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Product decompositions of moment-angle
manifolds and B-rigidity

Steven Amelotte and Benjamin Briggs

Abstract. A simple polytope P is called B-rigid if its combinatorial type is determined by the

cohomology ring of the moment-angle manifold ZP over P. We show that any tensor product

decomposition of this cohomology ring is geometrically realized by a product decomposition of the

moment-angle manifold up to equivariant difeomorphism. As an application, we ond that B-rigid

polytopes are closed under products, generalizing some recent results in the toric topology literature.

Algebraically, our proof establishes that the Koszul homology of a Gorenstein Stanley–Reisner ring

admits a nontrivial tensor product decomposition if and only if the underlying simplicial complex

decomposes as a join of full subcomplexes.

1 Introduction

Problems surrounding cohomological rigidity have received a great deal of
attention throughout the development of toric topology; for a recent overview,
we recommend [16] and the references therein. Recall that a family C of spaces
(or of smooth manifolds) is called cohomologically rigid if, for all X, Y ∈ C, a ring
isomorphism H∗(X) ≅ H∗(Y) implies that X and Y are homeomorphic (resp.
difeomorphic). Toric topology associates with each simplicial complex K with m
vertices, the moment-angle complex ZK , a onite CW-complex with an action of the
torus Tm = (S1)m , whose equivariant topology is intimately tied to the combinatorics
of K and the homological algebra of its Stanley–Reisner ring. For example, if
K = ∂P∗ for some simple polytope P, then ZP ∶= ZK has the structure of a smooth
Tm-manifold.More generally, when the Stanley–Reisner ringZ[K] is Gorenstein,ZK

is a topological manifold called a moment-angle manifold. Computational evidence
and a lack of counterexamples (despite the attention ofmany authors)makes a positive
solution to the cohomological rigidity problem for this family of manifolds plausible.

An individual moment-angle manifold is said to be cohomologically rigid if its
homeomorphism type among all moment-angle manifolds is distinguished by its
cohomology ring. Since the combinatorial type of K determinesZK up to equivariant
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1314 S. Amelotte and B. Briggs

homeomorphism, one way to produce cohomologically rigid moment-angle
manifolds is to ond simplicial complexes K whose combinatorial type is uniquely
determined by the ring H∗(ZK).

Question 1.1 Let K1 and K2 be simplicial complexes, and let k be a oeld. When
does a graded ring isomorphism H∗(ZK1

; k) ≅ H∗(ZK2
; k) imply a combinatorial

equivalence K1 ≃ K2?

|e question above is due to Buchstaber [4], and simplicial complexes or simple
polytopes for which the answer is positive are known as B-rigid (see Section 3 for
precise deonitions). Question 1.1 is reduced to a commutative algebraic problem by
(1) the Stanley–Reisner correspondence between simplicial complexes and square-
free monomial rings, and (2) an identiocation of H∗(ZK ; k) with the Tor-algebra of
the Stanley–Reisner ring k[K] (see Section 2).

B-rigid complexes seem to be rare in general (and indeed, combinatorially distinct
polytopes oven deone difeomorphicmoment-anglemanifolds, see [5, Example 3.4]),
but examples to date have proven useful in establishing a variety of rigidity results
for moment-angle manifolds, (quasi)toric manifolds, small covers, and other related
spaces.

For example, nag simplicial 2-spheres without chordless cycles of length 4 were
shown to be B-rigid by Fan, Ma, and Wang [15], implying the cohomological rigidity
of a large class of moment-angle manifolds including ZP for all fullerenes P (i.e.,
simple 3-polytopes with only pentagonal and hexagonal facets). More generally,
this class of simplicial 2-spheres contains the dual simplicial complexes ∂P∗ of all
Pogorelov polytopes P, and their B-rigidity was used by Buchstaber et al. [5] to obtain
cohomological rigidity results for all quasitoric manifolds and small covers over these
3-polytopes.

Finite products of simplices areB-rigid by a result of Choi, Panov, and Suh [9].|is
was used to show any quasitoric manifoldM withH∗(M) ≅ H∗(∏�

i=1 CP
n i ) is in fact

homeomorphic to∏�

i=1 CP
n i [9,|eorem 1.5]. Quasitoric manifolds over products of

simplices include an important family of toric varieties known as (generalized) Bott
manifolds, and here B-rigidity implies that if a quasitoric manifold has cohomology
isomorphic to that of a generalized Bott manifold, then their orbit spaces are combi-
natorially equivalent.

|e B-rigidity of a prism (i.e., a product of a polygon and an interval) follows
from [8], and this result was generalized to the product of a polygon and any simplex
by Choi and Park in their study of projective bundles over toric surfaces [11]. We will
return to this example in Section 4.

|ese last examples motivate the question of whether B-rigid polytopes are closed
under products. |is question is also raised in work of Bosio [2] where a weaker
property for polytopes, puzzle-rigidity, is shown to be closed under products. |e
purpose of this short note is to answer this question aormatively.

|eoremA |e collection of B-rigid Gorenstein complexes is closed under onite joins.
Consequently, the collection of B-rigid polytopes is closed under onite products.
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Product decompositions and B-rigidity 1315

|is result substantially extends the class of known B-rigid polytopes, and
subsumes those products established to be B-rigid in [8, 9, 11]. We deduce|eoremA
from the following more general structure theorem for moment-angle manifolds.

|eorem B Let K be a simplicial complex on m vertices, and let k be a oeld. If K is
Gorenstein over k and the cohomology ring ofZK admits a tensor product decomposition

H∗(ZK ; k) ≅ A1 ⊗⋯⊗ A�

as graded k-algebras, then there is a Tm-equivariant homeomorphism

ZK ≅ ZK1
×⋯×ZK�

with H∗(ZK i
; k) ≅ A i for each i = 1, . . . , �.

|e remainder of the paper is organized as follows: In Section 2, we review the rele-
vant background on simplicial complexes, Stanley–Reisner rings and moment-angle
complexes and collect some facts concerning their cohomology rings. In Section 3,
we deone B-rigidity and prove |eorems A and B. In Section 4, we consider some
consequences of the results above for quasitoric manifolds. |e cohomology rings of
these spaces are given by Artinian reductions of Stanley–Reisner rings, and the main
results of this section (|eorems 4.3 and 4.7) address a variant of Question 1.1 that
asks to what extent the orbit polytope of a quasitoric manifold M is determined by
H∗(M).

2 Preliminaries

Let k be a oeld. All graded algebras considered in this paper will be connected (that is,
nonnegatively graded with A0 = k) and of onite type. |e term commutative graded
algebra will refer to a graded algebra that is commutative in the graded sense. All
tensor products are taken over k.

2.1 Simplicial complexes and Stanley–Reisner rings

Let K be an abstract simplicial complex on the vertex set [m] = {1, . . . ,m}. We will
always assume that ∅ ∈ K and that {i} ∈ K for all i ∈ [m].

For a subset I ⊆ [m], the full subcomplex of K on I is deoned by

KI = {Ã ∈ K ∶ Ã ⊆ I}.
Amissing face of K is a minimal non-face, that is, a subset I ⊆ [m] with I ∉ K and

J ∈ K for every proper subset J ⊂ I (equivalently, KI = ∂Δ∣I∣−1). We will write MF(K)
for the set of missing faces of K.

|e join of two simplicial complexes K1 and K2 on disjoint vertex sets is deoned to
be the simplicial complex

K1 ∗ K2 = {Ã ∪ Ä ∶ Ã ∈ K1 , Ä ∈ K2}.
In particular, K ∗ Δ0 is called the cone over K. Note that a simplicial complex on a
given vertex set [m] is uniquely determined by its set of missing faces and that K
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1316 S. Amelotte and B. Briggs

decomposes as K = KI ∗ KJ if and only if the vertex set admits a partition [m] = I ⊔ J
with the property that MF(K) =MF(KI) ⊔MF(KJ).

|e polynomial algebra S = k[v1 , . . . , vm], having variables in bijection with the
vertices of K, is naturally graded by Zm . We refer to this grading as the multidegree
and use the notation mdeg(v e11 . . . v emm ) = (e1 , . . . , em).

|e Stanley–Reisner ring of K is the multigraded algebra

k[K] = S/(v i1 . . . v i t ∶ {i1 , . . . , it} ∈MF(K)).
|e Koszul complex of the Stanley–Reisner ring is the diferential graded algebra

Kosk[K](v1 , . . . , vm) = (k[K] ⊗ Λ(u1 , . . . , um), d), d(u i) = v i ,(1)

with its usual exterior algebra product and each u i in homological degree 1. |e
Tor-algebra

TorS∗(k[K], k) = H∗(Kosk[K](v1 , . . . , vm))
inherits its product from the Koszul complex. It is naturally graded by Z ×Zm ; we
write TorSi (k[K], k)J for the subspace of homological degree i and multidegree J.

A multidegree J ∈ Zm is said to be square-free if each of its entries is 0 or 1. |e set
of square-free multidegrees can be identioed with the set of subsets of [m], and we
make this identiocation in the next result, which expresses TorS∗(k[K], k) in terms of
the reduced simplicial cohomology groups of full subcomplexes of K.

|eorem 2.1 (Hochster’s formula [17]) If J is square-free, then

TorSi (k[K], k)J ≅ H̃∣J∣−i−1(KJ ; k),
with the convention that H̃−1(K∅; k) = k. Otherwise TorSi (k[K], k)J = 0.

Remark 2.2 Hochster’s formula allows us to identifymultidegrees of TorS∗(k[K], k)
with subsets of [m], andwewill do this henceforth. It follows aswell that for any subset
J ⊆ [m] the graded subspace

TorS∗(k[K], k)⊆J =⊕
I⊆J

TorS∗(k[K], k)I

is a subalgebra of TorS∗(k[K], k), and moreover that the natural projection

proj⊆J ∶TorS∗(k[K], k) "→ TorS∗(k[K], k)⊆J
is an algebra homomorphism.

Lemma 2.3 In homological degree 1, a k-basis for TorS1 (k[K], k) is given by

{[v i1 . . . v i tu i t+1] ∶ {i1 , . . . , it+1} ∈MF(K)} .

Proof A direct computation with the Koszul complex shows that v i1 . . . v i tu i t+1

is closed and not exact when {i1 , . . . , it+1} ∈MF(K). |e resulting nonzero classes
[v i1 . . . v i tu i t+1] are linearly independent since they lie in distinct multidegrees, and
therefore form a basis since dimk Tor

S
1 (k[K], k) = ∣MF(K)∣, the minimal number of

generators of the Stanley–Reisner ideal. ∎
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2.2 Moment-angle complexes and their cohomology rings

We now recall some notions from toric topology, largely in order to lay out our
notation. Fix as before a simplicial complex K on a vertex set [m]. Identify D2 and S1

with the unit disk in C and its boundary, respectively.
|emoment-angle complex overK is the subspace of the polydisk (D2)m deoned by

ZK = ⋃
σ∈K

(D2 , S1)σ ⊆ (D2)m ,

where

(D2 , S1)σ = {(z1 , . . . , zm) ∈ (D2)m ∶ z i ∈ S1 if i ∉ Ã} .
|e coordinatewise action of the m-torus Tm = (S1)m on (D2)m restricts to an
action of Tm on ZK . |e equivariant cohomology ring H∗Tm(ZK ; k) is naturally
a graded module over H∗(BTm ; k) ≅ S (with polynomial generators v1 , . . . , vm in
cohomological degree 2), and there is an isomorphism of graded S-modules

H∗Tm(ZK ; k) ≅ k[K],
see, for example, [6, Corollary 4.3.3].

For the ordinary cohomology, the cellular cochain complex of ZK can be shown
to be quasi-isomorphic to the Koszul complex (1), which leads to the following
fundamental result.

|eorem 2.4 [6, |eorem 4.5.4] |ere is an isomorphism of graded algebras

H∗(ZK ; k) ≅ TorS∗(k[K], k),
where

Hn(ZK ; k) ≅ ⊕
n=2∣J∣−i

TorSi (k[K], k)J .

In particular, the cohomology ring of ZK obtains a multigrading from the
Tor-algebra. Under the isomorphism of |eorem 2.4, the projection operators

proj⊆J ∶TorS∗(k[K], k) "→ TorS∗(k[K], k)⊆J
of Remark 2.2 can be identioed with homomorphisms

j∗∶H∗(ZK ; k) "→ H∗(ZK J
; k)

induced by the natural maps j∶ZK J
→ ZK coming from inclusions of full subcom-

plexes KJ → K.

Deonition 2.5 A commutative graded k-algebra A is a Poincaré duality algebra of
dimension n if it is onite dimensional, and if the bilinear forms

Ai ⊗ An−i → k, a ⊗ b ↦ ε(ab)
are nondegenerate for some homogeneous map ε∶A→ k of degree −n.

https://doi.org/10.4153/S0008439523000383 Published online by Cambridge University Press



1318 S. Amelotte and B. Briggs

Lemma 2.6 [13, Proposition 21.5] A onite dimensional, connected, graded algebra A
is Poincaré duality of dimension n if and only if the socle soc(A) = annA(A⩾1) is one-
dimensional and concentrated in degree n. In this case, the orientation map ε∶A→ k
corresponds to a choice of isomorphism soc(A) → k.

Lemma 2.7 Let A be a Poincaré duality algebra of dimension n. If there is an
isomorphism A ≅ A1 ⊗ A2 of graded algebras, then A1 and A2 are Poincaré duality
algebras of dimension n1 and n2, respectively, with n1 + n2 = n.

Proof Since A ≅ A1 ⊗ A2 implies soc(A) ≅ soc(A1) ⊗ soc(A2), the socle of A is
one-dimensional if and only if so are the socles of A1 and A2. ∎

A classical result of Avramov and Golod [1] characterizes Poincaré duality for the
Koszul homology of a local ring in terms of the Gorenstein property. |e simplicial
complexK is calledGorenstein over k if the Stanley–Reisner ring k[K] is a Gorenstein
ring, and K is simply calledGorenstein if it is Gorenstein over every oeld k. Moreover,
K is called Gorenstein∗ if it is Gorenstein and K is not a cone (i.e., K = core(K)).

Combined with|eorem 2.4, a graded version of Avramov–Golod’s theorem (see
[3, |eorem 3.4.5]) leads to the following characterization of Poincaré duality for
moment-angle complexes.

|eorem 2.8 [6, |eorem 4.6.8] |e cohomology ring H∗(ZK ; k) is a Poincaré
duality algebra if and only if K is Gorenstein over k.

Remark 2.9 |e topology behind this characterization is clarioed by a result of Cai
which states that ZK is a closed topological (m + n)-manifold precisely when K is a
generalized homology (n − 1)-sphere [7, Corollary 2.10], which in turn is equivalent
to the condition that K is Gorenstein∗ by a well-known result of Stanley [19].

Gorenstein∗ complexes of particular importance in toric topology arise from
simple polytopes as follows. Let P be a simple (convex) polytope of dimension n, and
denote the facets (faces of dimension n − 1) of P by F1 , . . . , Fm . |e simplicial complex
K dual to P has vertex set [m] = {1, . . . ,m} and J ⊆ [m] belongs to K if and only if

⋂i∈J Fi ≠ ∅. Equivalently, K is the boundary of the polytope dual to P, i.e., K = ∂P∗.
If K′ is the simplicial complex dual to another simple polytope P′, then it is easy

to see that the simplicial complex dual to the product P × P′ is the join K ∗ K′.
|rough this construction, we associate with P the Stanley–Reisner ring and

moment-angle manifold

k[P] = k[K] and ZP = ZK .

In particular, if k[P] is generated by v1 , . . . , vm as in Section 2.1, then by|eorem 2.4

H∗(ZP ; k) ≅ H∗(Kosk[P](v1 , . . . , vm)).
Moment-angle manifolds corresponding to simple polytopes can be given smooth
structures (for which the Tm-action is smooth) by identifyingZP with a nonsingular
intersection of quadrics in C

m (see [6, Section 6.1] for details).
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3 B-rigidity

In this section, we prove |eorem B (|eorem 3.2) and use it to derive some
corollaries, including|eorem A (Corollary 3.5). We begin with a deonition.

A simplicial complex K with K = core(K) is called B-rigid over k if for every K′

with K′ = core(K′), a graded ring isomorphism H∗(ZK ; k) ≅ H∗(ZK′ ; k) implies a
combinatorial equivalence K ≃ K′. We simply say that K is B-rigid if it is B-rigid over
every oeld k.

Remark 3.1 B-rigidity was introduced and deoned as above in [9] to address
Question 1.1 (cf. [4, Lecture IV and Problem 7.6]), and has since been studied in [5, 10,
14–16], where some variations on the deonition above have appeared. For example,
in [16], bigraded isomorphisms of cohomology rings are used to deone B-rigidity
while complexes satisfying the deonition above are called strongly B-rigid. In [15], a
complex is called B-rigid when it is B-rigid over Z in the sense above. We note that
any complex satisfying the deonition above is also B-rigid in the bigraded and integral
senses.

In [5, 10, 14], the notion of B-rigidity is deoned for simple polytopes rather
than simplicial complexes. A simple polytope P is called B-rigid over k if for every
simple polytope P′, a graded ring isomorphism H∗(ZP ; k) ≅ H∗(ZP′ ; k) implies a
combinatorial equivalence P ≃ P′. As before, we say that P is B-rigid if it is B-rigid
over every oeld k. Our main results apply in the more general context of simplicial
complexes.

|eorem3.2 Let K be a simplicial complex on vertex set [m], and let k be a oeld. If K is
Gorenstein over k and the cohomology ring ofZK admits a tensor product decomposition

H∗(ZK ; k) ≅ A1 ⊗⋯⊗ A�

as graded k-algebras, then there is a Tm-equivariant homeomorphism

ZK ≅ ZK1
×⋯×ZK�

,

where H∗(ZK i
; k) ≅ A i for each i = 1, . . . , �.

Proof Note that if K = K′ ∗ Δ0, then ZK is Tm-equivariantly homeomorphic to
ZK′ ×ZΔ0 = ZK′ × (D2)with Tm = Tm−1 × S1 acting coordinatewise on the product.
We may therefore assume without loss of generality that K is not a cone and hence
that K is Gorenstein∗ over k.

It will suoce to assume � = 2, so suppose
φ∶A1 ⊗ A2 "→ H∗(ZK ; k)

is an isomorphism of graded k-algebras. Since K is Gorenstein∗ over k, the cohomol-
ogy ring H∗(ZK ; k) is a Poincaré duality algebra by |eorem 2.8, and so are A1 and
A2 by Lemma 2.7. Let Ä i ∈ A i be a generator of the highest degree nonzero graded
component of A i , i = 1, 2. |en Ä ∶= φ(Ä1) ⋅ φ(Ä2) generates the top cohomology
group of ZK , and it follows from the Gorenstein∗ property that Ä is homogeneous
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1320 S. Amelotte and B. Briggs

of multidegree mdeg(Ä) = [m]. Identifying H∗(ZK ; k) with ⊕J⊆[m] Tor
S
∗(k[K], k)J

using|eorem 2.4, write

φ(Ä i) = ∑J⊆[m]φ(Ä i)J , φ(Ä i)J ∈ TorS∗(k[K], k)J
for i = 1, 2 and choose multidegrees U ,V ⊆ [m] such that φ(Ä1)U ⋅ φ(Ä2)V = cÄ for
some nonzero c ∈ k. Note that U ∩ V = ∅ by square-freeness (|eorem 2.1), and
U ∪ V = [m] since mdeg(Ä) = [m].

Next, deone subalgebras of H∗(ZK ; k) by

Ã1 = proj⊆U(φ(A1)) and Ã2 = proj⊆V(φ(A2))

using the projections from Remark 2.2. Since proj⊆Uφ(Ä1) ≠ 0, and every nonzero
element of φ(A1) divides φ(Ä1) by Poincaré duality, it follows that proj⊆U ∣φ(A1) is

injective and therefore deones an isomorphism φ(A1) ≅ Ã1. Similarly, φ(A2) ≅ Ã2.
Consider the homomorphism of graded algebras Ã1 ⊗ Ã2 → H∗(ZK ; k) deoned by
multiplication. Since Ã1 ⊗ Ã2 is clearly a Poincaré duality algebra with socle generated
by φ(Ä1)U ⋅ φ(Ä2)V , this map is injective and therefore an isomorphism as dimk(Ã1 ⊗
Ã2) = dimk(A1 ⊗ A2) = dimk H

∗(ZK ; k).
Finally, in homological degree 1, observe that the decomposition H∗(ZK ; k) ≅

Ã1 ⊗ Ã2 implies that each indecomposable generator

[v i1 . . . v i tu i t+1] ∈ TorS1 (k[K], k) ⊆ H∗(ZK ; k)

of Lemma 2.3 must lie either in Ã1 or Ã2 (since it is homogeneous of multidegree
{i1 , . . . , it+1} and Ã1 ⊆ TorS∗(k[K], k)⊆U , Ã2 ⊆ TorS∗(k[K], k)⊆V ). In particular, each
missing face Ã = {i1 , . . . , it+1} ∉ K satisoes either Ã ∈ U or Ã ∈ V , that is, MF(K) =
MF(KU) ⊔MF(KV). It follows that K = KU ∗ KV and hence ZK is equivariantly
homeomorphic to ZKU

×ZKV
. Note that since H∗(ZKU

; k) ≅ TorS∗(k[K], k)⊆U
and H∗(ZKV

; k) ≅ TorS∗(k[K], k)⊆V , both inclusions Ã1 ⊆ TorS∗(k[K], k)⊆U and
Ã2 ⊆ TorS∗(k[K], k)⊆V must be equalities for dimension reasons. |erefore

H∗(ZKU
; k) ≅ Ã1 ≅ φ(A1) ≅ A1 ,

and similarly H∗(ZKV
; k) ≅ A2, as desired. ∎

|e next corollary follows immediately from the proof above. It is interesting to
note that any product decomposition of a moment-angle manifold up to homotopy
can be improved to one up to Tm-equivariant homeomorphism.

Corollary 3.3 Let K be a Gorenstein simplicial complex on the vertex set [m]. |e
following conditions are equivalent:

(a) H∗(ZK) decomposes nontrivially as a tensor product.
(b) ZK is homotopy equivalent to a product of non-contractible spaces.
(c) ZK is Tm-equivariantly homeomorphic to a product of non-contractible moment-

angle manifolds.
(d) K = K1 ∗ K2, where K i is not a simplex, i = 1, 2.
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Remark 3.4 Of course, for a moment-angle manifold over a simple polytope P,
it follows from the results above that a nontrivial tensor product decomposition of
H∗(ZP ; k) implies a product decomposition of P. In this case, the Tm-equivariant
homeomorphisms of |eorem 3.2 and Corollary 3.3 can be replaced by Tm-
equivariant difeomorphisms.

Corollary 3.5 |e collection of B-rigid Gorenstein complexes is closed under onite
joins. Consequently, the collection of B-rigid polytopes is closed under onite products.

Proof Let K1 and K2 be B-rigid Gorenstein complexes. To see that K1 ∗ K2 is
B-rigid, assume there is a graded ring isomorphism H∗(ZK1∗K2

; k) ≅ H∗(ZL ; k)
for some complex L with L = core(L). |en, since H∗(ZK1∗K2

; k) ≅ H∗(ZK1
; k) ⊗

H∗(ZK2
; k), the proof of |eorem 3.2 implies that L decomposes as a join L1 ∗ L2

with H∗(ZL i
; k) ≅ H∗(ZK i

; k) for i = 1, 2. It now follows from the B-rigidity of K i

that there is a combinatorial equivalence K i ≃ L i for i = 1, 2, and hence L ≃ K1 ∗ K2.
|erefore K1 ∗ K2 is B-rigid. ∎

4 Quasitoric manifolds

In their foundational work [12], Davis and Januszkiewicz introduced the notion of a
quasitoric manifold as a topological generalization of a nonsingular projective toric
variety (or toric manifold). In this section, we discuss some implications of the results
of the previous section for quasitoric manifolds.

Let P be a simple convex polytope of dimension n. A quasitoric manifold over P is a
closed smooth 2n-dimensional manifoldM equipped with a smooth locally standard
action of Tn such that the orbit space M/Tn can be identioed with P. (A locally
standard Tn-action is one which is locally modeled on the standard action of Tn on
C

n , and this property implies that the orbit space is a manifold with corners.)
Every quasitoric manifold over P arises as a quotient M ≅ ZP/Tm−n for some

subtorus Tm−n ⊆ Tm that acts freely on ZP [6, Proposition 7.3.12], resulting in a
principal obration sequence

Tm−n "→ ZP "→ M .

|e cohomology of quasitoricmanifolds was described in [12]. Associated with the
Tn-action onM, there is a regular sequence t1 , . . . , tn of linear elements in k[P] such
that

H∗(M; k) ≅ k[P]/(t1 , . . . , tn).(2)

Since t1 , . . . , tn is a regular sequence, it follows from |eorem 2.4 that there is an
isomorphism (cf. [6, Lemma A.3.5])

H∗(ZP ; k) ≅ TorS/J∗ (k[P]/J , k),(3)

where J denotes the ideal generated by (homogeneous livs to S of) t1 , . . . , tn .
As a consequence of the isomorphisms (2) and (3), we emphasize that the cohomol-

ogy ring of any quasitoric manifold over P determines, in particular, the cohomology
ring of the moment-angle manifold over P.
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1322 S. Amelotte and B. Briggs

Lemma 4.1 [9, Lemma 3.7] Let M and M′ be quasitoric manifolds over simple
polytopes P and P′, respectively. If there is a graded ring isomorphism H∗(M; k) ≅
H∗(M′; k), then there is a graded ring isomorphism H∗(ZP ; k) ≅ H∗(ZP′ ; k).

Remark 4.2 |e cohomology ring of a quasitoric manifold M contains more
information about its orbit polytope P than the ring H∗(ZP) does, but it does not
determine the combinatorial type of P in general. A simple polytope P is called
C-rigid (over k) if its combinatorial type is determined byH∗(M; k) for any quasitoric
manifoldM over P—that is, if for every quasitoric manifoldM′ over P′, a graded ring
isomorphismH∗(M; k) ≅ H∗(M′; k) implies a combinatorial equivalence P ≃ P′ (cf.
[4, Deonition A.11], [9, Deonition 1.2]). By Lemma 4.1, all B-rigid polytopes are
C-rigid. Examples of C-rigid polytopes that are not B-rigid are given in [10], while
the 3-polytopes described in [5, Example 3.4] are neither B-rigid nor C-rigid.

Although it follows from|eorem 3.2 and Lemma 4.1 that any product of B-rigid
polytopes is C-rigid, it is not clear whether the class of C-rigid polytopes is closed
under products. In this direction, we have the following result.

|eorem 4.3 Let M be a quasitoric manifold over a simple polytope P. If P is
indecomposable, then H∗(M; k) cannot be decomposed as a nontrivial tensor product
for any oeld k, and, in particular, M is indecomposable up to homotopy.

Proof We orst note, with notation as above, that for any basis z1 , . . . , zm−n of
H2(M; k) there are isomorphisms

H∗(KosH
∗(M ;k)(z1 , . . . , zm−n)) ≅ H∗(Kosk[P](t1 , . . . , tn , z1 , . . . , zm−n))

≅ H∗(Kosk[P](v1 , . . . , vm))
≅ H∗(ZP ; k);

the orst isomorphism follows from [3, Corollary 6.1.13 (b)]; the second isomorphism
exists because t1 , . . . , tn , z1 , . . . , zm−n generate the same ideal as u1 , . . . , um , and there-
fore have isomorphic Koszul complexes; and the third isomorphism is |eorem 2.4.

Now suppose that H∗(M; k) ≅ A1 ⊗ A2, with neither A1 nor A2 isomorphic to k.
Take bases z1 , . . . , z i of A

2
1 and z i+1 , . . . , zm−n of A

2
2.|e Künneth isomorphism yields

H∗(KosA1(z1 , . . . , z i)) ⊗H∗(KosA2(z i+1 , . . . , zm−n))
≅ H∗(KosA1⊗A2(z1 , . . . , zm−n)).

We may use the chain of isomorphisms above to conclude that this is isomorphic to
H∗(ZP ; k), since H2(M; k) ≅ A2

1 ⊕ A2
2. |ereby, we obtain a tensor product decom-

position ofH∗(ZP ; k). By Corollary 3.3, the polytope P decomposes accordingly into
a product of polytopes. ∎

Remark 4.4 According to |eorem 4.3, if the cohomology H∗(M) of a quasitoric
manifold M over P admits a nontrivial tensor product decomposition, then the
polytope P decomposes as a product. We note that, unlike the case of moment-
angle manifolds, the converse of this result is not true: many quasitoric manifolds
over products of polytopes have indecomposable cohomology rings. For instance,
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the connected sum CP3#CP3 equipped with an appropriate T3-action is a quasitoric
manifold over the prism Δ1 × Δ2, while H∗(CP3#CP3) admits no nontrivial tensor
product decomposition.

Since a simplex Δn is trivially B-rigid, Corollary 3.5 implies that B-rigid polytopes
are closed under products with simplices.We next consider a consequence of this fact
for quasitoric manifolds and their orbit polytopes.

We orst review a common method for constructing new quasitoric manifolds
from a given one M. Let E = ⊕�

i=0 ξ i be a Whitney sum of complex line bundles
overM. Removing the zero section and quotienting by theC∗-action along each ober,
we obtain the projectivization P(E) with ober CP�. Starting with M = {point}, for
example, and iterating this construction yields a tower of projective bundles

Bh → Bh−1 →⋯→ B1 → M = {point},

called a generalized Bott tower, where B j = P (⊕� j

i=0 ξ i) for some complex line bundles

ξ0 , . . . , ξ� j
over B j−1. In this case, the generalized Bott manifold Bh at height h is a

quasitoric manifold (in fact, a smooth projective toric variety) over ∏h
i=1 Δ

�i . Note
that since a product of simplices is B-rigid and hence C-rigid, generalized Bott
manifolds provide a large class of quasitoric manifolds whose cohomology rings
uniquely determine their orbit polytopes.

LetGm denote them-gon,m ⩾ 3. In [11], Choi and Park prove that the product of a
simplex and a polygon is B-rigid and use this to obtain the following result. Following
[11], we call P(E) a projective bundle only when the vector bundle E is aWhitney sum
of complex line bundles, as above.

|eorem 4.5 [11, Corollary 4.1] Let P(E) be a projective bundle over a 4-dimensional
quasitoric manifold. If the cohomology ring of a quasitoric manifold M is isomorphic to
that of P(E), then the orbit space of M is combinatorially equivalent to Δ� ×Gm .

Using Corollary 3.5, we can extend the result above in two ways. First, since a
4-dimensional quasitoric manifold is precisely a quasitoric manifold over a (B-rigid)
polygon Gm , we can generalize to higher dimensions by replacing the role of the
polygon with a B-rigid polytope Q of arbitrary dimension. Second, we can consider
towers of iterated projective bundles starting with a quasitoric manifold over Q since
a B-rigid polytope remains so aver taking a product with a simplex any number of
times.

Wewill need the following lemma, which is well known for smooth projective toric
varieties.

Lemma 4.6 Let M be a quasitoric manifold over a simple polytope Q. If P(E) is a
projective bundle over M, then P(E) is a quasitoric manifold over Δ� × Q.

Proof Assume P(E) is a projective bundle over a quasitoric manifold M2n with
M2n/Tn = Q. |en E = ⊕�

i=0 ξ i for some complex line bundles ξ0 , . . . , ξ� over M
2n ,

so E has a T�+1-action deoned by coordinatewise multiplication along each ober.
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Moreover, since the ober inclusion ι∶M2n → ETn ×Tn M2n of the Borel construction
induces a surjection ι∗∶ k[Q] → k[Q]/(t1 , . . . , tn), the orst Chern class of each line
bundle satisoes c1(ξ i) ∈ ι∗(H2

Tn(M2n ;Z)) and it follows from [18, |eorem 1.1] that
the locally standard Tn-action on M2n livs to a linear action on the total space of
each ξ i . |e resulting action on E makes E → M2n a Tn-equivariant vector bundle,
and since this action commutes with the T�+1-action described above, these deone
an action of Tn+�+1 on E. |e induced Tn+�-action on P(E) is a locally standard
half-dimensional torus action giving P(E) the structure of a quasitoric manifold
over Δ� × Q, since the orbit space CP�/T� of the standard action on the ober can
be identioed with Δ�, and M2n/Tn = Q. ∎

|eorem4.7 LetQ be aB-rigid polytope, and let P(E) be an iterated projective bundle
over any quasitoric manifold over Q. If the cohomology ring of a quasitoric manifold M
is isomorphic to that of P(E), then the orbit space of M is combinatorially equivalent to

∏h
i=1 Δ

�i × Q.

Proof Let N2n be a quasitoric manifold with N2n/Tn = Q. If P(E) is an iterated
projective bundle of height h over N2n , then iteratively applying Lemma 4.6 shows

that P(E) is a quasitoric manifold over a polytope ∏h
i=1 Δ

�i × Q. Now if M is a
quasitoric manifold over some simple polytope P with H∗(M; k) ≅ H∗(P(E); k),
then by Lemma 4.1, there is an isomorphism of graded rings

H∗(ZP ; k) ≅ H∗(Z∏h
i=1

Δ�i×Q ; k).

Since ∏h
i=1 Δ

�i × Q is B-rigid by Corollary 3.5, P is combinatorially equivalent to

∏h
i=1 Δ

�i × Q. ∎
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