A(t)} ≤ Λ) = P

(
sup0≤s≤τ(t)

{
A0(t)

}
≤ Λ

)
.

The final expression is the first passage time of a Brownian
Motion with constant drift β0, which at any time t follows
an Inverse Gaussian distribution at the corresponding time-
transformed period τ(t), namely, λ ∼ N−1

(
τ(t)|a0, b0

)
, t ≥

0, with a0 = Λ−dtc

µβ0
, and b0 =

(
Λ−dtc

σ

)2
.

APPENDIX B:
THE DYNAMIC MAINTENANCE COST FUNCTION

The DMC function, first proposed in [31], [51], models the
trade-off between conducting an early maintenance and wast-
ing asset lifetime, versus delaying maintenance and risking
asset failure. To do so, (46) uses a renewal reward argument
where it evaluates the cost within maintenance cycle in its
numerator, and the expected length of the maintenance cycle
in the denominator. In our context, the DMC, in its general
form, can be expressed as in (46).

cd,i =
CPM · P (λi > d) + CCM · P (λi ≤ d)∫ d

0
P (λi > z)dz + tci

, (46)

where cd,i represents the cost rate associated with conducting
maintenance d time periods after the time of observation
tci . The numerator represents the expected maintenance cost,
given the probability of failure P (λi ≤ d). The denominator
represents the expected length of the cycle. Similarly, ci ∈ R+

denotes the DMC of the ith WT. Note that the probability of
failure, P (λi ≤ d) is a function of the YM decisions, as shown
in (10), therefore, (46) is non-linear.

In what follows, we describe how we adapt the DMC in our
framework. First, we re-write the integral in the denominator
of (46) as:∫ d

0

P (λi > z)dz = P (λi > 1) +

∫ d

1

P (λi > z)dz

= P (λi > 1) +
d∑

d̃=1

P (λi > d̃).

Given the assumption made for constraints (11)-(14), the prob-
ability of WT i being operational at any day in our scenario-
based framework can be written as P (λi > 1) =

∑
s∈S

ζi,s
NS

for the STH and as P (λi > d) =
∑

s∈S
ζL
d,i,s

NS
= 1−P (λi ≤ d)

for the LTH. By substitution, and by multiplying the numerator

and the denominator by NS , we get the following expression
for the DMC:

cLd,i =
CPM ·

∑
s∈S ζLd,i,s + CCM ·

(
NS −

∑
s∈S ζLd,i,s

)
∑

s∈S ζi,s +
∑d

d̃=1

∑
s∈S ζL

d̃,i,s
+NS · tci

,

or, equivalently:

∑
s∈S

(ζi,s · cLd,i) +
d∑

d̃=1

∑
s∈S

(ζL
d̃,i,s
· cLd,i) + cLd,i ·NS · tci

= CPM ·
∑
s∈S

ζLd,i,s + CCM ·

(
NS −

∑
s∈S

ζLd,i,s

)
.

A non-linear sum of products between binary and contin-
uous variable pairs is present at the left-hand side of the
equation. We deal with these non-linear terms as follows.
First, we introduce αc,L

0,d,i,s ∈ R+ and αc,L

d̃,d,i,s
∈ R+, which

are defined as αc,L
0,d,i,s = ζi,s · cLd,i and αc,L

d̃,d,i,s
= ζL

d̃,i,s
· cLd,i,

respectively. We can now write the linearized DMC function
for each day d in the LTH, as in constraint (47).

∑
s∈S

αc,L
0,d,i,s +

d∑
d̃=1

∑
s∈S

αc,L

d̃,d,i,s
+ cLd,i ·NS · tci

= CPM·
∑
s∈S

ζLd,i,s+CCM·

(
NS −

∑
s∈S

ζLd,i,s

)
∀d ∈ D, i ∈ I

(47)

It is followed by the set of constraints (48)-(53), which are
used to linearly control αc,L

0,d,i,s and αc,L

d̃,d,i,s
.

αc,L
0,d,i,s ≤ M · ζi,s ∀d ∈ D, i ∈ I, s ∈ S (48)

αc,L
0,d,i,s ≤ cLd,i ∀d ∈ D, i ∈ I, s ∈ S (49)

αc,L
0,d,i,s ≥ cLd,i −M · (1− ζi,s) ∀d ∈ D, i ∈ I, s ∈ S (50)

αc,L

d̃,d,i,s
≤ M · ζL

d̃,i,s
∀d̃ ∈ {1, ..., d}, d ∈ D, i ∈ I,

s ∈ S (51)

αc,L

d̃,d,i,s
≤ cLd,i ∀d̃ ∈ {1, ..., d}, d ∈ D, i ∈ I, s ∈ S (52)

αc,L

d̃,d,i,s
≥ cLd,i −M · (1− ζL

d̃,i,s
) ∀d̃ ∈ {1, ..., d}, d ∈ D,

i ∈ I, s ∈ S (53)

Following the same process, a linearized equivalent of the
DMC function for the STH is described in constraint (54).

∑
s∈S

αc
i,s+ci·NS ·tci = CPM·

∑
s∈S

ζi,s+CCM·

(
NS −

∑
s∈S

ζi,s

)
∀i ∈ I (54)

We then use the set of linear constraints (55)-(57) to control
αc
i,s ∈ R+, which is defined as αc

i,s = ci · ζi,s.

αc
i,s ≤ M · ζi,s ∀i ∈ I, s ∈ S (55)

αc
i,s ≤ ci ∀i ∈ I, s ∈ S (56)
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αc
i,s ≥ ci −M · (1− ζi,s) ∀i ∈ I, s ∈ S (57)

For additional demonstration of how we adapt the DMC in
our framework, a video showing the change in the DMC func-
tion evaluations and the correspondent maintenance schedules
from POSYDON over time is accessible at [52].

APPENDIX C:
PSEUDOCODE OF POSYDON

Algorithm 1 POSYDON Implementation Pseudocode
Set cost and operational parameters listed in Table I
Input historical weather, degradation, and operational data
Set Nrolls (here, Nrolls = 238 days; 1 roll = 1 day)
for r ∈ {1, ..., Nrolls} do

Train probabilistic forecast models for ν, η, κ, and λ0

Sample NS scenarios for v, η, κ, and λ0

Evaluate yaw-dependent power output, ft,i,j,s and fL
d,i,j,s

Evaluate relative RUL change, Ft,i,j,s and FL
d,i,j,s

Evaluate expected mission times, Bt,i,s and BL
d,i,s

Solve POSYDON (Optim. Gap← 0.1%; Limit← 30 min)
Return the decisions for the rth roll: {mr, γγγr,m

L
r , γγγ

L
r }

Shift horizon by 1 day, reveal new weather and oper-
ational data, and update the true RULs given executed
decisions and newly revealed data

end for
return the final executed production and maintenance
decisions, {M∗,Γ∗} := {mr, γγγr}Nrolls

r=1
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yaw control supported with very short-term wind predictions,” in 2015
IEEE International Conference on Industrial Technology (ICIT). IEEE,
2015, pp. 385–391.

[30] Z. Zhang, X. Si, C. Hu, and Y. Lei, “Degradation data analysis and
remaining useful life estimation: A review on Wiener-process-based
methods,” European Journal of Operational Research, vol. 271, no. 3,
pp. 775–796, 2018.

[31] N. Gebraeel, “Sensory-updated residual life distributions for components
with exponential degradation patterns,” IEEE Transactions on Automa-
tion Science and Engineering, vol. 3, no. 4, pp. 382–393, 2006.



PAPER ACCEPTED, AUGUST 2023 12

[32] Y. Zhou, M. Huang, Y. Chen, and Y. Tao, “A novel health indicator for
on-line lithium-ion batteries remaining useful life prediction,” Journal
of Power Sources, vol. 321, pp. 1–10, 2016.

[33] Q. Zhai and Z.-S. Ye, “RUL prediction of deteriorating products using
an adaptive Wiener process model,” IEEE Transactions on Industrial
Informatics, vol. 13, no. 6, pp. 2911–2921, 2017.

[34] A. Koltsidopoulos Papatzimos, “Data-driven operations & maintenance
for offshore wind farms: Tools and methodologies,” Ph.D. dissertation,
University of Exeter, 2020.

[35] A. Scholbrock, P. Fleming, A. Wright, C. Slinger, J. Medley, and
M. Harris, “Field test results from lidar measured yaw control for
improved yaw alignment with the NREL controls advanced research
turbine,” National Renewable Energy Lab.(NREL), Golden, CO (United
States), Tech. Rep., 2014.

[36] P. Nasery and A. A. Ezzat, “Yaw-adjusted wind power curve modeling:
A local regression approach,” Renewable Energy, 2022, in Press.

[37] B. Golparvar, P. Papadopoulos, A. Ezzat, and R. Wang, “A surrogate-
model-based approach for estimating the first and second-order moments
of offshore wind power,” Applied Energy, vol. 299, p. 117286, 2021.

[38] Y. Ding, Data Science for Wind Energy. New York: Chapman and
Hall/CRC, 2019.

[39] BOEM, “Lease and grant information,” 2021, Bureau of Ocean Energy
Management. Available at: https://www.boem.gov/renewable-energy/
lease-and-grant-information.

[40] NYSERDA, “NYSERDA floating LiDAR buoy data,” 2021, New York
State Energy Research & Development Agency. Available at: https://
oswbuoysny.resourcepanorama.dnvgl.com.

[41] M. Optis, A. Kumler, G. N. Scott, M. C. Debnath, and P. J. Moriarty,
“Validation of RU-WRF, the custom atmospheric mesoscale model of
the Rutgers Center for Ocean Observing Leadership,” NREL, Golden,
CO, USA, Tech. Rep., 2020.

[42] NOAA, “WAVEWATCH III model description,” 2022, National Oceanic
and Atmospheric Administration. Available at: https://polar.ncep.noaa.
gov/waves/wavewatch/.

[43] PJM, “PJM data directory,” 2021, available at: https://dataminer2.pjm.
com.

[44] J. Lago, G. Marcjasz, B. De Schutter, and R. Weron, “Forecasting day-
ahead electricity prices: A review of state-of-the-art algorithms, best
practices and an open-access benchmark,” Applied Energy, vol. 293, p.
116983, 2021.

[45] A. Ezzat, M. Jun, and Y. Ding, “Spatio-temporal asymmetry of local
wind fields and its impact on short-term wind forecasting,” IEEE
Transactions on Sustainable Energy, vol. 9, no. 3, pp. 1437–1447, 2018.

[46] F. Ye, J. Brodie, T. Miles, and A. A. Ezzat, “AIRU-WRF: A physics-
guided spatio-temporal wind forecasting model and its application to
the US North Atlantic offshore wind energy areas,” arXiv preprint
arXiv:2303.02246, 2023.

[47] N. Z. Gebraeel, M. A. Lawley, R. Li, and J. K. Ryan, “Residual-
life distributions from component degradation signals: A Bayesian
approach,” IIE Transactions, vol. 37, no. 6, pp. 543–557, 2005.

[48] A. Ezzat, M. Jun, and Y. Ding, “Spatio-temporal short-term wind
forecast: A calibrated regime-switching method,” The Annals of Applied
Statistics, vol. 13, no. 3, pp. 1484–1510, 2019.

[49] A. Ezzat, “Turbine-specific short-term wind speed forecasting consid-
ering within-farm wind field dependencies and fluctuations,” Applied
Energy, vol. 269, p. 115034, 2020.

[50] T. Aderinto and H. Li, “Ocean wave energy converters: Status and
challenges,” Energies, vol. 11, no. 5, p. 1250, 2018.

[51] M. Yildirim, X. A. Sun, and N. Z. Gebraeel, “Sensor-driven condition-
based generator maintenance scheduling—Part I: Maintenance problem,”
IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 4253–4262,
2016.

[52] P. Papadopoulos and A. Ezzat, “Research Multimedia: POSYDON:
Balancing the short- and long-term needs of offshore wind energy
operation,” Last Accessed: June, 2023. [Online]. Available: https:
//sites.rutgers.edu/azizezzat/research-videos-multimedia/

Petros Papadopoulos received his Ph.D. in Indus-
trial and Systems Engineering from Rutgers Univer-
sity in New Jersey, USA in 2022, and an M.Eng.
degree in Chemical Engineering from the University
of Patras in Greece in 2018. His research interests
encompass data analytics and mathematical opti-
mization for energy systems and electricity market
services. He is currently working as a Research and
Development Engineer at ThermoVault in Leuven,
Belgium, focusing on demand response services for
decentralized storage systems.

Farnaz Fallahi is currently pursuing a Ph.D. degree
in Industrial and Systems Engineering at Wayne
State University, Detroit, MI, USA. She obtained her
B.S. degree in Pure Mathematics from Amirkabir
University of Technology, Tehran, Iran, in 2011,
and her M.S. degree in Industrial and Systems
Engineering from Sharif University of Technology,
Tehran, Iran, in 2015. Her research interests include
sensor-driven prognostics, stochastic programming,
and data-driven decision-making, with a specific
focus on energy systems and complex networks.

Murat Yildirim is an assistant professor in the
Department of Industrial and Systems Engineering,
and the Director of Cyber Physical Systems Lab-
oratory at Wayne State University. He obtained a
PhD degree in Industrial Engineering, MSc degree in
Operations Research, and BSc degrees in Electrical
and Industrial Engineering from Georgia Institute
of Technology. Dr. Yildirim’s research interest lies
on the modeling and the computational challenges
arising from the integration of real-time inferences
generated by advanced data analytics and simulation

into large-scale mathematical programming models used for optimizing and
controlling networked systems. His research has been supported through
multiple projects funded by NSF, DoE, MTRAC and Ford.

Ahmed Aziz Ezzat is an Assistant Professor of
Industrial & Systems Engineering at Rutgers Uni-
versity, NJ, where he leads the Renewables & Indus-
trial Analytics (RIA) research group. Before joining
Rutgers, Dr. Aziz Ezzat received his Ph.D. from
Texas A&M University in 2019, and his B.Sc. degree
from Alexandria, Egypt, in 2013, both in Industrial
Engineering. His research interests are in the areas
of data and decision sciences, forecasting analytics,
quality/reliability engineering, with focus on renew-
able energy systems and industrial informatics. His

research has been supported by NSF, NOWRDC, NJEDA, as well as industry.
He is currently serving as the president of the IISE Energy Systems division
and the secretary of the Forecasting for Social Good (F4SG) cluster at IIF.
He is a member of INFORMS, IISE, and IEEE-PES.


