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Characterizing finitely generated fields
by a single field axiom

By PHILIP DITTMANN and FLORIAN Pop

dem Andenken an Peter Roquette gewidmet

Abstract

We resolve the strong Elementary Equivalence versus Isomorphism Prob-
lem for finitely generated fields. That is, we show that for every field in
this class, there is a first-order sentence that characterizes this field within
the class up to isomorphism. Our solution is conditional on resolution of
singularities in characteristic two and unconditional in all other character-
istics.

1. Introduction

First-order logic naturally applies to the study of fields. Consequently, it
is of interest to investigate the expressive power of first-order logic in natural
classes of fields. This is well understood in the cases of algebraically closed
fields, real-closed fields and p-adically closed fields. Namely, every such field
K is elementary equivalent to its “constant field” &, i.e., the relative algebraic
closure of the prime field in K, and its first-order theory is decidable.

This article is concerned with fields that are at the center of (birational)
arithmetic geometry, namely the finitely generated fields K, which are the
function fields of integral Z-schemes of finite type. The Elementary Equivalence
versus Isomorphism Problem, EEIP for short, asks whether the elementary
theory TH(K) of a finitely generated field K (always in the language of rings)
encodes the isomorphism type of K in the class of all finitely generated fields.
This question goes back to the 1970s seems to have first been posed explicitly in
[Pop02], after previous work, in particular by Rumely [Rum80|, Duret [Dur92|,
and Pierce [Pie99].
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On the other hand, through the work of Rumely [Rum80], much more
than the EEIP is known for global fields; namely, the existence of uniformly
definable Godel functions proved in that article implies that each global field
K is axiomatizable by a single sentence 9%‘1 in the class of global fields, i.e., 9%“
holds in a global field L if and only if L 2 K. This was extended and sharpened
by the second author in [Popl7], by showing that for every finitely generated
field K of Kronecker dimension dim(K) < 2, there exists a sentence 0 such
that 0k holds in a finitely generated field L if and only if L = K as fields.
Here, for arbitrary fields F', the Kronecker dimension is dim(F') := td(F') +1 if
char(F') = 0, respectively dim(F’) := td(F') if char(F") > 0, where td(F') is the
absolute transcendence degree of F'.

In this note we establish the analogue of this stronger property for all
finitely generated fields K thus, in particular, completely resolving the EEIP;
in characteristic two, though, our proof is conditional, requiring a version of res-
olution of singularities in algebraic geometry, called “above Fy.” (See Section 2
for the version of resolution that we need.)

THEOREM 1.1. Let K be a finitely generated field. If char(K) = 2 and
dim(K') > 3, assume that resolution of singularities above Fa holds. Then there
erists a sentence O in the language of rings such that any finitely generated

field L satisfies Ok if and only if L =2 K.

Our approach follows an idea of Scanlon in [Sca08|, and thereby establishes
an even stronger statement, giving information about the class of definable sets
in finitely generated fields. Specifically, it shows that the class of definable
sets is as rich as possible. One way of making this precise (cf. [AKNS20,
Lemma 2.17]) is the following statement. (See [Sca08, §2] or [AKNS20, §2] for
a discussion of the notion of bi-interpretability.)

THEOREM 1.2. Let K be an infinite finitely generated field. If char(K) = 2
and dim(K') > 3, assume that resolution of singularities above Fa holds. Then
K is bi-interpretable with Z (where both K and Z are considered as structures
in the language of rings).

Note that while this completely characterizes the definable sets in K, cer-
tain questions of uniformity across the class of finitely generated fields are left
open; see, e.g., [Poo07, Question 1.8].

The chief technical result on which the theorems above build, and in-
deed the result that occupies the bulk of this article, concerns a definabil-
ity statement regarding prime divisors of finitely generated fields. Recall
that a prime divisor of an arbitrary field K with dim(K) finite is any dis-
crete valuation v whose residue field Kv has dim(Kv) = dim(K) — 1. For
finitely generated fields K, a valuation v is a prime divisor of K if and only if
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dim(Kv) = dim(K) — 1; see, e.g., [EP05, Th. 3.4.3]. A prime divisor v is called
geometric if char(K) = char(Kwv) and arithmetic otherwise. Throughout, we
freely identify valuations v with their valuation rings O, and, in particular, do
not distinguish between equivalent valuations.

Since the cases dim(K) < 2 were treated already in [Pop17] and [Rum80],
we will consider the following family of hypotheses indexed by d > 3:

(H,) —K is finitely generated with dim(K) = d.
Y char(K)=2 and d >3, resolution of singularities holds above Fs.

THEOREM 1.3. Letd > 3. The geometric prime divisors of fields satisfying
(Hq) are uniformly first-order definable. In other words, there exists a formula
valy(X,Y) in the language of rings such that for every field K satisfying (Hy)
and every geometric prime divisor O of K, there exists a tuple y in K such that

O = {a; ceK: K ': vald($7y)}a

and conversely, for every tuple y, the subset of K defined above is either a
geometric prime divisor or empty.

1.1. Short historical note and the genesis of this article. The first step in
the resolution of the strong form of the EEIP as mentioned in Theorem 1.1
above is Rumely’s work [Rum80|, which itself builds on previous ideas of
J.Robinson. The next major step toward the resolution of the strong EEIP
was the introduction of the “Pfister form machinery” in [Pop02], followed by
the work of Poonen [Poo07], providing (among other things) uniform first-order
formulas to define the maximal global subfields of finitely generated fields, and
Scanlon [Sca08|, which reduces the strong EEIP to first-order defining the geo-
metric prime divisors of finitely generated fields, and finally the introduction
of the cohomological higher local-global principles (LGPs) in [Popl7], as a tool
for recovering prime divisors. The present paper is a synthesis of previous sepa-
rate approaches to the problem by the authors and supersedes the manuscripts
[Pop18b|, [Popl8al, [Dit18|, [Dit19|, which are not intended for publication
anymore. The proof builds on and expands the above ideas and tools, but it is
not a straightforward extension of the methods of [Rum80|, [Pop17], especially
because the higher LGPs involved (cf. [KS12], [Jan16]) lead to some additional
complications compared to the Brauer—-Hasse—Noether LGP for global fields,
respectively Kato’s LGP in the case Kronecker dimension two. Finally, in this
note the authors do not discuss the natural question of the complexity of the
formulas describing prime divisors, thus the sentences characterizing the iso-
morphism type. It would also be interesting to treat the EEIP for fields that
are finitely generated over natural base fields such as C, R and Q,; cf. [PP0S|.
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2. Preliminaries: Cohomological Local-Global Principles (LGP)

The proof for the definability of prime divisors is based on local-global
principles for certain cohomology groups over fields which were introduced in
[Kat86]. These extend the well-known Brauer-Hasse-Noether LGP, in partic-
ular the injectivity of the canonical map

15 : Br(K) — @Br(K@),

where K is a global field, the sum is over all places v of K, and Kj is the
completion at v.

Recall that for an arbitrary field K and ¢ € Z, one defines the G g-modules
Z/n(i) as follows: First, if char(K) does not divide n, then Z/n(i) := u®? is
7Z/n endowed with the G ic-action via the i*"-power of the cyclotomic character
of Gg. Second, if p := char(K) > 0 and n = mp" with (m,p) = 1, then
Z/n(i) = Z/m(i) ® W, Qfog[—i], where W, Qs is the logarithmic part of the
de Rham-Witt complex on the étale site over K; see Illusie [I1179, Ch. I, 5.7].
(Note that these two definitions agree when char(K) is positive and does not

divide n.) With these notations, one has (see [Kat86, Introduction]|)
H'(K,Z/n(0)) = Homeons (Gx, Z/n), H*(K,Z/n(1)) = ,Br(K).

Noticing that K is a global field precisely if dim(K) = 1, and the Brauer—
Hasse-Noether local-global principle is an LGP for H?(K,Z/n(1)), Kato pro-
posed that for “arithmetically significant” fields K with dim(K) = d; e.g., for
finitely generated fields, there should hold similar LGPs for H**1 (K, Z/n(d));
see Kato’s seminal paper [Kat86], in particular, for how Milnor K-theory plays
into the bigger picture. In the same paper, Kato proved several forms of such
LGPs for finitely generated fields K with dim(K) = 2. There was/is steady
progress on Kato’s conjectures, see Kerz-Saito |KS12| and Jannsen [Janl6|,
where both more literature and an account of previous results can be found.
We mention below three special instances of these (much more general)
results that we will need in the sequel. We consider the following context:
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e Throughout the paper n = 2, and to simplify notation set A = Z /2.
e For arbitrary fields F and i > 0, denote H"™ (F) := H"*(F, A(7)) .2

For a field F', recall the following general facts:

(a) For any extension E|F, one has the restriction map
resp|p g+ (F) — H ! (E), a— ap.

(b) Let w be a discrete valuation on F' with residue field F'w. Under mild
hypotheses, which are always satisfied in the sequel, there is a boundary
homomorphism

0w : HT(F) — H'(Fuw)
(see [Kat86, p. 149]). By construction, it factors through H*!(F,,), where
F,, is the henselization of F' with respect to w.

The first higher dimensional LGP proposed by Kato in [Kat86] is Jannsen
[Jan16, Th. 0.4]. We consider and explain it in our notation for n = 2. Let
K be finitely generated of Kronecker dimension d > 1 and k; C K be a global
subfield that is relatively algebraically closed in K. Then K|k, is a finitely
generated field over k, with td(K|k,) = d — 1. Let P(k,) denote the set of
places of k,, and let k13 be the completion of k at v € P(k,). Then the relative
algebraic closure ki, C ki of k, in kq; satisfies the following: k;, is the real
closure of k at v if v is a real place, and k,, = Q if v is a complex place,
respectively ki, is the henselization of k, at finite places v € Pgy, (k). Since k,
is relatively algebraically closed in K and k,, is separable over k,, K ®, ki, is
a domain, hence K;:= Kk := Quot(K ®y, kyy) is a well-defined field. In this
notation (Jannsen [Janl6, Th. 0.4]) n = 2, and char(K) # 2 shows that the
canonical map 1, = Gyep(i,) €S,k * HT (K) = @pepgr,) H (K5) is well
defined and injective. (Note that Jannsen writes F for our K, K for our k,
and F), for our K3.) Hence if K,, = Kk,, C K3 is the compositum of k,, and
K inside K3, setting a,:=resg, |k (), one gets the following.

Fact 2.1 (cf. Jannsen [Janl6, Th. 0.4] for n = 2). Suppose char(K) # 2.
Then one has

a € g1 (K) equals 0 if and only if o, € HIF! (KU) equals 0
for allv € P(k,).

We next briefly recall the higher dimensional generalizations of the Brauer—
Hasse—Noether LGP as proposed by Kato. These involve so-called arithmetical

!The facts in the remainder of this section hold for A = Z/¢¢ provided £ # char(K) and
e C K.

*Note that in [EKMO08] one denotes H**(F) := H*"' (F, A(4)) in Section 16, and H* (F) :=
H'(F, A(i)) in Section 101.
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Bloch—-Ogus complezes; see Kato [Kat86, §1| for details. Namely, for an excel-
lent normal integral scheme X with dim(X) = d and function field K = x(X),
let X; = X9 be the set of points 2 € X with dim(z) := dimm = 4, or
equivalently, codim(z)= d —i. Under mild hypotheses on X, which are always
satisfied in the situations we consider, Kato shows (see [Kat86, Prop. 1.7]) that
one has a complex (with the first term placed in degree d):3

COX):  HY(K) 2 @,ex, HY k(@) = - = Doex,H (5(2)).

The first map 9, is defined in terms of the discrete valuations of K defined
by the points = in Xz 1 = X' as follows: Since X is normal, the local ring
O, is a DVR, say, with canonical valuation w, and residue field Kw, = k(z).
Hence every € X! gives rise to a residue map 0, : Ht! (K) — Hd(H(J})) as
indicated at b) above, and one has 9;:= @ ¢ x10s.

Let K,, be the henselization of K at w,, so Ky, w, = Kw, = k().
For a € H¥"!(K), recall its image av,, € H¥"!(K,,) as defined in item (a)
above. Then by definition, one has ,(a) = 9y, (atw,) in H%(k(z)). Hence if
Hy (C’S(X)) = 0 (i.e., if the first map of the complex is injective), one has

(2.1) a € HH! (K) is trivial iff o, € Hd+1(sz) is trivial for all = € X!

Among other things, in [Kat86, Cor., p. 145] Kato proves Ha(C3(X)) = 0 for
a two-dimensional projective regular integral Z-scheme X such that K = x(X)
has no orderings.

The generalization of Kato’s result above to higher dimensions suitable for
our purposes is given by (some special form of more general) results by Jannsen
[Jan16] and Kerz—Saito [KS12]; see Facts 2.2 and 2.3 below.

Let R be either a finite field with char # 2, or the valuation ring of a
henselization of a global field k at some v € Pg,(k) such that char(kv) # 2.
Let X be a proper regular integral flat R-scheme, let K = (X)) be its field of
rational functions, let d = dim X = dim K > 0, and notice that X is excellent
and n = 2 is invertible on X. Kerz—Saito [KS12| denote the Kato complex
CY(X) introduced above by KC(X, Z/nZ) and its homology by KH, (X, Z/nZ).
This being said, Theorem 8.1 of loc. cit. asserts for a = d and A = Z/2 that
KH,(X,A)) = 0; that is, Hy(C9(X)) = 0 in the notation of Kato. Hence
by (2.1) above one has the following.

Fact 2.2 (cf. Kerz—Saito [KS12, Th. 8.1] for a = d, | = 2, A = Z/2Z).
Let R, X and K = k(X)) be as above. Then for a € HIT! (K), one has

a € HY(K) is trivial if and only if o, € HITH(K,y,) is
trivial for all x € X1,

3 Actually, this is a special case of the more general context in [Kat86].
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Finally, we consider the case char = 2 = n. Following Jannsen (see [Jan16,
Def. 4.18]) we say that resolution of singularities holds above Fy if the following
hold:

(i) For any proper integral Fa-variety X, there is a proper birational mor-
phism X — X, where X is a smooth (or equivalently regular) Fo-variety.

(ii) Every affine smooth Fo-variety U has an open immersion U — X, where
X is a projective smooth Fa-variety, and X'\U is a simple normal crossings
divisor.

Resolution of singularities is well known for surfaces and holds in dimen-
sion three (in general) by Cossart-Piltant [CP09|. Further, if resolution of
singularities above Fo holds, then any finitely generated field of characteristic
two has a smooth proper model over Fs.

This being said, Fact 2.3 below follows from results by several authors;
e.g., Kato [Kat86] for dim(K) = 2, Suwa [Suw95, p. 270| for dim(K) = 3, and
(conditionally) Jannsen [Janl6, Th. 0.10] for dim(K') arbitrary. Namely, let
K be a finitely generated field with char(K) = 2, and if d = dim(K) > 3,
suppose that resolution of singularities holds above Fo. Let X be a projective
smooth Fa-model for K. Noting that Jannsen denotes Kato’s complex CY(X)
introduced above by C*%(X,Z/nZ), [Jan16, Th. 0.10] (for @ = d and n = 2)
asserts that H, (CH(X,Z/nZ)) = 0; that is, Hy(C3(X)) = 0 in the notation
of Kato. Hence by (2.1) above one has the following,.

Fact 2.3 (cf. Jannsen [Jan16, Th. 0.10] for a = d and n = 2). In the above
notation and hypothesis, for all o € HIT! (K), the following holds:

a € HiH (K) is trivial if and only if c,,, € H™H! (sz) 1S
trivial for all x € X1,

3. Consequences/applications of the local-global principles

We begin by recalling a few basic facts about Pfister forms, which are at
the core of first-order definability of prime divisors. For a field F' and a € F'*,
set ((a) = 22 — ax3, respectively (a]] := 2% + x129 + ax3. For an (i + 1)-tuple
a = (aj,...,ap) with a;,...,a9 € F* the (i + 1)-fold Pfister form ¢4 is defined

as follows (see [EKMO0S, 9.B| for details):

o If char(F) # 2, then ¢q:= qa,,....a0 := {(@i)) ® - -+ @ {ao))-
o If char(F) = 2, then qq:= qu;... a0 = (i) @ ... {a1) ® {ao]).’

-----

“Some other sources prefer the convention {a) = 21 + ax3 in the case char(F) # 2.
5In this case, one could allow ag = 0 without harm, but we prefer to require all a; # 0 for
uniformity.
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It is well known (see [EKMO08, Cor. 9.10]) that a form g4 as defined above is
isotropic if and only if it is hyperbolic. Further, recalling that H**! (F) =
HH(F, A(i)) with A = Z/2 as introduced above, by [EKMO08, §16].° to every
Pfister form ¢, = (@) or g, = ((a]], one can attach in a canonical way a
cohomological invariant

e(qa) € Hit! (F)

Let N := 2*! — 1. Then ¢, is a quadratic form in N + 1 variables = =
(.7}1, ceey .rN+1), and

the associated variety Vy, := Vi(ga) = PX is a smooth F-subvariety of PX .

Fact 3.1. In the above notation, the following hold:

(1) The Pfister form qq is isotropic over F if and only if e(qq) = 0 in HI*! (F)
(2) Let E|F be a field extension, and let qq 1 be qq viewed over E. One has
e(qa,z) = 1es (e(qa)) under resgp : HM(F) — HH(E).

Concerning the proofs, assertion(1) is implied by the Milnor Conjecture
(although previous weaker results would suffice (see [ELT72|, [Kat82]); to be
precise, use [EKMO8, Fact 16.2] together with the fact that the (i 4+ 1)-fold
Pfister form qq is isotropic if and only if it is hyperbolic, which is the case if
and only if its class in the Witt ring of F lies in I}*(F) [EKMOS, Th. 23.7(1)]).
Assertion (2) follows by definition.

We conclude this preparation with the following facts scattered throughout
the literature (although some of them might be new in the generality presented
here); variants of these will be used later. For the reader’s sake, we give the
(straightforward) full proofs.

PRrOPOSITION 3.2. Let F' be henselian with respect to a non-trivial non-
dyadic valuation w, i.e., (char(F),char(Fw)) # (0,2). Let k C F be its con-
stant subfield, i.e., the relative algebraic closure of the prime subfield in F. Let
e =(gr,...,€0) be w-units in F.

(1) Suppose that w(ey — 1) > 0. Then ¢, ¢, is isotropic over F'. Hence qe is
isotropic over F'.

(2) Let € be the image of € under the residue map O)5 — Fw, and let w =
(Tsy ... m), m € F* be such that w(7s),...,w(m) are Fo-independent in
wF/2. The following are equivalent:

(i) gz is isotropic over Fw;
(ii) ge is isotropic over F
(ili) q(m,e) 7s isotropic over F.

5Be aware of the inconsistency of notation in [EKMOS]; see footnote 2 of this article.
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(iv) Suppose that dim(F) = r and qe is isotropic over the compositum
F, = k,F for each real closure k, of k (if there are any such k).
Then qe s isotropic over F'.

Proof. Let N := 2"+t1—1, and recall the (r+1)-fold Pfister form ¢e = ge ()
in variables € = (z1,...,2N+1). Since w is non-dyadic, V,, — Pgw is a smooth
Oy-subvariety of ]P’gw, with special fiber the projective smooth Kw-variety
Vie = Pgw. Hence by Hensel’s Lemma, the specialization map on rational
points V,_(F') — V. (Fw) is surjective, implying

(3.1) ge 18 isotropic over F if and only if q= is isotropic over Fuw.

To (1): Since &1 = 1, ¢z,,5 = ¢1,5 s isotropic over Fw, thus so are g., ¢,
and g over F' by (3.1).

To (2): Setting =, = (x,,i)i<n, ™ = [[; 7T;<(i) for x : {1,...,s} — {0,1},
Yy = (x,)y, one has gre(y) = >, mqe(xy,). By (3.1) above, gz is isotropic
over Fw if and only if g is isotropic over F', and if so, ¢ ¢ is isotropic over
F. For the converse, let gz be anisotropic. Then w(qe(u)) € 2wk for all
v #0in FN and for p = (v,), # 0, one has Since w(m,) = 3°; x(i)w(m;), and
w(ge(vy)) € 2-wF, and (w(m;)), are independent in wF/2, it follows that the
summands in gre(p) = >, 7, qe(v,) have distinct values. Hence gre(p) # 0,
thus gx ¢ is anisotropic.

To (3): We first claim that e := dim(Fw) < dim(F) = r. Indeed,
by the Abhyankar Inequality (see, e.g., [EP05, Th. 3.4.3]) one has td(F) —
td(Fw) > r(w), where td(e) is the absolute transcendence degree and r(w):=
dimg((wF/wk) ® Q) is the rational rank of the abelian group wF/wk. First, if
wlk is non-trivial, then char(k) = 0 and kw is algebraic over a finite field and
therefore dim(F') — dim(Fw) = 1 4+ td(F) — td(Fw) > 1 + r(w) > 0. Second,
if wly is trivial, then r(w) > 0, hence dim(F') — dim(Fw) = td(F) — td(Fw) >
r(w) > 0.

Case 1: char(Fw) = p > 0. Then e = dim(Fw) = td(Fw), and ¢z is a
quadratic form in 27! variables over Fw. Since e < r, and Fw is a C,1-field,
gs(x) = 0 has non-trivial solutions in Fw, i.e., gz is isotropic over Fw. Hence
S0 is ge over F' by (3.1).

Case 2: char(Fw) = 0. Then w is trivial on the constant field k of F', and
by Hensel’s Lemma, there is a field of representatives £ C F' for Fw. Further,
E is relatively algebraically closed in F', so k C E is relatively closed in F,
and dim(E) = dim(Fw) = e < 7. Let n = (1,,...,m0) € E™! be the lifting
of € = (,...,80). Then g; = n;0; with §; € F and w(d; — 1) > 0. Since
char(Fw) = 0, by Hensel’s Lemma, each ¢; is a square in F, thus ¢. ~ ¢y
over F', and gy is defined over E C F. We consider the following condition on
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subfields £’ C E:
(3.2) E' is finitely generated, n,,...,n90 € E'.

For every E’ satisfying (3.2), consider k" := kN E’, and for v/ € P(K'), let E!, =
k!, E" be the compositum of E’ and k!, and e(gy,) let be the cohomological
invariant of g, in H™ "1 (E!)).

CLAIM. There is E' C E satisfying (3.2) such that e(qn,) = 0 for all
v e P(K).

Proof of the claim. Let E’ satisfy (3.2), ¥’ = E' N k. First, if ' € P(K') is
not a real place, then E!, has no orderings; hence by the well-known behavior
of cohomological dimension in field extensions we have cd(E!,) < cd(E') <
dim(E’) + 1 < dim(Fw) + 1 < r + 1. Thus H"™Y(E/,) = 0, implying that
e(qnw) = 0. Second, concerning real places of k', let ¥p/ C P(K’) be the
(possibly empty) set of all real places v' such that e(gy./) # 0. By contradic-
tion, suppose that X g is non-empty for all E’ satisfying (3.2). Considering all
E' C E" C E satisfying (3.2), the restriction maps Xpr — Y make (Xp/)p
into a projective system of finite non-empty sets, having as projective limit
the non-empty set g C P(k) of all v € P(k) that satisfy v':= v|p € X for
all E' (where as always k' = E' Nk). For v € ¥, let k, be the real closure
of k at v, and let w,|w be the unique prolongation of the Henselian valuation
w of F to the algebraic extension F, = k,F of F. Since w is trivial on k,
the residue field F,w, is the compositum k,Fw, and further, £, := k,E C F},
is a field of representatives for k,Fw. Since gy, is isotropic over F, it is so
over k,Fw, hence over E, = k,E. Equivalently, by Fact 3.1, e(¢n) = 0 in
H"*1(E,). On the other hand, since cohomology is compatible with inductive
limits, e(gn,») = li_n>16(qn’v/) # 0, because e(qy,v) # 0 for all E’, contradiction!
The claim is proved. O

Back to the proof in Case (2), let E’ C E satisfy the claim. Set F' = E'(¢t)
for t a transcendence basis of F|E’. Then F’' C F is finitely generated, E'Nk =
K =F Nkand E/, C F,:= k], F’ for all v" € P(k"). Since e(¢yn) = 0 in
H™*1(E!,), gy is isotropic over E!,, hence over F!, for each v’ € P(k"). Hence by
Fact 3.1, e(gn.) = 0 in H™V(F,)) for all v/ € P(K’), and therefore, by Fact 2.1,
e(gy) = 0 in H"*1(F’). Equivalently, g, is isotropic over F’ and thus over F.
Finally, ge = gy, is isotropic over F'. (]

3.1. Prime divisors via anisotropic k,-nice Pfister forms. We now state
a technical condition for the Pfister forms we are going to work with. This
technical condition in particular serves to ensure that orderings and dyadic
places can always be eliminated from our subsequent considerations.
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Definition 3.3. Let K be a field satisfying Hypothesis (Hy) from the intro-
duction, and let gq be a Pfister form defined by @ := (ag,...,a1,a9) with all
a; € K*.

(1) Let k, C K be a global subfield. We say that g4 is k,-nice if aj,ao € ki,
and the two-fold Pfister form ¢, 4, satisfies

If v € P(k,) is real, or dyadic, or v(ag) # 0, or v(a;) < 0, then

Qay a0 18 isotropic over k.

(2) We say that qq is nice if there is there is a global subfield k, C K such that
Qa 18 k,-nice.

(3.3)

Note that being nice is not an isometry invariant of Pfister forms, so strictly
speaking it is a property of the concrete presentation; this should not lead to
confusion.

Due to the results of the previous section, we now have the following local-
global principle for isotropy of nice Pfister forms.

PROPOSITION 3.4. Let K satisfy Hypothesis (Hy), let k, C K be a global
subfield, and let qq be an anisotropic k,-nice Pfister form over K. The follow-
ing hold:

(1) There is a prime divisor w of K such that qq is anisotropic over the w-

henselization K,,.

(2) If w is a prime divisor of K such that qq is anisotropic over the
w-henselization K, then w is non-dyadic, w(ag) = 0, w(a;) = 0, and

w(a;) is odd for some i =1,...,d.

Proof. To (1): By Fact 3.1(1) and (2) above, proving that g is anisotropic
over K, is equivalent to proving that the image of e(gq) under the restriction
map res, : Ht! (K) — H4HL (Kw) does not vanish. Noticing that e(gq) # 0
in HA+! (K ), proceed as follows:

Case 1. If char(K) = 2, then choosing a smooth projective Fo-model X
for K, by Fact 2.3 above, there is a prime divisor w of K, say w = w, for
some point z € X! such that res,, (e(qa)) # 0 in H4H! (Kw), and therefore g¢q
is anisotropic over K,,.

Case 2. If char(K') # 2, we apply Fact 2.1 above, so there is v € P(k,) such
that res,(e(qq)) # 0 in HAT! (KU) Hence if gq ., is the Pfister form g, viewed
over K, then e(qq) = res, (e(qa)) # 0. Equivalently, gq,, is anisotropic over
K,, hence its Pfister subform qq, 4, is anisotropic over k,, C K,. Thus by
condition (3.3) above, v is a finite non-dyadic place of k,. In particular, letting
R C kyy be the henselization of O,, it follows that char(kv) # 2. Let X, be any
projective R-model of K,. Then using prime to ¢-alterations with { = 2 (see
[ILO14, Exp. X, Th. 2.4]), there are a projective regular irreducible R-scheme
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X and a projective surjective R-morphism X — X, defining a finite field
extension K | K,, of degree prime to 2. In particular, the restriction of e(qaw)
in HA+1 (R’ ) is non-zero. Hence by Fact 2.2 above, there exists € X' such that
setting w := wgz, for the w-henselization K @ of K one has resg (e(qa,v)) #0
in H+! (f( 11')) Hence letting gq 4 be the Pfister form g, viewed over K @, one
has e(qa,m) = resg (e(qa,v)) # 0 in H¢H! (f(u;), concluding by Fact 3.1 that
Ja,w 18 anisotropic over f(ﬁ, Let w := w|g. Then since K | K is an algebraic
extension, and @ is a prime divisor of K, it follows that w = W|k is a prime
divisor of K, and the w-henselization K,, is contained in K @- Since gq 4 18
anisotropic over K g, it follows that gq is anisotropic over K.

To (2): Let v := w|, be the restriction of w to k, (which might be the
trivial valuation). Then k;, is contained in K,,. Hence since ¢4 is anisotropic
over K, its subform gg, 4, (Which is defined over k,) is anisotropic over k.
Since qq, a0 1S ki -nice, either v is trivial or v € P(k,) must be finite non-dyadic
and v(ag) = 0, v(a;) = 0. Hence w is non-dyadic, and further, w(ag) =
v(ag) = 0, w(ay) = v(a;) = 0. It remains to show that w(a;) is odd for some
i=1,...,d. If not, for all such i we may write a; = bl-cl2 for some b;,¢c; € K*
with w(b;) = 0. But then qq = qv,,... b, a9, and the latter form is isotropic over
K, by Proposition 3.2(3) (where the hypothesis on real places is satisfied by
niceness of ¢q). Therefore g, is also isotropic over K, in contradiction to the
hypothesis. U

3.2. Abundance of anisotropic k,-nice Pfister forms. In Section 3.1 above
we saw that anisotropic nice Pfister forms over a finitely generated field K
remain anisotropic over some henselization of K with respect to some non-
dyadic prime divisors of K. In this subsection, we prove that given any geo-
metric prime divisor w of K, and a global subfield k, C K with w trivial
on k,, there are “many” k,-nice Pfister forms that remain anisotropic over the
w-henselization K,,. Our actual result, Proposition 3.8 below, is more compli-
cated to state, because we want to realize additional restrictions on the Pfister
forms.

LEMMA 3.5. Let ly/k1 be a finite separable extension of global fields, and
let ¥ C Pan (k1) be a finite set of finite places of k1. Then there exists a k, -nice
Pfister form qq, qo over k, such that v(ai) = v(ag) =0 for all v € ¥ and qq, a0
s anisotropic over ly.

Proof. We may enlarge 3 to contain all dyadic places of ki. There are
infinitely many finite places of k; that split completely in ;. Pick one such
place v; that is not in X. Using weak approximation, choose ag € ki such
that v(ag) = 0 for all v € ¥, and v;1(ag) = 0, and furthermore the reduction
of the polynomial X? — X — ag in kjvq [X] is irreducible if the characteristic of
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kiv is 2, respectively the reduction of the polynomial X2 — ag in ki [X] is
irreducible if the characteristic of kjv; is not 2. (The case distinction here arises
from the different definition of the form ¢4, depending on the characteristic.)

Let I! = k,(ap), with ag a root of X2 — X — ag respectively X2 — ag.
Pick a place vg € Pgy,(k1)\X that splits completely in I, hence vg # v1 because
v1 is inert in . Using the Strong Approximation Theorem, choose a; € k{
satisfying the following four conditions:

o vi(a) =1,

e a; is a norm of the local extension ky,(ap)|ky, for all the finitely many
v € Pgy (k1) for which v(ag) # 0, all dyadic v and all real v;

e v(ay) =0 for all v € 3

e v(a1) > 0 at all v € Pgy(k1)\{vo}

(The condition at dyadic v € ¥ is thus that v(a;) = 0 and a1 is a local
norm, both of which are open conditions satisfied in a v-neighbourhood of 1.)
The following hold: First, gq, q, is anisotropic over ki ,, by the definitions of
v1, ap,a; and Proposition 3.2(2). Hence ¢4, q, is anisotropic over I C ki y,.
Second, we claim that g, q, is k-nice. Indeed, by the choice of a1, one has
the following: If v(ag) # 0 or v is dyadic or v is real, then a; is a norm
of kiy(a)/kiy. Hence in these cases, qq, 4, is isotropic over k,. Finally, if
v(a1) < 0, then v = vp, hence v is totally split in I’ = k,(ag), implying that
g € kiy. Hence qq, 4, is isotropic over k. ]

LEMMA 3.6. Let K satisfy Hypothesis (Hg), and let w be a geometric prime
divisor of K. There is a global subfield k, C K, and k,-algebraically independent
elements w = (u;)g>i>1 of K such that w is trivial on k,(u) and Kw is finite
separable over k,(uw). Moreover, if uqg € K has w(ug) = 1, then (ug,u) is a
separating transcendence basis of K |k;.

Proof. Since w is geometric, K and Kw have the same prime field kg, and
are separably generated over kg. Proceed as follows:

(i) If char(K) = 0, let (ui)g>i>1 be any w-units that lift a transcendence
basis of Kw.

(ii) If char(K) > 0, let (u;)g>i>0 be w-units that lift a separating transcen-
dence basis of Kw.

Let k, C K be the constant field in case (i) and the relative algebraic closure of
ko(u1) in K in case (ii), and set w = (u;)4>i>1 in both cases. Then w is trivial on
k,(u), and the residue of w in Kw is a separating transcendence basis of Kw over
k,. Assume now that w(ug) = 1; thus, in particular, w is not trivial on k, (ug, u).
Since w is trivial on k,(u) and non-trivial on k,(ug, w), ug cannot be algebraic
over k,(u). Hence since td (K |k, (w)) = 1, (ug, u) is a transcendence basis of K
over k,, and K|k, (ug,u) is a finite field extension. We claim that K | k,(uq, w)
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is separable. Indeed, let K be the separable closure of k,(ug4, u) in K, and set
ws:= w|g,. Since K|Kj is purely inseparable, w is the only prolongation of ws
to K, and the following hold: First, w(ug) = 1 = ws(ug), hence e(w|ws) = 1.
Second, Kw | K ws is purely inseparable, and since Kw | k,(u) is separable and
ki (u) C Kqws, one must have Kw = Ksws, hence f(w|ws) = 1. Third, since
K D K are function fields in one variable over k;(u), the fundamental equality
for w, and its unique prolongation w to K holds, see; e.g., [Che51, Ch. 2IV §1,
Th. 1]. Hence [K : K] = e(w|ws) f(w|ws) = 1, and thus K = K is separable
over k,(ugq,u). O

Definition 3.7. Let K satisfy Hypothesis (Hy), let k£, C K be a global sub-
field, and let t = (¢;)4>i>1 be k,-algebraically independent in K. A ki, t-test
form for an element ay € K* is any k,-nice Pfister form ¢, defined by @ =
(ad,@g—1,--.,a1,a9), where (a;)g>i>1 =t — € and € = (¢;)4>;>1 are such that
€; € k, for 1 <i<d are v-units for all v € Pg,(k,) with v(aq) > 0.

PROPOSITION 3.8. Let K satisfy Hypothesis (Hy), and let w be a geo-
metric prime divisor of K. Let k;, C K be a global subfield, let t = (t;)g>i>1
be k,-algebraically independent elements of K such that w is trivial on k,(t)
and Kwlk,(t) is finite separable. Then there is a Zariski open dense subset
U C klxd_Q satisfying the following: For every € = (€;)asi>1 € U, there is a
k,-nice Pfister form qq, a,, such that for arbitrary aq € K* with w(aq) odd,
setting (a;)g=i>1 =t —€ and a = (agq,...,a1,ap), one has that qq is a k,,t-test
form for aq that is anisotropic over K.

Proof. The normalization morphism S — S; of Sg:= Speck,[t,£71] in the
finite separable field extension I:= Kw < k,(t) is a finite generically separable
cover, thus étale above a Zariski open dense subset U; C S;. Hence for € :=
(€i)a>i>1 € U:= Uj(k,), any preimage s — € of € under the morphism S — S
is a smooth point of S, w:= (a;)g>i>1 := (ti — €;)g=i>1 is a regular system of
parameters at se — €, and the residue field extension k, = k(€) < K(s¢) =: ke
is finite separable. In particular, the completion of the local ring Os_ is the
ring of formal power series 685 = ke[7] in the variables 7w = (a;)g>i>1 over ke.
Hence one has k, (7)-embeddings

I = Kw = Quot(O,,) = Quot(Oy,)
= Quot (ke[az, ..., ag_1]) = ke((az)) - -~ (aa—1)) =: L.

Let ¥ C P(k,) be any finite set of finite places such that all (e;)4>i>1 are
Y-units, and for [, := ke, consider aj,ap € k, as in Lemma 3.5. Then for
aqg € K* with w(ag) odd, setting @ := (ag, . . .,ap) with (a;)g4>i>0 as introduced
above, we claim that g4 is a k,, t-test form that satisfies the requirements of
Proposition 3.8. Indeed, ¢q,q, is anisotropic over I, = k¢, by the choice of
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ai,ag € k. Hence g o, q, is anisotropic over lA, by Proposition 3.2(2) (applied
with the natural valuation on [ with value group Z%~2), thus anisotropic over
Kwcl In particular, since 7, a1, ag is a system of w-units, and w(ay) is odd,
one gets that g = ¢ay,m,a1,a0 15 anisotropic over K,,, by Proposition 3.2(2). O

3.3. A strengthening of Proposition 3.4. In this subsection, we prove a
strengthening of Proposition 3.4 under refined hypotheses.

For an arbitrary field F', we let Valp be the Riemann—Zariski space (of
equivalence classes of valuations) of F'. We endow Valp with the patch topology,
which is the coarsest topology such that the sets of the form {v € Valg|v(a) >0},
a € F are open and closed. It follows that the sets {v € Valp | v(b) > 0},
{v € Valp | v(c) = 0} are open and closed for all b,c € F.

The patch topology makes Valp a compact Hausdorff space; see, for in-
stance, the discussion in [ZS75, Ch. VI, §17, proof of Th. 40].

LEMMA 3.9. In the above notation, let F,, be the w-henselization at w €
Valg. One has the following:

(1) Let E|F a finite extension. Then the set
Vi = {w € Valp | E is F-embeddable in F,}

is open in the patch topology.
(2) Let qq be a quadratic form over F. Then the set

Vo := {w € Valg | qq is isotropic over Fy}
s open in the patch topology.

Proof. To (1): Recall that the henselization Fy,|F' is a separable algebraic
extension, hence if Vg p is non-empty, F |F' is separable. Let w € Veir. We
also write w for the (canonical) prolongation of w to Fy, and its restriction to E.
By Hilbert decomposition theory (see, e.g., [KN14, Th. 1.2]), E = F[n] with n
satisfying w(n) = w(p'(n)) = 0 and 7 having minimal polynomial p(t) = t" +
S ien @it € F[t] such that w(a;) > 0. Since F,|F is an immediate extension,
there is 2 € F with w(z—n) > 0, hence w(p(z)) > 0, and w(p/(2)) = 0. The set

Vi = {w € Valp |w(a;) = 0 for all i < n,w(p(x)) > 0,w(p'(z)) =0}

is open (and closed) in the patch topology and w € V,,. On the other hand, if
W € Vy, then the polynomial p(t) has a zero in the henselization Fy, thus E is
F-embeddable into Fyz. Conclude that Vi, C Vg r, hence the latter is open in
the patch topology, as claimed.

To (2): Let w € Vg; that is, qq is isotropic over Fy,. Then there is a finite
subextension E|F of Fy,|F such that gq is isotropic over E. Then V, contains
the neighborhood Vg of gq. Thus V, is open. O
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PROPOSITION 3.10. Suppose that K satisfies Hypothesis (Hg). Let L|K
be finite separable, and let ag € K*. Suppose that there are a global subfield
k, € K and k,-algebraically independent elements u = (u;)gsi>1 of K, such
that setting t:= (t;);:= (u? — u;)q, there is a ki, t-test form qq for aq that is
anisotropic over the fields L(a) with a®> —a = aq/0?, 0 = (ag_1---a1)N for all
N > 0. Then there exists a prime divisor wy, of L that is trivial on k,(t) such
that wr,(agq) > 0 is odd, and qq is anisotropic over Ly, .

Proof. First, let N > 0 be fixed, and for 6 = (ag_1---a1)" and a? —
o = ag/0?, set K := L(a). Then q, is an anisotropic k -nice Pfister form
over K, hence Proposition 3.4 implies that there is a non-dyadic prime di-
visor @ = wy of K such that g, is anisotropic over K. Recalling that

a = (ad, (ai)a>i>1,a1, ao) = (ad7 (ti — €i)a>i>1,a1, aO)v we claim
CLAIM 1. One has w(a;) > 0 fori < d.

Proof of Claim 1. Let v := |y, be the restriction of @ to k,. First, suppose
that v is non-trivial. Then k,, C Ky, hence the fact that ¢q is anisotropic
over Ky implies that Qarao 1S anisotropic over ky,. Since gqyq, is K -nice and
anisotropic over k,,, Proposition 3.2(3) applied to F' = k,, and ¢q, 4, implies
that a; and ap cannot both be v-units, and so Proposition 3.4(2) implies that
v(ap) = 0 and v(ay) > 0. Since gq is a k,,t-test form for ag and v(a;) > 0, one
has v(¢;) = 0 by definition, thus w(e;) = v(e;) = 0 for 1 < i < d. Second, if
v is trivial, then w(e;) = v(e;) = 0 for all i < d as well. Hence independently
on whether v is trivial or not, one has w(ag) = 0, w(ay) > 0, and w(e;) = 0
for all 1 < ¢ < d. Next, by contradiction, suppose that w(a;) < 0 for some
i < d. Then 1 < i < d, and since a; = t; — €;, we must have w(¢;) < 0. Hence
t; = u?—ui in K implies that w(u;) < 0. Therefore, a; = u?—ui—ei = u?ag with
a, = 1—1/u; +€;/u? a principal w-unit. Hence by Proposition 3.2(1) it follows
that da! a0 is isotropic over K @, thus so are g4, o and gq — contradiction!

CLAIM 2. One has w(agq) > Nw(a;) fori <d.

Proof of Claim 2. We first prove that w(aq) > w(6?). By contradiction,
suppose that w(ag) < w(6%). Then o — o = a4/6? in K implies w(a) < 0;
hence n:= 1 — 1/a is a principal @w-unit. Thus ag = (af)?(1 — 1/a) = u’p
with u = af, and we get a contradiction as above in the proof of Claim 1.
Second, by Claim 1, one has w(a;) > 0 for all i < d, and therefore w(0) =
N> ocicaw(a;) = 0. Hence w(aq) > 2w(#) > 2Nw(a;) for all ¢ < d. On the
other hand, since gq is anisotropic over K, it follows by Proposition 3.2(3)
that w(a;) # 0 for some ¢ < d, and for such an i, we have w(a;) > 0 because
w(a;) = 0 by Claim 1. Therefore, w(aq) > 2Nw(a;) for i < d implies both

w(ag) > 0 and w(aq) > Nw(a;) for i < d. Claim 2 is proved. O
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Coming back to the proof of Proposition 3.10, for each integer N > 0, let
Va,N be the set of valuations w on L satisfying the following conditions:

(i) gq is anisotropic over the henselization L,,;
(ii) w(a;) = 0 and w(ag) > Nw(a;) for all i < d.

We notice that Vg n is closed, hence compact, in the patch topology. Indeed,
the set of all w satisfying condition (ii) is open and closed by definition. Second,
the complement of the set of valuations satisfying condition (i) is open by
Lemma 3.9(2). Finally, each Vg ny is non-empty by Claims 1 and 2, because
the valuation w = wy considered there lies in Vg n.

Since Vg N+1 C Va,N, it follows by compactness that Vg := NnVq N is non-
empty, so let us fix wg € V4. Then ¢4 is anisotropic over L,,,, and wgq(a;) > 0,
wq(ag) > Nwg(a;) for all N > 0 and i < d. Set p:= {z € L|wg(ag) <
N wq(x) for some N > 0}. Then p C O,, is obviously a prime ideal such that
ag € p, a; ¢ p for all i < d. Let wy be the valuation with valuation ring
Ow;, = (Owg)p- Then m,,, = p, and the following hold:

(a) One has an inclusion of henselizations L., C Lu,, S0 ¢q is anisotropic
over Ly, .
(b) Since a; ¢ p = my,, , the a; are wy-units for i < d.

CLAIM 3. wy, is trivial on k,(t), and hence wy, is a prime divisor of L|k,(t).

Proof of Claim 3. We first claim that v := (wpg)|g, is trivial. By contra-
diction, suppose that v is non-trivial, and let k,, C L,,, be the Henselization
of k, with respect to v inside L,,,. Since gqq is a k,,t-test form for a4 that is
anisotropic over Ly, , it follows that gq, q, is a k,-nice form that is anisotropic
over k;,. Hence v is not dyadic. On the other hand, since a;, i < d are wy-
units, one has v(a;) = wr(a;) = 0 for i« = 0,1; hence by Proposition 3.2(3)
applied to gq, o OVer ki, it follows that ¢4, 4, is isotropic over k,, — contra-
diction! Next suppose, by contradiction, that wy, is not trivial on k,(t). Let
F C Ly, be the relative algebraic closure of k,(t) in L,,, , and set w := (wr)|F,
e = (ag—1,...,a1,ap). Then ¢ is defined over F, and w is a non-trivial
henselian valuation of F' such that all entries a; of € are w-units. Further,
since w is trivial on £, it follows that w is non-dyadic. Finally, since qq, 4, is
isotropic over ki, for all archimedean places of k,, it follows that g, is isotropic
over F, := Fk,, for all archimedean places v of k,. Proposition 3.2(3) implies
that g is isotropic over F', hence over L, , because F' C L,,,. Since ¢ is a
Pfister subform of gq, it follows that g is isotropic over L,,, — contradiction!
Claim 3 is proved.

It is left to prove that wr(aq) is positive and odd. First, wg(ag) > 0 by
the definition of wy. Finally, wr,(aq) is odd by Proposition 3.4(2). O
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4. Uniform definability of the geometric prime divisors of K

In this section we show that geometric prime divisors of finitely generated
fields are uniformly first-order definable. This relies in an essential way on the
consequences of the cohomological principles presented in the previous section,
and on the (obvious) fact that for an n-fold Pfister form ¢4, whether that g, is
(an)isotropic, or universal, over K and/or K = K[/—1] is expressed by formu-
las in which the n entries in @= (ay, . . ., a1) are the only free variables. The Kro-
necker dimension dim(K’) can be detected in a first-order way; see Pop [Pop02,
Fact 1.1(3), Th. 1.5(3)]. Further, the relatively algebraically closed global sub-
fields k, C K of finitely generated fields K, and algebraic independence over
such fields &, are uniformly first-order definable by Poonen [Poo07, Th. 1.4].

Notation/Remarks 4.1. Let K satisfy Hypothesis (Hy).

(1) For ag € K* consider

(a) relatively algebraically closed global subfields k, C K

(b) k,-algebraically independent elements w = (u;)g>;>1 of K;

(c) systems € = (€;)g>i>1 of elements of k* and aj,ap € k such that
a1 a0 15 a k,-nice Pfister form and all ¢; are v-units for all finite places
v € P(k,) satisfying v(a;) > 0;

(d) Set t:= (tj)g=i>1 = (U2 — U;)g=i>1 = u? —u, and a; := t; — ¢; for
1< i <d, and consider the resulting k,,t-test form ¢, for ag defined
by a = (aq,...,a1,a9).

(2) For t,u as above, let ks = k,, be the relative algebraic closure of k,(¢) in
K, and Dk, denote the set of prime divisors w of K|k¢. Then K = ki(C)
for a unique projective normal k¢-curve C, and w € Dy, are in bijection
with the closed points P € C via O, = Op.

(3) For 6,7 € K with 0§ # 0, set Kp:= K(a) and K, := K(B), where o>~ a =
aq/0? and B%2— B = 72/a4. Let Ky, = Ky(B) = K.(a) = KoK, be the
compositum of Ky and K, over K.

Finally, for the k,,t-test form ¢4 for ag introduced above, we define

(4) bg:={7 € K|qq is anisotropic over Ky . for all 0k}, Oq:={a € K |a-
ba C ba}.

(5) Va:={w€Dky, |w(ag) >0 and g4 is anisotropic over Ky}, and for w €V,
set

by = {7 € K|w(r?) > w(aq)}.
Therefore the valuation ring O,, is equal to {a € K |a - by, C by}.

THEOREM 4.2. Let K satisfy Hypothesis (Hy). The following hold:
(1) For k,,w, ag € K and qq as in Notation/Remarks 4.1 above,

be = U by, Og= ﬂ Oyp.

wWEVq wWEVq,
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(2) For every geometric prime divisor w of K, there are k,, w, ag € K as in
Notation/Remarks 4.1 above such that Vo = {w}, and therefore,

Ow={acK|a by Cbg}.

Proof. To (1): Let us first argue that bg = Uyey, bo.

“C” Let 7 € bg. Set L := K;. Then gq is anisotropic over Ky, =
K, (o) = L(a) for all § € k and o® — a = a4/0? and thus, in particular,
for = (ag_1...a1)N for all N > 0. Hence by Proposition 3.10, there is a
prime divisor wy, of L that is trivial on k,(¢), hence on its relative algebraic
closure k¢ inside K, such that wr(ag) > 0 is odd, and ¢4 is anisotropic over
the henselization L,,, . By contradiction, assume that wy (72) < wr,(ag), hence
wr(72) <wr(aq), because wr (aq) is odd. Then wr,(72/ay) <0, hence wr,(8) <0,
so al; :=1—1/f is a principal wr-unit, thus Qa/;.a0 18 isotropic over L, by
Proposition 3.2(1). Since ag = (aqgB/7)?(1 — 1/8), one has qa, ay ~ da/y,a0 OVET
L., , hence qq,.q, is isotropic over L,,,. Thus g4 is isotropic over L,,, as well
— contradiction! Therefore wy,(72) > wy(aq). Setting w := (wy)|x, we see
that w € V, and 7 € by,.

“D>7™ Let w € Vg and 7 € by, be given, ie., w(7?) > w(aq). Let 6 € k; be
arbitrary. By definitions, w is trivial on k¢, w(ag) > 0, and ¢4 is anisotropic
over the henselization K. As a; € k¢ and therefore w(a;) = 0 for i < d, by
Proposition 3.4(2) it follows that w(ay) is odd. Therefore one has w(aq/6?) =
w(ag) > 0 and w(72/ag) > 0. Hence if a® — a = a4/0? and % — B = 7%/ay,
then o, 8 € K, by Hensel’s Lemma. Thus Ky, C K, and this implies that
{a is anisotropic over Ky . Therefore, 7 € bg.

We have shown that bg = (J,ecp, bw. It follows immediately that Og D
Nwey, Ow- For the other inclusion, let w € Vg and set pu,, := min{w(y’) |y’ €
by }. Here the minimum exists since by, € O,,. For x € K \ O, set

Ywz={y €by|w(y) = uw,w’((xy)Q) <w'(ag) Vw € Vg \ {w}}.

Since Vo C D, is finite, the set ¥, , is non-empty by weak approxima-
tion. (It is defined by an open condition for every w’ € V, including w.) Let
Yo € Xy Then yo € by, C by, but zyy ¢ by, by minimality of w(yg) since
w(z) < 0, and zyo & leeva\{w} b,y by definition of ¥, ;. Hence zyy & bg, and
thus z-bg ¢ bg. This shows Oy C Oy for all w, and therefore Og = (,ey, Ow-

To (2): Let w be a geometric prime divisor of K. Then by Lemma 3.6,
there is a (maximal) global subfield k, C K and w = (u;)g>;>1 algebraically
independent over k, such that w is trivial on k,(w), and Kw|k,(u) is finite
separable. Set t := u? —u. Then k,(u)|k,(¢) is a finite abelian extension,
hence Kwl|k,(t) is finite separable, and k¢ = k,, inside K. Further recall that
K = k¢(C) for a (unique) projective normal k-curve C, and there is a unique
closed point P € C with local ring Op = O,. By Riemann—Roch for the
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projective normal ki-curve C') for every sufficiently large m > 0, there is a
function f € k(C)* with (f)so = mP. Let us fix such an m > 0 that is odd
and such an f. Then the element ay := 1/f of the function field K = k¢(C)
has P € C as its unique zero, and w(aq) = m.

Applying Proposition 3.8, we find € = (€;)g>i>1 € k:lxd_2 and aj,ag € kX
such that setting @ = (aq, . ..,ap) with a; = t; — ¢;, 1 < i < d, the resulting qq
is a k,, t-test form for ag that is anisotropic over K,,. Moreover, since w is the
unique prime divisor of K|k with w(aq) > 0, it follows that V, = {w}. Hence

by assertion(1) above, O, = {a € K |a-bg C bg}. O

Recipe 4.3. One gets a uniform first-order description of the valuation rings
Oy of all the geometric prime divisors w of K along the following steps:

(1) Consider the uniformly first-order definable k,, w = (u;)g>i>1, ki Tkt C K,
and further @ := (ag,...,a1,a0) and g4 as in Notation/Remarks 4.1.

(2) Check whether O, as defined above is a non-trivial valuation ring of K. If
s0, Og is a geometric prime divisor of K |k¢ by Theorem 4.2(1).

(3) By Theorem 4.2(2), the valuation ring O,, of any geometric prime divisor
w of K arises as above.

This concludes the proof of Theorem 1.3.

Remark 4.4. Theorem 1.3 was stated and proved for finitely generated
fields K with d = dim(K) > 2. As we now explain, for finitely generated fields
K of Kronecker dimension d = 1,2, there are formulas val; and val, which
uniformly describe the prime divisors in case d = 1, respectively the geometric
prime divisors in case d = 2. For d = 1 (i.e., for global fields), all prime divisors
are uniformly definable by Rumely [Rum80], Introduction, I. The prime divisors
are geometric if and only if K is a global function field, which is a definable
condition by II loc. cit. For d = 2, uniform definability of geometric prime
divisors is one of the main results of Pop [Popl7|: Use that for every geometric
prime divisor v of K we can find a global subfield k&; C K with v trivial on
k1 such that K is the function field of a smooth curve over ki, and then apply
[Pop17| Theorem 1.2 (cf. Conclusion 5.2).

5. Proof of the Main Theorem

We will now prove that every field satisfying Hypothesis (Hy) is bi-interpret-
able with the ring Z, building on the uniform definability of the geometric prime
divisors. The insight that this is possible is due to Scanlon [Sca08|. (More
precisely one can use [Sca08, Th. 4.1], because the part of the proof needed
here is not affected by the gap in the recipe of the definability of prime divisors
in that paper.) For the convenience of the reader, we instead build on the
later [AKNS20]|, where the bi-interpretability result is established for finitely
generated integral domains (as well as some other rings).
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PROPOSITION 5.1. Let K satisfy Hypothesis (Hy), let T denote a tran-
scendence basis of K, and let Ry be the integral closure in K of the subring
generated by T. Then the ring Ry is a finitely generated domain that is first-
order definable (with parameters).

Proof. Let k C K be the constant field of K. By Poonen [Poo07, Th. 1.3],
k is first-order definable. In characteristic zero, i.e., if x is a number field,
by Rumely [Rum80, Introduction, III|, the ring of integers O is first-order
definable. To fix notation, we set A := & if char(K) > 0 and A := Oy, otherwise.
Hence A C K is first-order definable, and R := Ry is the integral closure of
A[T] in the field extension K|Ky, where Ky := (7). Further, R is a finite
A[T]-module (see, e.g., [Eis95, Cor. 213.13, Prop. 13.14]), hence R is a finitely
generated ring. Hence it is left to prove that R = Ry is first-order definable.

Let S = S7 C K be the integral closure of x[T] in K, and let Wy be the
set of geometric prime divisors w of K such that 7 C O,,. Since the geometric
prime divisors of finitely generated fields K with dim(K) = d are a first-order
definable family (by Theorem 1.3), it follows that Wy is a first-order definable
family.

We claim that S = (,,e)y, Ow. First, “ C” is clear, because T C Oy im-
plies that S C Oy, hence S C (e, Ow. Second, for “ D7, let X' C Spec(9)
be the set of minimal non-zero prime ideals p. Then the local rings Sp, p € X 1
are valuation rings of geometric prime divisors of K, and S = (,cx1 Sp; see,
e.g., [Mat89, Th. 11.5(ii)]. Hence S = Nyex1 Sp O Nwew; Ow-

In particular, the ring S = (e, Ow is a definable subset of K.

Case 1: char(K) > 0. Then A = & is a finite field, hence Ry = St is
first-order definable, and there is nothing left to prove.

Case 2: char(K) = 0. Set e = td(K|k). The geometric prime e-divisors
of K are the valuations to of K that are trivial on x and have wK = Z¢
lexicographically ordered. By general valuation theory, a valuation w of K is a
geometric prime e-divisor of K if and only if tv is of the form tv = wj0--- 0w,
(as composition of places) such that w, is a discrete valuation of K, and w;
is a discrete valuation of the residue field k(w;t1) of w;pq for i < e. Since
dim K = e+dim &, each w; must in fact be a geometric prime divisor of £ (wj11).

By uniform definability of geometric prime divisors of fields of fixed finite
Kronecker dimension (Theorem 1.3 and Remark 4.4), the set qum of geometric
prime e-divisors is a first-order definable family, using induction on Kronecker
dimension and the following easy observation:

FacT 5.2. If Oy C F and Oy C Fw' are first-order definable valuation
rings, then the residue map O, — Fw' is first-order definable, hence so is
Ouwrrow C F, as it is the preimage of the first-order definable set Oy under
the first-order definable map O,y — Fuw'.
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Further, the residue fields sy, := Kt are finite extensions of x, hence
Psn(kw) and the integral closures Ay|A of A in Ky are uniformly first-order
definable; see [Rum80, Introduction, I, II, III]. For ro € quﬂ and a prime di-
visor v € Pgp(kn), We set 1, := v oto, and for the given transcendence basis
T = (t1,...,te) of K|k, we denote

Vi ={to, | v € Wy, v € P, (kn) such that to,(t;) >0 fori=1,...,e}.

Note that V7 is a definable family by the fact that Wy and Pgy (k) are so.
Hence the definability of Ry follows from Lemma 5.3 below. O

LEMMA 5.3. One has Rt =(\w,ev; Ow,. Thus Ry s first-order definable.

Proof. For every to, = votw € Vr, one has Oy, C Oy. Hence setting

= Mw,ev, Ow, and reasoning as above in the case of S, one gets Ry C

R’ C S7. Hence to complete the proof of Lemma 5.3, it is left to prove the
converse inclusion R D R’

First, setting Ko := k(T), one has that K|Kj is a finite field extension,
and Ry C St are the integral closures of Ry 71:= A[T] C k[T] =: So,7 in the
field extension K|Ky. Define Wy 7 and Vy 7 correspondingly for Ky instead
of K, and notice that YW and V7 are the prolongations of Wy 7 and Vy 7 to K
under the finite field extension K|Ky. Then by the characterization of integral
closure using valuations, R7- is the integral closure of Ry 1= Ny, ey, Ow, I
the field extension K|Kj. Therefore, it is sufficient to prove that Ry 7 = R/O,’ﬁ
or equivalently, to prove Lemma 5.3 in the special case K = Ky = k(T),
R7 = Ry 7 = A[T], and that will be assumed from now on.

We already proved that A[T] = Ry is contained in R/, hence it is left
to prove that R C A[T]. Recalling that R C S7 = k[T] and A[T] =
MNoePg, () Ou[T], we have to prove the following:

CLAIM. Every f € R is in Oy[T] for allv € Pgy(k).

Proof of Claim. Let f € R be given, and let v € Pgy(x) be fixed, say
with residue field £, = xv. Since R} C k[T, we can set f = c-g with ¢ € &
and g € O,[T] such that the reduction g € k,[7T] is non-zero; e.g., ¢ = 0 and
g =1if f =0. Hence in order to prove the claim, it is sufficient to prove that
v(c) = 0. Since g # 0, there is an e-tuple ¢ in the algebraic closure of &, such
that g(¢) # 0. Then (¢ is an e-tuple of roots of unity of order prime to char(x,),
and we identify ¢ with its lift in the algebraic closure of k. Let tv € Wy be
such that 7 — ¢ under O — Kw. Then Kto = s[¢] =: &/, and if v prolongs
v to x/, then the valuation t,s := v’ o tv lies in V7 and satisfies

9= 9(¢) = 9(¢) #0

under Op , = Oy — K'v' = Kow,. Hence g is a w,-unit, implying that
1,/ (f) = wy(c). Finally, since f € RS- C Oy, ,, one has w,(f) > 0, hence
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v(c) =v'(¢) = wy(c) = wy(f) = 0, concluding that v(c) > 0, thus f =c-g €
O,[T], as claimed. O

Remark 5.4. The first-order definition from the proof of Proposition 5.1
can be seen to be uniform for fixed d; i.e., allowing for variables for the elements
of T, the defining formula can be chosen not to vary for all fields K satisfying
Hypothesis (Hy).

We are now ready to prove the bi-interpretability theorem: a field K
satisfying Hypothesis (Hy) is bi-interpretable with Z, where both K and Z
are considered as structures in the language of rings. We refer the reader to
[AKNS20, §2] for a brief introduction to the notion of bi-interpretability.

Proof of the bi-interpretability theorem. Let K be a field satisfying (Hy),
and let R+ C K be the definable subring from Proposition 5.1. Since R = Ry
is a finitely generated integral domain, it is bi-interpretable with the ring Z by
[AKNS20, Th. 3.1].

The field K is interpretable in R as a localization; cf. [AKNS20, Exam-
ples 2.9(4)]. Then K is definably isomorphic to the interpreted copy of K in the
definable subset R C K, namely by assigning to each x € K the class of pairs
(a,b) € R x (R\ {0}) with = a/b, and likewise R is definably isomorphic to
the copy of R defined in the interpreted copy of K, namely by identifying r € R
with the pair (r,1) (thought of as standing for { in Frac(R) = K). Thus K is
bi-interpretable with R, and therefore, by transitivity, bi-interpretable with Z.

O

The resolution of the strong form of the EEIP now follows from |[AKNS20,
Prop. 2.28|.
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