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Abstract—Ultra-short-term wind forecasting (i.e. wind speed
and power predictions issued for sub-hourly forecast horizons),
are pivotal to the effective management and integration of
wind farms into modern-day electricity systems. The dominant
consensus in the forecasting literature and practice is that data-
driven approaches may be best suited for such short-term
horizons. This is in contrast to numerical weather predictions
(NWP), or hybrid models thereof, for which the value is typically
substantiated at relatively longer horizons (> 1-3 hours). We
propose a probabilistic data-driven model that actually makes use
of NWP information (albeit indirectly) for ultra-short-term wind
speed and power forecasting. Instead of directly using NWPs as
input regressors (as in hybrid approaches), we indirectly invoke
NWP information in selecting key parameters within the data
science model, thereby guiding it to adhere to certain physical
principles related to local wind field formation and propagation.
We show that such indirect integration of NWPs within our data
science model outperforms several prevalent forecasting methods,
including but not limited to persistence forecasts, which are
known to be highly competitive at ultra-short-term horizons. This
work serves as an exemplar for leveraging the rich, yet coarser-
resolution information of NWPs in benefiting data-science-based
ultra-short-term wind forecasting models.

Index Terms—Spatio-temporal Learning, Ultra-short-term
Wind Forecasting, Wind Energy.

I. INTRODUCTION

Ultra short-term wind forecasting refers to the prediction
of wind speed and power for very short-term horizons (i.e.,
few minutes up to an hour ahead). The value of such ultra-
short-term predictions stems from their high utility to a wide
spectrum of critical wind farm and power system operations,
including but not limited to economic dispatch and reserve
planning [1], [2], asset management [3], [4], and control [5].

The methods for wind speed and power forecasting can
be broadly classified based on whether they make use of
numerical weather predictions (NWP) or not [6]. There is
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an overall consensus in the wind forecasting literature and
practice that invoking NWP information is valuable (and in
fact, indispensable) for relatively longer forecast horizons,
that is, for h > 1-3 hours (h denotes the forecast horizon).
For ultra-short-term horizons, however, data-driven models,
primarily those based on statistical and machine learning (ML)
are arguably regarded as the best approaches, mainly due to
their ability to extrapolate patterns and correlations from sheer
volumes of historical data into the near future [7]–[10].

Along this line, we propose a data science model for
ultra-short-term wind speed and power forecasting. The key
distinguishing feature of our model is its ability to leverage
NWP information—which is typically available to the farm
or power system operator—in order to benefit ultra-short-term
wind forecasting. The proposed approach is based on a spatio-
temporal Gaussian process (GP) [11], within which NWP
information guides the selection of key kernel hyperparameters
that encode information about the local wind flow in the
region under study. This indirect integration of NWPs within
a data-science-based forecasting model breaks away from the
mainstream approach of hybrid forecasting, wherein NWPs are
directly integrated as input regressors to data science models
[12], [13], and are therefore likely to carry over the deficiencies
and multi-type biases of NWPs when directly used for ultra-
short-term forecast horizons [14].

We train and test our model using actual observations that
have been recently collected in proximity to the offshore wind
energy areas in the NY/NJ Bight, where several Gigawatt-scale
projects are currently in-development [15]. We demonstrate
that our approach achieves noticeable improvements, in terms
of both wind speed and power forecasting, relative to several
benchmarks in the forecasting literature and practice, including
persistence forecasts, which are known to be highly competi-
tive for very-short-term horizons. We therefore envision our
work to serve as an exemplar for leveraging the rich, yet
coarse-resolution information of NWPs within data-science-
based ultra-short-term wind forecasting.



The remainder of this paper is organized as follows. Section
II describes the real-world data used in this paper. Section III
reviews the concept of spatio-temporal asymmetry for wind
fields, which will then be used in deciphering the potential
role of NWPs in data-driven ultra-short-term forecasting. In
Section IV, we introduce our proposed forecasting method,
which is then followed by Section V where we present and
discuss our results. Finally, Section VI concludes the paper.

II. DATA DESCRIPTION

Our dataset comprises 10-min wind speed observations, at
100-m altitude, obtained via two buoys (E05 and E06), that
have been recently deployed by the New York State Energy
Research & Development Authority (NYSERDA)—See the
rose plot in Fig. 1(a). We also obtain a set of hourly wind
velocity NWPs from a meso-scale meteorological model op-
erated by Rutgers University, called RU-WRF (short for the
Rutgers University Weather Research & Forecasting model)
[16], [17]. Both data and NWP outputs span the month of
December 2019. Fig. 1(b) shows the histograms of the actual
observations versus their correspondent NWPs, while Fig. 1(c)
shows a 12-day time series of the actual data versus statisti-
cally interpolated NWPs for E05 (top) and E06 (bottom).

Fig. 1. (a) Wind rose plot for the actual wind speed measurements recorded
in the NY/NJ Bight (Data from two buoys combined to produce this figure);
(b) Histograms of actual wind speed measurements (mean = 10.52 m/s)
versus NWP wind speed forecasts (mean = 9.87 m/s); (c) Actual wind speed
observations (10-min) versus statistically interpolated NWPs.

III. SPATIO-TEMPORAL DATA ANALYSIS

Let Z(s, t) denote a random process that varies over space-
time, such that s ∈ R2 denotes the location (in longitude
and latitude) and t denotes time. A cornerstone of spatio-
temporal models is to invoke a covariance function (often
known as a kernel) that encodes the similarity between a pair
of spatial-temporal observations and enables GP-based fore-
casting. Assuming (local) stationarity, this kernel is denoted as
C(h, u) : R2 × Z+ → R, where h = si − sj and u = ti − tj
are spatial and temporal lags, respectively. A prevalent way
to model C(·, ·) in the data science literature is through the

so-called separable approach, wherein C(h, u) is expressed as
C(h, u) = Cs(h) × Ct(u), such that Cs(h) and Ct(u) are
two independent kernels for space and time, respectively [18].
Popular selections for Cs(h) and Ct(u) include the Gaussian,
squared exponential, and Matérn kernels [11].

A key limitation of the separable approach is that it assumes,
by design, that space-time correlations are symmetric, i.e.
cor{Z(si, t), Z(si′ , t + u)} = cor{Z(si′ , t), Z(si, t + u)}.
Processes that involve a flow over time (e.g., wind fields)
typically violate that assumption, because the along-wind
dependence (i.e., correlations in the direction of the flow) are
typically stronger than opposite-wind dependence [18], [19].

To demonstrate this using our data, we use an estimator of
asymmetry, expressed as in (1) [20], [21].

a(si, si′ , u) := δ(si, si′ , u)− δ(si′ , si, u), (1)

where si and si′ denote the coordinates of E05 and E06,
respectively, and δ(·, ·, ·) is the empirical spatio-temporal semi-
variogram (a measure of dissimilarity between spatio-temporal
observations), and is expressed as in (2).

δ (si, si′ , u) =
1

2(N − u− 1)

N−u−1∑
k=1

{y (si, k + u)− y (si′ , k)}2 .

(2)
In (2), N is the number of observations, δ (si, si′ , u) means
that the measurements taken at site si′ are u time lag behind
that at site si, while δ (si′ , si, u) means the measurements
taken at site si are u time lag behind that at site s′i. Hence,
if the wind is blowing from site si′ towards site si, then
we should expect δ(si, si′ , u) < δ(si′si, u), and therefore
a(si, si′ , u) < 0, indicating a lack of symmetry.

We then perform a t-test for each time lag, u ∈ {1, ..., 36}
(in 10-min intervals), with H0 : ā(s1, s2, u) = 0, where
ā(s1, s2, u) is the average asymmetry at time lag u. Fig. 2
shows the values of ā(s1, s2, u) versus the time lag, together
with the test’s 95% confidence intervals. The negative values
shown in Fig. 2 suggests a noticeable asymmetry in along-
wind versus opposite-wind dependence, as a result of the
wind propagation across the prevailing westerly wind during
this time of the year—Recall Fig. 1(a). We also find that
the maximum asymmetry occurs at time lags of ∼1-3 hours,
which is approximately the expected time for wind conditions
to propagate from E06 towards E05.

The above analysis suggests the potential benefit of mod-
eling asymmetry: When attempting to predict the wind con-
ditions at a downstream location, then one may potentially
assign higher weight to the observations recorded few hours
ago at an upstream location, since those upstream (but past)
measurements are expected to be highly correlated with their
downstream counterparts at the current time. To enable this,
we need an accurate representation of the prevailing wind flow
(both magnitude and direction) at the time of the forecast.
This is, in fact, where we plan to integrate NWP information.
Details of this integration are discussed in Section IV.



Fig. 2. Difference in empirical semi-variograms versus the time lag, along
with 95% t-test confidence intervals. Noticeable asymmetry levels are ob-
served, peaking at ∼1-3-hour time lag, which aligns with the expected
duration for wind conditions to propagate across the wind field (the distance
between E05 and E06 is 77 Km, while the average wind speed across both
sites is 38 Km/hr).

IV. METHODOLOGY

We first introduce spatio-temporal Gaussian processes in
Section IV-A, then discuss the role of NWPs in Section IV-B.

A. Spatio-temporal Gaussian Processes (GPs)
Let Z = [z (s1, t1) , z (s1, t2) , . . . , z (s1, tT ) , . . . , z (sn, tT )]

T

be a vector of spatio-temporal wind speeds, where z(si, tj) is
the wind speed at location si and time tj . A GP model can
be expressed as in (3).

z (si, tj) = m (si, tj) + γ (si, tj) , (3)

where m (si, tj) is referred to as the GP mean function, which,
for ultra-short-term forecasting, can be expressed as a constant,
m (si, tj) = β0, ∀i, j. The term γ(·, ·) is a zero-mean, spatio-
temporal Gaussian random field, with an nT ×nT covariance
matrix denoted by Σ+δI, where δ is the noise parameter, and
I is the identify matrix. The entries of Σ are computed using
the GP kernel, C(h, u) (details of which are to follow).

For a GP, the joint distribution of the training data Z
and a set of testing data Z∗ follows a multivariate Gaussian
distribution, as shown in (4).[

Z
Z∗

]
∼ N

([
m
m∗

] [
Σ Σ∗
ΣT

∗ Σ∗∗

])
, (4)

where m = [m(s1, t1), ...,m(sn, tT )]
T is the vector of mean

function evaluations at the training data, and m∗ is similarly
defined for the testing data. The matrix Σ∗ holds the co-
variance values between Z and Z∗, while Σ∗∗ denotes the
covariance matrix of the testing data. The forecast distribu-
tion conditioning the joint Gaussian prior distribution on the
observations can then be expressed as in (5).

P (Z∗ | Z,m(·), γ(·, ·)) ∼ N (µ̂, Σ̂), (5)

such that µ̂ and Σ̂ are computed as in (6).

µ̂ = m∗ +ΣT
∗ (Σ+ δI)−1(Z −m)

Σ̂ = Σ∗∗ −ΣT
∗ (Σ+ δI)−1Σ∗

(6)

B. Modeling C(h, u) and The role of NWPs

Defining the kernel C(h, u) is essential for spatio-temporal
GPs. The analysis in Section III motivates the need for a
nonseparable kernel that acknowledges the impact of the wind
flow on the space-time correlations. Here, we adopt an under-
explored class of nonseparable covariance models that can
particularly capture asymmetric behavior in spatio-temporal
data. Consider a spatial random field on R2 with a spatial,
motion-invariant covariance function Cs(·). Now, let’s assume
this field moves over time with a random velocity vector
Θ ∈ R2, creating a spatial-temporal random process with an
asymmetric covariance, Ca(h, u), expressed as in (7).

Ca(h, u) = EΘ{Cs(h−Θu)}. (7)

Assuming Cs(x) = exp(−x2) and letting Θ ∼ N (τ ,Ψ)
yields the closed-form expression in (8), which is referred to
as Schlather’s covariance model [22].

Ca(h,u) =
1√

|I2×2 + 2Ψu2|

× exp
{
− (h− τu)

T (
I2×2 + 2Ψu2

)−1
(h− τu)

}
,

(8)

where |·| denotes the matrix determinant.
The choice of τ and Ψ (the parameters of the prevailing

flow) is crucial for the effective use of Ca(h, u) in practice.
Incorrect specifications of τ and Ψ can severely limit (or
even reverse) the benefits of an asymmetric approach. In
prior works [21], [23], τ and Ψ have been either pre-set, or
estimated using historical measurements. We believe, however,
that local measurements do not necessarily capture the prevail-
ing flow characteristics, but rather are merely instantaneous
representations of the wind velocity at a particular location
and time. Instead, this work advocates the use of NWP wind
velocity predictions—which are typically available to the farm
or power system operator at the time of the forecast—as more
meaningful representations of the prevailing flow. In particular,
we estimate τττ and ΨΨΨ as in (9) and (10), respectively.

τττ = [τ1, τ2]
T = [v̄, w̄]T , (9)

ΨΨΨ =

[
Ψ1,1 Ψ1,2

Ψ2,1 Ψ2,2

]
=

[
cov(v,v) cov(v,w)
cov(w,v) cov(w,w)

]
, (10)

where v = [v1, ..., vT+h]
T and w = [w1, ..., wT+h]

T are
the NWP outputs for the eastward and northward winds,
respectively, during both the training and forecast horizon
windows, whereas v̄ and w̄ are the sample means of v and w,
respectively, and cov(·, ·) denotes the sample covariance.

Putting all the pieces together, we can now make fully
probabilistic forecasts by plugging in the estimated kernel in
(5) and (6). Two key assumptions that enable our approach
are local stationarity and co-location of inputs. In particular,
we assume that the parameters of the prevailing flow, namely
τ and Ψ, remain unchanged across the training and forecast
windows. We also require that the NWP inputs used to esti-
mate τ and Ψ are co-located, either exactly or approximately,



with the actual observations. This assumption is key to the
accurate representation of the prevailing flow, and ultimately,
the effective integration of NWPs within our model. Research
is currently ongoing to relax those assumptions.

V. REAL-WORLD CASE STUDY

We test our method using a rolling forecasting scheme,
for forecast horizons, h ∈ {10, ..., 60} minutes. For each
forecast roll, we train the model, obtain the forecasts, roll
by six hours, and then repeat the training and forecasting
procedures. This leads to a total of 100 rolls (considering
we have 1 month of observations). Thus, we have a total of
6 forecasts/hour ×100 rolls ×2 spatial sites = 1, 200 testing
instances. For each forecast roll, five days of historical data
and meteorological forecasts are used for model training. We
find that a combination of an asymmetric kernel Ca(h, u) and
a separable kernel yields better performance than solely using
Ca(h, u), so we employ a convex combination of both and
estimate the convex combination coefficient using the training
data, along with the remaining GP hyperparameters.

A. Wind Speed Forecasting Results

We compare the wind speed forecasts obtained from our
proposed approach against five prevalent forecasting bench-
marks: (1) GP: This is a data-driven spatio-temporal GP,
with a separable squared exponential kernel; (2) ARMA: The
autoregressive moving average model, trained separately for
each location (no spatial correlations); (3) PER: Persistence
forecasts assume wind conditions persist in the forecast hori-
zon; (4) LSTM: a deep learning model based on recurrent
neural networks that is well-suited for time series data [24].
We fit a separate LSTM for each location and use grid
search to optimize the hyperparameters; (5) NWP: Those are
the hourly (physics-based) NWP model outputs, which we
statistically interpolate (using cubic splines) to the target 10-
min resolution; and (6) HYB: This is a hybrid model that
calibrates NWPs using local observations via a simple model
output statistics (MOS) regression approach [25].

Table I (left) shows the mean absolute error (MAE) values
for the wind speed forecasts for all models at various forecast
horizons, h ∈ {10, ..., 60} minutes ahead. First, we clearly
note how data-driven methods (including ours) are performing
significantly better than physics-based approaches (NWP and
HYB) at ultra-short term horizons, especially for the first
30 minutes. This agrees with the general consensus in the
forecasting literature and practice regarding the superiority of
data-driven approaches in ultra-short-term wind forecasting.

Second, we note how our approach performs noticeably
better than all methods, including data-driven approaches
(namely, GP, ARMA, LSTM, and PER), with average percent-
age improvements, ranging between 1.20 - 14.2%. Finally, we
would like to stress how our method in particular outperforms
the persistence forecast (PER), which is typically known to be
highly competitive for such ultra-short-term horizons. Another
major advantage of our proposed approach is its ability to nat-
urally output probabilistic forecasts—Fig. 3 depicts the fore-

casts for five consecutive days, with 95% forecast intervals,
suggesting notable agreement with the actual observations.

B. Wind Power Forecasting Results

To further demonstrate the value of our approach, we trans-
form the wind speed forecasts into wind power predictions.
Currently, there are no existing wind farms in the NY/NJ
Bight (where the wind measurements are obtained), so we
use actual power curves, constructed using the method of
bins [26]–[28], on SCADA data obtained from an operational
wind farm in the US [29]. We scale the power output to the
[0, 1] interval, such that a value of 1 represents the maximum
rated capacity. We then use the constructed power curve to
convert both the actual wind speed values, as well as the
correspondent forecasts (from the six competing methods) into
wind power predictions. Table I (right) shows the MAE values
of the wind power predictions for the six models at different
forecast horizons. Again, our model is able to outperform all
of its competitors across all forecast horizons. We also notice
that the improvements in the power domain are often higher
than those in the wind speed domain, which aligns with the
theoretical cubic speed-to-power functional relationship.

Fig. 3. Five-day forecasts from our proposed approach, along with 95th
forecast intervals, on top of actual observations for E05 (top) and E06
(bottom), showing faithful alignment between the model and the ground truth.



TABLE I
FORECAST ERRORS (IN MAE), FOR WIND SPEED (LEFT) AND POWER (RIGHT), AVERAGED OVER BOTH SITES (E05 & E06). BOLD-FACED VALUES

DENOTE BEST PERFORMANCE. AVG. AND %IMP ARE AVERAGE PERFORMANCE AND % IMPROVEMENT, OVER FORECAST HORIZONS, h = 10, ..., 60 MIN.

Wind Speed (m/s) Wind Power (dimensionless)
Data-driven Physics-based Data-driven Physics-based

h (minutes) Proposed GP ARMA PER LSTM NWP HYB Proposed GP ARMA PER LSTM NWP HYB
10 .373 .376 .382 .376 .548 1.62 1.45 .030 .031 .034 .031 .048 .187 .153
20 .505 .510 .513 .509 .627 1.57 1.39 .043 .044 .046 .044 .056 .191 .154
30 .685 .692 .692 .695 .770 1.48 1.39 .085 .085 .085 .085 .087 .170 .164
40 .825 .832 .829 .833 .926 1.46 1.35 .096 .100 .101 .100 .105 .297 .148
50 .909 .921 .942 .925 1.05 1.50 1.39 .105 .111 .109 .111 .112 .291 .143
60 1.05 1.07 1.09 1.07 1.15 1.56 1.41 .129 .133 .134 .134 .130 .292 .139

Avg. .725 .734 .742 .734 .845 1.53 1.39 .081 .084 .085 .084 .090 .238 .150
% IMP - 1.23% 2.29% 1.23% 14.2% 52.6% 47.8% - 3.57% 4.71% 3.57% 10.0% 66.0% 46.0%

VI. CONCLUSIONS

In this work, we proposed a probabilistic model for ultra-
short-term wind forecasting. Unlike purely data-driven meth-
ods, we indirectly integrate NWPs to guide the selection of
key physically meaningful parameters within the data-science-
based model. We show that such indirect integration leads to
large forecast accuracy gains, in terms of both wind speed
and power, relative to purely data-driven models (that do not
invoke NWPs), or those that directly use NWPs as inputs. An
accurate estimation of prevailing flow parameters is key to
our approach. Thus, we plan to explore ways to invoke multi-
resolution, spatio-temporal NWPs over a grid to more effec-
tively estimate the prevailing flow, and to leverage exogenous
information such as temperature, pressure, or turbulence. We
also intend to extensively evaluate our approach over longer
horizons, larger datasets, and spatial networks.
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