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Abstract
Pretrained transformer models have demon-
strated remarkable performance across vari-
ous natural language processing tasks. These
models leverage the attention mechanism to
capture long- and short-range dependencies in
the sequence. However, the (full) attention
mechanism incurs high computational cost –
quadratic in the sequence length, which is not
affordable in tasks with long sequences, e.g.,
inputs with 8k tokens. Although sparse at-
tention can be used to improve computational
efficiency, as suggested in existing work, it
has limited modeling capacity and often fails
to capture complicated dependencies in long
sequences. To tackle this challenge, we pro-
pose MASFormer, an easy-to-implement trans-
former variant with Mixed Attention Spans.
Specifically, MASFormer is equipped with full
attention to capture long-range dependencies,
but only at a small number of layers. For the
remaining layers, MASformer only employs
sparse attention to capture short-range depen-
dencies. Our experiments on natural language
modeling and generation tasks show that a
decoder-only MASFormer model of 1.3B pa-
rameters can achieve competitive performance
to vanilla transformers with full attention while
significantly reducing computational cost (up
to 75%). Additionally, we investigate the ef-
fectiveness of continual training with long se-
quence data and how sequence length impacts
downstream generation performance, which
may be of independent interest.

1 Introduction

Pre-trained transformer models have manifested
superior performance in various natural language
processing tasks such as natural language modeling
(NLM) (Dai et al., 2019; Radford et al., 2019), natu-
ral language generation (NLG) (Brown et al., 2020)
and natural language understanding (NLU) (De-
vlin et al., 2019; Liu et al., 2019; He et al., 2021b).

∗ Work was done during Qingru Zhang’s internship at
Amazon Web Service.

These models leverage the attention mechanism
(Vaswani et al., 2017) to compute the dependency
score for each pair of tokens in an input sequence.
Some practical tasks require these transformer

models to handle long-sequence inputs like 8k to-
kens. For example, chatbot systems gather long-
term contexts of user interactions to generate infor-
mative texts (Roller et al., 2021). Summarization
for news, government reports, and academic papers
request models to take inputs of long sequences to
generate comprehensive summaries (Shaham et al.,
2022), otherwise models often miss important in-
formation. Note that typical transformer models
apply full attention to capture token dependencies
pair-wise. It leads to a quadratic time and space
complexity w.r.t. input length. However, such a
complexity is prohibitive for long sequences. In
particular, it incurs massive memory consumption
during the back propagation. For example, a trans-
former model with 250M parameters consumes
over 80G GPU memory when sequence length is
8k (Zuo et al., 2022).
To address this scalability issue, various ap-

proaches have been proposed to reduce the com-
plexity. One approach is sparse attention, which
restricts each token to attend a subset of tokens
based on predefined sparsity patterns (Beltagy et al.,
2020; Zaheer et al., 2020; Ainslie et al., 2020). For
instance, block sparse attention (Kitaev et al., 2020;
Ma et al., 2023) divides the input sequence into sev-
eral blocks, and only intra-block attention is per-
formed. Besides, sliding-window attention (Belt-
agy et al., 2020; Zaheer et al., 2020; Ainslie et al.,
2020) allows each token to attend to its neighboring
tokens within a sliding window. These methods,
though reducing the complexity of full attention,
cannot sufficiently capture long-range dependen-
cies. Other variants, such as kernel approximation
(Peng et al., 2021) and low-rank approximation
(Wang et al., 2020; Chen et al., 2021) methods,
share the similar spirit and drawbacks. To com-
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pensate for the lack of long-range dependencies,
LongT5 (Guo et al., 2021) introduces global tokens
that are obtained by average pooling on every block
of tokens (Ainslie et al., 2020). However, the block
pooling operations can weaken the signal of crucial
tokens and prevent the long-range dependencies
from being detected.

In addition to these methods, state space mod-
els (SSMs) prespecify global dependency patterns
to capture the long-range dependencies only (Gu
et al., 2020, 2021; Li et al., 2022; Zuo et al., 2022;
Ma et al., 2023; Smith et al., 2023). These models
can be regarded as linear recurrent neural networks
with specifically designed fixed weights. As tai-
lored for global dependencies, SSMs fail to effec-
tively capture local dependencies. In order to com-
bine both local and global dependencies, SPADE
(Zuo et al., 2022) and MEGA (Ma et al., 2023) aug-
ment SSM layers into transformer layers equipped
with local attention. However, state space meth-
ods require sophisticated implementation, and of-
ten encounter computational instability during the
back propagation, especially when scaling up to
large model size (Gupta et al., 2022). SPADE and
MEGA hence inherit these drawbacks.

Note that the aforementioned methods apply
same attention mechanism for every layer. We chal-
lenge this conventional wisdom and propose a trans-
former variant – MASFormer (Mixed Attention
Span transFormer). MASFormer utilizes full at-
tention only at a subset of layers whereas employs
sparse attention at the remaining layers. Our design
is motivated by the phenomenon – that most con-
texts in NLP data display a great deal of locality of
reference (Zaheer et al., 2020; Beltagy et al., 2020).
That is, most of information about a token can be
derived from its neighboring tokens. In contrast,
long-range dependencies among tokens are sparse
and infrequent. Consider an academic paper as an
example. Within a paragraph, there exist numerous
short-term dependencies. Neighboring tokens are
closely connected to convey meaningful semantics.
Across paragraphs, there can be a small number of
long-range dependencies. For example, tokens as-
sociated to the primary theme of the paper exhibit
rare and weak dependencies across a long span.
Since long-range dependencies occur much less
frequently, a few layers of full attention are ade-
quate to capture them. In stark contrast, short-term
dependencies are more frequent, necessitating local
attention in the majority of layers to fully extract

these signals.

To demonstrate the effectiveness of MASFormer,
We conduct experiments on natural language mod-
eling (ArXiv and PubMed Cohan et al. (2018))
and natural language generation (ArXiv, Cohan
et al. (2018) and SCROLLS, Shaham et al. (2022))
tasks. Specifically, we compare the performance of
MASFormer to other attention methods using a pre-
trained GPT-2 model (Radford et al., 2019) of 1.3
billion parameters. Our empirical results demon-
strate that MASFormer consistently outperforms
baseline methods across different attention cost
(i.e. the total number of computed attention scores).
In particular, MASFormer can achieve comparable
performance to full attention while significantly re-
ducing the computational cost. For example, with
27% of its attention cost, MASFormer achieves a
close R2 score as full attention on QMSUM dataset.

We also make additional discoveries with MAS-
Former, which are of independent interest. Firstly,
we investigate the effectiveness of continual train-
ing for long sequence modeling. Many publicly
available models are pre-trained with sequences
shorter than 2048, and often fail to perform well on
longer sequences (e.g. 8k/16k tokens). To bridge
the gap, we explore the option of continual training
to adapt these models to long sequences, thereby
avoiding pre-training from the scratch. We discuss
its effectiveness with MASFormer in Section 4.3.
Secondly, we showcase that increasing sequence
length can yield more performance gains on down-
stream tasks than NLM tasks evaluated by per-
plexity. We are aware of the recent findings by
Sun et al. (2021) that increasing context length
exhibits limited impact on NLM perplexity. Nev-
ertheless, when applying MASFormer to down-
stream tasks like long-context summarization, we
find that model performance benefits significantly
from extending context length. Such a difference
arises from the fact that predicting the next tokens
in NLM primarily relies on locality of reference.
Capturing infrequent long-range tokens can im-
prove perplexity but not significantly. Therefore,
we emphasize the necessity to evaluate model per-
formance on downstream tasks that require long-
range dependencies. Furthermore, our empirical
evidence suggests that increasing the length can
improve the performance only if models possess
sufficient capability to handle additional long-range
information. Local attention, as a counterexample,
often fails to capture long-range signals and hence
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benefits much less from long sequences.

2 Background

2.1 Pretrained Language Models

Pre-trained transformer models (Devlin et al., 2019;
Liu et al., 2019; Brown et al., 2020; Dosovitskiy
et al., 2020; He et al., 2021b,a) have manifested
superior performance in various NLP tasks. These
models are often pre-trained on enormous amounts
of unlabeled data in a unsupervised/self-supervised
manner such that they can learn rich semantic
knowledge. By further fine-tuning these pre-trained
models, we can effectively transfer such knowledge
to benefit downstream tasks (Zhang et al., 2023).
Existing research on long-range transformers

commonly requires pre-training the proposed mod-
els from scratch to accommodate new architectures
and long inputs (Guo et al., 2021; Zuo et al., 2022).
However, the significant training overheads raise a
barrier for the widespread utilization of these meth-
ods across different language models. Motivated
by this, we explore the possibility of leveraging
existing pre-trained models and adapting them to
long sequences though continual training.

2.2 Attention Mechanism

Suppose the input to the layer isX ∈ Rn×d, where
n is the input sequence length and d is embedding
dimension, then self-attention mechanism outputs

Attn(X) = softmax

(
QK⊤
√
d

)
V (1)

where Q = XWq,K = XWk, V = VWv

andWq,Wk,Wv are learnable projection weights.
Such full attention can simultaneously evaluate the
alignment between any pair of tokens in the se-
quence. Specifically, denote the attention score
A = softmax(QK⊤/

√
d), then Aij captures the

alignment between tokens i and j. A typical trans-
former model applies the full attention at every
layer. Denote the number of layers as L. Then its
attention cost is Ln2.
Sparse attention variants are introduced to miti-

gate the computational cost of full attention. Fig-
ures 1a and 1b illustrates the attention patterns of
block sparse attention and sliding-window atten-
tion. For instance, block sparse attention divides
tokens into blocks of size b and performs intra-
block attention only, resulting in an attention cost
of bn. Sliding-window attention allows each token
to attend its left/right neighboring tokens within a

local window of size w. In most of cases, block
sparse attention exhibits similar performance as
sliding-window attention (Zuo et al., 2022).

3 Our Approach
We present our method – MASFormer, a long-
range transformer variant that mixes different at-
tention spans across layers.

3.1 MASFormer: Mixed Attention Span
MASFormer leverages full attention exclusively at
a subset of transformer layers, whereas it employs
block sparse attention at the remaining layers. The
structure of MASFormer is illustrated in Figure 1c.
We choose full attention to encode long-range in-
formation due to the following reasons: (i) full at-
tention exhibits superior capability to capture long-
range dependencies compared to sparse attention;
(ii) full attention does not require sophisticated im-
plementation and hence is computationally stable
compared to SSMs (Zuo et al., 2022; Gupta et al.,
2022); (iii) full attention is compatible with exist-
ing pre-trained transformer models, enabling us to
conduct continual training which we elaborate in
Section 3.2. To mitigate the computational cost, we
restrict the number of layers using full attention.

MASFormer is motivated by empirical investiga-
tions on performance comparison between models
that apply the same attention span at every layer.
Figure 2 presents the performance of block sparse
attention and full attention on language modeling
and summarization tasks. We find that, given long-
sequence inputs, sparse attention is often insuffi-
cient to capture long-range dependencies beyond
its attention span. As a result, it shows unsatis-
factory performance. To remedy it, one can either
increase attention span or switch to full attention
to improve model capability of capturing sophis-
ticated dependencies. Though improving model
performance, it incurs high computational cost.
Confronting such a trade-off between computa-

tional cost and model performance, we challenge
the common practice – that applies the same atten-
tion span at every layer. MASFormer provides an
alternative solution. Instead of increasing attention
span evenly, MASFormer allocates a large portion
of attention computations to a subset of l layers
by equipping them with full attention. Specifically,
equipping bottom layers with full attention can
yield the best performance as suggested by our
empirical analysis in Section 4.31. At the remain-

1Please see Section 4.3 for detailed explanations
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Figure 1: Illustration of attention patterns of (a) block sparse attention with block size b = 3; (b) sliding-window
attention with window size w = 1 (on each side); (c) MASFormer that integrates full and sparse attention.
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Figure 2: (a,b): We evaluate the perplexity of a pre-trained GPT-2 model with block attention of differnet block size
after continual training. (c,d): We fine-tune a GPT-2 model with block attention and compare the summarization
performance on ArXiv and GovReport under different block size. Here the input length n is 8192.

ing layers, MASFormer utilizes block attention of
small size m, resulting in a controlled attention
cost of (L − l)mn + ln2. As mentioned in Sec-
tion 1, such a design is inspired by the phenomenon
that most of contexts in NLP data exhibit a great
deal of locality of reference. Long-range depen-
dencies, in contrast, are less frequent. Therefore, it
is not necessary to enhance attention span at every
layer. Instead, a few layers of full attention are
sufficient to capture infrequent long-range signals.
The majority of layers can maintain small attention
spans to adequately extract local dependencies and
control the attention cost.
Our empirical results demonstrate that, with

the same attention cost, MASFormer significantly
outperforms sparse attention. Remarkably, MAS-
Former can achieve comparable performance to
full attention while substantially reducing compu-
tational cost. Therefore, by mixing different atten-
tion spans, MASFormer strikes a better balance be-
tween computational cost and model performance.
Moreover, MASFormer offers additional imple-

mentation advantages. As using the same attention
function, MASFormer is easy to implement and
compatible with existing pre-trained models. We
can build MASFormer upon pre-trained transform-
ers by changing their attention patterns, which does
not involve modification on model architectures

and pre-trained weights. Meanwhile, acceleration
packages, such as FlashAttention (Dao et al., 2022)
and xFormers (Lefaudeux et al., 2022), are applica-
ble to further accelerate the computation of block
attention and full attention in MASFormer.

3.2 Continual Training with Long Sequences

As mentioned, MASFormer can be implemented
upon majority of pre-trained transformers by mod-
ifying their attention patterns. However, most of
publicly available models are pre-trained with se-
quences shorter than 2048, and often exhibit subpar
performance on longer sequences such as 8k/16k.
To bridge this gap, we propose the continual train-
ing to adapt the revised model on long sequences
and new attention pattern. As such, we can preserve
existing pre-trained knowledge and circumvent the
intensive overheads of pre-training from scratch.
In particular, we first modify the attention pattern
of the target model as proposed by MASFormer. If
the pre-trained model uses absolute position em-
beddings, we duplicate them to accommodate long
sequences. Subsequently, we provide the revised
model with long sequences (e.g., 8k) from pre-
training corpus like PILE (Gao et al., 2020). Then
we conduct continual pre-training using casual lan-
guage modeling (CLM) objective. We discuss the
effectiveness of continual training in Section 4.3.
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4 Experiments
We evaluate the effectiveness and efficiency of
MASFormer on natural language modeling (ArXiv
and PubMed, Cohan et al. (2018)), natural language
generation (ArXiv Cohan et al. (2018), QMSUM
and GovReport Shaham et al. (2022)). We choose
the GPT-3 XL model architecture (Brown et al.,
2020) as our base model, which consists of 1.3
billion parameters and 24 layers and is pre-trained
on PILE (Gao et al., 2020) for 300 billion tokens.
GPT is a general purpose model that can be ap-
plied to many tasks instead of tailoring them for
specific tasks. As such, it makes easy to control
experiments and showcase the difference among
various methods.
Implementation Details. Our base model uses
absolute positional embeddings with maximum
length 1024. To accommodate longer inputs, we du-
plicate its positional embeddings to have the maxi-
mum length as 8192 such that the model can handle
sequences containing up to 8192 tokens. Then, we
implement different attention methods by modify-
ing the attention pattern of the base model. We
implement all the models with PyTorch (Paszke
et al., 2019). All the experiments are conducted on
NVIDIA A100 GPUs.
Continual Training Details. After changing the
attention pattern, we conduct the continual training
for MASFormer and baseline methods on PILE cor-
pus (Gao et al., 2020) to adapt the revised models
to new attention patterns and long-sequence inputs.
We leverage the casual language modeling (CLM)
objective to train the model for 50,000 steps with
a warmup of 2000 steps. We set the input length
as 8192 and use a batch size of 128 such that the
models are optimized with 1M tokens per step. We
use the constant learning 0.0001 for all methods.
Baseline. We compare MASFormer with the fol-
lowing methods:
• All full attention is to apply full attention at every
layer. It has been adopted by most of existing
transformer models as default. Although incurring
the maximum attention cost, it achieves the best
performance for most of our tasks. Hence, it acts
as an upper bound for other methods.
• All block sparse attention is to apply block atten-
tion at every layer, which is an effective method to
reduce computational cost when modeling long se-
quences. Block attention sets the attention span of
each layer identical such that it evenly distributes
the budget of attention computation across layers.

• All sliding-window attention is to apply sliding-
window attention at every layer, which is another
variant of sparse attention. It shares the similar spir-
its and often performs similarly as block attention.

In the following experiments, we compare MAS-
Former and the baseline methods across different
attention cost C. That is, for all block sparse atten-
tion, we set the block size as b = C/(Ln). For all
sliding-window attention, we choose the window
size as w = C/(2Ln). For MASFormer, we apply
a small block size m = 1024 for its block atten-
tion and set l as (C − Lmn)/(n2 − mn). Then
we observe how their performance evolves when
enhancing the attention cost C or input length n.
Experiment Overview. We briefly summarize the
experimental contents as follows:
• Section 4.1 presents the perplexity evaluation of
all the models on ArXiv and PubMed after contin-
ual training.
• Section 4.2 compares the summarization perfor-
mance of the models on ArXiv, QMSUM, and Gov-
Report after fine-tuning. Besides, we also discuss
the difference between perplexity and downstream
evaluation in reflecting model capacity to capture
long-range dependencies.
• Section 4.3 provides three crucial analyses: (i)
we evaluate the benefits of increasing input length
and discuss the requirements to attain these gains;
(ii) we analyze the effectiveness of continual train-
ing for long-sequence modeling; (iii) we conduct
an ablation study to demonstrate that equipping
bottom layers with full attention yields the most
significant performance gains than other options.
We further provide the explanations.

4.1 Natural Language Modeling

4.1.1 Datasets and Evaluation Details
Datasets. We evaluate the perplexity of the up-
dated GPT-2 for each attention method after con-
tinual training. The evaluation is conducted on test
sets of ArXiv and PubMed (Cohan et al., 2018).
Table 5 presents the statistics of these two datasets.
Pubmed consists of scientific documents, with a
document’s content used as input and its corre-
sponding abstract as the target summary. ArXiv is
similar to PubMed, with documents from arXiv.
Evaluation Details. We conduct the perplexity
evaluation under two settings. (i) We calculate
the perplexity (ppl.) with all documents from test
sets. Table 1 presents the overall perplexity of dif-
ferent models on two datasets. (ii) To showcase
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Figure 3: Perplexity evaluation on ArXiv and PubMed with examples of different length. Here x-axis is the
maximum document length of each subset, i.e., k × 1024 (k = 1, 2, 3, . . . ).

the varying behaviors of models on documents of
different length, we divide all documents into sev-
eral subsets according to their length. Each sub-
set consists of examples, whose length is within
((k−1)×1024, k×1024] (k = 1, 2, 3, . . . ). Then,
we evaluate the perplexity on each subset. Fig-
ure 3 presents the perplexity of models on different
subsets of examples.

4.1.2 Results
Table 1 compares the overall perplexity on test sets
of ArXiv and PubMed. The results suggest that,
with l = 4 layers of full attention, MASFormer
achieves comparable performance to all full atten-
tion, while reducing 72% of its attention cost. With
the similar attention cost C, MASFormer outper-
forms all block attention that evenly distributes
the budget of attention computation. For exam-
ple, MASFormer with l = 2 achieves 8.75 ppl. on
PubMed, which is 1.37 lower than that of block
attention of b = 2048.

Methods C ArXiv PubMed

Full attention 1,610M 8.63 7.63

Block (b=1024) 201M 13.19 12.19
Block (b=2048) 402M 10.75 10.13

MASFormer (l=2) 318M 10.25 8.75
MASFormer (l=4) 436M 9.31 8.25
MASFormer (l=8) 671M 9.63 8.25

Table 1: Perplexity evaluation on ArXiv and PubMed.

Figure 3 illustrates the perplexity variation of
each method given examples of different length.
We can tell that MASFormer and full attention
show better performance on longer documents, sug-
gesting increasing context length can improve their
prediction performance. Full attention, though in-
curring the highest attention cost, always achieves
the best performance due to its outstanding capabil-
ity to handle sophisticated dependencies. Notably,

with 27% of its attention cost, MASFormer exhibits
a curve of ppl. v.s. length that closely resembles to
that of full attention. This demonstrates the effec-
tiveness and efficiency of MASFormer to capture
long-range dependencies. In contrast, block sparse
attention benefits much less from long contexts and
underperforms both of them because of its incapa-
bility to encode long-range signals. For example,
when b = 1024, block attention achieves similar
perplexity on PubMed examples of different length.

4.2 Natural Language Generation
4.2.1 Datasets and Training Details
Datasets. We evaluate the downstream perfor-
mance of models on several abstractive summariza-
tion tasks to compare their capability of handling
long sequences in practice. Specifically, we fine-
tune models on ArXiv (Cohan et al., 2018), QM-
SUM and GovReport (from SCROLLS benchmark,
Shaham et al. (2022)). Their statistics are summa-
rized in Table 5. We mainly use ROUGE-2 (R2)
score (Lin, 2004) as the evaluation metric, which
is more important and sensitive than R1 and RL.

Training Details. After continual training, we fine-
tune each model and report R2 scores on validation
sets. Specifically, we fine-tune models for 3000
steps on QMSUM, 8000 steps on GovReport, and
12000 steps on ArXiv. We set the batch size as
64 for ArXiv and 32 for QMSUM and GovReport.
We pick the learning rates from {1 × 10−5, 5 ×
10−5, 1×10−4, 5×10−4}, and choose the optimal
ones to report the performance of each method.
Moreover, the input length is fixed as 8192. We
apply the greedy decoding for generation. Please
see Appendix B for more details.

4.2.2 Results
In Table 22 and Figure 4, we present the fine-tuning
results on QMSUM, ArXiv and GovReport across

2Please see Table 6 in Appendix B for all ROUGE scores.
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Figure 4: Given input length as 8192, we compare summarization performance between MASFormer and block/full
attention when increasing the attention cost.

Methods C QMSUM ArXiv GovReport

Full attention 1610M 8.00 19.32 28.83

Window(w=1024) 402M 4.32 13.51 17.03
Block(b=2048) 402M 5.03 9.61 12.31

MASFormer(l=4) 436M 6.59 14.91 18.82

Window(w=2048) 805M 5.05 15.21 22.79
Block(b=4096) 805M 5.15 14.50 23.64

MASFormer(l=6) 553M 7.15 15.72 21.20
MASFormer(l=8) 671M 7.46 17.00 24.42

MASFormer(l=12) 906M 8.70 18.58 26.26

Table 2: Summarization performance of models with
different attention methods. The best results are shown
in bold.

different attention cost. The results demonstrate
that, with the similar attention cost, MASFormer
significantly outperforms sparse attention variants.
Furthermore, when enhancing attention cost, MAS-
Former achieves greater performance gains than
sparse attention methods. This is evident from
the steeper slope of its R2 curve versus attention
cost, in contrast to the baseline method. For exam-
ple, when increasing C form 553M to 671M, the
R2 score of MASFormer on QMSUM exhibits a
substantial improvement, reaching 8.70 from 7.46.
Remarkably, this score surpasses even that of full
attention. Therefore, MASFormer addresses the
trade-off between computational cost and perfor-
mance gains in a more efficient and effective way.

Notice that, in order to achieve comparable sum-
marization performance to full attention, MAS-
Former needs at leaset l = 8 layers of full attention,
and providing more can lead to more gains. This
observation is different from the findings in NLM
(Figure 3) that increasing l beyond 4 provides lim-
ited improvement in perplexity. Their different
capacity requirements arise from the fact that pre-
dicting next tokens in NLM primarily relies on lo-

cal dependencies. Capturing infrequent long-range
tokens does not significantly improve perplexity.
Thus, this discrepancy emphasizes the necessity to
evaluate long-range models on downstream tasks.

4.3 Analysis

4.3.1 Benefits of Increasing Sequence Length
In this section, we investigate the benefits of
increasing input length for downstream perfor-
mance. Specifically, we select the input length
from {2048, 4096, 6144, 8192} and present the
fine-tuning performance of full attention in Fig-
ure 5. The results consistently demonstrate that as
the input length increases, the model’s performance
improves. That is, downstream performance ben-
efits significantly from long-sequence inputs. In
contrast, increasing example length beyond 6k re-
sults in marginal improvements in perplexity (See
Figure 3), highlighting again the importance of
downstream evaluation.
In addition, when comparing the behaviors of

block attention in Figure 2c and 2d, we find that
sparse attention often insufficiently capitalize on
the benefits offered by longer inputs. For instance,
given block size as 4096, its performance on ArXiv
remains nearly unchanged when increasing input
length from 4096 (R2 = 15.52 in Figure 5a) to
8192 (R2 = 14.49 in Figure 2c). This finding sug-
gests that enhancing input length can only improve
model performance if the model possesses the suffi-
cient capability to handle long-range dependencies.

4.3.2 Effectiveness of Continual Training
We analyze the effectiveness of continual training
by comparing fine-tuning performance of MAS-
Former (l = 8) under the following settings: (i)
MASFormer without continual training (w.o. C.T.);
(ii) MASFormer continually trained with short in-
puts (C.T. (n=2048)); (iii) MASFormer continually
trained with long inputs (C.T. (n=8192)). Table 3
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Figure 5: Fine-tuning performance of full attention under different input length.

presents fine-tuning performance of these models.
We can tell that continual training with long inputs
indeed facilitates the revised models to adapt to
new structures and long-sequence inputs.

l = 8 QMSUM GovReport

w.o. C.T. 29.33/6.43/25.71 53.28/23.61/51.74
C.T. (n=2048) 29.87/7.16/26.15 52.28/23.01/49.83
C.T. (n=8192) 30.91/7.45/27.02 54.37/24.42/51.87

Table 3: We report R1/R2/RL for the above results.

4.3.3 Where to use full attention
To answer where to apply full attention, we com-
pare fine-tuning performance of MASFormers that
apply full attention at (i) bottom layers; (ii) mid-
dle layers; (iii) top layers; (iv) every L/l layers.
The results in Table 4 demonstrate that equipping
bottom layers with full attention yields the best
performance. This is because that long-range de-
pendencies can be continually captured and rein-
forced by bottom layers before propagated to upper
layers. As such, these long-range signals can be
effectively incorporated into the upper layers with
local attention, facilitating their encoding of local
information. In contrast, when equipping local at-
tention at bottom layers, long-range tokens are first
aggregated with neighboring tokens by local atten-
tion, thereby weakening their long-range signals.
Moreover, if alternating full and local attention ev-
ery L/l layers, the long-range signals cannot be
continually reinforced nor efficiently captured.

5 Discussion

GPT-Neo (Black et al., 2021) introduces an atten-
tion pattern that alternates full and window atten-
tion. However, this models is not tailored for long
sequences. It sets the local window size as 256
and has the maximum input length as 2048, unable
to handle long sequences. Instead, this attention
pattern is applied heuristically in an attempt to re-

Position QMSUM GovReport

Every 3 28.26/6.94/25.03 26.16/12.37/24.82
Top 8 20.89/4.52/18.37 -/-/-

Middle 8 27.27/5.99/24.06 20.80/9.01/19.52
Bottom 8 30.91/7.45/27.02 54.37/24.42/51.87

Every 2 31.27/8.19/27.41 35.34/16.04/33.68
Bottom 12 32.53/8.70/28.75 56.98/26.26/54.46

Table 4: Performance comparison of MASFormers that
apply full attention at different layers (# layers L=24).

duce computational cost. However, as discussed
in Section 4.3.3, this approach is neither effective
nor efficient as MASFormer when handling long
sequences. As shown in Table 4, applying full atten-
tion at every 2 or 3 layers underperforms applying it
at bottom 12 or 8 layers. Therefore, alternating be-
tween full and block attention results in additional
computational cost and performance degradation.
In contrast, MASFormer presents an effective

solution for efficient long-sequence modeling. It
provides guidance on adapting existing pre-trained
transformers to long inputs. Meanwhile, it pro-
vides insights for designing large long-range mod-
els, especially for deeper models. By equipping
only a subset of bottom layer with full attention,
we can substantially mitigate computational cost.
Additionaly, the computation of MASFormer can
be further optimized by leveraging system-level
acceleration techniques (e.g., FlashAttention and
xFormer) that support both block and full attention.

6 Conclusion
We propose an efficient long-range transformer –
MASFormer that utilizes full attention at a few of
bottom layers and employs sparse attention at the
remaining layers. Our empirical results on natural
language modeling and generation tasks demon-
strate that MASFormer can address the trade-off
between computational cost and performance gains
in a more efficient and effective way.
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A Dataset Statistics

In the following table, we provide the detailed statistics of datasets in our experiments, including example
splits and length statistics.

Dataset
Example Count Input Length

Train Valid Test Average Median 90th percentile

ArXiv 203,037 6,436 6,440 10,720 8,519 20,170
PubMed 119,924 6,633 6,658 4,748 3,883 8,883

QMSUM 1,257 272 281 9,497 14,197 27,761
GovReport 17,457 972 973 7,886 8,841 18,835

Table 5: Statistics of datasets. Input length measured in tokens using a SentencePiece Model.

B Natural Language Generation

B.1 The Results of All ROUGE Scores

Methods C QMSUM ArXiv GovReport

Full attention 1610M 31.50 / 8.00 / 27.81 46.13 / 19.32 / 41.89 60.53 / 28.83 / 57.88

Window (w=1024) 402M 23.31 / 4.32 / 20.62 35.90 / 13.51 / 32.19 49.82 / 17.03 / 47.42
Window (w=2048) 805M 26.73 / 5.05 / 23.40 38.74 / 15.21 / 34.87 56.14 / 22.79 / 53.50

Block (b=2048) 402M 26.24 / 5.03 / 23.13 21.85 / 9.61 / 19.86 26.37 / 12.31 / 25.18
Block (b=4096) 805M 26.96 / 5.15 / 23.85 35.95 / 14.50 / 32.37 49.83 / 23.64 / 47.50

MASFormer (l=4) 436M 29.86 / 6.59 / 25.87 38.85 / 14.91 / 34.98 46.67 / 18.82 / 44.39
MASFormer (l=6) 553M 30.83 / 7.15 / 27.12 36.29 / 15.72 / 32.96 49.26 / 21.20 / 46.89
MASFormer (l=8) 671M 30.91 / 8.00 / 27.81 43.31 / 17.00 / 39.12 54.37 / 24.42 / 51.87
MASFormer (l=12) 906M 32.53 / 8.70 / 28.75 45.19 / 18.58 / 40.72 56.98 / 26.26 / 54.46

Table 6: Finetuning performance of different attention methods.

B.2 Training Details

Methods QMSUM ArXiv GovReport

Full attention 1× 10−5 1× 10−4 1× 10−4

Window attention (w=1024) 5× 10−4 5× 10−5 5× 10−4

Window attention (w=2048) 5× 10−5 5× 10−5 1× 10−4

Block attention (w=2048) 1× 10−4 1× 10−5 1× 10−5

Block attention (w=4096) 5× 10−5 5× 10−4 1× 10−5

MASFormer (l=4) 5× 10−5 1× 10−3 5× 10−4

MASFormer (l=6) 5× 10−5 5× 10−5 5× 10−4

MASFormer (l=8) 5× 10−5 5× 10−4 5× 10−4

MASFormer (l=12) 1× 10−5 1× 10−4 1× 10−4

Table 7: The fine-tuning learning rate of each method on each dataset.

We conduct continual training for all attention methods with training date form PILE and input length
as 8192. After continual training, we obtain the continually trained models for each method and fine-tune
them on QMSUM, ArXiv and GovReport to compare their summarization performance. During the
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fine-tuning, we set the input length as 8192 for all datasets and all models. We apply the greedy decoding
for generation and set the maximum output length as 256 for QMSUM, 1024 for GovReport, and 512
for ArXiv. Table 8 lists the details of these hyperparameters. Besides, we apply the linear learning rate
schedule to fine-tune the models and the base learning rates are summarized in Table 7.

Hyperparameter QMSUM ArXiv GovReport

Training steps 3000 12000 8000
Batch size 32 32 64
Input length 8192 8192 8192

Maximum generation length 256 512 1024
Weight decay 0.001 0.001 0.001

Table 8: The other fine-tuning parameters for each dataset, which remain the same for every method.
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