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Abstract— Network scanning has been a standard measure-
ment technique to understand a network’s security situations,
e.g., revealing security vulnerabilities, monitoring service deploy-
ments. However, probing a large-scale scanning space with
existing network scanners is both difficult and slow, since they
are all implemented on commodity servers and deployed at the
network edge. To address this, we introduce IMap, a fast, scalable
and reconfigurable in-network scanner based on programmable
switches. In designing IMap, we overcome key restrictions posed
by computation models and memory resources of programmable
switches, and devise numerous techniques and optimizations,
including an address-random and rate-adaptive probe packet
generation mechanism, and a correct and efficient response
packet processing scheme, to turn a switch into a practical
runtime-reconfigurable high-speed network scanner. We imple-
ment an open-source prototype of IMap, and evaluate it with
extensive testbed experiments and real-world deployments in
our campus network. Evaluation results show that even with
one switch port enabled, IMap can survey all ports of our
campus network (i.e., a total of up to 25 billion scanning
space) in 8 minutes. This demonstrates a nearly 4 times faster
scanning speed and 1.5 times higher scanning accuracy than the
state of the art, which shows that IMap has great potentials
to be the next-generation terabit network scanner with all
switch ports enabled. Besides, our experiments also show that
IMap supports the reconfiguration of scanning tasks at runtime,
without incurring switch downtime. Leveraging IMap, we also
discover several potential security threats in our campus network,
and report them to our network administrators responsibly.

Index Terms— Network scanner, programmable switch,
single-packet probes.
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I. INTRODUCTION

ETWORK scanning is a typical procedure to discover

active hosts, ports and services in a network, which
is mainly used by network operators/researchers for security
assessment and system maintenance of the network. Enabled
by tools such as Nmap [2], ZMap [3] and Masscan [4], net-
work scanning has become a standard measurement technique
to understand host behaviors in the target network, even the
entire Internet. Recent studies have demonstrated that network
scanning can help reveal new security vulnerabilities [5], [6],
[7], monitor service deployments [8], [9], [10], [11] and shed
light on previously opaque distributed systems [12], which
are essential for people to understand the network’s security
situations.

Today’s network scanners, however, cannot keep pace with
today’s soaring scanning space and provide a timely security
snapshot. Recently IPv6 has progressed to the stage of large-
scale deployment, and reports show that IPv6 is used by
21.5% of all the websites [13]. Along with the adoption of
5G networks, more and more Internet-of-Things (IoT) devices
and mobile devices are connecting online [14]. The increased
address space and the numerous online devices mean that
the network scanner should be scalable to this much larger
scanning space easily. Moreover, since these IoT and mobile
devices go online and offline frequently, it is necessary for net-
work scanners to conduct a comprehensive scanning quickly.
Otherwise, a large number of security snapshots cannot be
captured, potentially missing numerous security incidents [15].
This raises the requirement that the network scanner should
complete a comprehensive scanning as fast as possible.

However, a closer look into today’s network scanners shows
that they are far from being fast and scalable, due to their
implementation targets and deployment locations, as shown
in Fig. 1(a). First, in terms of implementation targets, current
network scanners are all implemented on commodity servers.
As CPUs on servers are not specialized for high-speed packet
processing, the scanning speed of these CPU-based network
scanners is intrinsically limited. This makes it difficult to
cover a large scanning space timely. Second, in terms of
the deployment locations, state-of-the-art network scanners
are all located at the network edge. Scanning from the edge
is usually limited by the upstream bandwidth of the end
host, which inevitably constrains the utmost scanning speed
for network scanning tasks. Besides, the end-to-end scanning
paths indicate more bandwidth waste for edge networks and
larger possibilities of dropping probe/response packets.
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Fig. 1. Existing network scanners v.s. IMap.

In this paper, we propose IMap, a fast and scalable
in-network scanner to address the aforementioned issues.
The technology enabler for IMap is the emergence of
programmable switches [16], which offer remarkable perfor-
mance, unprecedented programmability, and unique deploy-
ment location, as shown in Fig. 1(b). Generally speaking,
one single programmable switch could provide a packet pro-
cessing capability as high as multiple Tbps, which is several
orders of magnitude higher than highly-optimized servers.
Besides, such switches support stateful packet processing
with domain-specific languages (e.g., P4 [17]), which allows
programmers to enforce user-defined packet processing logics
in the switch pipeline directly. Moreover, switches (especially
core switches) provide a unique vantage point for network
scanning, which is no longer constrained by the upstream
bandwidth of the end host or plagued by the bandwidth
waste and probe/response packet drops of the end-to-end
scanning paths. These unique characteristics of programmable
switches are incredibly valuable for the next-generation fast
and scalable network scanners.

Nevertheless, designing IMap is a non-trivial effort. First,
as a switch-based network scanner, IMap should first function
as a traditional switch correctly, which requires that IMap
should support the reconfiguration of scanning tasks at runtime
without incurring switch downtime and interrupting routing
functionality. Second, as a high-speed network scanner, when
sending probe packets, IMap must cover the scanning space
completely, and also be aware of network conditions to avoid
affecting the normal packet routing functionality. Besides,
once response packets arrive, IMap should distinguish normal
packets and response packets correctly, and also process the
response packets efficiently to avoid saturating the storage
server. However, switches only have constrained computa-
tional models and limited memory resources, which cannot
satisfy these requirements easily.

To meet these requirements, IMap designs a set of
techniques and optimizations, i.e., an address-random and
rate-adaptive probe packet generation mechanism, and a cor-
rect and efficient response packet processing scheme, to turn
a switch into a runtime-reconfigurable high-speed network
scanner. We implement a prototype of IMap in an Intel
Tofino switch [18], and make the source code publicly avail-
able [19]. Testbed experiments and real-world deployments

show that even with one switch port enabled, IMap can
survey all ports of our campus network (i.e., 6 Class B IP
address blocks), a total of up to 25 billion scanning space,
in 8 minutes, achieving a nearly 4 times faster scanning
speed and 1.5 times higher scanning accuracy than state-of-
the-art network scanners. Besides, from the perspective of
functionality, IMap is able to support the reconfiguration of
scanning tasks at runtime, without reloading a new P4 program
and incurring switch downtime. IMap also discovers several
potential security threats in our campus network. To the best
of our knowledge, IMap is the first network scanner that can
potentially reach multiple Tbps scanning speed, benefiting
from its implementation targets and deployment locations.
We hope IMap can serve as the foundation for next-generation
terabit network scanners.

In summary, we make the following contributions in this

paper:

o We analyze the limitations of current network scanners,
and identify the opportunities brought by programmable
switches (§1I).

o« We propose IMap, a fast, scalable and reconfigurable
in-network scanner with programmable switches. IMap
consists of a probe packet generation module to gener-
ate high-speed probe packets with random address and
adaptive rate, and a response packet processing module
to process response packets correctly and efficiently ($III,
§IV).

o« We implement an open-source prototype of IMap, and
conduct extensive testbed experiments and real-world
deployments to show advantages of IMap (§V, §VI).

Finally, we make some discussions in §VII, describe related
works in §VIII, and conclude this paper in §1X.

II. BACKGROUND, MOTIVATION AND OBSERVATION

A. Backgrounds and Limitations of Current Network
Scanners

Network scanning is usually used to discover active hosts,
ports and services in a network, which can help network
operators/researchers understand the security situation of the
target network, even the entire Internet. One typical network
scanning paradigm is single-packet probing, including TCP
SYN scans, ICMP echo request scans, and application-specific
UDP scans, which is also the default scanning strategy for
many existing network scanners such as Nmap [2], ZMap [3]
and Masscan [4]. Taking TCP SYN scans as an example,
a replied TCP SYN-ACK packet indicates the probe port
is active, and a replied TCP RST packet means the port
is closed. By sending a single probe packet and checking
the corresponding response packet, the single-packet probing
strategy can quickly locate the activeness of a specific service
port, which can easily support follow-up actions like complet-
ing a protocol handshake on discovered hosts. Currently, this
single-packet scanning strategy has been widely used in many
cases, such as revealing new security vulnerabilities [5], [6],
[7], monitoring service deployments [8], [9], [10], [11] and
illuminating previously opaque distributed systems [12].

With the rapid growth of scanning spaces and security
incidents recently, today’s network scanners are falling behind
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the times, especially in terms of scanning scalability and
scanning speed. First, network scanners should be able to
scale to large scanning spaces easily. Recently IPv6 has been
in the stage of large-scale adoption, for instance, Google’s
statistics show that around 36.99% of its users access Google
via IPv6 [20]. Since IPv6 has a much larger address space
than IPv4, the scanning space increases drastically. Besides,
along with the deployment of 5G networks, more and more
IoT/mobile devices are connecting online [14]. All these
require that network scanners should be able to cover a large
scanning space easily. Second, network scanners should be fast
enough to provide timely security snapshots. Today’s networks
become more and more dynamic, and IoT/mobile devices
switch between online and offline frequently. Meanwhile,
we have also witnessed that security incidents occur more
and more frequently, and some of them occur in a very small
time scale (e.g., from tens of seconds to several minutes).
For example, according to Cybint’s monthly newsletter, since
COVID-19, the frequency of cybercrimes increases 300%, and
hackers attempt to attack vulnerable home networks as people
are working from home [15]. As a consequence, network
scanners should be able to complete a comprehensive scanning
as fast as possible. Otherwise, some security snapshots cannot
be captured and important security incidents may be missed.

However, today’s network scanners are intrinsically slow,
which are far from being fast and scalable to satisfy the afore-
mentioned new requirements. For example, even with Zippier
ZMap [21], one of the most powerful network scanners today,
the scanning capability only reaches a throughput of 10 Gbps
and a rate of 14.2 Mpps [22]. The capability of today’s network
scanners is limited by two key factors fundamentally. First,
in terms of implementation targets, current network scanners
are all implemented on commodity servers. Packet processing
on commodity servers is intrinsically slow, since CPUs are
not specialized for high-speed packet processing. Even with
software optimizations like DPDK [23], the throughput cannot
reach more than 40 Gbps easily [24], [25], [26]. Second,
in terms of deployment locations, today’s network scanners
are all located at the edge of the network. Scanning from the
edge is not only limited by the upstream bandwidth of the end
host, but also incurs longer scanning paths and non-negligible
bandwidth waste because of end-to-end scanning paths. As a
result, even if the scanners are capable of scanning at a
higher rate (e.g., 40 Gbps), the scanning results (e.g., hit rate,
active/inactive rate) may suffer from low accuracy because
of undesirable probe/response packet drops on the end-to-
end scanning paths (§VI-B). Not surprisingly, because of
these fundamental limitations, since the publication of Zipper
ZMap [21], the network scanning tools have not experienced
any progress, and researchers have turned to improve the
scanning accuracy with the help of various algorithmic tech-
niques [27], [28], [29], [30], [31].

B. Opportunities by Programmable Switches

Programmable switches [16], [17] bring unprecedented
opportunities to address the limitations of current network
scanners.

1) High Packet Processing Capability: Switching ASICs
are specialized for high-speed line-rate packet processing,

which can provide several orders of magnitude higher through-
put than highly-optimized servers [24]. Specifically, today’s
latest CPU-based network scanner, Zipper ZMap [21], could
only provide a scanning rate of 14.2 Mpps and a scanning
throughput of 10 Gbps. In contrast, switching ASICs can easily
process a few billion packets per second, which shows great
potentials to be a terabit network scanner. Other hardware
alternatives, such as FPGA and NPU, cannot match the
performance of switching ASICs [24], thus not promising for
a high-speed network scanner.

2) Flexibility to Support Diverse Scanning Tasks: The
most prominent characteristic of the new-generation switching
ASICs is programmability. Such switching ASICs can be
programmed with domain-specific languages like P4 [17],
and also support stateful packet processing with user-defined
logics. Besides, programs can run collaboratively between the
data plane switching ASICs and the control plane switch
CPUs, enabling advanced and flexible packet processing.
Moreover, the packet processing logics at the switching ASICs
can be reconfigured at runtime from the control plane, through
interactive APIs such as match-action tables and registers. As a
result, diverse scanning tasks can be implemented in advance
and a specific scanning task can be configured at runtime,
which would potentially be the foundation of next-generation
high-speed network scanners.

3) Vantage Points to Conduct Network Scanning: EXxist-
ing network scanners are all located at network edges and
implemented in end hosts, where the utmost scanning rate
is usually constrained by the bandwidth of the end hosts.
Worse yet, scanning from the end host requires an end-to-
end scanning path, which inevitably results in the waste of
bandwidth resources and the degradation of scanning accuracy.
In contrast, switches provide a unique vantage point for
network scanning tasks. Core switches usually have huge
spare bandwidths (i.e., more than 50% spare bandwidth [32]),
which shows substantial potentials for network scanners to tap.
Moreover, scanning from a core switch is no longer plagued
by the bandwidth waste or the scanning accuracy degradation
resulted from the end-to-end scanning path. This scanning
vantage point is particularly valuable for high-speed network
scanners.

ITI. IMAP OVERVIEW
A. Deployment Scenario

Our scenario focuses on a network-centric deployment
model, where the administrators of an ISP or a cloud network
deploy IMap to understand their own network’s security sit-
uations. IMap could also be used for Internet-wide scanning,
but this should avoid causing any ethical concerns, as pointed
out in ZMap [3]. Ideally, IMap should be built on a core
switch, which provides both routing services and scanning
functionality simultaneously. In other words, the IMap switch
should first preserve the functionality of packet switching, and
then behave as a high-speed network scanner when there is
spare bandwidth (e.g., reports show that bandwidth occupa-
tion ratio for core switches is usually less than 50% [32]).
Note that the deployment of programmable switches is not
a new requirement; several ISPs/cloud networks have already
replaced their legacy switches with programmable switches in

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on August 02,2024 at 16:07:41 UTC from IEEE Xplore. Restrictions apply.



604 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 19, 2024

Step 1: Ji Step 2: start -
ep 1:./Imap o jist ip.txt Programmable Switch

& --type TCP
d Operator => o [Control Plane Programs]
-port-range | s~ - T T T .- --------

ASIC

0:65535
Query <--[ Probe Packet Generating ]-->
Result Scanning
Database Results -->I Response Packet Processing I(--
"1.2.3.4: e =T ==
20" active”  Tteal T -

Storage Server | . —

Persistent Database \\

O s P |
->{ Result Unpacker j¢- [e) P

[e)

] Network

Fig. 2. The workflow of IMap.

their networks, which we believe is an irresistible trend in the
foreseeable future [33], [34], [35]. Besides, an in-core-network
scanner also raises the bar for attackers to take advantage of
this powerful network scanner, as it is difficult for normal
attackers to obtain such a deployment location. Currently IMap
supports three types of single-packet probes, including TCP
SYN scans, ICMP echo request scans and application-specific
UDP scans, all of which can be specified and changed by
operators at runtime.

B. Workflow and Design Requirements

IMap is designed to be a high-speed, easy-to-use network
scanner based on core switches, so the usage of IMap is
a bit different from traditional network scanners at the net-
work edges, such as ZMap [3] and Masscan [4]. As shown
in Figure 2, the workflow of IMap mainly includes two
steps. First, operators should start the IMap switch (e.g.,
via command ./imap) and make it serve as a traditional
switch, which forwards the normal traffic accordingly. Sec-
ond, at runtime, operators should specify a scanning task,
including the scanning address space, the scanning type,
and the scanning port range, via switch Command-Line
Interface (CLI) (e.g., start -ip-list ip.txt -type
TCP -port-range 0:65536). These configurations and
parameters are parsed and issued into the IMap packet pro-
cessing logic. During the scanning procedure, IMap data
plane programs generate high-speed probe packets and process
response packets accordingly, where the scanning results,
i.e., the information extracted from the response packets, are
written into a persistent database, such as a Redis in-memory
data store [36]. After one scanning task finishes, operators can
change and specify another scanning task as they desire. In the
design, implementation and deployment of IMap, we identify
several different design requirements that must be satisfied
to make IMap a practical switch-based high-speed network
scanner, especially in terms of probing packet generation and
response packet processing:

1) Space-Complete and Rate-Adaptive Probe Packet Gener-
ation(§IV-A): In terms of probe packet generation, there are
two key requirements in switch-based high-speed scanning.
First, IMap should be able to cover the desired scanning
space (i.e., |address space| x |port space|) completely, with-
out duplications and omissions. This is a basic functional
requirement for a network scanner. Second, packet switching

is the first-class citizen of the switch, therefore, IMap should
be able to conduct network scanning tasks without affecting
normal network routing functionality. As the spare bandwidth
of the network is dynamic, we need a network-aware method
to generate high-speed probe packets with adaptive rate.

2) Correct and Efficient Response Packet Processing
($1V-B): With regard to response packet processing, we also
have to fulfill two requirements. First, switches are also
responsible for normal packet forwarding, therefore, the input
packets for the switch-based scanner have both normal packets
and response packets. As a result, the scanner should be able
to distinguish normal packets and response packets correctly.
Second, response packets cannot be steered to servers directly,
as it may saturate the bandwidth of the storage servers and
overwhelm the writing capability of the database. The scanner
should have an efficient response packet processing approach
to reduce the server-side pressure.

IV. IMAP DESIGN

To fulfill the requirements above, we design the high-speed
in-network scanner IMap. Compared with our previous version
of IMap [1], current IMap supports the reconfiguration of
scanning tasks at runtime, without incurring switch downtime.
The core of IMap includes a probe packet generation module,
which is responsible for generating high-speed probe packets
with random address and adaptive rate, and a response packet
processing module, which processes response packets in a
correct and efficient manner. We will describe the detailed
design of these two modules below.

A. Probe Packet Generation

Switch is designed to be a packet forwarding device, not a
packet generation device, thus cannot generate probe pack-
ets without ground. Inspired by HyperTester [37], we also
leverage the template-based packet generation mechanism to
generate high-speed probe packets. As shown in Figure 3,
at runtime, when operators specify a scanning task, the switch
CPU first sets the Working_State register in the switch pipeline
to 1, and then prepares a set of template packets based
on the scanning type, e.g., TCP SYN packets, ICMP echo
request packets, or UDP packets, to be injected into switching
ASICs. Meanwhile, the Scanning_Type register in the switch
pipeline is also set to the corresponding value, i.e., O for TCP
SYN scans, 1 for ICMP echo request scans, and 2 for UDP
scans, which is used to control the processing logics for these
three types of probe/response packets. Our tests manifest 50k
template packets are enough for line-rate scanning and the
injection takes 15 ms, causing negligible loads on the switch
CPU. Upon receiving these template packets, switching ASICs
keep looping these packets in the switch pipeline, where
each packet experiences three sequential steps: an accelerator
to accelerate the template packets to 100 Gbps line rate, a
replicator to replicate the template packets into several switch
ports, and an editor to edit the headers of replicated template
packets into desired probe packets. After the scanning task
finishes, the switch CPU sets the Working_State register to
0 to drain this type of template packets (the drain period should
last for a least a few seconds for safety). And then operators
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Fig. 3. Probe packet generation of IMap.

can specify another type of scanning task and start scanning
again. In the following part, we will present the design of the
accelerator, replicator and editor in detail.

1) Accelerator: The accelerator is located at the ingress
pipeline, and its working state is determined by the Work-
ing_State register. When a scanning task is specified and
the Working_State register is set to 1, the accelerator keeps
looping the template packets by injecting these packets into
the recirculate port. The recirculate port is a special port in
the switch pipeline, where the injected packets are sent back
to the ingress pipeline immediately. Therefore, after injecting
a set of template packets to fill the switch pipeline, we get
a 100 Gbps line-rate stable packet source for the replicator.
When the scanning task is finished and the Working_State
register is set to 0, the accelerator marks these template packets
as dropping to drain the switch pipeline.

2) Replicator: The replicator is located at the traffic man-
ager, which mainly takes the template packets from the
accelerator as input and replicates these packets into a given
port set with the packet replication engine. The packet repli-
cation engine is a hardware component in the traffic manager,
which is widely supported by today’s programmable switches.
By configuring a set of ports for multicast from the control
plane, incoming packets will be replicated and forwarded to
the given port set in parallel. The original template packets
from the accelerator will continue to be recirculated across
the switch pipeline, to ensure line-rate stable packet source
for the replicator, and the replicated template packets would
go through the editor for further processing.

3) Editor: The editor resides in the egress pipeline, and it
is responsible for modifying the replicated template packets
into the desired probe packets. As long as the packet headers
can be parsed by programmable switches, the headers can be
set to given values, e.g., constants, or values from registers.
To turn replicated template packets into probe packets, some
header fields (e.g., destination IP address, destination port)
need modification via the editor, while other fields (e.g., pro-
tocol type, source IP address) are inherited from the template
packets which are created by the switch CPU initially.

With the steps above, we obtain continuous probe packets
at 100Gbps line rate in multiple egress ports when the Work-
ing_state is 1. Nevertheless, to be a practical switch-based
high-speed network scanner, IMap should be able to generate
probe packets to cover the scanning space (i.e., |address
space| x [port space|) completely, and adapt the scanning rate
according to the network conditions.

4) Random Probe Address: To cover the scanning address
space completely, an intuitive way is to scan from the start I[P
address to the end IP address one by one. Nevertheless, simply
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Fig. 4. Random probe address.

probing IP addresses in numerical order would risk overload-
ing the target networks with the scanning traffic, which may
incur complaints from the target networks and have larger
possibilities of dropping probe/response packets. In the case of
a distant transient network failure, the numerical probing order
would produce inconsistent results. To avoid these problems,
IMap should be able to scan the addresses according to a
random permutation of the address space, without duplications
and omissions. However, the switching ASICs only have
limited programmability and memory resources, which cannot
support complex calculations or maintain massive states. The
address generation approach in ZMap [3] requires calculations
such as multiplication and modulo, thus is not feasible in the
switching ASICs.

To address this problem, we observe that although the
switching ASICs do not have the ability to generate a random
permutation of the address space, the flexibility of the switch
CPU has such an ability. Therefore, we leverage the flexibility
of the switch CPU to supplement the switching ASICs to
generate line-rate address-random probe packets. In the editor
of the switching ASICs, we design a Probe IP Range (PIPR)
table based on register arrays. In the switch CPUs, we have
a PIPR Entry Producer module. Using the address generation
method similar to ZMap [3], the PIPR Entry Producer module
can generate a random permutation of the probe IP ranges for
a given address space. After the PIPR Entry Producer module
fills part of the generated probe ip ranges into the PIPR table,
probe packets can iterate through the PIPR table to obtain the
random destination IP addresses. As the data plane scanning
is pretty fast, a PIPR table with an entry size of 1 will be
scanned quickly, so we store a probe ip range in each entry of
the PIPR table. To implement this, our PIPR table consists of
two register arrays: one is named as PIPR_Start array, which
is used to store the start of the probe ip range; the other is
named as PIPR_End array, to store the end of the probe ip
range. Before the PIPR table, we have a PIPR_Index register,
which is used to index the PIPR table. The initial value of
the PIPR_Index register is set as O by the control plane;
upon an incoming probe packet, the value of PIPR_Index
increases by 1, until the size of the PIPR table; after that, the
PIPR_Index is assigned as O again and another loop starts.
For the PIPR_Start array, upon each incoming packet, the
corresponding PIPR_Start register increases by 1, until the
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PIPR_End register. When the value of the last PIPR_Start
register is equal to the value of the last PIPR_End register,
the scanning for the current PIPR table is finished, and the
PIPR Entry Producer module is supposed to fill a new round
of probe ip ranges into the PIPR table. To send the finish signal
to the control plane, we leverage the egress to egress mirror
primitive in the switch pipeline, which can carry a predefined
flag to the switch CPU to notify the PIPR Entry Producer
module.

However, conducting a new round of PIPR table filling
is a time-consuming task. According to our tests on the
Intel Tofino switch [18], even with the batching optimization,
filling a PIPR table with a size of 65,536 requires about
0.3 seconds. This indicates that, after a round of scanning,
the data plane has to wait for at least 0.3 seconds to start the
next round of scanning. This is unacceptable for high-speed
scanning, as it compromises the scanning rate significantly.
To resolve this problem, we introduce two PIPR tables and
PIPR_Index registers. When one PIPR table is being scanned,
the other PIPR table is being filled with the next round
of probe ip ranges. To make the two PIPR tables handoff
seamlessly, we design a Probe_Table register in the first stage
of the egress pipeline, which is switched between 0 and 1,
and controls the flow of probe packets. The switching of
the Probe_Table register is triggered by the finish signal of
the egress to egress mirror primitive. Definitely, to achieve
continuous probe packets, there is a mathematical relation
that the PIPR table size, the PIPR table filling time, and the
scanning rate must satisfy. Supposing the size of the PIPR
table is N, the difference between each PIPR_Start register
and PIPR_End register (i.e., the size of a PIPR table entry) is
L, the PIPR table filling time is 7 seconds, the total scanning
rate R (packets per second) should satisfy that R < %
However, there are still a few extreme scenarios where the
actual PIPR table filling time is longer than the expected T,
e.g., caused by the congestion of the switch CPU or the control
channel. It means the inequality is not held and the PIPR
table is being read before fully filled. To deal with such cases,
we add a Filling_State register before the Probe_Table register
to indicate whether the PIPR table filling is finished. It is set
to 1 when the control plane begins to fill and set to 0 when the
control plane finishes the filling. The finish signal of the egress
to egress mirror primitive will check whether the Filling_State
register is O before it switches the Probe_Table register.

Until now, leveraging Algorithm 1, we have achieved that a
large scanning address space is divided into several pieces and
filled into the PIPR tables, enabling high-speed, continuous
probe packets with random addresses. However, the designs
above only consider one port scenario, which should be
extended to support a port range scenario, e.g., scanning from
port 22 to port 80. Since the scanning address already has
good randomness, we choose to scan the port one by one.
However, updating the Port register from the control plane
would bring about race conditions, as the high-speed probe
packets are already looping in the switch pipeline. To address
this, we design a port self-increment mechanism in the data
plane. As the control plane knows in advance the number of
times the scanning address space needs to loop in the PIPR
table, we design a Port_Stride register in the switch pipeline,
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Algorithm 1 Random Address Generation Algorithm

// Control plane

1 Generate a random permutation for the given probe
address space;

2 Set Probe_Table as 0;

3 Set PIPRO_Index and PIPR1_Index as O;

4 Fill PIPRO_Start and PIPRO_End,

5 while the rest probe address space is not 0 do

6 if Receive finish signal then

7 extract Probe_table from the finish signal;
8 Set Filling_State as 1;

9 if Probe_Table is O then

10 | Fill PIPR1_Start and PIPR1_End;
11 else

12 | Fill PIPRO_Start and PIPRO_End;
13 Set Filling_State as 0;

// Data plane
14 for each incoming template packet do

15 if Probe_Table is O then

16 if PIPRO_Index is size_of_PIPR_table then

17 | PIPRO_Index < 0;

18 else

19 L PIPRO _Index < PIPRO_Index + 1;

20 PIPR_Index < PIPRO_Index;

21 metadata.end <«

PIPRO_End[PIPR_Index];

22 packet.dstl P <

PIPRO_Start[PIPR_Index];

23 PIPRO_Start[PIPR_Index] + +;

24 else

25 if PIPR1_Index is size_of PIPR_table then

26 | PIPRI_Index < 0;

27 else

28 | PIPRI_Index < PIPRI1_Index +1;

29 PIPR Index <— PIPRO _Index;

30 metadata.end <

PIPR1_End[PIPR_Index],

31 packet.dstI P <

PIPR1_Start[PIPR_Index];

32 PIPR1_Start[PIPR_Index] + +;

33 if packet.dst1P is metadata.end and
PIPR_Index is size_of PIPR_table and
Filling_State is 0 then

34 Probe_Table < 1 — Probe_Table;

35 L Generate finish signal with Probe_Table;

which is filled with the number of loop times by the control
plane. Every time the scanning of one PIPR table finishes,
the corresponding PIPR_Switch_Times counter increases by 1,
until the value of the Port_Stride register. Then, the Port
register increases by 1 and the counter is set as 0 again. With
all the mechanisms above, the final design of our random probe
address is described in Figure 4, which achieves to generate
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address-random probing packets to cover the scanning space
completely, without overwhelming target networks.

5) Adaptive Probe Rate: To avoid affecting the normal
packet routing functionality of the network, IMap desires a
network-aware method to generate high-speed probe packets
with adaptive rate. The ‘“adaptive” here has two kinds of
meanings. First, the control plane of the IMap switch should
be aware of the nearby network conditions for further scanning
rate adjustment. Furthermore, the IMap data plane should have
a rate-adjusting interface, which can receive commands from
the control plane to accurately adjust the scanning rate.

To be control plane aware, IMap should be able to adjust
the scanning rate according to the network conditions. We for-
mulate the scanning rate adjustment problem as follows. The
scanning network is modeled to a graph G = (V, E), where
V and E are sets of forwarding devices and directed links
between devices. Note that link e = (v;, v;) is directed, and
(vi,vj) and (vj, v;) are different links. Each link e € E
has a capacity c, and its current load is represented with /..
We assume there exists a monitoring system in the network,
so [, can be obtained with the port bandwidth usage of the
devices connected by e periodically. IMap is deployed in
device vipqap € V, where its switch ports Pryap = {p}
connect to the network with links {e,} C E and the maximal
scanning rate at port p is ¢,, — l.,. According to the routing
table and spare bandwidth at v;s,),, we partition the scanning
space S by Pryap in advance so that each port p corresponds
to a sub-scanning space s, C S. Our scanning space partition
follows the following principles. (1) Since each switch port p
corresponds to a certain routing table, for the address space
that is included in the routing table, the address space is
assigned to the switch port p directly. (2) For the remaining
address space that is not included in any routing table, the
address space is partitioned based on the spare bandwidth at
port p (i.e., ¢, —le,). Ports that have large spare bandwidth
would obtain more remaining address space and vice versa,
as this would accelerate the scanning speed significantly. After
that, for each sub-scanning space s, we can estimate the extra
load d, . on each link e caused by full-rate probe packets
Ce, —le,. This is achieved by configuring IMap to send probe
packets in sub-scanning space s, with a specific tag on port
p at low rate, then using the monitoring system to detect
the load caused by the traffic with the given tag, and finally
inferring d,, . for c, i l, » with equal proportion [38], [39].
Such partition and estimation should be repeated to adapt
to routing dynamics when the routing tables in the scanning
network change drastically. Then the scanning rate adjustment
problem can be solved based on the Linear Programming (LP),
as follows:

max Z ap(ce, —le,) @))
pePIMap
sit.Vee E .1, + Z apdpe < Be. 2)

pePIMap

where 0 < a), < 1 denotes the rate throttling parameter and
0 < B < 1 denotes the maximum bandwidth occupation
ratio. «p, is the output of this formulation and B is set by
administrators to make the network robust for burst traffic.
Equation (1) indicates that the objective is to maximize the

total scanning rate on all ports. And Equation (2) states the
extra load brought by IMap can not overwhelm any link in
the network. Given {a}, the control plane can determine the
scanning rate for each port. Note that our current design fits
one single Autonomous System (AS) network; for inter-AS
networks, as different networks belong to different admin-
istrative domains and are not willing to share confidential
information (e.g., network topology, network utilization), it is
extremely difficult to design an inter-AS network-aware rate
adjustment approach accurately. IMap is mainly designed
for the single-AS network scanning, and only provides a
best-effort probing service for inter-AS network scanning
tasks.

To make the scanning rate of IMap adjustable, we add a
throttle in the switch pipeline, which can be adjusted from the
control plane dynamically. Located in the ingress pipeline, the
throttle is used to determine when the replicator could replicate
the template packets. In general, the switching ASICs can
provide a per-port 100 Gbps packet processing capability, thus
enabling nanosecond-level (e.g., ~6 nanoseconds for 64-byte
packets) timestamp for each incoming packet. Our throttle
consists of two registers in the switch pipeline. The first one
is named as a Timestamp register, which is used to record
the timestamp of the last template packet that is successfully
replicated and sent out to the editor. For every incoming
template packet, we calculate the difference between the
timestamp of the current packet and the timestamp recorded in
the Timestamp register. Upon the difference exceeds a certain
threshold, we pass the template packet to the replicator and
update the recorded timestamp. The second one is named as
a Period register, which is used to make the aforementioned
threshold configurable from the control plane. In the ingress
pipeline, the Period register resides in the front of the Times-
tamp register, and the control plane programs can fill a certain
value into the Period register to achieve the rate control.

B. Response Packet Processing

As an in-network scanner based on the core switch, IMap is
also responsible for forwarding normal packets, e.g., packets
from other routers and switches in the network. IMap should
be able to distinguish normal packets and response packets
correctly. Meanwhile, since the throughput of response packets
may be large, IMap should be able to efficiently process the
response packets to avoid saturating the storage server.

1) Distinguishing Normal/Response Packets: To distinguish
response packets from normal packets, one approach is to
maintain a secret state for each probe packet, and then verify
whether the response packet corresponds to the secret state
accordingly. However, the switching ASICs only have limited
memory resources, which cannot maintain massive secret
states.

To resolve this, we design a stateless connection mechanism
inspired by SYN cookies [40]. Rather than maintaining states
in the switching ASICs, we encode the secret state into
the mutable fields of each probe packet. The fields should
have recognizable effects on fields of the corresponding
response packets. Specifically, for TCP scanning, we choose
the source port and sequence number; for ICMP, we use the
ICMP identifier and sequence number; for UDP, we use the
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Fig. 5. Key update procedure of IMap.

source port. Take TCP as a concrete example, in the egress
pipeline, when IMap sends a probe packet, the editor sets
SrcPort as hash(Key, Proto, SrcI P, DstIP), and SeqNo
as hash(Key, Proto, Srcl P, DstI P, SrcPort, DstPort),
where Key is a secret key maintained in the register of
the switching ASICs. Accordingly, in the ingress pipeline,
IMap has a verifier, which checks the DstPort and
AckNo to determine whether the received packet is a valid
response to the probe packet. ICMP scanning and UDP
scanning work in a similar manner, except for different
packet fields. After the verifier checks the validation of the
response packets, similar to ZMap [3], IMap also responds
a TCP RST packet to each SYN-ACK packet to close the
TCP connection.

One potential issue with the method above is the security
of the verifier. Currently the hash functions supported in the
switching ASICs (e.g., CRC32) are relatively simple, which
are not true cryptographic functions and are vulnerable to cho-
sen plaintext attacks [41]. As a result, attackers may perform
such attacks to restore the Key, and deliberately inject forged
response packets to pollute the scanning results. To further
enhance the security of the verifier and enable pollution-free
scanning results, IMap updates the Key every ¢ seconds. This
can reduce the damage caused by compromised secret keys to
a large extent: even if an attacker somehow manages to obtain
the current key, such knowledge will become useless after at
most ¢ seconds.

However, naively updating the Key would result in incon-
sistent scanning results. For example, Keyl is updated to
Key?2 after IMap sends the probe packet. Soon the response
packet arrives, the verifier determines this packet is invalid
as the current key cannot obtain a correct validation for its
packet headers. To address the inconsistency issue described
above, IMap stores the last key used for a certain period.
More specifically, IMap maintains three keys (i.e., the previous
key, the current key, and the next key) at any given time.
Every ¢ seconds, IMap rotates a slot index from 0 to 2,
and the key in slot; is used for the hash function. Each
key can stay in a slot for at most 3¢ seconds; after 3¢
seconds, the key is updated by the control plane. A concrete
example is shown in Figure 5, where T denotes the max
time interval between any probe packet and the corresponding
response packet. The editor also encodes the 2-bit slot index
of the key into the header fields of the probe packet, and
the fields should also be added in the corresponding response
packet within this connection. Currently, we encode it into
the source port for TCP/UDP and the identifier for ICMP.

;‘
|IPN! Pza Scl l:)/ Evict !

Response packets aggregating in IMap.

[ Result [IP,, P, S]IP, P, Sy

Fig. 6.

Based on the slot index, the verifier can conduct the validation
correctly.

2) Aggregating Response Packets: To avoid saturating the
storage server, IMap desires an efficient response packet
processing approach. One intuitive approach is to use hash
mechanisms [37], [42], [43]. However, as the key set is
really large in IMap (e.g., the size of the scanning address
space), even only storing 2-bit value for each key requires
GB-level memory, which exceeds the memory resources of
the switching ASICs (i.e., 50-100MB [43]) significantly.

To resolve this problem, instead of seeking to store all the
keys/values, we adopt a response packet aggregation mech-
anism that is compatible with the current switching ASICs.
More specially, as shown in Figure 6, IMap designs an aggre-
gator, i.e., a dedicated N-size register array, to temporarily
store the scanning results. For each incoming response packet,
IMap extracts its source IP, source port and state (i.e., active
or inactive), and records the information in one register. When
the register array is filled up, the corresponding response
packet packs all the results from the register array, and goes
to the storage server. To determine which register stores
which result, we implement a Resp_Pkt_Counter register in
the ingress pipeline. Upon an incoming response packet, the
Resp_Pkt_Counter register increases by 1. The information
extracted from the i-th packet will be stored in the i-th register.
The N-th response packet will trigger the replication and be
sent to the switch port connected with the storage server,
packing and carrying all the results from the register array.
Meanwhile, the Resp_Pkt_Counter register is reset as 0 and
another aggregation loop starts. With this approach, IMap
achieves an N to 1 aggregation, reducing the pressure for the
bandwidth of the storage server significantly. In the side of
the storage server, we use DPDK [23], a high-performance /O
framework, to parse the result packets and extract the scanning
results. Finally, the scanning results are stored in a persistent
database.

Note that across the switch pipeline, the packet processing
logics for the three scanning types (i.e., TCP SYN scans,
ICMP echo request scans, and application-specific UDP scans)
are compiled into the switching ASICs in advance, and its
runtime packet processing logic is determined by the metadata
read from the Scanning_Type register.

V. IMPLEMENTATION

We implement a prototype of IMap, and make our code
publicly available here [19]. Figure 7 illustrates the component
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Fig. 7. Component layout of IMap.

layout of IMap on the data plane switching ASICs and the
control plane switch CPUs.

The data plane part is implemented with ~2K lines of
P4-16 code for the Intel Tofino ASIC, with an increment of
~300 lines of codes compared with the previous IMap [1].
In the probe packet generation module, we set the size of PIPR
tables as 65536 and the size of one PIPR table entry as 256.
In the response packet processing module, we utilize CRC32
as the hash function, allocate a 64-bit register for each Key,
and set the size of the register array to store results temporarily
as 16. In addition, IMap should also be able to process the
ARP request packets correctly. Under our scenario, IMap is
built on a switch, so sometimes other devices would ask for
the MAC address of the IMap switch.

The control plane part is written in ~3K lines of C code,
with an increment of ~500 lines of codes compared with
the previous IMap [1]. It is responsible for initializing the
data plane, injecting template packets, receiving update noti-
fications, updating entries/registers in the data plane and
interacting with the campus monitoring systems. In the probe
packet generation module, we set 8 in Equation (2) as 0.8 to
accommodate to traffic bursts, and solve the LP problem with
the Gurobi [44] toolboxes. Since the routing tables in our
campus network are pretty stable, we only estimate the extra
load dp . on each link by full-rate probe packets once, with
the approach in §IV-A.5. In the response packet processing
module, to reduce the risk of suffering from chosen plaintext
attacks, the control plane generates a random Key every t=1
second applies Xorshift [45] as the random number generator.

Besides, the backend agent running on the storage server is
implemented with DPDK, which extracts the scanning results
from the aggregated response packets and writes the results
into a Redis [36] database.

VI. EVALUATION

In this section, we evaluate IMap via testbed experiments
and real-world deployments to answer the questions below:

« Can IMap conduct network scanning effectively (§VI-B)?

o Can IMap generate high-speed probe packets with ran-
dom address and adaptive rate (§VI-C)?

o« Can IMap process response packets correctly and
efficiently (§VI-D)?

« How helpful is IMap in understanding our campus net-
work’s security situations (§VI-E)?

77 NS =

Fig. 8. A real-world setup of the IMap switch, the relay server and the
storage server.

Border Router Firewall

Storage Server lzlg System
= /A~
@) 40 Gbps 4 x 10 Gbps
Q = Our Campus Network
Fig. 9. Deployment of IMap.

A. Experimental Setup

1) IMap Setup: Our testbed is composed of one 3.3 Tbp/s
Intel Tofino switch (Edgecore Wedge 100BF-32X) and two
Dell R430 servers. Both servers are equipped with Intel(R)
Xeon(R) E5-2620 v3 CPUs and 64 GB memory, and connected
to the switch via 40 GbE Intel XL710 NICs. In particular,
one server runs as the storage server and the other server
runs as the relay node to bridge IMap with our campus
network. Figure 8 shows a real-world setup for the testbed
above. With the relay server, we can collect and analyze the
probe packets from IMap and the response packets to IMap
accurately. Working with the network administrator of our
campus network, we deploy IMap to connect to one backbone
switch in our campus network, as shown in Figure 9. Due
to security and reliability considerations, we are not allowed
to replace the backbone switch with the IMap switch. The
network conditions are obtained from the monitoring systems
in our campus network, according to which IMap adjusts its
scanning rate correspondingly. Since TCP SYN scan is one
of the most representative single-packet probes, we use TCP
SYN scan to evaluate IMap in most of our experiments. The
scanning target is configured to some or all ports (0~65535)
of our campus network including 6 Class B addresses, a total
of up to 25 billion scanning space, which is nearly 6 times
larger than Internet-wide single-port scanning space.

2) Baselines: We use two state-of-the-art network scan-
ners as baselines in our experiments, i.e., Zipper ZMap [21]
(Z-ZMap for short) and Masscan [4]. They are deployed on
a Dell R430 server located at the network edge, which is
equipped with a 10 GbE Intel 82599ES NIC to connect to our
campus network. Note that 10 Gbps is the maximum capacity
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officially supported on the project homepage of these baseline
scanners. We adopt the fastest configuration recommended
in Z-ZMap [21] for baseline scanners to achieve the best
scanning capability, e.g., we install “PF_RING ZC” NIC driver
to support the high-speed scanning of Z-ZMap and Masscan.

B. Overall Effectiveness

1) Scanning Accuracy: To determine whether IMap can
perform high-speed scanning and obtain accurate scanning
results in our campus network, we examine whether the
scanning rate, i.e., the rate of probe packets sent from IMap,
has any effect on the hit rate, i.e., the fraction of responsive
probed hosts (responding with SYN-ACK or RST in this
case). We experiment by using IMap and baseline scanners
to scan port 80 of our campus network and normalize the
experimental results. Figure 10 shows that IMap is capable of
handling scanning at up to 55 Mpps without obvious hit rate
degradation. In contrast, baseline scanners such as Z-ZMap
and Masscan can neither reach a high scanning rate, nor
achieve a comparable hit rate (at least 1.5 times gap). These
benefits are brought by the in-network deployment location
and performant switch implementation. Our results also show
that baseline scanners experience a decreased hit rate with the
higher scanning rate due to the drop of probe/response packets
on the end-to-end scanning path [21].

2) Vantage Point: To demonstrate the advantage of IMap in
employing in-network scanning, we probe all addresses in our
campus network on port 80 and measure the latency between
sending a probe packet and receiving the response packet from
active hosts. We also conduct the same measurement on two
baseline scanners at the same time. The CDF of the results
are shown in Figure 11. IMap gains a much shorter round-trip
response time for over 90 percent of hosts than state-of-the-art
scanners. This is benefited from the fact that IMap is deployed

TABLE I
SCANNING RATE AND SCANNING COMPLETION TIME
S Scanning Time for 1000-  Time for All-
canner Rate Ports Scan! Ports Scan
IMap 55.6 Mpps 12 seconds 8 minutes
Z-ZMap  14.2 Mpps 35 seconds 33 minutes
Masscan 9.4 Mpps 51 seconds 50 minutes
TABLE II
SWITCH RESOURCE UTILIZATION
Computational Memory
Resource Tables ALUs Gateways SRAM  TCAM
IMap [1] 42.86%  45.84% 18.75% 20.83%  0.69%
Reco{‘ﬁigrable 53.68% 56.75%  29.64%  31.32%  0.79%

in the core network and probe/response packets take a shorter
path, 2-4 hops compared with 4-8 hops of end-to-end scanning.
It also indicates the less bandwidth waste to the network and
the smaller possibilities of dropping probe/response packets,
which promises that IMap can conduct high-speed scanning
accurately and efficiently.

3) Overall Functionality: To illustrate that IMap is fast and
scalable in network scanning, we measure the scanning rate
and scanning completion time of IMap and baseline scanners.
Port 0-999 and all ports of our campus network are chosen as
the scanning tasks respectively. For each scanner, we repeat
both tasks for 10 trials at midnight to minimize the impact
on our campus network and report the averages in Table I.
The results show IMap is able to generate 55.6 million probe
packets per second (close to 40 Gbps linespeed), which is a
4 times improvement compared with Z-ZMap and Masscan.
Note that 40 Gbps is not the upper limit of IMap; instead, when
we enable all ports of the switch, IMap can generate probe
packets at terabit line rate. Currently, we cannot replace the
core switch with IMap to conduct such a pressure test, which is
left for our future work. Besides, Table I also shows IMap can
complete scanning tasks much faster than the other scanners,
which can help operators capture network security snapshots
much more quickly. Moreover, to demonstrate IMap’s capa-
bility in supporting runtime reconfiguration, we change the
scanning task from TCP SYN scans to ICMP echo request
scans with switch CLI at runtime. Our reconfigurable IMap
does not need to reload a new P4 program nor incur switch
downtime, and the procedure of scanning task re-specification
happens smoothly. In contrast, to support the scanning task re-
specification above, the previous IMap [1] results in seconds
of switch downtime, during which IMap cannot function as a
switch correctly.

4) Resource Overhead: To evaluate the resource consump-
tion of IMap, we focus on its resource usage of our test switch,
which is a low-end switch with pretty limited resources.
Table II displays the average hardware resource utilization of
IMap across all stages of the switch. As we can see, even with
such a low-end switch, IMap takes up about half of computa-
tional resources, one-third of SRAM, and negligible TCAM,
still leaving enough resources for the concurrent execution
of traditional forwarding behaviors [43]. Leveraging high-
end switches with more hardware resources (e.g., Edgecore
Wedge 100BF-65X), the resource usage of IMap can be much
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lower. Besides, compared with the previous IMap [1], our
reconfigurable IMap occupies a bit more hardware resources.
This is because to support the reconfiguration of different
scanning tasks at runtime, our reconfigurable IMap puts the
processing logics of three types of probe/response packets
into the switching ASICs in advance. Moreover, the resource
utilization of a switch does not have any obvious effect on
its forwarding performance. This is because as long as the
compiled P4 program that integrates IMap and the forwarding
functionality can be fitted into the switching ASICs, the switch
is guaranteed to process and forward packets at terabit line
rate [46], [47].

C. Probe Packet Generation

1) Random Probing: To validate the randomness of probe
addresses generated by IMap, we first explore the distribution
of the first 1000 addresses selected by IMap and Z-ZMap when
they are probing port 80 of our campus network. Considering
our campus network only contains class B addresses, as shown
in Figure 12, we only keep the last two octets of the IP
address and map them to the x and y coordinates, respec-
tively. Based on the results, we can see that the addresses
of IMap show a pattern of several blurred vertical lines to
some extent, which results from the scanning orders from one
PIPR_Start register and the corresponding PIPR_End register,
while for Z-ZMap, the addresses show no statistical pattern.
Although the address randomization of IMap achieves slightly
worse statistical properties than Z-ZMap, we believe it is still
good enough to avoid overwhelming the destination networks.
To verify this, we analyze the pressure IMap brings to access
networks. Figure 13 indicates several vital access networks in
our campus network only receive thousands of probe packets
per second even though the scanning rate of IMap reaches as
high as 55 Mpps. Such additional packet overhead is negligible
for most edge networks.

2) Adaptive Probing: To evaluate the adaptability of scan-
ning rate of IMap, we first quantify the rate control accuracy of
IMap by comparing the rate specified by the runtime parameter
with the actual rate of probe packets sent from IMap. As shown
in Figure 14, the error gradually increases with the rising
of the scanning rate, but it is always limited to 5% even
when the scanning rate of IMap reaches 55 Mpps. Such error
mainly comes from the restricted accuracy of the packet rate
in the recirculate port and can be manually corrected in the
real-world scanning. Besides, from this figure, we can also
see that rolling PIPR filling optimization (§IV-A) helps IMap
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achieve high-speed scanning continuously. Then we inves-
tigate whether IMap can adjust its scanning rate according
to network conditions. We conduct scanning on our campus
network with IMap at different time, and record the rate of
probe packets. Since the monitoring system reports the campus
network conditions every 10 seconds, and the LP problem
can be solved within 3 seconds for our campus network,
we make IMap update the scanning rate every 10 seconds
to adapt to the change of the network conditions. To show the
comparison with IMap without the rate-adaptation technique,
we have several conversations with the network administrators
of our campus network and confirm the largest conservative
probe rate they can accept. This probe rate is an estimation
of the spare bandwidth in our campus network based on
their experiences, which should have no obvious effect on
the normal packet routing functionality. All the result of the
probe rate is shown in Figure 15. As we can see from this
figure, with the rate-adaptation technique, IMap can adapt to
the network conditions effectively and take full advantage of
the spare bandwidth in the network, achieving much higher
efficiency. Besides, compared with the previous IMap [1], the
probe efficiency of our reconfigurable IMap improves 3-10%
in our campus network.
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D. Response Packet Processing

1) Secure Verifying: The security of the response verifier is
guaranteed by the dynamic key updating technique in IMap,
whose efficiency is decided by the parameter t. To find a
suitable value for t, we first simulate the relationship between
the computing power and the time required to reverse Key
used by the hash function in IMap. As we can see from
Figure 16, it takes about 4 seconds for high-end CPUs and
more than 20 seconds for mainstream CPUs to locate the real
Key using the stack algorithm [48]. In this case, IMap is
protected from chosen plaintext attacks with t smaller than
1.3 seconds. Then we choose several different t for IMap
and scan all ports of our campus network to seek how t
affects probing. Figure 17 presents the number of response
packets received by IMap but not pass the verifier during each
scan, which occurs when the response time is beyond 3t. The
results manifest that, under a common attacker, 0.3s~1.3s are
all applicable choices for t in our campus network.

2) Response Aggregating: To testify the efficiency of the
response packet aggregation mechanism, we configure IMap
to scan the campus network at different rate, and monitor the
response traffic that is sent from the switch to the storage
server. Figure 18 and 19 display the packet rate and throughput
of such traffic with or without aggregating response packets
respectively. It can be seen that the aggregation enables a
93.8% reduction in RX rate and an 86.1% reduction in RX
throughput for the storage server, which efficiently protects it
from being saturated by massive response traffic.

E. Analysis of Scanning Results

High-speed scanning of IMap has enabled faster snapshots
of the network. Therefore, we conduct an experiment where
IMap continuously scans all addresses in our campus network
on all TCP ports. This experiment lasts for a week and the
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scanning results in the Redis database are persisted into the
disk with a tag of time after each scan is over. In order to
explore potential applications of IMap, based on the scanning
results, we attempt to track the adoption of common protocols
and discover new potential risks and security incidents in our
campus network.

1) Protocol Adoption: We first compute the average count
of active and inactive hosts for each port in all periods.
Table III lists the top 10 open ports we observed and reveals
several interesting findings. First, as the proportion of online
devices in our campus network (~5%) is far lower than that
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TABLE III
TopP 10 ACTIVE TCP PORTS OF OUR CAMPUS NETWORK
Port Servi Active  Active  Inactive
or ervice Rate Count Count
8680 WeChat 1.34% 5271 12555
7680 Windows Update Delivery 1.33% 5211 12065
3389 RDP (Remote Desktop) 0.69% 2693 11659
5040  Windows Deployment Service  0.55% 2176 11709
80 HTTP 0.44% 1722 4841
135 Microsoft DCE/RPC 0.41% 1607 11081
445 Microsoft-DS 0.38% 1499 10592
139 NetBIOS Session 0.36% 1422 10559
22 SSH 0.34% 1354 4831
21 FTP 0.25% 983 10918
TABLE IV
EXPLOITABILITY OF VULNERABILITIES TO 135 AND 3389
Port Vulnerability Exploitability
135 Leak the host name, OS version, timestamp 100%
Leak all NICs and IPs 99.6%
Leak all RPC services 98.8%
3389  Leak the host name, OS version, timestamp 81.3%
Leak the login screen 35.4%
Remote shutdown* 20.2%

of the Internet, the active rate of the port is also lower than
that of the Internet. Besides, we notice IMap just receives a
small number of response packets from some sensitive ports,
like ports 22 and 80, and we speculate the reason is that many
systems filter such probe packets via the host firewall. Finally,
we find Table III displays a really different sorting from that
of the Internet in ZMap [3]. For example, the most active port
in our campus network is 8680, which is used by WeChat,
one of the most popular messaging Apps, and the second one
is 7680, which is occupied by Windows to distribute system
updates. We also observe a surprising number of open ports
associated with file/device sharing over the network, such as
ports 139, 445, and 5070. We attribute these differences to
that more personal devices than servers are connected to our
campus network. Furthermore, we then analyze the active rate
variation of the top 10 ports by time over one day. As we can
see in Figure 20, the active rate of some ports, e.g., 8680 and
7680, exposes an obvious diurnal pattern while that of other
ports does not change significantly over time. This is because
the former are usually opened by personal devices while the
latter are opened by servers.

2) Potential Risks: ~Among the top 10 ports,
135 (DCE/RPC) and 3389 (RDP) catch our attention
because they are known for information leakage. Considering
their popularity, we investigate the exploitability of their
vulnerabilities in our campus network. As shown in Table IV,
100% of the 135-opened hosts and more than 80% of the
3389-opened hosts are at the risk of information leakage.
Moreover, the 3389-opened Windows hosts are also vulnerable
to being shutdown remotely due to the misconfiguration from
their users. For instance, Figure 21 is the screenshot from one
of such vulnerable hosts, showing that users are allowed to
perform shutdown operations on the RDP login screen. Even
though the firewall of our campus network bans external
access to internal hosts’ sensitive ports including 135 and
3389, we believe these vulnerabilities still pose a high risk
to our campus network and may be exploited by attackers.

We have contacted our network administrators, and they
confirmed these risks and issued a notice to remind teachers
and students to check their configurations.

3) Botnets Detection: We also implement several alarm
scripts triggered when the scanning results satisfy some con-
ditions. One of them is used to detect botnets by monitoring
whether the active count of certain ports surges in the last
scan. During our experiment, we did find a fast increase
of 48101-opened hosts and suspected it was caused by a
Mirai botnet. We reported such an issue to the network
administrators immediately and they finally determined it is
just an experiment on Mirai conducted by a security lab. Even
we dodged a bullet, it still reflects the potential of IMap in fast
revealing security incidents with high-speed scanning, which
cannot be obtained in time by existing network scanners like
Z-ZMap and Masscan.

VII. DISCUSSION
A. Scanning Results V.S. Deployment Locations

From a network perspective, different switches have diverse
network utilization, topological connection relations and
access restrictions. As a result, the deployment locations
of IMap affect the scanning results inevitably. Furthermore,
we can also coordinate multiple switches to deploy IMap for
cooperative scanning, which can achieve a higher scanning
rate and hit rate. For any given network, there must be optimal
distributed deployment locations in a given period, which can
achieve the highest scanning rate and hit rate. We leave the
deep exploration of optimal distributed deployment locations
in a given network as our future work.

1) Relationship With Application-Layer Scanners: Cur-
rently, IMap only supports single-packet scanning, includ-
ing TCP SYN scans, ICMP echo request scans, and
application-specific UDP scans, and does not support complex
application-layer protocols (e.g., TLS handshakes) directly.
However, similar to ZMap, IMap can serve as a foundation
to obtain the responsive host list from the given port, e.g.,
port 443 for TLS protocol. Based on this list, operators can
use application-layer scanners to collect advanced information,
e.g., a custom certificate fetcher to retrieve TLS certificates.
In a word, IMap can narrow down the scanning space for
application-layer scanners significantly.

VIII. RELATED WORKS
Our work is highly related to the following topics.

A. Network Scanners

Many network scanners have been developed to conduct
network scanning tasks. Nmap [2] is optimized for small
network segments with a wide variety of probing tech-
niques. IRLscanner [49], ZMap [3], Masscan [4] and Zipper
ZMap [21] are designed for Internet-scale scanning, mainly
with a single-packet probing paradigm. IMap is very similar
to ZMap and Masscan in the scanning methodology, but
with different implementation targets and deployment loca-
tions, thus achieving orders of magnitude scanning capability
improvement.
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B. IPv6 Scanning

Numerous works have been devoted to improving the
IPv6 scanning efficiency by optimizing the scanning space
algorithmically. Entropy/IP [28] employs information entropy
to segment the addresses in the hitlist and generate target
addresses based on the relationship between different frag-
ments. 6Gen [29] and Entropy-Clustering [31] extend the
scope of prefix space for Entropy/IP and discover seed address
fingerprint with clustering analysis. 6hit [27] adopts a rein-
forcement learning based target generation method to improve
the probing efficiency. As a high-speed scanning system, IMap
is completely orthogonal to these algorithmic works. And the
scanning space generated from these algorithms can be set as
the input of IMap to further improve the scanning efficiency.

C. Programmable Switches

Recently programmable switches have been used as accel-
erators for various applications in networking [42], [43], [50],
distributed systems [24], [46] and security [47], [51], [52],
[53], and these applications achieve far better performance
with lower costs than their software counterparts running
on commodity servers. The closer work to ours is Hyper-
Tester [37], which shows how to design a high-speed network
tester with programmable switches. However, HyperTester
illustrates neither how to generate probe packets with random
address and adaptive rate, nor how to process response packets
correctly and efficiently, nor how to support runtime recon-
figuration when changing testing tasks. IMap addresses these
unique challenges, and thus turns a switch into a practical
high-speed network scanner.

IX. CONCLUSION

In this paper, we identify the limitations of current network
scanners, and introduce IMap, a fast, scalable and recon-
figurable in-network scanner with programmable switches.
We devise a set of techniques and optimizations, i.e.,
an address-random and rate-adaptive probe packet genera-
tion mechanism, and a correct and efficient response packet
processing mechanism, to turn a switch into a practical
runtime-reconfigurable high-speed network scanner. We imple-
ment an open-source prototype of IMap and conduct extensive
evaluations to show the advantages of IMap compared with
current network scanners. We hope IMap can serve as the
foundation of next-generation terabit network scanners.
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