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Abstract

Despite the promising outlook, the numerous economic and environmental benefits
of offshore wind energy are still compromised by its high operations and maintenance
(O&M) expenditures. On one hand, offshore-specific challenges such as site remoteness,
harsh weather, transportation requirements, and production losses, significantly inflate
the O&M costs relative to land-based wind farms. On the other hand, the uncertainties
in weather conditions, asset degradation, and electricity prices largely constrain the
farm operator’s ability to identify the time windows at which maintenance is possible,
let alone optimal. In response, we propose STOCHOS, short for the stochastic holistic
opportunistic scheduler—a maintenance scheduling approach tailored to address the
unique challenges and uncertainties in offshore wind farms. Given probabilistic forecasts
of key environmental and operational parameters, STOCHOS optimally schedules the
offshore maintenance tasks by harnessing the opportunities that arise due to favorable
weather conditions, on-site maintenance resources, and maximal operating revenues.
STOCHOS is formulated as a two-stage stochastic mixed integer linear program, which
we solve using a scenario-based rolling horizon algorithm that aligns with the industrial
practice. Tested on real-world data from the U.S. North Atlantic where several offshore
wind farms are in-development, STOCHOS demonstrates considerable improvements
relative to prevalent maintenance benchmarks, across various O&M metrics, including
total cost, downtime, resource utilization, and maintenance interruptions.

1 Introduction

Offshore wind (OSW) is set to play a pivotal role in the global climate change mitigation

efforts. As a clean source of energy, it has a significantly smaller environmental footprint

than fossil fuels, while it enables access to stronger and steadier winds than those in-land,

resulting in a higher and more reliable generation of electricity. Several countries have set

multi-year targets for the adoption or the expansion of their OSW portfolios, with recent

reports projecting a growth in its global capacity of at least 15 times by 2040 (IEA, 2019).

Despite the promising outlook, OSW still faces substantial technical challenges pertain-

ing to the high expenditures associated with operating and maintaining a fleet of OSW
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turbines. Aside from the high upfront capital costs—which are largely due to the foun-

dation construction and underwater cabling—a substantial portion of the total life cycle

cost of OSW farms is attributed to operations and maintenance (O&M) activities. Re-

cent estimates suggest that O&M activities performed throughout an OSW farm’s lifetime

contribute by more than 30% to the total life cycle costs (Stehly and Beiter, 2020).

1.1 The need for opportunistic maintenance:

The high O&M costs in OSW farms are driven by several unique challenges, including:

(C1) OSW farm accessibility: The ability of the maintenance crew to safely access the OSW

farm is frequently prohibited by harsh metocean conditions (e.g., high wind speeds and wave

heights) (Gilbert et al., 2021). Our analysis of the metocean conditions in the designated

OSW areas in the NY/NJ Bight (where several OSW projects are currently in-development)

suggests that an OSW turbine sited at that location can be inaccessible for ∼56% of its

operational time due to unsafe wind and/or wave conditions (Papadopoulos et al., 2022).

(C2) Transportation and maintenance requirements: OSW turbines are installed at remote

locations that are accessed via repair vessels or helicopters, typically chartered from private

O&M contractors. Crew and equipment transport alone contributes ∼28-73% of the OSW

O&M costs (Carroll et al., 2017; Dalgic et al., 2015). Moreover, the harsh weather condi-

tions at OSW farms further accelerate asset degradation and failure rates (Carroll et al.,

2016), which directly translate into frequent maintenance visits. Those high maintenance

requirements largely inflate the maintenance setup costs relative to onshore wind farms.

(C3) Revenue losses: Modern OSW turbines have ∼2-3 times higher capacity than their

land-based counterparts (Golparvar et al., 2021). A shutdown of such an ultra-scale turbine

results in large revenue losses, especially at times of strong winds or favorable market prices.

Those offshore-specific challenges (C1 -C3 ) make the conventional maintenance schedul-

ing approaches—which may be well-suited for land-based operations—sub-optimal, moti-

vating the need for an “opportunistic” approach for OSW maintenance scheduling. The

essence of opportunistic maintenance is to incentivize the grouping of maintenance tasks

(that would have been otherwise scheduled independently) at times of “maintenance op-

portunity,” in order to reduce the number of maintenance visits and aggregate them at

times when it is most economical for the OSW farm operator (Ren et al., 2021). In light
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of C1 -C3, those opportunities can be one of the following: (i) access-based opportunities:

grouping maintenance tasks at times of OSW farm access to leverage the (often scattered)

periods of provisional accessibility, hence minimizing maintenance delays, interruptions,

and downtime; (ii) resource-based opportunities: grouping maintenance tasks to leverage

maintenance resources that are already on-site (e.g., vessels, equipment, crew) in order to

share the setup cost among multiple turbines and maximize resource utilization; and (iii)

revenue-based opportunities: grouping maintenance tasks at times when production losses

would be minimal (e.g., at times of anticipated low winds and/or low market prices).

However, our survey of the literature (see Table 1) reveals that the overwhelming ma-

jority of research in wind farm opportunistic maintenance solely focuses on resource-based

opportunities, which are often referred to in the literature as “economic dependencies”

(Shafiee et al., 2015; Wang et al., 2019; Ding and Tian, 2012; Sarker and Faiz, 2016; Ma

et al., 2022; Besnard and Bertling, 2010; Ko and Byon, 2017). A small fraction of those

efforts partially account for revenue losses by incentivizing the grouping of maintenance

tasks at periods of low power production (Besnard et al., 2009; Yildirim et al., 2017; Song

et al., 2018). A separate line of research focuses on forecasting access-based opportunities

(Yang et al., 2020; Lubing et al., 2019; Taylor and Jeon, 2018; Zhang et al., 2021), but

largely overlooks those based on economic dependencies and/or revenue losses.

Barring few recent efforts (Mazidi et al., 2017; Besnard et al., 2011; Fallahi et al., 2022;

Papadopoulos et al., 2022), there is a lack of approaches that holistically account for mul-

tiple components of maintenance opportunity. Papadopoulos et al. (2022) show that such

a holistic approach can lead to major O&M cost savings due to the inter-dependencies be-

tween the three opportunistic components, making their combined impact on O&M costs

multiplicative rather than additive. For instance, both access- and revenue-based oppor-

tunities are weather-related, while resource-based opportunities are only possible when the

OSW farm is accessible. However, a main limitation in the work of Papadopoulos et al.

(2022) is its inherent assumption that perfect knowledge about key environmental and

operational parameters is available to the maintenance planner.
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Table 1: The contribution of STOCHOS to the OSW opportunistic maintenance literature

Research Effort
Opportunities Uncertainties
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Besnard et al. (2009) - ✓ ✓ - - - -
Shafiee et al. (2015) - - ✓ - - - ✓
Wang et al. (2019) - - ✓ - - - ✓

Ding and Tian (2012) - - ✓ - - - ✓
Sarker and Faiz (2016) - - ✓ - - - ✓

Ma et al. (2022) - - ✓ - - - ✓
Ko and Byon (2017) - - ✓ - - - ✓
Yildirim et al. (2017) - ✓ ✓ - ✓ ✓ ✓
Mazidi et al. (2017) ✓ ✓ ✓ - ✓ ✓ -
Song et al. (2018) - ✓ ✓ - - - ✓
Fallahi et al. (2022) - ✓ ✓ - ✓ ✓ ✓
Besnard et al. (2011) ✓ ✓ ✓ ✓ ✓ - -

Besnard and Bertling (2010) - - ✓ - - - -
Yang et al. (2020) ✓ ✓ - - - - ✓
Lubing et al. (2019) ✓ - - ✓ - - ✓

Taylor and Jeon (2018) ✓ ✓ - ✓ - - -
Papadopoulos et al. (2022) ✓ ✓ ✓ - - - -

STOCHOS ✓ ✓ ✓ ✓ ✓ ✓ ✓

1.2 The value of recognizing uncertainty in OSW maintenance

Several prior studies have advocated the importance of uncertainty modeling in wind farm

maintenance planning (Byon et al., 2010; Perez et al., 2015). We argue that, for an op-

portunistic maintenance approach, the need to recognize uncertainty is even more pressing

because the imperfect knowledge about key environmental and operational parameters can

largely compromise (or may even reverse) the economic gains of an opportunistic approach.

The main reason is that those parameters, which are uncertain and difficult to pre-

dict, are the primary determinants of the “opportunity windows”, i.e. the times at which

maintenance grouping is economically desirable, including: (i) uncertainty of metocean con-

ditions (wind speed and wave height), which are the main determinants of OSW farm access

(access- and resource-based opportunities), as well as the power production (revenue-based

opportunities), (ii) uncertainty of electricity prices, which govern the generated revenues

(revenue-based opportunities), and (iii) uncertainty in asset degradation, which affects the

turbine’s downtime and production losses (revenue- and resource-based opportunities).
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This suggests that an opportunistic maintenance approach, despite being desirable in

essence, could have conflicting effects: On one hand, if (near) perfect knowledge of the

uncertain parameters listed above is available, then the maintenance planner can precisely

anticipate the windows of opportunity, and hence, fully harness the economic gains of an

opportunistic approach. On the other hand, incorrect information about such parameters

can have an adverse impact: Multiple maintenance tasks would be grouped at a time when

maintenance may not even be feasible, let alone optimal, leading to significant maintenance

delays and excessive downtime. In such situations, even an “unopportunistic” approach that

individually schedules maintenance actions would have possibly been more cost-efficient.
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Figure 1: (A) Wind speed and wave height data, forecasts, along with 50 scenarios. (B)

Accessibility states. (C) Maintenance schedules of a deterministic and a stochastic strategy.

Figure 1 illustrates the value of considering uncertainty in OSW opportunistic mainte-

nance with a realistic example, where the wind speed and wave height data, forecasts, and

scenarios are displayed in Figure 1-A. Figure 1-B conveys information about the “access

state”; the OSW farm is inaccessible when the wave height and/or the wind speed exceed
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their respective safety thresholds. Specifically, the top row of Figure 1-B shows the scenario-

based probability of access, whereas the middle and bottom rows show the accessibility as

a binary variable informed by the forecasts and real data, respectively. Figure 1-C is a

Gantt chart, showing the maintenance schedules obtained by two optimization models: a

deterministic (dotted bars) and a stochastic (hashed bars) model. The x-axis denotes the

planning horizon (in hours) and the y-axis denotes the wind turbine (WT) index (here, we

have 5 WTs). Note that both optimization models are opportunistic, i.e., they both lever-

age access-, resource-, and revenue-based opportunities. Yet, the main difference is that

the former only takes as input the point forecasts of the environmental and operational

parameters listed above, while the latter makes use of the full probabilistic distribution of

the forecasts to generate uncertainty scenarios as inputs to the stochastic optimization.

In the case of the deterministic model which assigns complete confidence to the point

forecasts, small forecasting errors can incur significant maintenance costs. Consider the fifth

day (96-120-h range) where the point forecasts under-predict the wave height, projecting

that the OSW farm would be accessible (while in reality, it is not; see inset in Figure 1-A).

Thus, the deterministic approach (mistakenly) perceives it as an optimal time to group three

maintenance tasks for WT3, WT4, and WT5 to leverage this access period and concurrent

low power production. With access inaccurately estimated, all three maintenance tasks end

up being interrupted (See Figure 1-C), leaving the WTs in a non-operational status until

the following day, where maintenance is ultimately resumed once access is restored.

The stochastic approach, on the other end, recognizes the forecast uncertainty (by means

of the probabilistic scenarios), and hence, the risk of maintenance interruption is foreseen.

Here, the model delays the maintenance until day 7, where both wind and wave conditions

are expected to be tolerable, resulting in uninterrupted maintenance for all three WTs, and

a total cost reduction of 31% relative to the deterministic approach’s schedule.

It is natural to expect that in dynamic operational environments, such as that of OSW

farms, similar cases caused by the synergistic effects of parameter uncertainty occur quite

often. It is therefore necessary for a maintenance scheduling approach to be able to account,

not only for maintenance opportunities, but also for the uncertainties in the environmental

and operational parameters that define what constitutes a maintenance opportunity in the

first place. Looking at Table 1, one can notice a lack of efforts that attempt to holistically

6



consider maintenance opportunities and the full spectrum of parameter uncertainty in a

unified framework. This is the research gap addressed in this work.

1.3 Contributions

To fill this research gap, we propose the STOChastic Holistic Opportunistic Scheduler

(STOCHOS)—In Greek, STOCHOS (written as Στόχος) translates to “target,” or “objec-

tive.” The contributions of this work are listed as follows:

1. STOCHOS is an offshore-tailored maintenance optimization framework which uniquely

(i) leverages the combined maintenance opportunities arising due to accessibility, rev-

enue, and transportation costs, and (ii) accounts for the multi-source uncertainties

of metocean conditions, asset degradation, and electricity prices. Compared to the

related literature, STOCHOS presents a novel modeling framework for opportunistic

maintenance optimization under uncertainty, while its rolling horizon solution algo-

rithm is in line with the industrial practice of OSW maintenance planning.

2. Instead of using temporally invariant distributional assumptions about input param-

eters, as prevalent in the stochastic optimization literature, we generate scenarios (or

trajectories) from a probabilistic forecasting framework. The trajectories recognize

the temporal nature of OSW data, and constitute optimal inputs to the stochastic

optimization model. We show the economic value of this approach relative to using

marginal predictive distributions or point predictions.

3. In terms of practical relevance, we extensively evaluate STOCHOS using real-world

data from a unique geographical region in the U.S. North Atlantic where several large-

scale projects are currently in-development (BOEM, 2021). We compare STOCHOS

against a set of prevalent maintenance benchmarks, and show its superior performance

in terms of several O&Mmetrics. Our data, models, and findings can therefore provide

timely and key insights to the operators of those soon-to-be-operational OSW farms.

The remainder of the paper is organized as follows. In Section 2, we present the formula-

tion of STOCHOS. Section 3 presents the probabilistic forecasting and scenario generation

approaches, followed by the solution procedure in Section 4. Section 5 presents our results

and findings. We summarize our conclusions and future research directions in Section 6.
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2 Model Formulation

This section starts with an introduction of notation and modeling assumptions, followed

by a detailed description of the mathematical model of STOCHOS.

2.1 Problem description and assumptions

(A1) We define I := {i | i ∈ Z+, 1 ≤ i ≤ NI} as the set of offshore WTs that must

undergo a maintenance task of τi hours (called the repair time). We focus on minor

to medium tasks which typically require less than a day to complete (e.g. electrical

components, grease/oil cooling liquids, sensors and controls), and comprise ∼75% of

all maintenance tasks in OSW farms (Carroll et al., 2016; Dinwoodie et al., 2015).

(A2) The planning horizon is divided into two sub-horizons (Koltsidopoulos Papatzimos,

2020): a day-ahead short-term horizon (STH) and a long-term horizon (LTH). The

STH, T := {t | t ∈ Z+, 1 ≤ t ≤ 24 hours}, is of hourly resolution. The LTH, D :=

{d | d ∈ Z+, 1 ≤ d ≤ ND days}, has a daily resolution, starting the day after the STH

up to ND days ahead. We denote LTH variables and parameters with a superscript

L to distinguish them from their STH counterparts.

(A3) STOCHOS is solved using sample average approximation by optimizing a stochastic

MILP (to be presented next) over a random scenario subset, S := {s | s ∈ Z+, 1 ≤ s ≤

NS scenarios}. Hereinafter, notations for random variables, real data, point forecasts,

and scenarios are denoted as follows. If z(t) denotes an arbitrary random variable

in the STH, then zt denotes its true (actual) value at the t-th hour, ẑt denotes the

corresponding point forecast, while zt,s is the realization of a random scenario s at

time t. Replacing t by d extends this notation to an LTH variable zL(d).

(A4) We assume that the wind speed, wave height, and electricity prices are uncertain

during both the STH and LTH, which are denoted by ν(t), η(t), κ(t) for STH, and

νL(d), ηL(d), κL(d) for LTH, respectively. For asset degradation, we assume that the

OSW turbine is an integrated system with a system-level residual life (RL), denoted by

λL(i) ∀ i ∈ I, which is a turbine-specific random variable defined as the time (in days)

at which the ith WT fails. In practice, predictions about λL(i) can be obtained using
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a condition monitoring system that considers the impact of dynamic environmental

and operational degradation parameters (Bian et al., 2015). We assume that the RL

is only uncertain in the LTH, since the STH, which is the day-ahead horizon, is a

small interval of time relative to the typical degradation process of WTs. A WT for

which the realized RL is smaller than a day is bound to fail by the end of the STH

(unless it is maintained). Maintenance tasks performed before the realized (true) RL

are preventive (PM), otherwise they are corrective (CM).

(A5) The power produced from a WT is primarily a function of the hub-height wind speed,

and is estimated using historical data (Ezzat et al., 2018; Ding, 2019). Details of the

wind-to-power conversion are discussed in the supplementary materials, SM-1.

(A6) WTs are accessed by crew transport vessels (CTVs) which are subject to accessibility

constraints defined by wind speed and wave height safety thresholds, denoted as νmax

and ηmax, respectively. Maintenance operations are subject to interruptions due to

access constraints, and can be resumed once access is restored. To formally account

for maintenance interruptions, we associate each maintenance task with a “mission

time,” A(t, i) which is a random variable denoting the time needed to complete a task

of τi hours starting at time t. A(t, i) is a function of τi and the access state denoted

by X(t) ∈ {0, 1}, which, in turn, is a function of the stochastic metocean conditions

ν(t) and η(t), and the safety thresholds νmax and ηmax. Details about the estimation

of X(t) and A(t, i) given metocean conditions and maintenance times are provided

in the supplementary materials SM-2. Note that while maintenance interruptions are

allowed, longer mission times directly translate to prolonged work hours (i.e., higher

crew and vessel contracting costs), and longer downtimes (i.e., higher revenue losses).

2.2 The optimization model

There exist different approaches to uncertainty modeling in the maintenance optimization

literature. One common approach is to directly encode a set of assumed probability distri-

butions about the uncertain parameters into the optimization model, which often results in

nonlinear models that are typically solved using heuristic approaches (Shafiee et al., 2015;

Wang et al., 2019; Ding and Tian, 2012; Lu et al., 2017; Sarker and Faiz, 2016). Alter-
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natively, stochastic programming uses sampling methods to integrate realizations of those

probability distributions to minimize maintenance costs (or similar objectives) (Besnard

et al., 2011; Yildirim et al., 2017; Fallahi et al., 2022). STOCHOS belongs to the second

cluster, and is formulated as a two-stage stochastic mixed linear integer program (MILP).

The following binary variables constitute the decision variables in STOCHOS:

mt,i : A maintenance task for WT i is scheduled to start at hour t in the STH.

r : A vessel is rented for the STH.

mL
d,i,s : A maintenance task is scheduled for WT i at day d in the LTH, in scenario s.

rLd,s : A vessel is rented at day d in the LTH, in scenario s.

The objective, shown in (1), is to maximize the profit in the planning horizon, comprising

the day-ahead profit lSTH , the long-term profit {lLTH
d }d∈D, and a stochastic penalty term.

max
mt,i,mL

d,i,s,r,r
L
d,s

{ short-term profit︷ ︸︸ ︷
lSTH +

long-term profit︷ ︸︸ ︷∑
d∈D

lLTH
d

− 1

NS

∑
s∈S

[ prolonged interruptions︷ ︸︸ ︷∑
i∈I

(Us · wi,s +Ys · bi,s)+
spot resource contracting︷ ︸︸ ︷
C1 · axs +C2 · aqs

]
︸ ︷︷ ︸

stochastic penalty term

}
. (1)

The short-term profit, lSTH , defined as in (2), is the difference between the day-ahead

operating revenues and the maintenance costs. The revenue is generated from selling the

power output of the ith WT at time t and scenario s, denoted by pt,i,s, at an hourly market

price κt,s. The maintenance costs comprise four components: (1) the repair costs which are

dictated by the PM and CM cost coefficients, K ($/task) and Φ ($/task), respectively, (2)

the daily vessel rental cost with a daily rate of Ω ($/day), (3) crew-related costs charged at

the crew hourly cost rate Ψ ($/h) where xt,i,s ∈ {0, 1} denotes whether a crew is assigned

to the ith WT at time t and scenario s, and (4) overtime costs charged at the crew overtime

cost rate Q ($/h) where qs ∈ Z+ denotes the overtime hours worked in the STH. Binary

parameter ζi indicates the day-ahead operational status of the i-th WT, wherein ζi =

0 indicates a failed WT needing a CM. The parameter ρi ∈ {0, 1} denotes whether a

maintenance task has been initiated in a previous day but is yet to be completed (when
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ρi = 1, repair cost goes to zero as it has already been accounted for in a previous day).

(2)

lSTH = −
∑
i∈I

∑
t∈T

repair cost︷ ︸︸ ︷
(1− ρi) · [ζi ·K+ (1− ζi) · Φ) ·mt,i−

vessel cost︷︸︸︷
Ω · r

+
1

NS

∑
s∈S

∑
i∈I

∑
t∈T

( κt,s · pt,i,s︸ ︷︷ ︸
operating revenue

−Ψ · xt,i,s︸ ︷︷ ︸
crew cost

)− Q · qs︸ ︷︷ ︸
overtime cost

 .

The long-term profit, in (3), is similarly calculated for daily intervals. The crew work

hours are calculated as the the mission time AL
d,i,s of the tasks scheduled at that day, mL

d,i,s.

(3)

lLTH
d =

1

NS

∑
s∈S


∑
i∈I

[ operating revenue︷ ︸︸ ︷
κLd,s · pLd,i,s −

repair cost︷ ︸︸ ︷
(1− ρi) · [ζLd,i,s ·K+ (1− ζLd,i,s) · Φ] ·mL

d,i,s

−Ψ ·AL
d,i,s ·mL

d,i,s︸ ︷︷ ︸
crew cost

]
− Ω · rLd,s︸ ︷︷ ︸

vessel cost

− Q · qLd,s︸ ︷︷ ︸
overtime cost

 ∀ d ∈ D.

The last term in (1) is a stochastic penalty which entails two sub-terms. The first term,

which we call “prolonged interruptions,” represents the cost of maintenance actions that

started in the STH, but were not completed, and hence, must be resumed in the LTH

(The WT remains non-operational when such event takes place). In that term, Us · wi,s

represent the cost incurred until the maintenance is restarted (pre-maintenance), while

Ys · bi,s is the cost incurred while the maintenance is ongoing (during maintenance). In

specific, wi,s ∈ {0, 1} denotes the occurrence of the interruption event, Us is the associated

pre-maintenance cost, bi,s ∈ Z+ denotes the remaining maintenance time that has to be

completed in the LTH, and Ys is the associated cost incurred during the maintenance. The

second sub-term penalizes the (unlikely) case when the maximum budget for crew (17)

or overtime resources (11) are exceeded. We assign fairly large cost coefficients, C1 and

C2, for such exceedances to reflect the unavoidable practice of on-the-spot contracting of

additional crew, equipment, or other immediate maintenance resources, when necessary. In

our experiments, those exceedances occur less than 0.09% of the time.

Maintenance Constraints: The equality in (4) forces a maintenance task to be scheduled

either in the STH or in the LTH.∑
t∈T

mt,i +
∑
d∈D

mL
d,i,s = 1 ∀ i ∈ I, s ∈ S. (4)
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A maintenance task in the STH can only be initiated after the time of first light, tR,

and before the time of last sunlight, tD, as expressed in (5) and (6), respectively.

mt,i ≤
t

tR
∀ t ∈ T , i ∈ I. (5)

mt,i ≤
tD
t
∀ t ∈ T , i ∈ I. (6)

Once a maintenance task is initiated at time t for the ith WT, then it would be under

maintenance for a period of time computed as the minimum between the remaining time

in the STH, which is 24− t, and the mission time At,i,s. This is expressed in (7), where the

binary variable ut̃,i,s denotes a turbine under maintenance at time t̃.

min{24,t+At,i,s}∑
t̃=t

ut̃,i,s ≥ min{24− t, At,i,s} ·mt,i ∀t ∈ T , i ∈ I, s ∈ S. (7)

If that maintenance task is not completed within the STH, then bi,s ∈ Z+, as shown

in (8), denotes the remaining time required to complete it in the LTH, while wi,s ∈ {0, 1},

as shown in (9), denotes the occurrence of such event and is only set to 1 once bi,s > 0,

as it is multiplied by M, an arbitrary large number. This is the case where the “prolonged

interruption” penalty term in (1) is activated.

bi,s ≥
∑
t∈T

mt,i · [At,i,s − 24 + t]+ ∀i ∈ I, s ∈ S. (8)

bi,s ≤ M · wi,s ∀i ∈ I, s ∈ S. (9)

The maintenance crew, once dispatched, is occupied until the maintenance is completed

or their shift ends by the time of last sunlight, tD, as shown in (10). An upper bound

on the number of available maintenance crews is set to B (crews), as shown in (11). The

auxiliary variable axs ∈ Z+ is added to the right-hand-side (RHS) of (11) to account for the

(unlikely) case in which the crew budget limit is exceeded, but almost always remains zero

since it is heavily penalized by C1 in (1). In practice, this translates to situations where

additional crew or equipment is contracted on-the-spot.

xt,i,s ≥ ut,i,s −
t

tD
∀t ∈ T , i ∈ I, s ∈ S. (10)

∑
i∈I

xt,i,s ≤ B+ axs ∀t ∈ T , s ∈ S. (11)
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Turbine Availability Constraints: A failed WT (i.e., one which has not been maintained at

or before its RL) remains unavailable until a maintenance action is completed. For the

STH case, availability can be expressed by the binary variable yt,i,s, as in (12).

(12)yt,i,s ≤
WT operational status︷ ︸︸ ︷

ζi · (1− ρi) +

availability restored after maintenance︷ ︸︸ ︷
24 ·

∑
t̃∈T mt̃,i −

∑
t̃∈T (t̃ ·mt̃,i)

24− t+ g
∀t ∈ T , i ∈ I, s ∈ S.

The first term of the RHS in (12) denotes whether the turbine is in a failed state at

the beginning of the STH, or if a maintenance task has been initiated in a previous day.

In case the RL is reached, then the turbine fails (ζi = 0), and can only return to its former

operational status once a CM action is performed. This is enforced by the second term in

the RHS; if no CM is scheduled, then mt̃,i = 0 and the term drops to 0. In contrast, if

mt̃,i = 1, the term is greater than 1 after the time of maintenance, t̃. An arbitrary small

number g avoids division by zero. A similar constraint for the LTH is shown in (13).

(13)yLd,i,s ≤ ζLd,i,s · (1− ρi) +
ND −

∑
d∈D(d ·mL

d,i,s)

ND − d+ g
∀d ∈ D, i ∈ I, s ∈ S.

A WT under maintenance remains unavailable until the task is completed, as in (14).

yt,i,s ≤ 1− ut,i,s ∀t ∈ T , i ∈ I, s ∈ S. (14)

Vessel Rental Constraints: Vessels are rented daily only if a maintenance task has been

scheduled at that day. This is enforced via (15)-(16), for the STH and LTH, respectively.

M · r ≥
∑
t∈T

∑
i∈I

mt,i. (15)

M · rLd,s ≥
∑
i∈I

mL
d,i,s ∀d ∈ D, s ∈ S. (16)

Overtime Constraints: The total work hours, as shown in (17), cannot exceedW (hour/crew).

Otherwise, overtime, tracked by integer variable qs, are incurred and compensated at a

higher rate determined by Q ($/hour). An upper bound of H (in hours) limits the number

of overtime hours in both the STH and LTH, as in (20) and (21). Similar to axs in (11), aqs

in (17) accounts for the on-spot contracting of additional crew, at a large cost of C2.

A task initiated but not finished in the STH, is prioritized in the first day of the LTH

(d = 1). This is expressed in (18) where AL
d=1,i,s ·mL

d=1,i,s+bi,s denotes the total work hours

in the first day of the LTH (the sum of the mission times and the remaining maintenance
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time of unfinished tasks). A similar constraint in (19) is imposed for the remaining days of

the LTH, i.e. for d ∈ {2, ..., ND}.∑
t∈T ,i∈I

xt,i,s ≤ B ·W+ qs + aqs ∀s ∈ S. (17)

∑
i∈I

[
AL

1,i,s ·mL
1,i,s + bi,s

]
≤ B ·W+ qL1,s ∀s ∈ S. (18)

∑
i∈I

[
AL

d,i,s ·mL
d,i,s

]
≤ B ·W+ qLd,s ∀d ∈ {2, ..., ND}, s ∈ S. (19)

qs ≤ H ∀s ∈ S. (20)

qLd,s ≤ H ∀d ∈ D, s ∈ S. (21)

Electricity Generation Constraints: The hourly power output, pt,i,s, is computed as a frac-

tion ft,i,s ∈ [0, 1] of the turbine’s rated capacity R (MW), multiplied by the turbine’s

availability yt,i,s, as shown in (22). When the WT is in a failed state, or under mainte-

nance, pt,i,s = yt,i,s = 0, and the operator forfeits the associated revenue. The fraction ft,i,s

is called the normalized power level. Full details of estimating ft,i,s and fL
d,i,s given wind

speed conditions are shown in the supplementary materials, SM-1.

pt,i,s ≤ R · ft,i,s · yt,i,s ∀t ∈ T , i ∈ I, s ∈ S. (22)

Likewise, the daily power output, pLd,i,s, is defined in (23), wherein fL
d,i,s ∈ [0, 1] is a

function of the daily average wind speed. The term mL
d,i · ζLd,i,s · AL

d,i,s/24, accounts for the

production losses if a preventive maintenance has been scheduled on day d.

pLd,i,s ≤ 24 · R · fL
d,i,s ·

(
yLd,i,s −mL

d,i,s ·
AL

d,i,s · ζLd,i,s
24

)
∀d ∈ D, i ∈ I, s ∈ S. (23)

Curtailing wind power production is common in grid-connected wind farms. This is

accounted for by introducing the parameter Ct,s ∈ [0, 1] in (24) which defines the fraction

of the farm-level power output that can be injected to the grid at each hourly interval t.

Ct,s = 1 denotes no curtailment—i.e., all power produced is eventually sold.

∑
i∈I

pt,i,s ≤
∑
i∈I

ft,i,s · R · Ct,s ∀t ∈ T , s ∈ S. (24)
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3 Probabilistic Forecasting and Scenario Generation

We first introduce the data used in this work and its relevance to the U.S. OSW industry,

then present our probabilistic forecasting and scenario generation framework.

3.1 Data description

This work is motivated by the ongoing large-scale OSW developments in the US North At-

lantic, and in particular, the NY/NJ Bight, where several Gigawatt-scale OSW projects are

in-development (BOEM, 2021). We use real-world OSW data and meteorological forecasts

from this region, in proximity to those soon-to-be-operational OSW projects.

Metocean Data and Forecasts: We use wind speed and wave height measurements collected

by the E05 Hudson North buoy between August 2019 and May 2020. This is one of two

floating LiDAR buoys recently deployed by the NY State Energy Research & Development

Authority (NYSERDA) (NYSERDA, 2021) in the NY/NJ Bight. Co-located with the

measurements are numerical weather predictions (NWPs) of wind speed and wave height.

The wind speed NWPs come from RU-WRF, a meso-scale weather model developed by

the Rutgers University Center For Ocean Observing Leadership (RUCOOL) to capture the

unique physical phenomena in this geographical region (Optis et al., 2020). Wave height

NWPs come from WAVEWATCH III, a numerical wave model maintained by the National

Oceanic and Atmospheric Administration (NOAA). The metocean data and their NWPs

are shown in Figures 2-A and 2-B, respectively.

Electricity Price Data and Forecasts: Real day-ahead electricity prices are obtained from

PJM’s Data Miner III (PJM, 2021), at node COMED (node id: 33092371). Point forecasts

for the same node are obtained by a Lasso Estimated Auto-Regressive (LEAR) model

proposed in Lago et al. (2021). The time series of the real electricity prices, the LEAR

predictions, and the associated error histograms are shown in Figure 2-C.

Asset Degradation Data and Forecasts: Unlike the above-listed parameters (metocean con-

ditions and electricity prices), actual turbine degradation data requires access to O&M

records. Currently, there are no operational OSW farms in this region. So, we assume a

set of observed RLs, {λi}i∈I , which are unknown to the planner, who only has access to a

set of (imperfect) RL predictions {λ̂i}i∈I provided by a condition monitoring system. In
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this study, true and predicted RLs are carefully selected in light of the summary statistics

derived in previous studies on offshore WT reliability analyses (Carroll et al., 2016), thus

ensuring a faithful replication of real-world WT failures (More details in Section 5.1).

A

B

C

Figure 2: Time series of the data and forecasts of wind speed (A), wave height (B) and

electricity price (C). Histograms of the forecast residuals are shown to the right.

3.2 Uncertainty modeling and scenario generation

Modeling uncertainty in scenario-based stochastic optimization requires probabilistic char-

acterizations of the input parameters. A prevalent approach in the literature is to impose

a distributional assumption on the marginal distribution of the forecast residuals at each

lead time. Albeit convenient, this approach is sub-optimal when temporal dependencies

exist, as in the case of OSW data. Figure 3 depicts the density of the forecast residuals at

four time lags for wind speed (top), wave height (middle), and electricity price (bottom).

Instead, a more powerful approach is to fully describe the density of the temporal process

governing each input parameter. Scenarios generated from such approach would preserve

the temporal dependence and constitute the optimal input to a stochastic program (Pinson,

2013). Specifically, we define z(t) as the random variable denoting either the wind speed

ν(t), wave height η(t), or electricity price κ(t) (we treat the RL predictions differently as

discussed at the end of this section). We also denote by z = [z1, ..., ztc]
T the set of historical
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Figure 3: Density plots of the point forecast residuals versus their lagged versions for wind

speed (A), wave height (B) and electricity price (C) time series forecasts.

measurements of z(t) up to the current time tc. Similarly, ẑ = [ẑ1, ..., ẑtc]
T are the raw

point predictions available to the planner (RU-WRF for ν(t), WAVEWATCH III for η(t),

and LEAR for κ(t)). Then, we propose the following probabilistic forecasting framework,

comprising three independent terms:

z(t) = µ(t) + ω(t) + ϵ(t), (25)

where µ(t) is a deterministic mean function defined as the raw point predictions avail-

able to the maintenance planner (that is, µ(t) = ẑt ∀ t). The term ω(t) is a zero-

mean temporal Gaussian Process (GP) with its pairwise covariance denoted by σt,t′ =

Cov{ω(t), ω(t′)}, ∀t, t′, while ϵ(t) is the zero-mean Gaussian noise, such that ϵϵϵ = [ϵ1, ..., ϵtc ]
T ∼

N (0, δI), where I is the tc × 1 identify matrix, and δ is the noise variance.

Let us use C to denote the tc × tc covariance matrix whose (t, t′)-th entry is defined as

σt,t′ + δI(t = t′), where I(·) is the indicator function. Those entries are estimated using a

stationary kernel C(·, ·) which encodes the temporal dependence. Several mathematically

permissible choices for C(·, ·) are possible and we use the squared exponential kernel, for

which the hyperparameters are estimated by maximizing the log-likelihood of the GP. Using

the estimated parameters, we can obtain the estimated covariance matrix, Ĉ.

17



Putting together all the pieces, one can fully characterize the predictive distribution of

the random variable z∗(tc+h) which denotes the forecast of z(tc+h). By virtue of the GP,

this distribution is Gaussian with its mean and variance as in (26) and (27), respectively.

z̄tc+h = E[z∗(tc + h)|z, ẑ] = ẑtc+h + k̂T Ĉ−1(z− ẑ), (26)

σ̄2
tc+h = V[z∗(tc + h)|z, ẑ] = α̂− k̂T Ĉ−1k̂, (27)

where h ∈ {1, ...,H} is the forecast lead time, ẑtc+h is the raw forecast (e.g. from RU-WRF

for wind speed) at tc + h. The tc × 1 vector k̂ contains the pairwise covariances between

[1, ..., tc]
T and tc + h, computed using C(·, ·). A similar model to (25) is developed for the

LTH (in daily resolution), and similar expressions to those in (26) and (27) are derived.

The advantages of this probabilistic framework are two-fold. First is its ability to

effectively account for the temporal dependencies in OSW data. This is obvious in how

the predictive mean in (26) depends on the correlation between the target forecast and

the historical observations. This is also apparent in how the predictive variance in (27) is

reduced from the marginal variance when information about strongly correlated values in

the process history is available. This is in contrast to distributional assumptions which treat

each lead time individually, thus overlooking the value added by the temporal dependence.

The second advantage is our ability to draw random temporal trajectories (or scenarios)

by sampling from the joint multivariate Gaussian distribution of the forecasts, as shown in

(28). The resulting trajectories, which naturally encode the temporal dependence in them,

are optimal inputs to the stochastic program, as opposed to marginal predictive densities.

z∗ = [z∗(tc + 1), ..., z∗(tc +H)]T ∼ N (z̄, C̄), (28)

where z̄ = [z̄tc+1, ..., z̄tc+H ]T is the H × 1 vector of the GP predictive means, and C̄ is the

correspondent H ×H predictive covariance matrix.

Figure 4 shows a fan chart of 1, 000 trajectories of wind speeds drawn randomly on a

select day using (28). Similar trajectories can be drawn for the wave height and electricity

prices. While the above two advantages are largely acknowledged in the wind forecasting

literature (Pinson, 2013; Ezzat et al., 2019), limited research has bridged such probabilistic

forecasting models with the stochastic maintenance optimization realm. One of the key

outcomes of our analyses in this paper is to demonstrate the “economic value” realized by

an effective uncertainty modeling of temporal dependencies in input parameters.
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Figure 4: Fan charts of 1, 000 random scenarios (trajectories) on 09/21/2019.

Table 2: Average solution time in seconds, for different number of scenarios (NS) and

number of wind turbines (NI), using an optimality gap of 0.1%.

NS
25 50 100 200

NI

5 7.1 14.3 23.3 96.9
15 24.6 92.5 157.2 592.6
50 199.1 631.1 1, 861.6 2, 531.4

For turbine RL estimates, we assume a simpler probabilistic model where the prediction

error from the ith WT is assumed to follow a Weibull distribution with λ̂i and ξλi as scale

and shape parameters, respectively, such that the forecast variable λ∗
i ∼ Weibull(λ̂i, ξ

λ).

The predictive mean of λ∗
i is denoted by λ̄i = λ̂iΓ(1 +

1
ξλi
).

4 Solution Procedure and Computational Efficiency

We solve STOCHOS using the Gurobi 9.0 solver with a Python interface in a server with

two 14-core Intel Xeon CPUs with a base frequency of 2.60 GHz and 128 GB of memory,

for a relative optimality gap of 0.1%. Table 2 shows the solution time (in seconds) as a

function of the number of scenarios (Ns = 25, 50, 100, and 200) and the number of WTs

(NI = 5, 15 and 50). Even with 200 scenarios and 50 WTs, STOCHOS is solved in under

45 minutes. In practice, wind farm operators only need to run STOCHOS once per day,

so they can use 200 scenarios (or even more), although our experiments suggest that the

solution quality does not significantly change beyond 50 scenarios.

In actual operations, STOCHOS would be solved at the end of each working day to

inform the day-ahead maintenance plan (Koltsidopoulos Papatzimos, 2020). The rolling
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horizon procedure presented in Algorithm 1, explains the details of such implementation,

starting from parameter and data input, to training the probabilistic forecasting models of

Section 3.2, followed by the scenario generation step, in which Ns trajectories for the wind

speed, wave height, and electricity price are generated, together with Ns turbine-specific

RL prediction samples. Those scenarios are then used to determine scenario-specific power

output predictions, accessibility estimations, and projected mission times. STOCHOS is

then solved by minimizing the objective function in (1), returning an hourly day-ahead

maintenance schedule (mt,i and r), and a daily schedule for the long-term horizon (mL
d,i,s

and rLd,s). Once a solution has been obtained, the planning horizon is shifted by one day

into the future. We call this as a single optimization “roll,” and the whole process is

repeated until all maintenance tasks are completed. Finally, all STH schedules from all

rolls are patched representing the executed hourly maintenance schedule for the whole

planning horizon. This is the hourly schedule that is implemented by following STOCHOS’

solutions, and hence, is used to assess its performance relative to other benchmarks.

5 Experimental Results

This section starts with the experimental setup, followed by our results and analyses.

5.1 Experimental Setup

We run our optimization model for 100 experiments representing different weather con-

ditions and electricity prices. For each experiment, Algorithm 1 is implemented, and a

maintenance schedule is obtained. To be able to conduct extensive numerical evaluations,

we set NS = 50 scenarios and consider NI = 5 WTs with a planning horizon of 20 days.

Data and forecasts used in this case study are described in detail in Section 3.1. True

RLs (unknown to the planner ahead of time) are set at λ1 = 2.0, λ2 = 6.8, λ3 = 11.5,

λ4 = 16.2, λ5 = 21.0 days. Point predictions of those RLs (available to the planner) are

set at λ̂1 = 4.0, λ̂2 = 6.1, λ̂3 = 13.2, λ̂4 = 6.8, λ̂5 = 23.8 days, reflecting different error

magnitudes (low for WTs 2, 3, and 5, relatively high for WTs 1, and 4). Maintenance

times are set at τ1 = 11, τ2 = 5, τ3 = 6, τ4 = τ5 = 4 hours. Maintenance times, as

well as true and predicted RLs are set in light of the summary statistics for minor repairs

20



Algorithm 1 A rolling-based solution procedure for STOCHOS

1: Input set dimensions NI , ND, NS → # of WTs, # of days, and # of scenarios

2: Input parameters K,Φ,Ψ,Ω,Q,R,B,W, τi, νmax, ηmax → operational parameters

3: Initialize θi = 1 ∀i ∈ I → parameter denoting maintenance requirement

4: Initialize ρi = 0, ζi = 1 ∀i ∈ I → parameters denoting WT operational status

5: Set the roll counter j = 0

6: while
∑

i∈I θi > 0 do

7: Set T = {24 · j, ..., 24 · (j + 1)}; D = {j + 1, ..., ND + j}
8: Input observations and predictions for ν(t), η(t), κ(t), and λ(i) ∀i.
9: Train the STH probabilistic models of Section 3.2 for ν(t), η(t), and κ(t).

10: Train the LTH probabilistic models of Section 3.2 for νL(d), ηL(d), κL(d), λL(i) ∀i.
11: Sample NS scenarios {νt,s}s∈St∈T , {ηt,s}

s∈S
t∈T , and {κt,s}

s∈S
t∈T → STH scenarios for wind

speed, wave height & price

12: Sample NS scenarios {νLd,s}
s∈S
d∈D, {η

L
d,s}

s∈S
d∈D, and {κ

L
d,s}

s∈S
d∈D → LTH scenarios for wind

speed, wave height & price

13: Sample NS scenarios {λL
i,s}i∈I,s∈S → scenarios for turbine RL

14: Evaluate {ft,s}s∈St∈T and {fL
d,s}

s∈S
d∈D → Speed-to-power conversion; SM-1

15: Evaluate {At,i,s}s∈St∈T and {AL
d,i,s}

s∈S
d∈D → Computing STH and LTH mission times; SM-2

16: Solve STOCHOS for NS scenarios

17: Return the decisions for the jth roll: SSTH
j = {mt,i, r} and SLTH

j = {mL
d,i,s, r

L
d,s}.

18: Evaluate SSTH
j under real operational parameters

19: for i ∈ I do

20: if
∑

t∈T mt,i > 0 then

21: if bi > 0 then

22: Set ρ← 1; τi ← bi (maintenance resumed if unfinished in the STH)

23: else

24: Set θi ← 0 (maintenance no longer required if completed in the STH)

25: end if

26: end if

27: end for

28: Update roll counter j = j + 1

29: Update RLs & WT status λi = (λi − 1, 0)+ ; λ̂i = (λ̂i − 1, 0)+; ζi = 1− I(λi = 0) ∀i
30: end while

31: return the final executed schedule by STOCHOS, S∗ = {SSTH
1 , ...,SSTH

j−1 }
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Table 3: Operational parameters for our experimental setup
Notation Parameter Value

K Cost of preventive maintenance (PM) $4, 000
Φ Cost of corrective maintenance (CM) $10, 000

C1, C2 Spot contracting costs $1, 000
B Number of available crews 2 crews
Ψ Crew hourly rate $250/hour
Q Overtime hourly rate $125/hour
W Maximum number of non-overtime work hours 8 hours
H Maximum number of overtime work hours 8 hours
Ω Daily vessel rental cost $2, 500/day

νmax Wind speed safety threshold 15 m/s
ηmax Wave height safety threshold 1.8 m
tR Time of first light 6:00 am
tD Time of last sunlight 9:00 pm

reported by Dinwoodie et al. (2015); Carroll et al. (2016). Those, together with the real-

world data about the wind speed, wave height, and electricity price, are used as input to

the probabilistic forecasting and scenario generation framework described in Section 3.2.

Table 3 shows our selection for the remaining parameters: K and Φ are chosen following

Yildirim et al. (2017), B, Ψ, and Q are selected based on the recommendations of Maples

et al. (2013), while C1, C2 are assigned large values relative to “regular” maintenance

resource parameters, B and Ψ. Medium-sized crew transport vessels (CTVs), which are

common for minor to medium repairs in OSW turbines, are used, wherein Ω, νmax, and ηmax

are chosen according to the analyses in Dalgic et al. (2013); Anderberg (2015). Curtailment

is assumed to be 0%, and hence, we set Ct,s = 1 ∀t, s.

5.2 Numerical Results

The performance of STOCHOS is compared against the following set of benchmarks:

1. Holistic Opportunistic Strategy with Perfect Knowledge (PK-HOST): A determin-

istic variant of STOCHOS which assumes perfect knowledge of all parameters: meto-

cean data, electricity prices, and RL predictions. This benchmark assesses how far

STOCHOS is from the best possible performance attained had the planner known,

with full certainty, all environmental and operational conditions.

2. Holistic Opportunistic Strategy with Point Forecasts (PF-HOST): A deterministic

version of STOCHOS which uses the raw point forecasts of all the uncertain pa-

rameters: RU-WRF for wind speed, WAVEWATCH III for wave height, LEAR for
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electricity prices, and point RL predictions. This benchmark shows the value of uncer-

tainty modeling in identifying the “right” windows of opportunity, and its relevance

to fully harnessing the benefits of opportunistic maintenance grouping.

3. Condition-Based Strategy (CBS): A deterministic strategy that relies on point RL

predictions, {λ̂i}i∈I , wherein maintenance is scheduled prior to the predicted RLs

(with a three-day buffer time), or upon the occurrence of an unexpected failure.

4. Corrective Maintenance Strategy (CMS): Maintenance tasks are only performed reac-

tively, or post-failure. Both CBS and CMS are prevalent benchmarks in the academic

literature and practice, and hence are used herein to showcase the combined benefit

of accounting for opportunities and parameter uncertainties.

Figure 5 illustrates the boxplots of the final costs (across 100 experiments) achieved

by STOCHOS and the four benchmarks, namely: PK-HOST, PF-HOST, CBS, and CMS.

Looking at Figure 5, we make few immediate observations: First, STOCHOS is the closest

to PK-HOST with a relative cost difference (in terms of median costs) of 10.69%, while PF-

HOST comes as a far second with a relative cost difference of 18.14%. This demonstrates

how accounting for uncertainty makes the maintenance planner as close as possible to the

“utopian” case of having perfect knowledge of information.

Second, STOCHOS improves upon PF-HOST by 6.30%. Another interesting observa-

tion is that the interquantile range (the difference between the third and first quantiles)

of STOCHOS is 24.16% smaller than that of PF-HOST, suggesting that STOCHOS is not

only better “on average,” but is also consistently better, and hence, a more reliable strategy.

PF-HOST experiences multiple extreme cases where the performance is significantly worse

than other strategies (e.g., the motivating example in Figure 1). This again confirms the

value of accounting for uncertainty in terms of both average performance and reliability,

relative to assuming full confidence in the available forecasts. Third, both STOCHOS and

PF-HOST significantly outperform “non-opportunistic” approaches like CBS and CMS,

further confirming the importance of opportunistic maintenance planning in OSW farms.

We summarize key O&M metrics in Table 4, including: number of vessel rentals, down-

time, accessibility downtime (i.e. how much downtime is attributed to incorrect assessment

of accessibility), production losses (in MWh) and revenue losses (in $K). We also report
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Figure 5: Boxplots of the total costs across 100 optimization experiments corresponding to

different metocean conditions and electricity price profiles. Solid circles (and the numbers on

top of them) denote median costs (in $K). Numbers below the boxplots are the percentage

improvements (%) of STOCHOS relative to each benchmark.

the number of PM tasks (higher the better) and CM tasks (lower the better), as well as

the number of maintenance interruptions. Finally, we report the total maintenance cost, as

well as the increase in cost relative to the optimal solution. Across all metrics, STOCHOS

significantly outperforms all benchmarks (excluding the non-realistic case of PK-HOST).

5.3 The value of probabilistic forecasting

We would like to demonstrate the value of our probabilistic forecast and scenario generation

approach presented in Section 3.2. To do so, we add two additional benchmarks:

1. Holistic Opportunistic Strategy with Calibrated Point Forecasts (CPF-HOST), which

is similar to PF-HOST, except that it uses the predictive means of the probabilistic

models as point predictions, instead of the raw point forecasts as in PF-HOST.

2. Stochastic Holistic Opportunistic Scheduler with Marginal Densities (MD-STOCH

OS), which is similar to STOCHOS except that it uses scenarios generated from

Gaussian distributions estimated via the residuals of the raw point forecasts of Section

3.1. This approach is prevalent in the classical stochastic optimization literature.
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Table 4: O&M metrics. Bold-faced values denote best performance (PK-HOST excluded)
PK-HOST STOCHOS PF-HOST CBS CMS

Number of vessel rentals 2.36 2.18 2.26 4.92 6.72
Total downtime [h] 39.52 44.20 47.30 97.20 142.03
Accessibility downtime [h] 9.52 14.20 17.30 67.20 112.03
Production loss [MWh] 101.21 141.05 154.59 597.68 1037.24
Revenue loss [$K] 5.10 7.10 7.83 29.85 51.64
Total PM tasks 5.00 4.53 4.48 2.35 0.00
Total CM tasks 0.00 0.47 0.52 2.65 5.00
Maintenance interruptions 0.66 0.43 0.64 1.23 1.83
Avg. total cost [$K] 38.92 43.43 45.00 86.90 127.91
Cost inc. from optimal [$K] 0.10 4.60 6.14 48.07 89.08
Median total cost [$K] 35.86 39.69 42.36 84.11 127.16

Table 5: The economic value of our probabilistic forecast framework.
STOCHOS PF-HOST CPF-HOST MD-STOCHOS

Median cost [$K] 39.69 42.36 42.18 44.57
% Improvement [%] - 6.30 5.91 10.95

Table 5 shows the median cost of those two benchmarks, in addition to that of STO-

CHOS and PF-HOST. The key interesting finding from this analysis is to show how an in-

adequate approach of handling uncertainty via marginal densities can lead to decisions that

are even worse than deterministic strategies. Another interesting finding is that if the main-

tenance planner decides not to use the rich information in our probabilistic models (perhaps

because of reluctance to change in business practice), then using the single-valued predic-

tive means from our probabilistic models as input to the deterministic approach provides a

modest but noticeable improvement in cost reduction. This is evident in how CPF-HOST

improves upon PF-HOST. Finally, STOCHOS, with its adequate treatment of uncertainty

and calibrated forecasts is able to achieve the maximal economic gain relative to both its

deterministic and stochastic variants: PF-HOST, CPF-HOST, and MD-STOCHOS.

5.4 Sensitivity analysis and practical insights

To examine the effect of key operational parameters on the optimal solution, we conduct

an experiment where we vary the number of WTs (NI = 5, 15 and 50), maintenance crews

(B = 1, 2 and 3) and vessel costs (Ω = $1, 500, $2, 500 and $3, 500). Figure 6 shows the

results, where we fix all experimental parameters and data as those of Section 5.1 (except

the parameter being varied, be it NI , B, or Ω). The only exception is that we use of B = 4
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(A) (B) (C)

Figure 6: Costs resulting from the sensitivity analysis of the number of WTs (A), the

number of available maintenance crews (B) and the transportation cost (C).

crews (instead of B = 2) only when we vary the number of WTs (Figure 6A), since larger

number of WTs (i.e. maintenance tasks) naturally requires higher maintenance resources.

Figure 6A shows a nonlinear relationship between the number of WTs and the mainte-

nance cost per turbine. Analyzing the resulting schedules in more depth provides a possible

explanation: with 5 WTs and B = 4, the maintenance schedule is mainly dictated by the

WT which is bound to fail first. In this case, WT1 with the shortest RL, is prioritized to

avoid its failure. STOCHOS then finds it more economical to group the remaining tasks at

the same day to share the setup cost already incurred by the maintenance of WT1, despite

the production losses being relatively high. Going from 5 WTs to 15 WTs (with B = 4)

creates more room for cost savings, as not all maintenance tasks can be scheduled in the

same day, which incentivizes the search for a better opportunity. With NI = 50 WTs, the

schedule becomes too congested and some compromises must be made in order to complete

all tasks on time and avoid the high costs of turbine failures.

Figure 6B shows that a too small maintenance budget (e.g., only having access to B = 1

crew), results in higher maintenance costs, mainly due to prolonged maintenance schedules.

Gradually increasing B parallelizes the maintenance workload and allows the sharing of

other on-site maintenance resources (e.g., vessel rentals). This results in more efficient

(i.e. shorter) maintenance schedules, although at the expense of higher crew costs. Finally,

Figure 6C shows a fairly linear relationship between the total cost and the vessel rental costs.

While the number of vessel rentals may be reduced in response to the increase in vessel

costs, it causes an increase in the revenue losses and repair costs, since transportation-based

opportunities are now weighted more heavily than their revenue-based counterparts.

Before we conclude, we would like to furnish few insights for OSW practitioners. First,

26



one of our key findings in this work is the significance of accessibility information in OSW

maintenance planning. Our research therefore calls upon both the research community and

practitioners to develop more advanced, OSW-tailored access forecasting solutions (Gilbert

et al., 2021), similar to those historically developed for classical maintenance parameters

(e.g., asset degradation). Second, this work amplifies the recent calls in the academic com-

munity to shift away from deterministic to probabilistic forecasting and decision-theoretic

frameworks (Pinson, 2013). This is evident by the substantial improvements attained by

STOCHOS relative to deterministic strategies like PF-HOST or CBS which solely rely on

single-valued predictions in making critical OSW maintenance decisions.

6 Conclusion

The unique challenges and uncertainties in OSW farms motivate the need for an offshore-

tailored approach for maintenance optimization. To that end, we proposed STOCHOS,

short for the stochastic holistic opportunistic scheduler—a maintenance scheduling ap-

proach that harnesses the maintenance opportunities arising due to favorable weather con-

ditions, on-site maintenance resources, and maximal operating revenues, while adequately

accounting for key operational and environmental uncertainties in the planning horizon.

Our results showed that STOCHOS outperforms several prevalent benchmark strategies,

across several key O&M metrics. Future work will look into two broad research questions:

(1) Given the same optimization model, can we seek more powerful probabilistic repre-

sentations that can achieve maximal economic gains?; and (2) Given the same forecasting

model, how can we improve our optimization models to accommodate more intricate rep-

resentation of the complex failure modes in wind turbines, as well as the impact of vessel

routing and crew logistics in large-scale wind farms.

Supplementary Materials

SM-1 describes how to statistically obtain wind power estimates given hub-height wind

speed forecasts. SM-2 details the estimation of mission times given accessibility information.
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