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ABSTRACT

Isotope shifts in the transition energies between several lowest 3P states of the carbon atom are cal-
culated at the nonrelativistic level of theory. We considered the '2C, *C, and '“C isotopes, for which
we performed variational calculations by expanding the wave functions of the atomic states in terms
of all-electron explicitly correlated Gaussian functions. The Born—-Oppenheimer approximation was
not assumed in the calculations. By combining the computed isotope shifts with the experimentally
derived Ritz wavelengths for the natural mixture of the isotopes we make predictions of the posi-
tions of the spectral lines for specific carbon isotopes. These predictions may be useful for guiding
future experimental measurements of these lines using high-resolution spectroscopy.

1. Introduction

Experimental measurements of the frequencies and
intensities corresponding to different isotopes of an
atomic system may be useful in determining the iso-
tope abundances in various environments both on Earth
and in various regions of interstellar space. As the
shifts of the spectral lines corresponding to the differ-
ent isotopes of an atom decrease with the atomic num-
ber, it requires an increasingly higher resolution of the
spectrum-measuring technique to discern between the
lines of different isotopes. The question we attempt to
answer in this work concerns the size of the isotope shifts
of spectral lines of the ground and excited °P¢ (even par-
ity) states of the three stable isotopes of the carbon atom
(12C, 13C, and 'C), which is the fourth most abundant
element in the universe by mass.
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The isotope shifts of carbon are being determined
in this work based on quantum mechanical calculations
that adopt the method described in our previous papers
[1, 2]. In this approach, the seven particles that form
the carbon atom (i.e. the nucleus and six electrons) are
treated on an equal footing. This requires that, at the
first step, the operator representing the kinetic energy of
the centre-of-mass is separated out from the total non-
relativistic Hamiltonian, H, representing the atom. This
separation, which is briefly described below, results in the
total laboratory frame Hamiltonian of the system split-
ting into the centre-of-mass Hamiltonian, Hey, and the
internal Hamiltonian, Hiy, that describes the internal
state of the atom. Hjy explicitly depends on the mass
of the nucleus. We use it in the present work to deter-
mine the nonrelativistic energies of the ground and the

CONTACT Ludwik Adamowicz @ ludwik@arizona.edu e Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;

Department of Physics, University of Arizona, Tucson, AZ 85721, USA

© 2024 Informa UK Limited, trading as Taylor & Francis Group



2 (&) S.NASIRIETAL

five lowest °P¢ excited states of '*C, 13C, and *C isotopes.
In the calculations, the wave functions of the considered
states are expanded in terms of all-particle symmetry-
adapted explicitly correlated Gaussian functions (ECGs).
The ECGs are described in the next section.

2. The method used in the calculations
2.1. The internal nonrelativistic Hamiltonian

Let us consider an isolated atom formed by N particles
(i.e. a nucleus and n = N—1 electrons. In general, let
the masses of the particles be denoted by {M;} and their
charges by {Q;}. We start with the positions of the parti-
cles first described using the Cartesian coordinates in the
laboratory frame, {R;}). The laboratory coordinates and
the corresponding linear momenta of the particles are:

R1 )Y(l Pl ixl
R, ! P, y1
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In the laboratory frame, the nonrelativistic Hamiltonian
of the atom is given by

N
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The above Hamiltonian can be separated into a 3D prob-
lem of the motion of the centre-of-mass of the atom
and an (3N — 3)-dimensional internal problem of the
motions of the particles forming the atom with respect
to each other. The separation of the two problems is
achieved by transforming Hamiltonian (2) to a new
coordinate system whose first three coordinates, rg, are
the lab-frame coordinates of the centre-of-mass and the
remaining 3N—3 coordinates are the internal Cartesian
coordinates, r; (i = 1,...,N — 1). These coordinates are
the relative coordinates of the electrons (i.e. particles 2 to
N with respect to particle 1, the nucleus).

The separation of Hior into Hoy and Hipy is rigorous.
In the new coordinate system, Hamiltonian (2) becomes:
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where Vi, is the gradient vector expressed in terms
of the xj, yi, and z; coordinates of vector r;, r;j =

[ri — rj| = [Riy1 — Rjp1l, roi =i = |ril = [Rip1 — Ry,
qi = Qit1 (i=0,...,n) are the particle charges, u; =
mom;/(mg + m;) is the reduced mass of the ith elec-
tron, Mo is the total mass of all particles in the system,
my is the mass of the nucleus, and m; = M;; ;. For the
nuclear mass we adopted the following values: mo(12C)
= 21868.663850m,, my(*C) = 23697.667827m,, and
mo(1*C) = 25520.350606m,, where m, = 1 is the mass
of an electron. These were derived from the experimen-
tal values of atomic masses [3]. The prime symbol in
Equation (3) is used to denote the vector/matrix trans-
position.

In the new coordinate system, the laboratory frame
Hamiltonian (3) becomes a sum of the operators repre-
senting the kinetic energy of the centre-of-mass motion,
HCM(ro), and the internal Hamiltonian, ﬁlim(r):

Hiot(ro, ¥) = Hem(ro) + Hine(r), (4)

where r is a 3n-component column vector. Its first three
components are coordinates rj, the next three are r»,
etc. In the present work, we are only concerned with the
bound states of the system represented by the eigenvalues
and eigenfunctions of Higt.

Upon examining the form of the internal Hamilto-
nian, one can see that it describes a system of n pseudo-
electrons with masses equal to reduced masses ©; and
charges ¢; (i =1,...,n) moving in the central field of
the charge of the nucleus, go, located in the centre of
the internal coordinates system. We call the moving par-
ticles pseudo-electrons because, while their charges are
still equal to —1, their masses are not the original elec-
tron masses but the reduced masses, ;. Note that the
pseudo-electrons become slightly ‘heavier’ as the mass of
the nucleus increases in the 1>?C-13C-14C isotope series.
In H,,y, the motion of the pseudo-electrons are corre-
lated due to their repulsive interaction with each other
via the Coulomb potential. In addition, their motion is
also correlated (coupled) through the mass-polarisation

1 n 1 /
term, —3 Zi# m—OVrinj.

2.2. Variational method and ECGs basis functions

The calculations are performed in the framework of the
Rayleigh-Ritz variational method. The spatial part of the
wave function of the system, W, is approximated as a
linear combination of K ECGs ¢:

K
W(r) =Y cr¥e(r), (5)
k=1

where Ci are the linear variational parameters, and Y
is a permutational symmetry projector represented as a



linear combination of permutational operators. In the
present calculations of the carbon atom, Y is chosen as

Y = (14 Pys)(1 + Pe7) (1 — Pyg)(1 — Pry — Pyg)
(1 — P33 — Py — P3g)(1 — Psy),

where we number particles in such a way that particle 1
is the nucleus and particles 2-7 are the electrons, and f’ij
permutes the labels of electrons i and j (for more infor-
mation see Section 3.5 in Ref. [2]). As the Hamiltonian
is spin-independent, the calculations can be carried out
using the spin-free formalism [4, 5]. In this formalism,
basis functions are constructed to have certain permu-
tational symmetry. In practice, this results in calculating
the overlap and Hamiltonian matrix elements where the
ket functions are operated on with the operator Y¥¥ (the
dagger stands for conjugate). An appropriate Young pro-
jection operator ¥ can be derived using a Young tableaux
suitable for the state under consideration [1, 2].

Minimising the energy expectation value with respect
to the expansion coefficients C; involves solving the gen-
eralised eigenvalue problem:

Hc = €Sc, (6)

where € and C are the eigenvalue and eigenvector cor-
responding to a particular excited state, while H and S
are K x K Hamiltonian and overlap matrices with the
elements Hy = (¢ Hinl¢r) and Sy = (¢ | ).

The computational time for calculating a matrix ele-
ment of each of the two matrices is, in general, pro-
portional to 77, as it involves matrix operations such as
inversion and multiplication. The time is also propor-
tional to the product of the factorials of the numbers of
identical particles in the system. In the calculations of the
carbon atom, where the only identical particles are elec-
trons, this factor is 6! = 720. The factor is equal to the
number of terms in the permutation symmetry operator
Y'Y that needs to be applied to the ket basis function.

After computing the H and S matrix elements, the
generalised eigenvalue problem (6) is solved. Depending
on the size of the basis K it may also make a sizable contri-
bution to the overall cost of the calculation despite using
a quick solver involving finding only a single eigenvalue
and the corresponding eigenvector.

The atom-like symmetry of the internal atomic Hamil-
tonian, (3), requires that the spatial basis functions used
to expand the wave function of such a Hamiltonian need
to be one-centre functions that form a basis for irre-
ducible representations of the SO(3) group of rotations.
To achieve high accuracy in the computations we use
explicitly-correlated single-centre all-particle Gaussian
(ECG) functions. We have used various forms of ECGs in
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very accurate non-BO calculations of stationary atomic
bound states for over two decades [2]. The simplest ECG
with real nonlinear parameters suitable for computing S
states of an n-electron atom is:

¢k(r) = exp[—r'Ar] (S —ECG), )

where r is vector of 3n internal Cartesian coordinates of
the electrons and A is a 3n x 3 real symmetric positive-
definite matrix of the nonlinear parameters. Ay has the
following block structure: Ay = Ax ® I3, where Aj is a
n x n real dense symmetric positive-definite matrix and
I3 is a 3 x 3 identity matrix, while the symbol ® denotes
the Kronecker product. Such representation of the matrix
Ay ensures that the exponent of the basis function is
invariant with respect to 3D rotations.

The atomic system considered here, the carbon atom,
has two p-electrons and n—2 s-electrons. The standard
procedure for adding angular momenta is applied to con-
struct ECGs for such a case [1, 2]. As in this work we
consider 3P states, the calculations are performed with
ECGs representing the total angular momentum L = 1
and its projection on the z-axis My = 0. The ECGs for
such states are constructed by multiplying S-ECGs by
a Cartesian angular factor (x;y; — xjyi) [1, 2]. Thus, the
ECGs used in this work to expand the spatial part of the
wave functions of the calculated ground and excite *P
states of the carbon atom are given by

¢k = (xiyj — %) exp [—r Ak @ B)r],  (8)

where i and ji are labels of the p-electrons. Subscript k
reflects the fact that matrix Ay and electron labels i and ji
are variational parameters that are unique for each basis
function.

It should be noted that basis functions (8) are of even
parity and can be used to expand the wave functions of
even parity states only. To represent odd parity states (not
considered in this work) a different type of ECGs must be
adopted.

To make function (8) square integrable it is convenient
to represent Ay in a Cholesky factored formas Ay = LiL;,
where Ly is a lower triangular matrix. With this, ¢ is
automatically square integrable regardless of the values
of the Ly matrix elements. The convenience of using the
Cholesky representation of Ay comes in the variational
minimisation of the energy with respect to the matrix
elements of Lx. With no constraints imposed on these ele-
ments, their optimisation can be carried out without any
restrictions. Such restrictions would be necessary if the
optimisation parameters were the Ay matrix elements.
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2.3. Total energy and energy gradient

The optimisation of the Ly Gaussian parameters in this
work is performed through the minimisation of the
Rayleigh-Ritz variational energy functional.

The minimisation with respect to the Ci coefficients
leads to a secular Equation (6). The lowest-energy solu-
tions of the secular equation represent the ground state
and the higher-energy solutions represent excited states.
All of them remain upper bounds to the corresponding
exact energies.

In the minimisation of the Rayleigh-Ritz functional
with respect to the nonlinear parameters of ECGs we
adopt a procedure that employs analytic derivatives of
the functional with respect to the parameters (the term
analytic here means that the gradient is not obtained by
applying the finite-difference formulas). Let «; be a vec-
tor of the nonlinear parameters of basis function ¢; (the
parameters are the unique matrix elements of L;). As the
tth row and tth column of matrices H and S depend on
oy, the derivative of any element belonging to that row or
that column of either of the two matrices can be written
as:

oHu oHu
T M bk + 8k — Si), kLt=1...K, (9)
aO[t Bozt
and
0S 0S
M M s 4 00— dudn), kLt=1...K.
dOl[ dO{t
(10)

Using the above, the derivative of the total energy, &, with
respect to the parameters «; is:
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By calculating such derivatives for all nonlinear param-
eters o, the complete energy gradient is obtained. The
use of the analytic gradient in the minimisation of
the Rayleigh-Ritz functional significantly accelerates the
speed of calculations.

3. Results

The approach briefly outlined in the previous section is
implemented in a computer program written in FoRr-
TRAN using the MPI (Message Passing Interface) protocol
that enables parallelism in the calculation [1, 2]. An ECG
basis set is generated separately for each of the six lowest
3P states of 12C considered in this work. First, the basis
set for the lowest state is grown from a small number
of randomly selected ECGs to the final number of basis
functions. The growing process involves adding ECGs
one-by-one and optimising their nonlinear parameters
with the use of the analytic gradient.

After a certain number of ECGs is added to the basis
set, the whole set is reoptimised again using the one-
function-at-a-time approach. After a certain number of
ECGs is generated for the ground °P state, the basis set
is used as the starting set for the calculation of the sec-
ond lowest °P state of '>C. The procedure continues until
six states for this system are calculated. Next, the basis
sets generated for the lowest °P states of >C are used to
calculate the energies of six states of 1°C and '“C.

For the two latter isotopes, no reoptimisation of the
nonlinear parameters are performed and only the lin-
ear expansion coefficients Cy are adjusted to account for
the change of the nuclear mass, this approach is justi-
fied because the wave function of the atom undergoes a
relatively small change when one nuclear mass value is
replaced with another (as long as it remains much larger
than the mass of the electron). The growing of the basis
sets for 12C is stopped when the convergence of the results
appears sufficiently tight to determine the isotope shifts
of the interstate transition frequencies of 12¢, 3¢, and
14C with adequate accuracy.

It should be emphasised that the errors in the total
energies (which always shift up, according to the varia-
tional principle) obtained in our calculations for different
isotopes are correlated. This is because the same basis is
used in the calculation of the same state of different iso-
topes. As a result, the relative error in the isotopic shift
is roughly of the same order of magnitude as the relative
error of the total energy.

In Table 1, nonrelativistic energies obtained for the
ground 2s22p? 3P state of 12C, 1°C, and *C are shown for
three different basis set sizes (1100, 1200, and 1300 for
the first two and the last two states, and 1200, 1300, and
1400 for the middle two states). For each state, the ener-
gies are extrapolated to the infinite number of ECGs. The
extrapolated values are also shown in the table along with
the estimated uncertainties (given in parentheses) due to
the basis truncation. More elaboration about the extrap-
olation technique can be found in our previous paper [7].
As expected, the basis set incompleteness error increases
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Table 1. Convergence of the nonrelativistic energies (in atomic units) for the considered six lowest P
states of 12C, 13C, and '4C with the number of ECGs obtained in this work.

State Basis 12¢ 3¢ T4c
252 2p? 1100 —37.841891 —37.842023 —37.842136
1200 —37.842047 —37.842179 —37.842292
1300 —37.842170 —37.842302 —37.842415
o0 —37.84253 4 0.00036 —37.84266 + 0.00036 —37.84278 + 0.00036
ECG lobes [6] o0 —37.843194 + 0.000004 —37.843326 + 0.000004 —37.843439 + 0.000004
252 2p3p 1100 —37.515935 —37.516067 —37.516180
1200 —37.516168 —37.516301 —37.516414
1300 —37.516334 —37.516466 —37.516579
o0 —37.51681 + 0.00048 —37.51695 + 0.00048 —37.51706 + 0.00048
252 2p4p 1200 —37.46970 —37.46983 —37.46994
1300 —37.47008 —37.47021 —37.47033
1400 —37.47027 —37.47041 —37.47052
o0 —37.47084 + 0.00057 —37.47098 + 0.00057 —37.47109 + 0.00057
2s22p5p 1200 —37.45016 —37.45029 —37.45040
1300 —37.45076 —37.45089 —37.45100
1400 —37.45095 —37.45108 —37.45120
o0 —37.45150 + 0.00055 —37.45164 % 0.00055 —37.45175 + 0.00055
252 2p6p 1100 —37.4327 —37.4329 —37.4330
1200 —37.4356 —37.4357 —37.4359
1300 —37.4374 —37.4376 —37.4377
o0 —37.4429 + 0.0054 —37.4430 + 0.0054 —37.4431 £ 0.0054
252 2p7p 1100 —37.4121 —37.4122 —37.4124
1200 —37.4185 —37.4187 —37.4188
1300 —37.4222 —37.4224 —37.4225
o0 —37.4333 4 0.0111 —37.4334 £ 0.0111 —37.4335 £ 0.0111

with the level of the excitation. It can be seen that the
finite value of the nuclear mass affects the sixth digit of
the energy values. As expected, for each of the six states,
the energy of the heaviest isotope, *C, is the lowest while
the energy of the lightest isotope, >C is the highest. It
should be noted that a majority of the accurate studies of
the carbon atom have employed the Born—-Oppenheimer
approximation (i.e. the calculations have been performed
for ®°C) with the Configuration Interaction [8-11], Mul-
ticonfiguration Dirac-Hartree-Fock [11], and Monte-
Carlo [12-14] methods. Also, the account of the non-
BO effects within these methods are usually limited to
the mass polarisation terms which in all aforementioned
works have been omitted. Thus, the results obtained with
these methods are not included in the table. The only pre-
vious high-accuracy calculations on the ground states of
the carbon atom were performed by Strasburger using
ECG lobe functions [6]. He used 5896 of these functions
in the wave function expansion, leading to results with a
high degree of accuracy. The values calculated with the
ECG lobes have been shown in Table 1. Also, it should
be noted that Strasburger did not calculate any excited
states within the two spin symmetries he considered in
his work, i.e. the triplet and quintuplet symmetries. Thus,
it is not possible to calculate the transition energies using
his results.

The nonrelativistic transition energies (AE,,) for
25%2p'np! 3P (n = 3 — 7) states of carbon atom isotopes
12¢, 13C, and C, as well as of the natural mixture

(corresponding to the 98.93% and 1.07% abundance by
mass of 12C and 3C, respectively [15]) with respect to
the ground 2s?2p? °P state are shown in Table 2. The
transition energies are calculated using the energy val-
ues extrapolated to the infinite basis set limits taken from
Table 1. The calculated transitions for the natural mixture
are compared in the table with the experimental transi-
tions taken from Ref. [15], which we assume also corre-
sponds to the natural mixture. The comparison indicates
that the natural mixture transition energies calculated in
this work are increasingly more off from the experimental
values as the excitation level increases. This is expected as
the numbers of ECGs used in the present calculations are
relatively small. Our recent calculations for five-electron
boron [7] and carbon-ion [16] atomic systems indicate
that well over 10000 ECGs are needed to achieve ade-
quate convergence of the energies for low-lying states to
obtain transition energies within the uncertainties of the
current experimental data. In the calculations of the low-
lying states of the carbon atom, the number of ECGs
that needs to be employed in order to reach compara-
ble accuracy of the energy as for B and C* is likely to
exceed 20000. We should also mention that previous
calculations (see Table IV in Ref. [17]) using the ECG
ansatz for %S states of C* ion have shown that the contri-
bution of the relativistic and quantum electrodynamics
(QED) eftects, which are not considered in the present
work, can be quite significant. In spite of the small size of
the basis sets employed, it is expected that including the
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Table 2. The nonrelativistic transition energies (AEy) for n 3P(n = 2 — 7) states of
the carbon atom isotope ('2C, 13C, and '#C) and the natural Earth mixture (NM; cor-
responding to the 98.93% and 1.07% abundance by mass of '2C and 3C, respectively
[15]) calculated with respect to the ground 25%2p? P state.

Basis 12¢ B e NM
2s22p? — 252 2p3p

1100 71539.13 71539.10 71539.07 71539.13

1200 71522.14 71522.10 71522.07 71522.14

1300 71512.79 71512.76 7151273 71512.79

00 71495 £18 71494 £18 71494 £ 18 71495 £ 18

Experimental 71345.34 £ 0.0023
252 2p? — 252 2p4p

1100 81686.90 81686.89 81686.88 81686.90

1200 81636.87 81636.86 81636.85 81636.87

1300 81621.79 81621.78 81621.77 81621.79

00 81593 £+ 29 81593 + 29 81593 £+ 29 81593 £+ 29

Experimental 81304.7159 £ 0.0023
252 2p? — 252 2p5p

1100 85975.19 85975.19 85975.18 85975.19

1200 85877.86 85877.86 85877.85 85877.86

1300 85862.39 85862.39 85862.39 85862.39

0 85833 £+ 29 85833 £+ 29 85833 £+ 29 85833 £+ 29

Experimental 85165.4024 + 0.0301
252 2p? — 252 2pé6p

1100 89800.08 89800.05 89800.03 89800.08

1200 89201.91 89201.90 89201.88 89201.91

1300 88832.73 88832.72 88832.71 88832.73

0 88120 + 714 88120+ 714 88120 + 714 88120 4 707

Experimental 87076.2980 + 0.0359
2s22p% — 252 2p7p

1100 94325.87 94325.81 94325.76 94325.87

1200 92948.86 92948.81 92948.77 92948.86

1300 92163.19 92163.15 92163.12 92163.19

00 90701 £ 1461 90701 £ 1461 90701 £ 1461 90701 £ 1446

Experimental 88162.4036 + 0.0584

Note: The transition energies are calculated using the energy values extrapolated to infinite basis set
limits taken from Table 1 (the extrapolation approach is described in Ref. [7]). The uncertainties due
to the basis truncation error are shown in the parentheses. The numerical values in the parentheses
represent the uncertainties affecting the last significant digit(s) shown in the table. The calculated
transitions are compared with the experimental transitions taken from Ref. [15]. All entries are in

units of cm 1.

relativistic and QED corrections in the calculations may
improve the results considerably.

Even though the number of ECGs used in the present
calculations (1300-1400 ECGs) is by far smaller than
that, we will show that, the calculated isotope shifts
of the interstate transition energies are converged well
enough to provide reasonably good estimates of this
property. Our previous non-Born-Oppenheimer calcu-
lations on atomic species (for example see the helium
[18] and lithium [19] calculations) have demonstrated
that optimising the linear parameters of a basis set
for each state suffices to obtain nonrelativistic energies
with the same level of accuracy for all isotopes. So, we
expect that the calculated isotopic shifts have roughly
the same relative accuracy as that of the nonrelativistic
energy.

Table 3 shows the isotopic shifts for the transitions
from the excited 2s%2p' np! (°P),n = 3,...,7, states of
the carbon atom isotopes (12C, 13C, and Q) to the
ground 2s%2p?> (°P) state. The calculated energies for
the excited states of 2C, 13C, and '#C are taken from
Table 1. The ground-state energy is determined as the
average of the calculated ground-state energies over the
abundance of the naturally occurring isotopes (98.93%
and 1.07% by mass for '2C and °C, respectively [15]).
Using this ground state energy the isotope energy shifts
are calculated by subtracting this energy from the cal-
culated excited state energies obtained for '2C, 13C, and
14C. These were obtained for the basis set sizes of 1100,
1200, and 1300, as shown in Table 3. For each isotope
and transition considered in this work, the isotope shifts
are extrapolated to the infinite basis set limit and the
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Table 3. The isotopic shift in energy for five transitions from the 2s?2p'np' 3,n =
3,...,7 states of the carbon atom isotopes (12C, 13C, and () to the ground 2s22p? 3P

state.
12C 13C 14C

2s22p% — 25 2p3p

1100 0.00035837 —0.033134 —0.061732

1200 0.00035873 —0.033167 —0.061792

1300 0.00035884 —0.033178 —0.061815

0 0.00035901 = 0.00000017 —0.033193 £ 0.000015 —0.061862 =+ 0.000047
252 2p? — 252 2p4p

1100 0.000126 —0.01163 —0.02166

1200 0.000121 —0.01117 —0.02080

1300 0.000111 —0.01030 —0.01918

00 0.000099 =+ 0.000012 —0.00917 4 0.00113 —0.01709 £ 0.00210
252 2p? — 252 2p5p

1100 0.000053 —0.00487 —0.00906

1200 0.000034 —0.00311 —0.00578

1300 0.000025 —0.00230 —0.00427

00 0.000014 = 0.000011 —0.00126 4= 0.00104 —0.00233 £ 0.00194
252 2p? — 252 2pép

1100 0.000260 —0.0240 —0.0447

1200 0.000202 —0.0187 —0.0348

1300 0.000119 —0.0110 —0.0204

00 0.000012 + 0.000106 —0.0011 4 0.0098 —0.0021 +0.0183
252 2p? — 252 2p7p

1100 0.000630 —0.0583 —0.1085

1200 0.000520 —0.0480 —0.0895

1300 0.000388 —0.0359 —0.0668

0 0.000222 + 0.000166 —0.0205 +0.0153 —0.0383 £ 0.0286

Note: The ground-state energy is determined as the average of the calculated ground-state energies
over the abundance of the naturally occurring isotopes (98.93% and 1.07% by mass for '2C and 13C,
respectively [15]). The extrapolated values have been estimated using the same procedure as in Ref.
[7]. The uncertainties due to the basis truncation error for the values obtained from extrapolation to an
infinite number of ECGs are shown in parentheses. The numerical values in the parentheses represent
the uncertainties affecting the last reported significant digit(s). All entries are in units of cm~".

values obtained from the extrapolation are also shown in
Table 3.

Let us examine the convergence of the isotopic shift
of the energy in the table. As one can see the conver-
gence becomes increasingly worse with the excitation
level. For the 25 2p*> — 252 2p 3p transition the shifts are
converged to 2-3 significant figures for all three isotopes.
For the next two transitions, perhaps 1-2 figures are con-
verged and for the following two only the sign of the shifts
is correctly reproduced. We should note that the isotope
shifts for 12C calculated with respect to the abundance-
averaged median is the smallest because for this most
abundant isotope the energy levels are close to the energy
levels of the median. Also, we should note that the iso-
tope shifts for 2C are positive with respect to the median,
while for 1*C and '*C they are negative.

In the next step, the energies of the 25> 2p! np',n =
3,...,7, 3P], J =0,1, and 2, states of the carbon iso-
topes, 12C, 13C, and 'C, with respect to the experimen-
tal values shown in the first row of the last column is

predicted by combining the isotope shifts obtained in
the present calculations and the experimental energies
taken from NIST ASD database [15] and shown in the
last column of Table 4. It is assumed that these exper-
imental energies correspond to the naturally occurring
isotope mixture (with 98.93% and 1.07% by mass of the
12Cand *Cisotopes, respectively [15]). It is also assumed
that the spectral lines corresponding to different levels
(i.e. different J values) of the same term, uniformly shift
when going from one isotope to another. The table shows
energies which are sums of the experimental energies
and the corresponding calculated isotope energy shifts
extrapolated to the infinite number of ECGs taken from
Table 3. Upon examining the results shown in Tables 3
and 4, we can conclude that the isotope shifts for the two
lowest transitions, 2s>2p? — 2s®2p3p and 25> 2p*> —
25 2p 4p are perhaps large enough (0.06-0.01 cm~!) and
converged enough for the 3C and '*C isotopes to be
visible in the high-resolution spectrum of the carbon
atom.
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Table 4. Predicted energies of the 2s22p'np',n = 3,...,73P;,J = 0,1, and 2 states of the carbon isotopes, 12C,
13¢, and ", with respect to the experimental values shown in the first row of the last column.

12¢ 3¢ 14c Experiment
252 2p?
J=0 0.00036 £ 0.00130 —0.03319 £ 0.00130 —0.06186 4 0.00130 0.0000000 + 0.0013
J=1 16.4171 4 0.00130 16.3835 4 0.0013 16.3549 4 0.0013 16.4167 £ 0.0013
=2 43.4138 £ 0.00130 43.3803 £ 0.0013 43.3516 4 0.0013 43.4135 £ 0.0013
2s22p% — 25 2p3p
J =0 71352.54354 £ 0.00025 71352.5343 - 0.0012 71352.5264 £ 0.0021 71352.54344 £ 0.00025
J=1 71364.93606 £ 0.00019 71364.9268 + 0.0011 71364.9189 + 0.0021 71364.93596 + 0.00019
J=2 71385.410019 =+ 0.000012 71385.4008 + 0.0011 71385.3928 + 0.0021 71385.40992(0)
252 2p? — 252 2p4p
J =0 81311.05441 % 0.00030 81311.0531 £ 0.0011 81311.0521 4 0.0020 81311.05440 4 0.0003
=1 81325.81078 £ 0.00020 81325.8095 + 0.0011 81325.8084 £ 0.0020 81325.81077 £ 0.00020
J =2 81344.05486 4= 0.00011 81344.0536 4 0.0010 81344.0525 4+ 0.0019 81344.05485 4 0.00011
252 2p? — 252 2p5p
J=0 85169.660 + 0.030 85169.659 £ 0.032 85169.658 + 0.035 85169.660 + 0.03
di=1 85188.96701 £ 0.00041 85188.9659 4= 0.0099 85188.965 + 0.018 85188.96700 =+ 0.0004
J =2 85203.67561 4= 0.00032 85203.6745 4= 0.0099 85203.674 £ 0.018 85203.67560 £ 0.0003
2252 2p2 — 2s22pé6p
J=0 87077.402 £ 0.022 87077.381 £0.027 87077.364 + 0.036 87077.402 £ 0.022
J =1 87103.134 £0.019 87103.113 £ 0.024 87103.096 + 0.034 87103.134 £ 0.019
J =2 87113.239 + 0.021 87113.218 £ 0.026 87113.201 £ 0.036 87113.239 £ 0.021
252 sz — 2¢2 2p7p
J=0 88159.925 + 0.030 88160.67 £0.17 88161.32 £ 0.31 88159.930 + 0.03
J = 88192.335 £ 0.030 88193.08 £0.17 88193.73 £ 0.31 88192.340 £ 0.03
J =2 88198.195 % 0.040 88198.94 £0.17 88199.59 £ 0.31 88198.200 + 0.04

Note: The experimental energies shown in the last column are taken from NIST ASD [15]. It is assumed that these experimental energies
correspond to the naturally occurring isotope mixture (with 98.93% and 1.07% by mass of the '2C and '3C isotopes, respectively
[15]). The energies reported in the table are obtained by adding isotope shifts extrapolated to an infinite number of ECGs taken

from Table 3 to the corresponding energies shown in the last column of the table. All entries are in units of cm~".

4. Summary

In this work, we describe a procedure for calculating
isotope shifts of the spectral lines corresponding to the
electronic states of the most common isotopes of the car-
bon atom. The procedure involves performing accurate
quantum mechanical calculations of the energies corre-
sponding to these spectral lines for different isotopes. In
the case of the carbon atom considered in this work, the
isotopes are 12C, 1°C, and '*C and the considered states
are the 2s?2p! np! (°P),n = 2 — 7, states. The calcula-
tions are carried out using the variational method with
the Hamiltonian explicitly dependent on the mass of the
nucleus of the atom. The spatial part of the wave function
of the atom is expanded in terms of all-electron explicitly
correlated Gaussians and the nonlinear parameters of the
Gaussians are extensively optimised using a procedure
that employs the analytic energy gradient. The calcu-
lated isotope shifts of the energies are combined with the
experimentally determined state energies to predict the
positions of the spectral lines corresponding to different
carbon isotopes. Based on the results, we conclude that
future high resolution spectroscopic measurements may
discern spectral lines corresponding to different isotopes
of the carbon atom.
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