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Characterizing finitely generated fields

by a single field axiom

By Philip Dittmann and Florian Pop

dem Andenken an Peter Roquette gewidmet

Abstract

We resolve the strong Elementary Equivalence versus Isomorphism Prob-

lem for finitely generated fields. That is, we show that for every field in

this class, there is a first-order sentence that characterizes this field within

the class up to isomorphism. Our solution is conditional on resolution of

singularities in characteristic two and unconditional in all other character-

istics.

1. Introduction

First-order logic naturally applies to the study of fields. Consequently, it

is of interest to investigate the expressive power of first-order logic in natural

classes of fields. This is well understood in the cases of algebraically closed

fields, real-closed fields and p-adically closed fields. Namely, every such field

K is elementary equivalent to its “constant field” κ, i.e., the relative algebraic

closure of the prime field in K, and its first-order theory is decidable.

This article is concerned with fields that are at the center of (birational)

arithmetic geometry, namely the finitely generated fields K, which are the

function fields of integral Z-schemes of finite type. The Elementary Equivalence

versus Isomorphism Problem, EEIP for short, asks whether the elementary

theory Th(K) of a finitely generated field K (always in the language of rings)

encodes the isomorphism type of K in the class of all finitely generated fields.

This question goes back to the 1970s seems to have first been posed explicitly in

[Pop02], after previous work, in particular by Rumely [Rum80], Duret [Dur92],

and Pierce [Pie99].
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On the other hand, through the work of Rumely [Rum80], much more

than the EEIP is known for global fields; namely, the existence of uniformly

definable Gödel functions proved in that article implies that each global field

K is axiomatizable by a single sentence θRu
K in the class of global fields, i.e., θRu

K

holds in a global field L if and only if L ∼= K. This was extended and sharpened

by the second author in [Pop17], by showing that for every finitely generated

field K of Kronecker dimension dim(K) 6 2, there exists a sentence θK such

that θK holds in a finitely generated field L if and only if L ∼= K as fields.

Here, for arbitrary fields F , the Kronecker dimension is dim(F ) := td(F )+1 if

char(F ) = 0, respectively dim(F ) := td(F ) if char(F ) > 0, where td(F ) is the

absolute transcendence degree of F .

In this note we establish the analogue of this stronger property for all

finitely generated fields K thus, in particular, completely resolving the EEIP;

in characteristic two, though, our proof is conditional, requiring a version of res-

olution of singularities in algebraic geometry, called “above F2.” (See Section 2

for the version of resolution that we need.)

Theorem 1.1. Let K be a finitely generated field. If char(K) = 2 and

dim(K) > 3, assume that resolution of singularities above F2 holds. Then there

exists a sentence θK in the language of rings such that any finitely generated

field L satisfies θK if and only if L ∼= K .

Our approach follows an idea of Scanlon in [Sca08], and thereby establishes

an even stronger statement, giving information about the class of definable sets

in finitely generated fields. Specifically, it shows that the class of definable

sets is as rich as possible. One way of making this precise (cf. [AKNS20,

Lemma 2.17]) is the following statement. (See [Sca08, §2] or [AKNS20, §2] for

a discussion of the notion of bi-interpretability.)

Theorem 1.2. Let K be an infinite finitely generated field. If char(K) = 2

and dim(K) > 3, assume that resolution of singularities above F2 holds. Then

K is bi-interpretable with Z (where both K and Z are considered as structures

in the language of rings).

Note that while this completely characterizes the definable sets in K, cer-

tain questions of uniformity across the class of finitely generated fields are left

open; see, e.g., [Poo07, Question 1.8].

The chief technical result on which the theorems above build, and in-

deed the result that occupies the bulk of this article, concerns a definabil-

ity statement regarding prime divisors of finitely generated fields. Recall

that a prime divisor of an arbitrary field K with dim(K) finite is any dis-

crete valuation v whose residue field Kv has dim(Kv) = dim(K) − 1. For

finitely generated fields K, a valuation v is a prime divisor of K if and only if
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dim(Kv) = dim(K)−1; see, e.g., [EP05, Th. 3.4.3]. A prime divisor v is called

geometric if char(K) = char(Kv) and arithmetic otherwise. Throughout, we

freely identify valuations v with their valuation rings Ov and, in particular, do

not distinguish between equivalent valuations.

Since the cases dim(K) 6 2 were treated already in [Pop17] and [Rum80],

we will consider the following family of hypotheses indexed by d > 3:

(Hd)

{
–K is finitely generated with dim(K) = d.

–If char(K)=2 and d>3, resolution of singularities holds above F2.

Theorem 1.3. Let d > 3. The geometric prime divisors of fields satisfying

(Hd) are uniformly first-order definable. In other words, there exists a formula

vald(X,Y ) in the language of rings such that for every field K satisfying (Hd)

and every geometric prime divisor O of K , there exists a tuple y in K such that

O = {x ∈ K : K |= vald(x, y)},

and conversely, for every tuple y , the subset of K defined above is either a

geometric prime divisor or empty.

1.1. Short historical note and the genesis of this article. The first step in

the resolution of the strong form of the EEIP as mentioned in Theorem 1.1

above is Rumely’s work [Rum80], which itself builds on previous ideas of

J. Robinson. The next major step toward the resolution of the strong EEIP

was the introduction of the “Pfister form machinery” in [Pop02], followed by

the work of Poonen [Poo07], providing (among other things) uniform first-order

formulas to define the maximal global subfields of finitely generated fields, and

Scanlon [Sca08], which reduces the strong EEIP to first-order defining the geo-

metric prime divisors of finitely generated fields, and finally the introduction

of the cohomological higher local-global principles (LGPs) in [Pop17], as a tool

for recovering prime divisors. The present paper is a synthesis of previous sepa-

rate approaches to the problem by the authors and supersedes the manuscripts

[Pop18b], [Pop18a], [Dit18], [Dit19], which are not intended for publication

anymore. The proof builds on and expands the above ideas and tools, but it is

not a straightforward extension of the methods of [Rum80], [Pop17], especially

because the higher LGPs involved (cf. [KS12], [Jan16]) lead to some additional

complications compared to the Brauer–Hasse–Noether LGP for global fields,

respectively Kato’s LGP in the case Kronecker dimension two. Finally, in this

note the authors do not discuss the natural question of the complexity of the

formulas describing prime divisors, thus the sentences characterizing the iso-

morphism type. It would also be interesting to treat the EEIP for fields that

are finitely generated over natural base fields such as C, R and Qp; cf. [PP08].
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2. Preliminaries: Cohomological Local-Global Principles (LGP)

The proof for the definability of prime divisors is based on local-global

principles for certain cohomology groups over fields which were introduced in

[Kat86]. These extend the well-known Brauer–Hasse–Noether LGP, in partic-

ular the injectivity of the canonical map

ıK : Br(K)−→
⊕

v

Br(Kv̂),

where K is a global field, the sum is over all places v of K, and Kv̂ is the

completion at v.

Recall that for an arbitrary field K and i ∈ Z, one defines the GK-modules

Z/n(i) as follows: First, if char(K) does not divide n, then Z/n(i) := µ⊗i
n is

Z/n endowed with the GK-action via the ith-power of the cyclotomic character

of GK . Second, if p := char(K) > 0 and n = mpr with (m, p) = 1, then

Z/n(i) := Z/m(i) ⊕Wr Ω
i
log[−i], where Wr Ωlog is the logarithmic part of the

de Rham–Witt complex on the étale site over K; see Illusie [Ill79, Ch. I, 5.7].

(Note that these two definitions agree when char(K) is positive and does not

divide n.) With these notations, one has (see [Kat86, Introduction])

H1(K,Z/n(0)) = Homcont(GK ,Z/n), H2(K,Z/n(1)) = nBr(K).

Noticing that K is a global field precisely if dim(K) = 1, and the Brauer–

Hasse–Noether local-global principle is an LGP for H2(K,Z/n(1)), Kato pro-

posed that for “arithmetically significant” fields K with dim(K) = d; e.g., for

finitely generated fields, there should hold similar LGPs for Hd+1(K,Z/n(d));
see Kato’s seminal paper [Kat86], in particular, for how Milnor K-theory plays

into the bigger picture. In the same paper, Kato proved several forms of such

LGPs for finitely generated fields K with dim(K) = 2. There was/is steady

progress on Kato’s conjectures, see Kerz-Saito [KS12] and Jannsen [Jan16],

where both more literature and an account of previous results can be found.

We mention below three special instances of these (much more general)

results that we will need in the sequel. We consider the following context:
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• Throughout the paper n = 2, and to simplify notation set Λ = Z/2.1

• For arbitrary fields F and i > 0, denote Hi+1
(
F
)
:= Hi+1

(
F,Λ(i)

)
.2

For a field F , recall the following general facts:

(a) For any extension E|F , one has the restriction map

resE|F : Hi+1
(
F
)
→ Hi+1

(
E
)
, α 7→ αE .

(b) Let w be a discrete valuation on F with residue field Fw. Under mild

hypotheses, which are always satisfied in the sequel, there is a boundary

homomorphism

∂w : Hi+1
(
F
)
→ Hi

(
Fw

)

(see [Kat86, p. 149]). By construction, it factors through Hi+1
(
Fw

)
, where

Fw is the henselization of F with respect to w.

The first higher dimensional LGP proposed by Kato in [Kat86] is Jannsen

[Jan16, Th. 0.4]. We consider and explain it in our notation for n = 2. Let

K be finitely generated of Kronecker dimension d > 1 and k1 ⊂ K be a global

subfield that is relatively algebraically closed in K. Then K|k1 is a finitely

generated field over k1 with td(K|k1) = d − 1. Let P(k1) denote the set of

places of k1, and let k1v̂ be the completion of k at v ∈ P(k1). Then the relative

algebraic closure k1v ⊂ k1v̂ of k1 in k1v̂ satisfies the following: k1v is the real

closure of k at v if v is a real place, and k1v = Q if v is a complex place,

respectively k1v is the henselization of k1 at finite places v ∈ Pfin(k1). Since k1

is relatively algebraically closed in K and k1v is separable over k1, K ⊗k1
k1v is

a domain, hence Kv̂ := Kk1v̂ := Quot(K ⊗k1
k1v) is a well-defined field. In this

notation (Jannsen [Jan16, Th. 0.4]) n = 2, and char(K) 6= 2 shows that the

canonical map ık1
= ⊕v∈P(k1) resKv̂ |K : Hd+1

(
K
)
→⊕

v∈P(k1)H
d+1

(
Kv̂

)
is well

defined and injective. (Note that Jannsen writes F for our K, K for our k1,

and Fv for our Kv̂.) Hence if Kv = Kk1v ⊂ Kv̂ is the compositum of k1v and

K inside Kv̂, setting αv := resKv |K(α), one gets the following.

Fact 2.1 (cf. Jannsen [Jan16, Th. 0.4] for n = 2). Suppose char(K) 6= 2.

Then one has

α ∈ Hd+1
(
K
)

equals 0 if and only if αv ∈ Hd+1
(
Kv

)
equals 0

for all v ∈ P(k1).

We next briefly recall the higher dimensional generalizations of the Brauer–

Hasse–Noether LGP as proposed by Kato. These involve so-called arithmetical

1The facts in the remainder of this section hold for Λ = Z/`e, provided ` 6= char(K) and

µ`e ⊂ K.
2Note that in [EKM08] one denotes Hi+1

(
F
)
:= Hi+1

(
F,Λ(i)

)
in Section 16, and Hi

(
F
)
:=

Hi
(
F,Λ(i)

)
in Section 101.
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Bloch–Ogus complexes ; see Kato [Kat86, §1] for details. Namely, for an excel-

lent normal integral scheme X with dim(X) = d and function field K = κ(X),

let Xi = Xd−i be the set of points x ∈ X with dim(x) := dim {x} = i, or

equivalently, codim(x)= d− i. Under mild hypotheses on X, which are always

satisfied in the situations we consider, Kato shows (see [Kat86, Prop. 1.7]) that

one has a complex (with the first term placed in degree d):3

C0
n(X) : Hd+1

(
K
) ∂d−→⊕

x∈Xd−1
Hd

(
κ(x)

)
→ · · · →⊕

x∈X0
H1

(
κ(x)

)
.

The first map ∂d is defined in terms of the discrete valuations of K defined

by the points x in Xd−1 = X1 as follows: Since X is normal, the local ring

Ox is a DVR, say, with canonical valuation wx and residue field Kwx = κ(x).

Hence every x ∈ X1 gives rise to a residue map ∂x : Hi+1
(
K
)
→ Hd

(
κ(x)

)
as

indicated at b) above, and one has ∂d := ⊕x∈X1∂x.

Let Kwx be the henselization of K at wx, so Kwxwx = Kwx = κ(x).

For α ∈ Hd+1
(
K
)
, recall its image αwx ∈ Hd+1

(
Kwx

)
as defined in item (a)

above. Then by definition, one has ∂x(α) = ∂wx(αwx) in Hd
(
κ(x)

)
. Hence if

Hd

(
C0
n(X)

)
= 0 (i.e., if the first map of the complex is injective), one has

(2.1) α ∈ Hd+1
(
K
)

is trivial iff αwx ∈ Hd+1
(
Kwx

)
is trivial for all x ∈ X1.

Among other things, in [Kat86, Cor., p. 145] Kato proves H2

(
C0
n(X)

)
= 0 for

a two-dimensional projective regular integral Z-scheme X such that K = κ(X)

has no orderings.

The generalization of Kato’s result above to higher dimensions suitable for

our purposes is given by (some special form of more general) results by Jannsen

[Jan16] and Kerz–Saito [KS12]; see Facts 2.2 and 2.3 below.

Let R be either a finite field with char 6= 2, or the valuation ring of a

henselization of a global field k at some v ∈ Pfin(k) such that char(kv) 6= 2.

Let X be a proper regular integral flat R-scheme, let K = κ(X) be its field of

rational functions, let d = dimX = dimK > 0, and notice that X is excellent

and n = 2 is invertible on X. Kerz–Saito [KS12] denote the Kato complex

C0
n(X) introduced above by KC(X,Z/nZ) and its homology by KHa(X,Z/nZ).

This being said, Theorem 8.1 of loc. cit. asserts for a = d and Λ = Z/2 that

KHa(X,Λ)
)
= 0; that is, Hd

(
C0
2 (X)

)
= 0 in the notation of Kato. Hence

by (2.1) above one has the following.

Fact 2.2 (cf. Kerz–Saito [KS12, Th. 8.1] for a = d, l = 2, Λ = Z/2Z).

Let R, X and K = κ(X) be as above. Then for α ∈ Hd+1
(
K
)
, one has

α ∈ Hd+1
(
K
)

is trivial if and only if αwx ∈ Hd+1
(
Kwx

)
is

trivial for all x ∈ X1 .

3Actually, this is a special case of the more general context in [Kat86].
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Finally, we consider the case char = 2 = n. Following Jannsen (see [Jan16,

Def. 4.18]) we say that resolution of singularities holds above F2 if the following

hold:

(i) For any proper integral F2-variety X, there is a proper birational mor-

phism X̃ → X, where X̃ is a smooth (or equivalently regular) F2-variety.

(ii) Every affine smooth F2-variety U has an open immersion U ↪→ X, where

X is a projective smooth F2-variety, and X\U is a simple normal crossings

divisor.

Resolution of singularities is well known for surfaces and holds in dimen-

sion three (in general) by Cossart–Piltant [CP09]. Further, if resolution of

singularities above F2 holds, then any finitely generated field of characteristic

two has a smooth proper model over F2.

This being said, Fact 2.3 below follows from results by several authors;

e.g., Kato [Kat86] for dim(K) = 2, Suwa [Suw95, p. 270] for dim(K) = 3, and

(conditionally) Jannsen [Jan16, Th. 0.10] for dim(K) arbitrary. Namely, let

K be a finitely generated field with char(K) = 2, and if d = dim(K) > 3,

suppose that resolution of singularities holds above F2. Let X be a projective

smooth F2-model for K. Noting that Jannsen denotes Kato’s complex C0
n(X)

introduced above by C1,0(X,Z/nZ), [Jan16, Th. 0.10] (for a = d and n = 2)

asserts that Ha

(
C1,0(X,Z/nZ)

)
= 0; that is, Hd

(
C0
2 (X)

)
= 0 in the notation

of Kato. Hence by (2.1) above one has the following.

Fact 2.3 (cf. Jannsen [Jan16, Th. 0.10] for a = d and n = 2). In the above

notation and hypothesis, for all α ∈ Hd+1
(
K
)
, the following holds:

α ∈ Hd+1
(
K
)

is trivial if and only if αwx ∈ Hd+1
(
Kwx

)
is

trivial for all x ∈ X1 .

3. Consequences/applications of the local-global principles

We begin by recalling a few basic facts about Pfister forms, which are at

the core of first-order definability of prime divisors. For a field F and a ∈ F×,

set 〈〈a〉〉 = x21 − ax22,
4 respectively 〈〈a]] := x21 + x1x2 + ax22. For an (i+1)-tuple

aa = (ai, . . . , a0) with ai, . . . , a0 ∈ F×, the (i+1)-fold Pfister form qa is defined

as follows (see [EKM08, 9.B] for details):

• If char(F ) 6= 2, then qa := qai,...,a0 := 〈〈ai〉〉 ⊗ · · · ⊗ 〈〈a0〉〉.
• If char(F ) = 2, then qa := qai,...,a0 := 〈〈ai〉〉 ⊗ . . . 〈〈a1〉〉 ⊗ 〈〈a0]].5

4Some other sources prefer the convention 〈〈a〉〉 = x2
1 + ax2

2 in the case char(F ) 6= 2.
5In this case, one could allow a0 = 0 without harm, but we prefer to require all ai 6= 0 for

uniformity.
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It is well known (see [EKM08, Cor. 9.10]) that a form qa as defined above is

isotropic if and only if it is hyperbolic. Further, recalling that Hi+1
(
F
)
:=

Hi+1
(
F,Λ(i)

)
with Λ = Z/2 as introduced above, by [EKM08, §16],6 to every

Pfister form qa = 〈〈aa〉〉 or qa = 〈〈aa]], one can attach in a canonical way a

cohomological invariant

e(qa) ∈ Hi+1
(
F
)
.

Let N := 2i+1 − 1. Then qa is a quadratic form in N + 1 variables x =

(x1, . . . , xN+1), and

the associated variety Vqa := VF (qa) ↪→ PN
F is a smooth F -subvariety of PN

F .

Fact 3.1. In the above notation, the following hold:

(1) The Pfister form qa is isotropic over F if and only if e(qa) = 0 in Hi+1
(
F
)
.

(2) Let E|F be a field extension, and let qa,E be qa viewed over E . One has

e(qa,E) = res
(
e(qa)

)
under resE|F : Hi+1

(
F
)
→ Hi+1

(
E
)
.

Concerning the proofs, assertion(1) is implied by the Milnor Conjecture

(although previous weaker results would suffice (see [EL72], [Kat82]); to be

precise, use [EKM08, Fact 16.2] together with the fact that the (i + 1)-fold

Pfister form qa is isotropic if and only if it is hyperbolic, which is the case if

and only if its class in the Witt ring of F lies in Ii+2
q (F ) [EKM08, Th. 23.7(1)]).

Assertion (2) follows by definition.

We conclude this preparation with the following facts scattered throughout

the literature (although some of them might be new in the generality presented

here); variants of these will be used later. For the reader’s sake, we give the

(straightforward) full proofs.

Proposition 3.2. Let F be henselian with respect to a non-trivial non-

dyadic valuation w , i.e.,
(
char(F ), char(Fw)

)
6= (0, 2). Let k ⊂ F be its con-

stant subfield, i.e., the relative algebraic closure of the prime subfield in F . Let

ε = (εr, . . . , ε0) be w-units in F .

(1) Suppose that w(ε1 − 1) > 0. Then qε1,ε0 is isotropic over F . Hence qε is

isotropic over F .

(2) Let ε be the image of ε under the residue map O×
w → Fw , and let π =

(πs, . . . , π1), πi ∈ F× be such that w(πs), . . . , w(π1) are F2-independent in

wF/2. The following are equivalent:

(i) qε is isotropic over Fw ;

(ii) qε is isotropic over F ;

(iii) q(π,ε) is isotropic over F .

6Be aware of the inconsistency of notation in [EKM08]; see footnote 2 of this article.
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(iv) Suppose that dim(F ) = r and qε is isotropic over the compositum

Fv = kvF for each real closure kv of k (if there are any such kv).

Then qε is isotropic over F .

Proof. Let N := 2r+1−1, and recall the (r+1)-fold Pfister form qε = qε(x)

in variables x = (x1, . . . , xN+1). Since w is non-dyadic, Vqε ↪→ PN
Ow

is a smooth

Ow-subvariety of PN
Ow

, with special fiber the projective smooth Kw-variety

Vqε ↪→ PN
Fw. Hence by Hensel’s Lemma, the specialization map on rational

points Vqε(F )→ Vqε(Fw) is surjective, implying

(3.1) qε is isotropic over F if and only if qε is isotropic over Fw .

To (1): Since ε1 = 1, qε1,ε0 = q1,ε0 is isotropic over Fw, thus so are qε1,ε0
and qε over F by (3.1).

To (2): Setting xχ = (xχ,i)i6N , πχ =
∏

i π
χ(i)
i for χ : {1, . . . , s} → {0,1},

y = (xχ)χ, one has qπ,ε(y) =
∑

χ πχqε(xχ). By (3.1) above, qε is isotropic

over Fw if and only if qε is isotropic over F , and if so, qπ,ε is isotropic over

F . For the converse, let qε be anisotropic. Then w
(
qε(ν)

)
∈ 2 · wF for all

ν 6= 0 in FN, and for µ = (νχ)χ 6= 0, one has Since w(πχ) =
∑

i χ(i)w(πi), and

w
(
qε(νχ)

)
∈ 2 ·wF , and

(
w(πi)

)
i
are independent in wF/2, it follows that the

summands in qπ,ε(µ) =
∑

χ πχqε(νχ) have distinct values. Hence qπ,ε(µ) 6= 0,

thus qπ,ε is anisotropic.

To (3): We first claim that e := dim(Fw) < dim(F ) = r. Indeed,

by the Abhyankar Inequality (see, e.g., [EP05, Th. 3.4.3]) one has td(F ) −
td(Fw) > r(w), where td(•) is the absolute transcendence degree and r(w) :=

dimQ((wF/wk)⊗Q) is the rational rank of the abelian group wF/wk. First, if

w|k is non-trivial, then char(k) = 0 and kw is algebraic over a finite field and

therefore dim(F ) − dim(Fw) = 1 + td(F ) − td(Fw) > 1 + r(w) > 0. Second,

if w|k is trivial, then r(w) > 0, hence dim(F )− dim(Fw) = td(F )− td(Fw) >

r(w) > 0.

Case 1: char(Fw) = p > 0. Then e = dim(Fw) = td(Fw), and qε is a

quadratic form in 2r+1 variables over Fw. Since e < r, and Fw is a Ce+1-field,

qε(xx) = 0 has non-trivial solutions in Fw, i.e., qε is isotropic over Fw. Hence

so is qε over F by (3.1).

Case 2: char(Fw) = 0. Then w is trivial on the constant field k of F , and

by Hensel’s Lemma, there is a field of representatives E ⊂ F for Fw. Further,

E is relatively algebraically closed in F , so k ⊂ E is relatively closed in E,

and dim(E) = dim(Fw) = e < r. Let η = (ηr, . . . , η0) ∈ Er+1 be the lifting

of ε = (εr, . . . , ε0). Then εi = ηiδi with δi ∈ F and w(δi − 1) > 0. Since

char(Fw) = 0, by Hensel’s Lemma, each δi is a square in F , thus qε ≈ qη
over F , and qη is defined over E ⊂ F . We consider the following condition on
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subfields E′ ⊂ E:

(3.2) E′ is finitely generated, ηr, . . . , η0 ∈ E′ .

For every E′ satisfying (3.2), consider k′ := k∩E′, and for v′ ∈ P(k′), let E′
v′ =

k′v′E
′ be the compositum of E′ and k′v′ and e(qη,v′) let be the cohomological

invariant of qη in Hr+1(E′
v′).

Claim. There is E′ ⊂ E satisfying (3.2) such that e(qη,v′) = 0 for all

v′ ∈ P(k′).

Proof of the claim. Let E′ satisfy (3.2), k′ = E′ ∩ k. First, if v′ ∈ P(k′) is

not a real place, then E′
v′ has no orderings; hence by the well-known behavior

of cohomological dimension in field extensions we have cd(E′
v′) 6 cd(E′) 6

dim(E′) + 1 6 dim(Fw) + 1 < r + 1. Thus Hr+1(E′
v′) = 0, implying that

e(qη,v′) = 0. Second, concerning real places of k′, let ΣE′ ⊂ P(k′) be the

(possibly empty) set of all real places v′ such that e(qη,v′) 6= 0. By contradic-

tion, suppose that ΣE′ is non-empty for all E′ satisfying (3.2). Considering all

E′ ⊂ E′′ ⊂ E satisfying (3.2), the restriction maps ΣE′′ → ΣE′ make (ΣE′)E′

into a projective system of finite non-empty sets, having as projective limit

the non-empty set ΣE ⊂ P(k) of all v ∈ P(k) that satisfy v′ := v|k′ ∈ ΣE′ for

all E′ (where as always k′ = E′ ∩ k). For v ∈ ΣE , let kv be the real closure

of k at v, and let wv|w be the unique prolongation of the Henselian valuation

w of F to the algebraic extension Fv = kvF of F . Since w is trivial on k,

the residue field Fvwv is the compositum kvFw, and further, Ev := kvE ⊂ Fv

is a field of representatives for kvFw. Since qη is isotropic over Fv, it is so

over kvFw, hence over Ev = kvE. Equivalently, by Fact 3.1, e(qη,v) = 0 in

Hr+1(Ev). On the other hand, since cohomology is compatible with inductive

limits, e(qη,v) = lim
−→

e(qη,v′) 6= 0, because e(qη,v′) 6= 0 for all E′, contradiction!

The claim is proved. �

Back to the proof in Case (2), let E′ ⊂ E satisfy the claim. Set F ′ = E′(tt)

for tt a transcendence basis of F |E′. Then F ′ ⊂ F is finitely generated, E′∩k =

k′ = F ′ ∩ k and E′
v′ ⊂ F ′

v′ := k′v′F
′ for all v′ ∈ P(k′). Since e(qη,v′) = 0 in

Hr+1(E′
v′), qη is isotropic over E′

v′ , hence over F ′
v′ for each v′ ∈ P(k′). Hence by

Fact 3.1, e(qη,v′) = 0 in Hr+1(F ′
v′) for all v′ ∈ P(k′), and therefore, by Fact 2.1,

e(qη) = 0 in Hr+1(F ′). Equivalently, qη is isotropic over F ′ and thus over F .

Finally, qε ≈ qη is isotropic over F . �

3.1. Prime divisors via anisotropic k1 -nice Pfister forms. We now state

a technical condition for the Pfister forms we are going to work with. This

technical condition in particular serves to ensure that orderings and dyadic

places can always be eliminated from our subsequent considerations.
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Definition 3.3. Let K be a field satisfying Hypothesis (Hd) from the intro-

duction, and let qa be a Pfister form defined by aa := (ad, . . . , a1, a0) with all

ai ∈ K×.

(1) Let k1 ⊂ K be a global subfield. We say that qa is k1-nice if a1, a0 ∈ k1,

and the two-fold Pfister form qa1,a0 satisfies

(3.3)
If v ∈ P(k1) is real, or dyadic, or v(a0) 6= 0, or v(a1) < 0, then

qa1,a0 is isotropic over k1v.

(2) We say that qa is nice if there is there is a global subfield k1 ⊂ K such that

qa is k1 -nice.

Note that being nice is not an isometry invariant of Pfister forms, so strictly

speaking it is a property of the concrete presentation; this should not lead to

confusion.

Due to the results of the previous section, we now have the following local-

global principle for isotropy of nice Pfister forms.

Proposition 3.4. Let K satisfy Hypothesis (Hd), let k1 ⊂ K be a global

subfield, and let qa be an anisotropic k1 -nice Pfister form over K . The follow-

ing hold:

(1) There is a prime divisor w of K such that qa is anisotropic over the w-

henselization Kw .

(2) If w is a prime divisor of K such that qa is anisotropic over the

w-henselization Kw , then w is non-dyadic, w(a0) = 0, w(a1) > 0, and

w(ai) is odd for some i = 1, . . . , d.

Proof. To (1): By Fact 3.1(1) and (2) above, proving that qa is anisotropic

over Kw is equivalent to proving that the image of e(qa) under the restriction

map resw : Hd+1
(
K
)
→ Hd+1

(
Kw

)
does not vanish. Noticing that e(qa) 6= 0

in Hd+1
(
K
)
, proceed as follows:

Case 1. If char(K) = 2, then choosing a smooth projective F2-model X

for K, by Fact 2.3 above, there is a prime divisor w of K, say w = wx for

some point x ∈ X1, such that resw
(
e(qa)

)
6= 0 in Hd+1

(
Kw

)
, and therefore qa

is anisotropic over Kw.

Case 2. If char(K) 6= 2, we apply Fact 2.1 above, so there is v ∈ P(k1) such

that resv(e(qa)) 6= 0 in Hd+1
(
Kv

)
. Hence if qa,v is the Pfister form qa viewed

over Kv, then e(qa,v) = resv
(
e(qa)

)
6= 0. Equivalently, qa,v is anisotropic over

Kv, hence its Pfister subform qa1,a0 is anisotropic over k1v ⊂ Kv. Thus by

condition (3.3) above, v is a finite non-dyadic place of k1. In particular, letting

R ⊂ k1v be the henselization of Ov, it follows that char(kv) 6= 2. Let Xv be any

projective R-model of Kv. Then using prime to `-alterations with ` = 2 (see

[ILO14, Exp. X, Th. 2.4]), there are a projective regular irreducible R-scheme
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X̃ and a projective surjective R-morphism X̃ → Xv defining a finite field

extension K̃ |Kv of degree prime to 2. In particular, the restriction of e(qa,v)

in Hd+1
(
K̃
)

is non-zero. Hence by Fact 2.2 above, there exists x̃ ∈ X̃1 such that

setting w̃ := wx̃, for the w̃-henselization K̃w̃ of K̃ one has resw̃
(
e(qa,v)

)
6= 0

in Hd+1
(
K̃w̃

)
. Hence letting qa,w̃ be the Pfister form qa viewed over K̃w̃, one

has e(qa,w̃) = resw̃
(
e(qa,v)

)
6= 0 in Hd+1

(
K̃w̃

)
, concluding by Fact 3.1 that

qa,w̃ is anisotropic over K̃w̃. Let w := w̃|K . Then since K̃ |K is an algebraic

extension, and w̃ is a prime divisor of K̃, it follows that w = w̃|K is a prime

divisor of K, and the w-henselization Kw is contained in K̃w̃. Since qa,w̃ is

anisotropic over K̃w̃, it follows that qa is anisotropic over Kw.

To (2): Let v := w|k1
be the restriction of w to k1 (which might be the

trivial valuation). Then k1v is contained in Kw. Hence since qa is anisotropic

over Kw, its subform qa1,a0 (which is defined over k1) is anisotropic over k1v.

Since qa1,a0 is k1 -nice, either v is trivial or v ∈ P(k1) must be finite non-dyadic

and v(a0) = 0, v(a1) > 0. Hence w is non-dyadic, and further, w(a0) =

v(a0) = 0, w(a1) = v(a1) > 0. It remains to show that w(ai) is odd for some

i = 1, . . . , d. If not, for all such i we may write ai = bic
2
i for some bi, ci ∈ K×

with w(bi) = 0. But then qa ≈ qbd,...,b1,a0 , and the latter form is isotropic over

Kw by Proposition 3.2(3) (where the hypothesis on real places is satisfied by

niceness of qa). Therefore qa is also isotropic over Kw in contradiction to the

hypothesis. �

3.2. Abundance of anisotropic k1 -nice Pfister forms. In Section 3.1 above

we saw that anisotropic nice Pfister forms over a finitely generated field K

remain anisotropic over some henselization of K with respect to some non-

dyadic prime divisors of K. In this subsection, we prove that given any geo-

metric prime divisor w of K, and a global subfield k1 ⊂ K with w trivial

on k1, there are “many” k1 -nice Pfister forms that remain anisotropic over the

w-henselization Kw. Our actual result, Proposition 3.8 below, is more compli-

cated to state, because we want to realize additional restrictions on the Pfister

forms.

Lemma 3.5. Let l1/k1 be a finite separable extension of global fields, and

let Σ ⊂ Pfin(k1) be a finite set of finite places of k1 . Then there exists a k1 -nice

Pfister form qa1,a0 over k1 such that v(a1) = v(a0) = 0 for all v ∈ Σ and qa1,a0
is anisotropic over l1 .

Proof. We may enlarge Σ to contain all dyadic places of k1. There are

infinitely many finite places of k1 that split completely in l1. Pick one such

place v1 that is not in Σ. Using weak approximation, choose a0 ∈ k×1 such

that v(a0) = 0 for all v ∈ Σ, and v1(a0) = 0, and furthermore the reduction

of the polynomial X2 −X − a0 in k1v1[X] is irreducible if the characteristic of
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k1v1 is 2, respectively the reduction of the polynomial X2 − a0 in k1v1[X] is

irreducible if the characteristic of k1v1 is not 2. (The case distinction here arises

from the different definition of the form qa0 depending on the characteristic.)

Let l′ = k1(α0), with α0 a root of X2 − X − a0 respectively X2 − a0.

Pick a place v0 ∈ Pfin(k1)\Σ that splits completely in l′, hence v0 6= v1 because

v1 is inert in l′. Using the Strong Approximation Theorem, choose a1 ∈ k×1
satisfying the following four conditions:

• v1(a1) = 1;

• a1 is a norm of the local extension k1v(α0)|k1v for all the finitely many

v ∈ Pfin(k1) for which v(a0) 6= 0, all dyadic v and all real v;

• v(a1) = 0 for all v ∈ Σ;

• v(a1) > 0 at all v ∈ Pfin(k1)\{v0}.
(The condition at dyadic v ∈ Σ is thus that v(a1) = 0 and a1 is a local

norm, both of which are open conditions satisfied in a v-neighbourhood of 1.)

The following hold: First, qa1,a0 is anisotropic over k1,v1 by the definitions of

v1, a0, a1 and Proposition 3.2(2). Hence qa1,a0 is anisotropic over l1 ⊂ k1,v1 .

Second, we claim that qa1,a0 is k1 -nice. Indeed, by the choice of a1, one has

the following: If v(a0) 6= 0 or v is dyadic or v is real, then a1 is a norm

of k1v(α0)/k1v. Hence in these cases, qa1,a0 is isotropic over k1v. Finally, if

v(a1) < 0, then v = v0, hence v is totally split in l′ = k1(α0), implying that

α0 ∈ k1v. Hence qa1,a0 is isotropic over k1v. �

Lemma 3.6. Let K satisfy Hypothesis (Hd), and let w be a geometric prime

divisor of K . There is a global subfield k1 ⊂ K , and k1-algebraically independent

elements u = (ui)d>i>1 of K such that w is trivial on k1(u) and Kw is finite

separable over k1(u). Moreover, if ud ∈ K has w(ud) = 1, then (ud,u) is a

separating transcendence basis of K|k1 .

Proof. Since w is geometric, K and Kw have the same prime field κ0, and

are separably generated over κ0. Proceed as follows:

(i) If char(K) = 0, let (ui)d>i>1 be any w-units that lift a transcendence

basis of Kw.

(ii) If char(K) > 0, let (ui)d>i>0 be w-units that lift a separating transcen-

dence basis of Kw.

Let k1 ⊂ K be the constant field in case (i) and the relative algebraic closure of

κ0(u1) in K in case (ii), and set u = (ui)d>i>1 in both cases. Then w is trivial on

k1(u), and the residue of u in Kw is a separating transcendence basis of Kw over

k1. Assume now that w(ud) = 1; thus, in particular, w is not trivial on k1(ud,u).

Since w is trivial on k1(u) and non-trivial on k1(ud,u), ud cannot be algebraic

over k1(u). Hence since td
(
K | k1(u)

)
= 1, (ud,u) is a transcendence basis of K

over k1, and K|k1(ud,u) is a finite field extension. We claim that K | k1(ud,u)
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is separable. Indeed, let Ks be the separable closure of k1(ud,u) in K, and set

ws := w|Ks . Since K|Ks is purely inseparable, w is the only prolongation of ws

to K, and the following hold: First, w(ud) = 1 = ws(ud), hence e(w|ws) = 1.

Second, Kw |Ksws is purely inseparable, and since Kw | k1(u) is separable and

k1(u) ⊂ Ksws, one must have Kw = Ksws, hence f(w|ws) = 1. Third, since

K ⊃ Ks are function fields in one variable over k1(u), the fundamental equality

for ws and its unique prolongation w to K holds, see; e.g., [Che51, Ch. 2IV,§1,

Th. 1]. Hence [K : Ks] = e(w|ws)f(w|ws) = 1, and thus K = Ks is separable

over k1(ud,u). �

Definition 3.7. Let K satisfy Hypothesis (Hd), let k1 ⊂ K be a global sub-

field, and let t = (ti)d>i>1 be k1-algebraically independent in K. A k1,tt-test

form for an element ad ∈ K× is any k1 -nice Pfister form qa defined by aa =

(ad, ad−1, . . . , a1, a0), where (ai)d>i>1 = tt − ε and ε = (εi)d>i>1 are such that

εi ∈ k1 for 1<i<d are v-units for all v ∈ Pfin(k1) with v(a1) > 0.

Proposition 3.8. Let K satisfy Hypothesis (Hd), and let w be a geo-

metric prime divisor of K . Let k1 ⊂ K be a global subfield, let tt = (ti)d>i>1

be k1-algebraically independent elements of K such that w is trivial on k1(tt)

and Kw |k1(tt) is finite separable. Then there is a Zariski open dense subset

U ⊂ k×1
d−2

satisfying the following: For every ε = (εi)d>i>1 ∈ U, there is a

k1 -nice Pfister form qa1,a0 , such that for arbitrary ad ∈ K× with w(ad) odd,

setting (ai)d>i>1 = tt− ε and a = (ad, . . . , a1, a0), one has that qa is a k1, tt-test

form for ad that is anisotropic over Kw .

Proof. The normalization morphism S → St of St := Spec k1[t, tt
−1] in the

finite separable field extension l := Kw ←↩ k1(tt) is a finite generically separable

cover, thus étale above a Zariski open dense subset Ul ⊂ St. Hence for ε :=

(εi)d>i>1 ∈ U := Ul(k1), any preimage sε 7→ ε of ε under the morphism S → St

is a smooth point of S, π := (ai)d>i>1 := (ti − εi)d>i>1 is a regular system of

parameters at sε 7→ ε, and the residue field extension k1 = κ(ε) ↪→ κ(sε) =: kε
is finite separable. In particular, the completion of the local ring Osε is the

ring of formal power series “Osε = kε[[π]] in the variables π = (ai)d>i>1 over kε.

Hence one has k1(π)-embeddings

l = Kw = Quot(Osε) ↪→ Quot(“Osε)

= Quot
(
kε[[a2, . . . , ad−1]]

)
↪→ kε((a2)) · · · ((ad−1)) =: l̂.

Let Σ ⊂ P(k1) be any finite set of finite places such that all (εi)d>i>1 are

Σ-units, and for l1 := kε, consider a1, a0 ∈ k1 as in Lemma 3.5. Then for

ad ∈ K× with w(ad) odd, setting aa := (ad, . . . , a0) with (ai)d>i>0 as introduced

above, we claim that qa is a k1, t-test form that satisfies the requirements of

Proposition 3.8. Indeed, qa1,a0 is anisotropic over l1 = kε, by the choice of
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a1, a0 ∈ k1. Hence qπ,a1,a0 is anisotropic over l̂, by Proposition 3.2(2) (applied

with the natural valuation on l̂ with value group Zd−2), thus anisotropic over

Kw ⊂ l̂. In particular, since π, a1, a0 is a system of w-units, and w(ad) is odd,

one gets that qa = qad,π,a1,a0 is anisotropic over Kw, by Proposition 3.2(2). �

3.3. A strengthening of Proposition 3.4. In this subsection, we prove a

strengthening of Proposition 3.4 under refined hypotheses.

For an arbitrary field F , we let ValF be the Riemann–Zariski space (of

equivalence classes of valuations) of F . We endow ValF with the patch topology,

which is the coarsest topology such that the sets of the form {v∈ValF |v(a)>0},
a ∈ F are open and closed. It follows that the sets {v ∈ ValF | v(b) > 0},
{v ∈ ValF | v(c) = 0} are open and closed for all b, c ∈ F .

The patch topology makes ValF a compact Hausdorff space; see, for in-

stance, the discussion in [ZS75, Ch. VI, §17, proof of Th. 40].

Lemma 3.9. In the above notation, let Fw be the w-henselization at w ∈
ValF . One has the following:

(1) Let E|F a finite extension. Then the set

VE|F := {w ∈ ValF |E is F -embeddable in Fw}

is open in the patch topology.

(2) Let qa be a quadratic form over F . Then the set

Va := {w ∈ ValF | qa is isotropic over Fw}

is open in the patch topology.

Proof. To (1): Recall that the henselization Fw|F is a separable algebraic

extension, hence if VE|F is non-empty, E|F is separable. Let w ∈ VE|F . We

also write w for the (canonical) prolongation of w to Fw and its restriction to E.

By Hilbert decomposition theory (see, e.g., [KN14, Th. 1.2]), E = F [η] with η

satisfying w(η) = w(p′(η)) = 0 and η having minimal polynomial p(t) = tn +∑
i<n ait

i ∈ F [t] such that w(ai) > 0. Since Fw|F is an immediate extension,

there is x ∈ F with w(x−η) > 0, hence w
(
p(x)

)
> 0, and w

(
p′(x)

)
= 0. The set

Vw = {w̃ ∈ ValF | w̃(ai) > 0 for all i < n, w̃(p(x)) > 0, w̃(p′(x)) = 0}

is open (and closed) in the patch topology and w ∈ Vw. On the other hand, if

w̃ ∈ Vw, then the polynomial p(t) has a zero in the henselization Fw̃, thus E is

F -embeddable into Fw̃. Conclude that Vw ⊂ VE|F , hence the latter is open in

the patch topology, as claimed.

To (2): Let w ∈ Va; that is, qa is isotropic over Fw. Then there is a finite

subextension E|F of Fw|F such that qa is isotropic over E. Then Va contains

the neighborhood VE|F of qa. Thus Va is open. �
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Proposition 3.10. Suppose that K satisfies Hypothesis (Hd). Let L|K
be finite separable, and let ad ∈ K×. Suppose that there are a global subfield

k1 ⊂ K and k1-algebraically independent elements u = (ui)d>i>1 of K , such

that setting t := (ti)i := (u2i − ui)i , there is a k1,tt -test form qa for ad that is

anisotropic over the fields L(α) with α2 − α = ad/θ
2 , θ = (ad−1 · · · a1)N for all

N > 0. Then there exists a prime divisor wL of L that is trivial on k1(tt) such

that wL(ad) > 0 is odd, and qa is anisotropic over LwL
.

Proof. First, let N > 0 be fixed, and for θ = (ad−1 · · · a1)N and α2 −
α = ad/θ

2, set K̃ := L(α). Then qa is an anisotropic k1 -nice Pfister form

over K̃, hence Proposition 3.4 implies that there is a non-dyadic prime di-

visor w̃ = w̃N of K̃ such that qa is anisotropic over K̃w̃. Recalling that

a =
(
ad, (ai)d>i>1, a1, a0

)
=

(
ad, (ti − εi)d>i>1, a1, a0

)
, we claim

Claim 1. One has w̃(ai) > 0 for i < d.

Proof of Claim 1. Let v := w̃|k1
be the restriction of w̃ to k1. First, suppose

that v is non-trivial. Then k1v ⊂ K̃w̃, hence the fact that qa is anisotropic

over K̃w̃ implies that qa1,a0 is anisotropic over k1v. Since qa1,a0 is k1 -nice and

anisotropic over k1v, Proposition 3.2(3) applied to F = k1v and qa1,a0 implies

that a1 and a0 cannot both be v-units, and so Proposition 3.4(2) implies that

v(a0) = 0 and v(a1) > 0. Since qa is a k1,tt -test form for ad and v(a1) > 0, one

has v(εi) = 0 by definition, thus w̃(εi) = v(εi) = 0 for 1 < i < d. Second, if

v is trivial, then w̃(εi) = v(εi) = 0 for all i < d as well. Hence independently

on whether v is trivial or not, one has w̃(a0) = 0, w̃(a1) > 0, and w̃(εi) = 0

for all 1 < i < d. Next, by contradiction, suppose that w̃(ai) < 0 for some

i < d. Then 1 < i < d, and since ai = ti − εi, we must have w̃(ti) < 0. Hence

ti = u2i−ui in K implies that w̃(ui) < 0. Therefore, ai = u2i−ui−εi = u2i a
′
i with

a′i = 1−1/ui+ εi/u
2
i a principal w̃-unit. Hence by Proposition 3.2(1) it follows

that qa′i,a0 is isotropic over K̃w̃, thus so are qai,a0 and qa — contradiction!

Claim 2. One has w̃(ad) > Nw̃(ai) for i < d.

Proof of Claim 2. We first prove that w̃(ad) > w̃(θ2). By contradiction,

suppose that w̃(ad) < w̃(θ2). Then α2 − α = ad/θ
2 in K̃ implies w̃(α) < 0;

hence η := 1 − 1/α is a principal w̃-unit. Thus ad = (αθ)2(1 − 1/α) = u2η

with u = αθ, and we get a contradiction as above in the proof of Claim 1.

Second, by Claim 1, one has w̃(ai) > 0 for all i < d, and therefore w̃(θ) =

N
∑

0<i<d w̃(ai) > 0. Hence w̃(ad) > 2w̃(θ) > 2Nw̃(ai) for all i < d. On the

other hand, since qa is anisotropic over K̃w̃, it follows by Proposition 3.2(3)

that w̃(ai) 6= 0 for some i 6 d, and for such an i, we have w̃(ai) > 0 because

w̃(ai) > 0 by Claim 1. Therefore, w̃(ad) > 2Nw̃(ai) for i < d implies both

w̃(ad) > 0 and w̃(ad) > Nw̃(ai) for i < d. Claim 2 is proved. �
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Coming back to the proof of Proposition 3.10, for each integer N > 0, let

Va,N be the set of valuations w on L satisfying the following conditions:

(i) qa is anisotropic over the henselization Lw;

(ii) w(ai) > 0 and w(ad) > Nw(ai) for all i < d.

We notice that Va,N is closed, hence compact, in the patch topology. Indeed,

the set of all w satisfying condition (ii) is open and closed by definition. Second,

the complement of the set of valuations satisfying condition (i) is open by

Lemma 3.9(2). Finally, each Va,N is non-empty by Claims 1 and 2, because

the valuation w̃ = w̃N considered there lies in Va,N .

Since Va,N+1 ⊂ Va,N , it follows by compactness that Va := ∩NVa,N is non-

empty, so let us fix wa ∈ Va. Then qa is anisotropic over Lwa
, and wa(ai) > 0,

wa(ad) > Nwa(ai) for all N > 0 and i < d. Set p := {x ∈ L |wa(ad) ≤
N wa(x) for some N > 0}. Then p ⊂ Owa

is obviously a prime ideal such that

ad ∈ p, ai /∈ p for all i < d. Let wL be the valuation with valuation ring

OwL
= (Owa

)p. Then mwL
= p, and the following hold:

(a) One has an inclusion of henselizations LwL
⊂ Lwa

, so qa is anisotropic

over LwL
.

(b) Since ai /∈ p = mwL
, the ai are wL-units for i < d.

Claim 3. wL is trivial on k1(tt), and hence wL is a prime divisor of L|k1(tt).

Proof of Claim 3. We first claim that v := (wL)|k1
is trivial. By contra-

diction, suppose that v is non-trivial, and let k1v ⊂ LwL
be the Henselization

of k1 with respect to v inside LwL
. Since qa is a k1,tt -test form for ad that is

anisotropic over LwL
, it follows that qa1,a0 is a k1-nice form that is anisotropic

over k1v. Hence v is not dyadic. On the other hand, since ai, i < d are wL-

units, one has v(ai) = wL(ai) = 0 for i = 0, 1; hence by Proposition 3.2(3)

applied to qa1,a0 over k1v it follows that qa1,a0 is isotropic over k1v — contra-

diction! Next suppose, by contradiction, that wL is not trivial on k1(tt). Let

F ⊂ LwL
be the relative algebraic closure of k1(tt) in LwL

, and set w := (wL)|F ,

ε := (ad−1, . . . , a1, a0). Then qε is defined over F , and w is a non-trivial

henselian valuation of F such that all entries ai of ε are w-units. Further,

since w is trivial on k1, it follows that w is non-dyadic. Finally, since qa1,a0 is

isotropic over k1v for all archimedean places of k1, it follows that qa is isotropic

over Fv := Fk1v for all archimedean places v of k1. Proposition 3.2(3) implies

that qε is isotropic over F , hence over LwL
, because F ⊂ LwL

. Since qε is a

Pfister subform of qa, it follows that qa is isotropic over LwL
— contradiction!

Claim 3 is proved.

It is left to prove that wL(ad) is positive and odd. First, wL(ad) > 0 by

the definition of wL. Finally, wL(ad) is odd by Proposition 3.4(2). �
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4. Uniform definability of the geometric prime divisors of K

In this section we show that geometric prime divisors of finitely generated

fields are uniformly first-order definable. This relies in an essential way on the

consequences of the cohomological principles presented in the previous section,

and on the (obvious) fact that for an n-fold Pfister form qa, whether that qa is

(an)isotropic, or universal, over K and/or K̃=K[
√
−1 ] is expressed by formu-

las in which the n entries in aa=(an, . . . , a1) are the only free variables. The Kro-

necker dimension dim(K) can be detected in a first-order way; see Pop [Pop02,

Fact 1.1(3), Th. 1.5(3)]. Further, the relatively algebraically closed global sub-

fields k1 ⊂ K of finitely generated fields K, and algebraic independence over

such fields k1 are uniformly first-order definable by Poonen [Poo07, Th. 1.4].

Notation/Remarks 4.1. Let K satisfy Hypothesis (Hd).

(1) For ad ∈ K× consider

(a) relatively algebraically closed global subfields k1 ⊂ K;

(b) k1-algebraically independent elements uu = (ui)d>i>1 of K;

(c) systems ε = (εi)d>i>1 of elements of k×1 and a1, a0 ∈ k×1 such that

qa1,a0 is a k1 -nice Pfister form and all εi are v-units for all finite places

v ∈ P(k1) satisfying v(a1) > 0;

(d) Set tt := (ti)d>i>1 = (u2i − ui)d>i>1 = uu2 − uu, and ai := ti − εi for

1< i < d, and consider the resulting k1, tt-test form qa for ad defined

by a = (ad, . . . , a1, a0).

(2) For tt,uu as above, let kt = ku be the relative algebraic closure of k1(tt) in

K, and DK|kt denote the set of prime divisors w of K|kt. Then K = kt(C)

for a unique projective normal kt-curve C, and w ∈ DK|ka are in bijection

with the closed points P ∈ C via Ow = OP .

(3) For θ, τ ∈ K with θ 6= 0, set Kθ := K(α) and Kτ := K(β), where α2− α =

ad/θ
2 and β2− β = τ2/ad. Let Kθ,τ := Kθ(β) = Kτ (α) = KθKτ be the

compositum of Kθ and Kτ over K.

Finally, for the k1, tt-test form qa for ad introduced above, we define

(4) ba :={τ ∈ K | qa is anisotropic over Kθ,τ for all θ∈k×t }, Oa := {a ∈ K | a ·
ba ⊂ ba}.

(5) Va :={w∈DK|kt |w(ad)>0 and qa is anisotropic over Kw}, and for w∈Va,

set

bw := {τ ∈ K |w(τ2) > w(ad)}.
Therefore the valuation ring Ow is equal to {a ∈ K | a · bw ⊂ bw}.

Theorem 4.2. Let K satisfy Hypothesis (Hd). The following hold:

(1) For k1 , uu, ad ∈ K and qa as in Notation/Remarks 4.1 above,

ba =
⋃

w∈Va

bw, Oa =
⋂

w∈Va

Ow.
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(2) For every geometric prime divisor w of K , there are k1 , u, ad ∈ K as in

Notation/Remarks 4.1 above such that Va = {w}, and therefore,

Ow = {a ∈ K | a · ba ⊂ ba}.

Proof. To (1): Let us first argue that ba = ∪w∈Va
bw.

“⊂ ”: Let τ ∈ ba. Set L := Kτ . Then qa is anisotropic over Kθ,τ =

Kτ (α) = L(α) for all θ ∈ k×t and α2 − α = ad/θ
2 and thus, in particular,

for θ = (ad−1 . . . a1)
N for all N > 0. Hence by Proposition 3.10, there is a

prime divisor wL of L that is trivial on k1(t), hence on its relative algebraic

closure kt inside K, such that wL(ad) > 0 is odd, and qa is anisotropic over

the henselization LwL
. By contradiction, assume that wL(τ

2) 6 wL(ad), hence

wL(τ
2)<wL(ad), because wL(ad) is odd. Then wL(τ

2/ad)<0, hence wL(β)<0,

so a′d := 1 − 1/β is a principal wL-unit, thus qa′d,a0 is isotropic over LwL
by

Proposition 3.2(1). Since ad = (adβ/τ)
2(1− 1/β), one has qad,a0 ≈ qa′d,a0 over

LwL
, hence qad,a0 is isotropic over LwL

. Thus qa is isotropic over LwL
as well

— contradiction! Therefore wL(τ
2) > wL(ad). Setting w := (wL)|K , we see

that w ∈ Va and τ ∈ bw.

“ ⊃ ”: Let w ∈ Va and τ ∈ bw be given, i.e., w(τ2) > w(ad). Let θ ∈ k×t be

arbitrary. By definitions, w is trivial on kt, w(ad) > 0, and qa is anisotropic

over the henselization Kw. As ai ∈ kt and therefore w(ai) = 0 for i < d, by

Proposition 3.4(2) it follows that w(ad) is odd. Therefore one has w(ad/θ
2) =

w(ad) > 0 and w(τ2/ad) > 0. Hence if α2 − α = ad/θ
2 and β2 − β = τ2/ad,

then α, β ∈ Kw by Hensel’s Lemma. Thus Kθ,τ ⊂ Kw, and this implies that

qa is anisotropic over Kθ,τ . Therefore, τ ∈ ba.

We have shown that ba =
⋃

w∈Va
bw. It follows immediately that Oa ⊃⋂

w∈Va
Ow. For the other inclusion, let w ∈ Va and set µw := min{w(y′) | y′ ∈

bw}. Here the minimum exists since bw ⊆ Ow. For x ∈ K \ Ow, set

Σw,x := {y ∈ bw |w(y) = µw, w
′
(
(xy)2

)
< w′(ad) ∀ w′ ∈ Va \ {w}}.

Since Va ⊂ DK|ka is finite, the set Σw,x is non-empty by weak approxima-

tion. (It is defined by an open condition for every w′ ∈ Va including w.) Let

y0 ∈ Σw,x. Then y0 ∈ bw ⊆ ba, but xy0 6∈ bw by minimality of w(y0) since

w(x) < 0, and xy0 6∈
⋃

w′∈Va\{w} bw′ by definition of Σw,x. Hence xy0 6∈ ba, and

thus x·ba 6⊂ ba. This shows Oa ⊂ Ow for all w, and therefore Oa =
⋂

w∈Va
Ow.

To (2): Let w be a geometric prime divisor of K. Then by Lemma 3.6,

there is a (maximal) global subfield k1 ⊂ K and uu = (ui)d>i>1 algebraically

independent over k1 such that w is trivial on k1(uu), and Kw|k1(uu) is finite

separable. Set tt := uu2 − uu. Then k1(u)|k1(t) is a finite abelian extension,

hence Kw|k1(tt) is finite separable, and kt = ku inside K. Further recall that

K = kt(C) for a (unique) projective normal kt-curve C, and there is a unique

closed point P ∈ C with local ring OP = Ow. By Riemann–Roch for the
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projective normal kt-curve C, for every sufficiently large m � 0, there is a

function f ∈ kt(C)× with (f)∞ = mP . Let us fix such an m � 0 that is odd

and such an f . Then the element ad := 1/f of the function field K = kt(C)

has P ∈ C as its unique zero, and w(ad) = m.

Applying Proposition 3.8, we find ε = (εi)d>i>1 ∈ k×1
d−2

and a1, a0 ∈ k×1
such that setting aa = (ad, . . . , a0) with ai = ti − εi, 1 < i < d, the resulting qa
is a k1, tt -test form for ad that is anisotropic over Kw. Moreover, since w is the

unique prime divisor of K|kt with w(ad) > 0, it follows that Va = {w}. Hence

by assertion(1) above, Ow = {a ∈ K | a · ba ⊂ ba} . �

Recipe 4.3. One gets a uniform first-order description of the valuation rings

Ow of all the geometric prime divisors w of K along the following steps:

(1) Consider the uniformly first-order definable k1, uu = (ui)d>i>1, k1⊂kt ⊂K,

and further aa := (ad, . . . , a1, a0) and qa as in Notation/Remarks 4.1.

(2) Check whether Oa as defined above is a non-trivial valuation ring of K. If

so, Oa is a geometric prime divisor of K|kt by Theorem 4.2(1).

(3) By Theorem 4.2(2), the valuation ring Ow of any geometric prime divisor

w of K arises as above.

This concludes the proof of Theorem 1.3.

Remark 4.4. Theorem 1.3 was stated and proved for finitely generated

fields K with d = dim(K) > 2. As we now explain, for finitely generated fields

K of Kronecker dimension d = 1, 2, there are formulas val1 and val2 which

uniformly describe the prime divisors in case d = 1, respectively the geometric

prime divisors in case d = 2. For d = 1 (i.e., for global fields), all prime divisors

are uniformly definable by Rumely [Rum80], Introduction, I. The prime divisors

are geometric if and only if K is a global function field, which is a definable

condition by II loc. cit. For d = 2, uniform definability of geometric prime

divisors is one of the main results of Pop [Pop17]: Use that for every geometric

prime divisor v of K we can find a global subfield k1 ⊆ K with v trivial on

k1 such that K is the function field of a smooth curve over k1, and then apply

[Pop17] Theorem 1.2 (cf. Conclusion 5.2).

5. Proof of the Main Theorem

We will now prove that every field satisfying Hypothesis (Hd) is bi-interpret-

able with the ring Z, building on the uniform definability of the geometric prime

divisors. The insight that this is possible is due to Scanlon [Sca08]. (More

precisely one can use [Sca08, Th. 4.1], because the part of the proof needed

here is not affected by the gap in the recipe of the definability of prime divisors

in that paper.) For the convenience of the reader, we instead build on the

later [AKNS20], where the bi-interpretability result is established for finitely

generated integral domains (as well as some other rings).
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Proposition 5.1. Let K satisfy Hypothesis (Hd), let T denote a tran-

scendence basis of K , and let RT be the integral closure in K of the subring

generated by T . Then the ring RT is a finitely generated domain that is first-

order definable (with parameters).

Proof. Let κ ⊂ K be the constant field of K. By Poonen [Poo07, Th. 1.3],

κ is first-order definable. In characteristic zero, i.e., if κ is a number field,

by Rumely [Rum80, Introduction, III], the ring of integers Oκ is first-order

definable. To fix notation, we set A := κ if char(K) > 0 and A := Oκ otherwise.

Hence A ⊂ K is first-order definable, and R := RT is the integral closure of

A[T ] in the field extension K|K0, where K0 := κ(T ). Further, R is a finite

A[T ]-module (see, e.g., [Eis95, Cor. 213.13, Prop. 13.14]), hence R is a finitely

generated ring. Hence it is left to prove that R = RT is first-order definable.

Let S = ST ⊂ K be the integral closure of κ[T ] in K, and let WT be the

set of geometric prime divisors w of K such that T ⊂ Ow. Since the geometric

prime divisors of finitely generated fields K with dim(K) = d are a first-order

definable family (by Theorem 1.3), it follows that WT is a first-order definable

family.

We claim that S =
⋂

w∈WT
Ow. First, “ ⊂ ” is clear, because T ⊂ Ow im-

plies that S ⊂ Ow, hence S ⊂ ⋂
w∈WT

Ow. Second, for “ ⊃ ”, let X 1 ⊂ Spec(S)

be the set of minimal non-zero prime ideals p. Then the local rings Sp, p ∈ X 1

are valuation rings of geometric prime divisors of K, and S =
⋂

p∈X 1 Sp; see,

e.g., [Mat89, Th. 11.5(ii)]. Hence S =
⋂

p∈X 1 Sp ⊃
⋂

w∈WT
Ow.

In particular, the ring S =
⋂

w∈WT
Ow is a definable subset of K.

Case 1: char(K) > 0. Then A = κ is a finite field, hence RT = ST is

first-order definable, and there is nothing left to prove.

Case 2: char(K) = 0. Set e = td(K|κ). The geometric prime e-divisors

of K are the valuations w of K that are trivial on κ and have wK = Ze

lexicographically ordered. By general valuation theory, a valuation w of K is a

geometric prime e-divisor of K if and only if w is of the form w = w1 ◦ · · · ◦we

(as composition of places) such that we is a discrete valuation of K, and wi

is a discrete valuation of the residue field κ(wi+1) of wi+1 for i < e. Since

dimK = e+dimκ, each wi must in fact be a geometric prime divisor of κ(wi+1).

By uniform definability of geometric prime divisors of fields of fixed finite

Kronecker dimension (Theorem 1.3 and Remark 4.4), the set De
K|κ of geometric

prime e-divisors is a first-order definable family, using induction on Kronecker

dimension and the following easy observation:

Fact 5.2. If Ow′ ⊂ F and Ow′′ ⊂ Fw′ are first-order definable valuation

rings, then the residue map Ow′ → Fw′ is first-order definable, hence so is

Ow′′◦w′ ⊂ F , as it is the preimage of the first-order definable set Ow′′ under

the first-order definable map Ow′ → Fw′ .
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Further, the residue fields κw := Kw are finite extensions of κ, hence

Pfin(κw) and the integral closures Aw|A of A in κw are uniformly first-order

definable; see [Rum80, Introduction, I, II, III]. For w ∈ De
K|κ and a prime di-

visor v ∈ Pfin(κw), we set wv := v ◦ w, and for the given transcendence basis

T = (t1, . . . , te) of K|κ, we denote

VT = {wv | w ∈ WT , v ∈ Pfin(κw) such that wv(ti) > 0 for i = 1, . . . , e }.
Note that VT is a definable family by the fact that WT and Pfin(κw) are so.

Hence the definability of RT follows from Lemma 5.3 below. �

Lemma 5.3. One has RT =
⋂

wv∈VT
Owv . Thus RT is first-order definable.

Proof. For every wv = v ◦ w ∈ VT , one has Owv ⊂ Ow. Hence setting

R′
T :=

⋂
wv∈VT

Owv and reasoning as above in the case of ST , one gets RT ⊂
R′

T ⊂ ST . Hence to complete the proof of Lemma 5.3, it is left to prove the

converse inclusion RT ⊃ R′
T .

First, setting K0 := κ(T ), one has that K|K0 is a finite field extension,

and RT ⊂ ST are the integral closures of R0,T := A[T ] ⊂ κ[T ] =: S0,T in the

field extension K|K0. Define W0,T and V0,T correspondingly for K0 instead

of K, and notice thatWT and VT are the prolongations ofW0,T and V0,T to K

under the finite field extension K|K0. Then by the characterization of integral

closure using valuations, R′
T is the integral closure of R′

0,T :=
⋂

wv∈V0,T
Owv in

the field extension K|K0. Therefore, it is sufficient to prove that R0,T = R′
0,T ,

or equivalently, to prove Lemma 5.3 in the special case K = K0 = κ(T ),
RT = R0,T = A[T ], and that will be assumed from now on.

We already proved that A[T ] = RT is contained in R′
T , hence it is left

to prove that R′
T ⊂ A[T ]. Recalling that R′

T ⊂ ST = κ[T ] and A[T ] =⋂
v∈Pfin(κ)

Ov[T ], we have to prove the following:

Claim. Every f ∈ R′
T is in Ov[T ] for all v ∈ Pfin(κ).

Proof of Claim. Let f ∈ R′
T be given, and let v ∈ Pfin(κ) be fixed, say

with residue field κv = κv. Since R′
T ⊂ κ[T ], we can set f = c · g with c ∈ κ

and g ∈ Ov[T ] such that the reduction g ∈ κv[T ] is non-zero; e.g., c = 0 and

g = 1 if f = 0. Hence in order to prove the claim, it is sufficient to prove that

v(c) > 0. Since g 6= 0, there is an e-tuple ζ in the algebraic closure of κv such

that g(ζ) 6= 0. Then ζ is an e-tuple of roots of unity of order prime to char(κv),

and we identify ζ with its lift in the algebraic closure of κ. Let w ∈ WT be

such that T 7→ ζ under Ow → Kw. Then Kw = κ[ζ] =:κ′, and if v′ prolongs

v to κ′, then the valuation wv′ := v′ ◦w lies in VT and satisfies

g 7→ g(ζ) 7→ g(ζ) 6= 0

under Owv′
→ Ov′ → κ′v′ = K0wv′ . Hence g is a wv′-unit, implying that

wv′(f) = wv′(c). Finally, since f ∈ R′
T ⊂ Owv′

, one has wv′(f) > 0, hence
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v(c) = v′(c) = wv′(c) = wv′(f) > 0, concluding that v(c) > 0, thus f = c · g ∈
Ov[T ], as claimed. �

Remark 5.4. The first-order definition from the proof of Proposition 5.1

can be seen to be uniform for fixed d; i.e., allowing for variables for the elements

of T , the defining formula can be chosen not to vary for all fields K satisfying

Hypothesis (Hd).

We are now ready to prove the bi-interpretability theorem: a field K

satisfying Hypothesis (Hd) is bi-interpretable with Z, where both K and Z

are considered as structures in the language of rings. We refer the reader to

[AKNS20, §2] for a brief introduction to the notion of bi-interpretability.

Proof of the bi-interpretability theorem. Let K be a field satisfying (Hd),

and let RT ⊆ K be the definable subring from Proposition 5.1. Since R = RT

is a finitely generated integral domain, it is bi-interpretable with the ring Z by

[AKNS20, Th. 3.1].

The field K is interpretable in R as a localization; cf. [AKNS20, Exam-

ples 2.9(4)]. Then K is definably isomorphic to the interpreted copy of K in the

definable subset R ⊆ K, namely by assigning to each x ∈ K the class of pairs

(a, b) ∈ R × (R \ {0}) with x = a/b, and likewise R is definably isomorphic to

the copy of R defined in the interpreted copy of K, namely by identifying r ∈ R

with the pair (r, 1) (thought of as standing for r
1 in Frac(R) = K). Thus K is

bi-interpretable with R, and therefore, by transitivity, bi-interpretable with Z.

�

The resolution of the strong form of the EEIP now follows from [AKNS20,

Prop. 2.28].
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