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Abstract

With the increasing impact of climate change and relative sea level rise, low-lying coastal
communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely
and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal
areas. Over the past decade, there has been increasing interest in utilizing machine learning
(ML) based models for emulation and prediction of coastal water levels. However, flood
advisory systems still rely on running computationally demanding hydrodynamic models. To
alleviate the computational burden, these physics-based models are either run at small scales
with high resolution or at large scales with low resolution. While ML-based models are very
fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels.
In this paper, we develop a deep neural network for spatiotemporal prediction of water levels
in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical
weather prediction models as the atmospheric input and astronomical tide levels, while its
outputs are time series of predicted water levels at several tide gauge locations across the
Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN
part extracts the features from a sequence of gridded wind fields and fuses its output to several
independent LSTM units. The LSTM units concatenate the atmospheric features with

respective astronomical tide levels and produce water level time series. The novel contribution
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of the present work is in spatiotemporality and in prioritization of the physical relationships in
the model to maintain a high analogy to hydrodynamic modeling, either in the network
architecture or in the selection of predictors and predictands. The results show that this setting
yields a strong performance in predicting coastal water levels that cause flooding from minor
to major levels. We also show that the model stands up successfully to the rigorous comparison
with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3
cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC
model. The results highlight the practical feasibility of employing fast yet inexpensive data-

driven models for resilient coastal management.

Keywords: Storm Surge Prediction, Nuisance Flooding, Machine Learning, Deep Learning,

CNN, LSTM

1- Introduction

Climate change has driven a rise in the intensity and frequency of tropical cyclones or
hurricanes over the recent decades (Knutson et al., 2010), amplifying the vulnerability of
coastal communities to flooding. Future projections suggest that this trend will continue by the
end of the century (Karegar et al., 2017). With tropical cyclones as their primary driver, extreme
storm surges have been posing an increased threat to coastal communities (Wahl et al., 2015).
The economic impacts of major tropical cyclones are of an immense scale. In the U.S., recent
named hurricanes such as Hurricanes Katrina (2005), Harvey (2017), and Ian (2022) have
caused economic losses exceeding $100 billion each (Blake & Zelinsky, 2018; Hanna &
Cangialosi, 2014; Knabb et al., 2023). Global sea level rise (SLR), on the other hand, is
experiencing an accelerating increasing trend as well (Nerem et al., 2018). SLR not only
exacerbates the impact of storm surges by facilitating their propagation towards coastal
infrastructures (Castrucci and Tahvildari 2018; Tahvildari and Castrucci, 2021) but also

contributes to other adverse coastal and environmental impacts such as shoreline erosion
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(Leatherman et al., 2000), saltwater intrusion (Werner & Simmons, 2009), and high-tide
flooding in low-lying communities, so-called nuisance flooding (e.g. Moftakhari et al., 2015).
Looking ahead, studies estimate a notable increase in the economic impacts of coastal flooding,
including both less-frequent, high-impact events (Hallegatte et al., 2013; Hinkel et al., 2014),
and less severe, recurrent incidents (Dahl et al., 2017; Ezer & Atkinson, 2014). This highlights
the importance of developing more advanced methods for high-fidelity simulation, accurate
real-time prediction, and reliable risk assessment of coastal flooding along vulnerable

coastlines.

Numerical models, based on shallow water equations, have been successfully utilized for over
three decades for modeling coastal flooding. ADCIRC (ADvanced CIRculation, Luettich et al.,
1992), SLOSH (Sea, Lake, and Overland Surges from Hurricanes, Jelesnianski et al., 1992),
FVCOM (C. Chen et al., 2003), Delft3D (Roelvink & Van Banning, 1995), ROMS
(Shchepetkin & McWilliams, 2005), and SCHISM (Zhang et al., 2016) have been widely used
by government agencies in the U.S. as well as researchers for prediction and obtaining risk
maps of storm surges. These hydrodynamic models are often coupled with spectral wave
models such as SWAN (Dietrich et al., 2011), STWAVE (Smith et al., 2001), and WAM (Group,
1988) to account for flow-wave interactions, adding a level of complexity and computational
cost. National Hurricane Center (NHC) uses SLOSH to forecast storm surges in the U.S. as a
part of its advisory program. The real-time sea level forecast program by Coastal Emergency
Risk Assessment (CERA) group runs ADCIRC+SWAN on the Atlantic and the Gulf of Mexico.
In the North Atlantic Coastal Comprehensive Study (NACCS) by the U.S. Army Corps of
Engineers, coupled ADCIRC and STWAVE were employed to run 1050 and 100 historical
synthetic tropical cyclone scenarios, its results have been used for storm surge risk assessment
in the North Atlantic (Cialone et al., 2015). The Operational Nowcast and Forecast

Hydrodynamic Model Systems (OFS) by National Oceanic and Atmospheric Administration
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(NOAA) includes a suite of 15 real-time hydrodynamic models based on ROMS. The OFS
models perform nowcast and short-term (48 hr) water level forecasts along most U.S. coasts.
Despite improvements in the accuracy of storm surge predictions using hydrodynamic models,
high-fidelity large-scale simulations remain time-consuming and computationally expensive.
Generating the data for a regional risk analysis usually requires simulating thousands of
scenarios which is hard to achieve with physics-based numerical models. Furthermore, the high
computational cost has prohibited real-time flood predictions. Even with low-fidelity models,
instant flood calculation using meteorological forecasts has been out of reach. For instance,
NOAA’s OFS models demand considerable computational resources even though they do not
account for waves, such that their performance is limited to 4 runs per day on relatively coarse

curvilinear grids.

To achieve fast computation, there has been a growing inclination toward utilizing Machine
Learning (ML) approaches to develop data-driven or surrogate models for coastal flooding.
While ML techniques like random forests, kriging, and PCA have been widely used (Al Kajbaf
& Bensi, 2020; Jia et al., 2016; Jia & Taflanidis, 2013; Kyprioti et al., 2021, 2023; Zahura &
Goodall, 2022) for coastal flood modeling, neural networks remain the most popular. To this
end, different architectures have been used. Earlier studies used conventional Artificial Neural
Networks (ANN), while with the evolution of deep learning, more advanced algorithms such
as Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) became
prevalent. A category of past studies trained neural networks to predict water level at an
individual timestamp, using meteorological and tidal data in hand (Kim et al., 2019; T. L. Lee,
2006; Rajasekaran et al., 2008). Most of these models used ANN recurrently to produce a
prediction of water level time series. These types of models are not able to account for the lags
between sea state and weather conditions or any other temporal relationships. Another category

of studies has sought to predict the time series of water levels, for a specific lead time, using
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very recent atmospheric and hydrodynamic information. Due to their ability to capture
temporal dependencies, RNNs, specifically Long Short-Term Memory (LSTM) method, are
used by most of these models (Bai & Xu, 2022; K. Chen et al., 2022; Igarashi & Tajima, 2021;
Wang et al., 2021; Wei & Nguyen, 2022). Increasing the lead time in these models profoundly
diminishes the accuracy. In another category of studies, neural networks were developed to
achieve an accurate prediction of peak surge for specified storm parameters, either as a track
or at landfall (Bass & Bedient, 2018; Hashemi et al., 2016; J. W. Lee et al., 2021; Sahoo &
Bhaskaran, 2019). These models are potentially powerful tools for risk assessment purposes as

well as preliminary decision-making.

Atmospheric data is the primary input to these ML models. The mentioned studies incorporated
atmospheric inputs as either storm track or point-wise data. Recently, utilizing 2D gridded wind
data is getting attention, where CNN networks are often used to process them. The sources of
these data are numerical weather prediction models such as European Centre for Medium-
Range Weather Forecasts (ECMWF), Climate Forecast System (CFS), Global Forecast System
(GFS), and North American Mesoscale Forecast System (NAM) by NOAA. Xie et al., (2023)
developed a CNN network to extract features from a sequence of wind fields sourced from
ECMWEF and CFS, together with water levels of the past 24 hours to predict the time series of
the next 72 hours. Davila Hernandez et al. (2023) used CNN to extract features from the
sequence of image-like weather forecasts and LSTM to extract information from the past water
levels and fused both extracted features to an ANN to predict water level time series. Zust et
al. (2021) developed a network of spatial and temporal encoders to forecast sea level in the
northern Adriatic Sea. They fused ECMWF atmospheric data and past measured surges as

inputs of their model.

The literature review reveals three gaps in the existing research: (1) The majority of physics-

based storm surge models rely on atmospheric data over their grids and harmonic tide values
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at the open boundaries to solve shallow water equations governing hydrodynamic variables. In
their time-marching numerical schemes, the current sea state is computed using the current
weather and hydrodynamic boundary conditions and the sea state in past time step.
Consequently, simulating a time window [#1, #2] necessitates atmospheric and tidal inputs within
the same temporal span. None of the referenced studies exploit this correlation between input
and output data in their models. Since this correlation represents the physical reality,
developing a similar linkage within the data in an ML flood prediction model should result in
accurate learning and prediction. (2) The models described above provide a singular output
point. To predict water level at multiple locations, the models must be separately trained for
each point, even though the wind’s domain of influence remains same. (3) Few prior studies
aimed at training ML models with a wide range of flood levels. The development of a model
trained for any surge level, including normal-day sea levels, recurrent nuisance flooding, or
extreme storm surges, holds a potential for broad practical applications. Such a model could
establish cost-effective real-time flood prediction workflows, offering accuracies comparable

to hydrodynamic models.

To address the mentioned gaps, we integrate CNN and LSTM neural networks to develop a
spatiotemporal predictive model for coastal flooding. The inputs to this model are the gridded
wind data over the domain of interest and harmonic tides at multiple tide gauges, while its
outputs are time series of predicted water levels at these gauges. The results show that the
model is effective in capturing nearly all water levels, spanning from regular sea state to major
flooding. As expected, the error is larger for the most extreme storm tides due to their scarcity
in the record. The remainder of the paper is organized as follows: Section 2 describes the
methodology and data sources, Section 3 explores the performance metrics related to training
and testing, Section 4 presents the results of validation and case studies, and Sections 5 and 6

give the discussion and concluding remarks.



149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

2. Methodology

2.1 Study area

The study is focused on the Chesapeake Bay, the largest estuary in the U.S., which is located
in the Mid-Atlantic region. The presence of rivers, tidal embayments, coastal marshes,
navigation channels, and highly developed and undeveloped coastlines have created a very
complex coastal landscape in the Chesapeake Bay. The Bay is home to a diverse range of
habitats such as large wetlands, forests, and rivers, all of which play an important role in
supporting species and maintaining the ecological balance of the Bay (Baird & Ulanowicz,
1989). Owing to its low-lying topography, the coastal infrastructure is vulnerable to storm surge
and recurrent flooding, which is exacerbated by relative SLR (Castrucci & Tahvildari, 2018;

Tahvildari & Castrucci, 2021).

Hampton Roads, a major metropolitan region in southeast Chesapeake Bay, experiences the
highest relative SLR rate along the U.S. east coast (Boon et al., 2010). This trend is influenced
not only by global SLR caused by climate change but also by land subsidence in this area
(Sherpa et al., 2023). Several studies have highlighted the growing susceptibility of the
transportation infrastructure in Hampton Roads to coastal flooding, including both storm surges
and recurrent nuisance flooding, also referred to as high-tide flooding or sunny day flooding
(Shen et al., 2019; Tahvildari et al., 2022). The development of a robust and rapid water level
prediction model that leverages real-time weather forecast data will be beneficial to addressing
the intensifying flooding issue in the region and other coastal communities facing similar
challenges. Such a model can be used for early warning, infrastructure planning, and

emergency management.

We selected the Chesapeake Bay as the study area to illustrate the capabilities and challenges
of the model in a region with a complex coastal landscape, with highly valued assets

concentrated in the vicinity of the coastline that is highly vulnerable to sea level rise and climate
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change impacts. The model is designed to calculate water level time series at several locations
throughout the Chesapeake Bay, trained with historical water level data. The National Oceanic
and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) operate
numerous tide stations within the Chesapeake Bay region. For this study, ten stations were
chosen (see Fig. 1 and Table 1) as the observation points for training and validating the model.
Of these stations, four are located near the Bay mouth (CB, KT, SW, and MP), three are in the

midsection (LS, WM, CM), and the remaining three are positioned at the north of the Bay (BT,

AP, DC).
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Fig. 1. Map of Chesapeake Bay and the selected observation stations.

Table 1. Names and locations of NOAA stations (NOAA, 2021)

Station LAT.

Label Name D © LON. (°)
AP Annapolis, MD 8575512  38.9833  -76.4817
BT Baltimore, MD 8574680  39.2667  -76.6400
CB CBBT, Chesapeake Channel, VA 8638901 37.0333  -76.0833
CM Cambridge, MD 8571892  38.5717 -76.0617
DC Washington, DC 8594900 38.8733  -77.0217
KT Kiptopeke, VA 8632200 37.1650 -75.9883
LS Lewisetta, VA 8635750  37.9967 -76.4650
MP Money Point, VA 8639348 36.7783  -76.3017
SP Sewells Point, VA 8638610 36.9433  -76.3283
WM  Windmill Point, VA 8636580 37.6150 -76.2900
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2.2 Data Preparation

A higher level of inherent relationship within the data in an ML model enhances the potential
to gain higher accuracy and dependability. From a physical perspective, total ocean water level
is influenced by multiple processes including astronomical tides, storm surge, Coriolis-induced
motions, and ocean currents, and the nonlinear interaction between these processes. Among
these factors, astronomical tides and wind field are most influential. Astronomical tides are
highly predictable and storm surge is mainly driven by wind stress tide, wave setup, and

barometric tide, all of which are dependent on the wind field (Dean & Dalrymple, 2001).

The majority of ML-based storm surge models rely on wind data as the primary input. Previous
studies have incorporated atmospheric data through various approaches, including point-wise
data recorded at meteorological stations, storm track, and more recently, as 2D wind field. The
2D data is preferred as it accounts for more details, and, in contrast to hurricane tracks, it can
be used for a wide range of storm events, including minor storms, tropical cyclones, and
Nor’ easters. In prior studies, tide has been treated differently. Some scholars have removed
tide levels from water levels and predicted residual surge levels using atmospheric data. While
some others have included tides as their model input. In our proposed model, the input data
consists of an hourly sequence of atmospheric data, including velocity components of wind
and air pressure (at the sea surface) on a 2D grid, as well as hourly time series of astronomical
tide levels at the observation stations. The model’s outputs are time series of water level at
these stations. The wind velocity vectors at 10 m above sea surface were used as model input.
Velocity at this reference elevation is used commonly to parametrize wind stress on water
surface because modeling or measuring wind velocity at the sea surface is challenging due to
rapid and potentially large changes in surface elevation, and the effect of surface roughness on

wind velocity within the atmospheric boundary layer.
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A dataset spanning 21 years, from 2002 to 2023, served as the training data of the model. Water
level measurements, both observed and astronomical, at the observation stations were obtained
from the NOAA database (NOAA, 2021), all referenced to the Mean Sea Level (MSL) vertical
datum. For the atmospheric inputs, we employed the CFS database. The NCEP Climate
Forecast System Reanalysis (CFSR, Saha et al., 2010) was used for the period from 2002 to
2010, and The NCEP Climate Forecast System Version 2 (CFSv2, Saha et al., 2014) from 2010
to 2023. These datasets have different spatial resolutions, with CFSR at 0.30° resolution and
CFSv2 at 0.205° resolution. To ensure consistency, both datasets were resampled using cubic
interpolation onto a 5°x5° grid of 0.205° resolution, covering the entire study region, as
illustrated in Figure 2. Within the model, we used the wind velocity components in the form of
velocity magnitude and Azimuth direction. The input data were standardized before fusing into
the model. In terms of the temporal data length, we selected a window of 84 hours to slide
through the data. However, 12 hours of the sliding windows overlap. The first 12 hours of the
84-hour period are used to provide the LSTM network with a sufficient memory of the past
during the initial time step, but we excluded these 12 hour of predictions from the model output
and the calculation of loss and performance parameters. Consequently, each prediction spanned
a net length of 72 hours. It is noted that we tested different time windows within 2-4 days,
corresponding to typical forecast period, and the model showed slightly better performance for

a time window of 72 hours.
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Fig. 2. The extent and resolution of atmospheric data in the model. The figure shows the landfall of Hurricane Irene (2011).
Two approaches exist in terms of the temporal relationship between input and output data
within the predictive ML-based models. In one approach, to estimate surge within a time
interval [z, t+Tjeqd], very recently recorded data in a time span [z-Tuin, £] is employed as input.
The primary focus of this method is to discern the underlying data patterns and trends, rather
than establishing a relationship between input and output grounded in the physics of the
problem. This approach is sensitive to lead time, as the accuracy of predictions experiences a
decline with increasing lead time. In the second approach, similar to physics-based modeling,
a temporal consistency is maintained between input and output. However, in this approach, the
model relies on inputs derived from other atmospheric forecast models. This adds an element
of uncertainty to the results. Previous models have utilized either of the approaches or their
combination. We adopt the second approach here. Our model calculates water level at any time

interval given respective inputs from atmospheric models.

To generate training samples, a straightforward method is sliding a fixed time window across
the entire dataset, resulting in a substantial number of samples. These samples can either be
overlapping or non-overlapping with two samples that do not fully overlap considered as

distinct instances. We used a fixed sliding shift of 72 hours to generate non-overlapping
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samples. Overall, 2305 samples were created from the collected data. Fig. 3 shows the

histogram of the maximum water level in the generated samples.
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Fig. 3. Distribution of peak water level in the generated samples. The flooding thresholds (minor, moderate, major) are determined by

averaging the thresholds used by NOAA across the stations.

2.3. Description of the model

A combination of CNN, LSTM, and fully connected layers was used in the architecture of the
model. CNNs excel at processing grid-like data, by effectively capturing local patterns and
hierarchies through convolutional layers (Lecun & Bengio, 1995). On the other hand, LSTM
networks specialize in sequential data such as time series. While regular RNNs suffer from the
vanishing gradient problem, LSTMs capture long-range dependencies in sequential data by
utilizing memory cells and a sophisticated gating mechanism (Hochreiter & Schmidhuber,
1997). The combination of CNN and LSTM networks has proven to be highly effective in
handling applications that require both spatial and temporal data (Davila Hernandez et al.,
2023; Zust et al., 2021). While used in a few past studies, the application of CNN-LSTM

networks for spatiotemporal flood prediction holds significant potential.

An ensemble of several trial runs, not detailed here, were conducted to determine the optimal
layer dimensions and hyperparameters. The best performance was achieved by manual grid

search across the various parameters as well as utilizing random search through hyperparameter
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tuning functions. Fig. 4a shows the architecture that delivered the best performance. As shown
in this figure, the model incorporates input data in two stages. The process begins with fusing
the atmospheric inputs to the CNN layers. The convolution process involves sliding several
kernel matrices, typically of the size 2x2 or 3x3, across the input data to produce several feature
maps. The kernels initialize with random values and then, are optimized during the
backpropagation step. For temporal data, a Time-Distributed option fuses the data frame by

frame, enabling the model to process each frame separately (see Fig. 4b).
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Fig. 4. The architecture of the model. (a) “Conv2D” denotes 2D convolution layers with 32 output channels for the first layer and 16 for the

second layer. “Dense” represents fully connected layers. The output dense layers employ a linear activation function while ReLU is used for
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the remaining layers. (b) the “Time-Distributed” option enables the model to process one frame of atmospheric input at each timestep of

LSTMs.
The input atmospheric data in the model has the dimension (72,25,25,3), including 72 hourly
timesteps, 25 by 25 grid points, and 3 wind parameters (velocity, Azimuth direction, and
pressure). The initial CNN layer with 3x3 kernels receives the inputs frame by frame and
produces 32 output feature maps per frame. This layer is succeeded by the second CNN layer
with 32 output channels. Subsequently, one Flatten and one Fully Connected layers condense

the output to a 256-element-long vector.

The feature vector derived from the wind field frame undergoes processing within dedicated
LSTM units for each of the 10 stations. Before entering each unit, a primary fully connected
layer reduces the feature vector dimensions to 16. At this stage, the model incorporates the tide
data, concatenating it with the feature vector to enrich the information used for prediction. The
LSTM layers, each configured with 128 output parameters at every time step and an equivalent
number of hidden parameters, follow this initial processing step. Subsequently, two fully
connected layers are employed to further reduce the final size of the outputs, resulting in a 72-
hour time series for each observation station. This time series represents the predicted water
levels. To improve the model’s performance and prevent overfitting, batch normalization and
dropout layers have been used at different stages (see Fig. 4a). A Rectified Linear Unit (ReLU)
activation function was used in CNN layers due to its strong empirical success (Zoph & Le,

2018). Table 2 presents the details of hyperparameters used in the model.

Table 2. Summary of hyperparameters used in the model.

Hyperparameter Value/Method
Loss function MSE (m?)
Optimizer Adam
Learning rate le-3

Batch size 64

Early stopping min delta le-4 (m?)
Early stopping patience 15

Dropout rate 0.05

Max epochs 200
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3- Model Performance

The model performance was evaluated during both training and testing phases. Mean Squared
Error (MSE) was employed as the loss function. MSE is widely employed for regression
problems. It quantifies the squared deviation between model predictions and observed data.

The formula for calculating MSE is as follows:

1 2
MSE = ﬁzllv(ngauge - nmodel) > (1)

where N is the number of data within a batch, 7744,,4¢ are the observed water levels, and 1,041
are the output water levels, respectively. In the calculation of MSE, both 7744,4¢ and 046 are

truncated to exclude the first 12 hours of the output time series, as previously discussed in

section 2.2.

An 8-fold cross-validation strategy is performed to ensure the reliability of the evaluation and
to mitigate potential biases. This approach involves partitioning the dataset into eight subsets,
without any shuffling, and training the model on seven of them while validating the remaining
subset. This process is repeated eight times, with each subset serving as the validation set once.
The validation subsets are partitioned equally into early stopping validation and testing sets.
The early stopping validation monitors the model's performance on the validation set and stops

the training when further improvement can result in overfitting.

Fig. 5. Shows the learning curve of the model. The steep slope indicates that the model is
converging quickly, implying a strong relationship between the data. The dashed lines in the
figure, representing the cross-validation data, show a good alignment with the training data.

Despite the presence of minor fluctuations, the trends of the two curves are very similar.



316
317

318

319

320

321

322

323

324

325

326

= Train Set

3.5 A ——- Validation Set

3.0 1

25 A

20 41

MSE {m?)

1.5 1

1.0 A

05 - Sea

0.0 1

T T T T T
0 10 20 30 40
Mumber of Epoches

Fig. 5. Leamning curve of the model. The blue line represents the training data and the dashed red line denotes the validation set.
The box plots in Fig. 6 show the distribution of both training and testing error across different
stations. The errors in this figure are plotted as Root Mean Squared Error (RMSE). Given the
model has multiple output layers, each corresponding to a station, the total MSE is computed

as the sum of the MSE for all output layers. However, RMSE is calculated by the formula:

N
1 2
RMSE = NZ(’?gauge - nmodel) ) @)
1

where N is the number of data in each station. As shown in Fig. 6, the upper quartile of RMSE
for all the stations remains below 12 cm and 18 cm during the training and testing phases,
respectively. The station DC shows a more dispersed and larger error, with whisker lines
extending to nearly 20 cm during testing. Otherwise, the training and testing errors are

comparable across the stations.
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There are 2026 samples in a training set, each has data for 10 stations, and each station contains
72 hourly water levels. This results in a total of 1,458,720 water level values for the train set,
and 103,680 for the test set. Fig. 7 shows the distribution of training and testing Absolute Error

(AE), calculated as ~Nmod el" for all water levels categorized into four ranges. The box

|ngauge
plots show an expected increasing trend in AE with higher water level ranges. For the fourth
bin that represents moderate and major flooding in most stations, the median AE is 10.3 cm

and 23.2 cm for training and testing stages, respectively.
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Fig. 8 compares the RMSE at each station during training and testing steps. The average RMSE
during training stands at 8.3 cm, while it slightly increases to 10.1 cm during testing. The model
shows a good performance during testing. The close scores during training and testing prove
that the model successfully fits the data without overfitting. In trying different architecture
settings, we found that the inclusion of batch normalization and drop-out layers are highly

effective in preventing overfitting (see Fig. 4a).
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348 4. Storm Tide Prediction

349  The model’s strong performance during testing does not necessarily guarantee its ability in
350  predicting storm tides. This is because the majority of samples in a training set represent normal
351  seastate, where the measured water levels are mainly driven by the tides. We applied the model
352  tonine historical flood events (see Table 2) including major recent hurricanes and two nuisance
353  flooding events to gain a better insight into its performance. The source of data used here was
354  same as in the training step. To predict each event, the respective month was eliminated from
355  the training data to keep its data unseen. The most extreme storm surge, Hurricane Isabel

356  (2003), was kept in the training data.

357 Table 3. The test cases conducted to show the model’s performance. Max Peak Surges are the maximum recorded water level across the
358 stations.
Name Max Peak Surge (m) Date
Hurricane Ian 1.32 September-2022
High-Tide flooding 1.26 November-2021
High-Tide flooding 1.30 November-2019
Hurricane Dorian 1.48 September-2019
Hurricane Mattew 1.54 October-2016
Hurricane Jaocin 1.66 September-2015
Hurricane Sandy 1.75 October-2012
Hurricane Irene 2.11 August-2011
Nor'lda 2009 2.11 November-2009

359  The results herein are presented in terms of RMSE and Coefficient of Correlation. Correlation

360 scores measure the strength of relationship between modeled and observed data. The
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coefficient of Determination (R?) assesses the proportion of the variance in the dependent
variable. Adjusted R? is commonly used for models with different number of predictors (Basiri
et al., 2015). Pearson Coefficient of Correlation (R or CC) quantifies the linear relationship
between the observed and modeled data. In this paper, we used CC which is calculated as

follows:

lev(ngauge - ﬁgauge)(nmodel - ﬁmodel)

_ 2 _
\lzlf(ngauge - 77gauge) Zlf(nmodel - nmodel)z

CC=1-

)

where N is the number of data within a prediction.

Fig. 9 shows the time series of the model for Hurricane Ian (2022). It was found that a 6-day
time window can capture the duration of storm surge across different storms and different
stations sufficiently. This window was used to illustrate the results for Hurricane Ian and other
storms, and to calculate the correlation coefficient. Overall, the correlation with the observed
time series is satisfactory at all the stations. There is no tidal phase lag between the astronomical
data and model results which proves the LSTM units are trained well to follow the tidal phase
for various atmospheric inputs. The model shows a very good performance in predicting peak
surge for this scenario; the average pick surge in all stations is 0.99 m for both observed and

model data.

As an example of model performance for different high water level events, Fig. 10 shows the
time series of all the simulated storm surges and king tides in the Sewells Point (SP) tide station.
As seen, the model shows a decent performance in predicting water level during major
hurricanes in the past two decades. The largest error in the peak storm tide at SP belongs to
Hurricane Irene (2011) where the observed and modeled water levels are 1.88 m and 1.45 m,
respectively, corresponding to a 23.0% error. On average, the model estimates pick water levels

at this station with a 10.6% error.
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Fig. 11 shows scatter plots of predicted water levels against gauge data in all the stations. Using
MSE as the loss function, a modest underestimation was observed in all stations, but the model
showed a decent average RMSE of 11.4 cm in modeling nine historic events, seven of which
were extreme storm surges. We examined different loss functions during the training process
to minimize the underestimation. Less common loss functions like quantile loss decreased the

underestimation but also diminished the overall model performance.

We also compared our model’s prediction results with data available in the NACCS database,
which includes a suite of high-fidelity numerical simulations of storm surge in the North
Atlantic. The effort was conducted to provide information for computing the joint probability
of coastal storm forcing parameters for the U.S. Mid-Atlantic and Northeast regions. This
information is critical for effective flood risk management, project planning, design, and
performance evaluation. The ADCIRC+STWAVE mesh developed for the NACCS study
encompasses the western North Atlantic, the Gulf of Mexico, and the western extent of the
Caribbean Sea with 3.1 million grid points nodes and 6.2 million grid cells. This mesh is a
combination of prior regional meshes developed by FEMA (Cialone et al., 2015). Specifically,
for the Chesapeake-Delaware Bay region on the Atlantic coast, the FEMA R3 mesh was
employed, with over 1.7 million nodes and a resolution of up to 30m (Blanton et al., 2011).
With this resolution, the NACCS model is considered a reliable high-fidelity flow-wave model
for studying storm surge. The initial NACCS model was validated with NOAA tide gauges for
several cases. Among the historic events we simulated to show the performance of the model,
Hurricanes Irene (2011) and Sandy (2012) were available in the NACCS’s historic simulations
and were compared to model results. NACCS model generated outputs, including water levels,
at approximately 18,000 points, with around 3,000 of these points located within the
Chesapeake Bay. For comparison, we used outputs at locations nearly identical to the tide

stations used in this study (Table 1).
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Fig. 11. Scatter plots of predicted against observed water levels across the stations. The color map represents the density of points.

Fig. 12 shows the time series output from the ML model, the ADCIRC model, and the gauge
data for hurricanes Irene (2011) and Sandy (2012). The ADCIRC model shows a strong
performance in capturing the peak surge in Irene for most stations, while the ML model
underestimates the peak. Both models show a weak performance in the northern stations AP,
BT, and DC. Excluding these stations, the average errors in peak residual surge values are
21.0% and 12.0% for the present model and the ADCIRC model, while in the northern stations,
these errors are 96% and 65%, respectively. The average RMSEs are close; for hurricane Irene,
the ML model yields an average RMSE of 13.4 cm, compared to 16.2 cm for ADCIRC. For

Hurricane Sandy, the ML model has a 19.5 cm RMSE compared to 15.8 cm for ADCIRC.

Fig. 13 shows the scatter plots of both models and Fig. 14 summarizes the comparison between

the two models across the observation stations. Averaging over all the stations for the two
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storms used for comparison, the ML model yields an RMSE of 16.4 cm and CC of 0.90,
compared to 15.9 cm and 0.88 for the ADCIRC model. Neglecting the uncertain results of the
three northern stations, the ML model yields an RMSE of 14.3 cm and CC of 0.94, compared
to 12.9 cm and 0.96 for the ADCIRC model. These scores offer a more realistic representation
of the comparison between the two models. In summary, the performance of the ML model is

quite competitive, with the ADCIRC model performing slightly better in capturing peak surge.
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Fig. 12. Time series of water level output using the present ML model, ADCIRC model, and the observations for Hurricanes Irene (2011)
and Sandy (2016). Black solid lines represent the observed gauge data, red dashed lines pertain to the ADCIRC model, blue dash-dot lines

show the present model’s results, and black dashed lines represent harmonic tides.
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Fig. 13. Scatter plots of observed water levels against the ADCIRC (red dots) and the present ML model (blue dots).

5. Discussion

(1) Overall, the present model shows a strong performance in predicting coastal water levels
of different intensity, despite the existence of a few outliers in the predictions. We can notice a
trend in the results: the model shows a more reliable performance in prediction of water level
near the bay mouth, compared to the stations located at higher latitudes towards the end of the
Bay. This behavior is observed in the NACCS model results as well. Though not an objective
of this study, discussing the implications of this trend is worthful. Several factors may
contribute to such disparity. From the ML point of view, difference in correlation means that
the network finds a stronger relationship between inputs and outputs in the southern stations
compared with the northern ones. This means other factors may affect water level in the
northern stations such as more complex hydrodynamics caused by tidal reflection, density

gradient circulations, or riverine discharges. From the hydrodynamics point of view, the
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performance of the NACCS model (ADCIRC+STWAVE) in storm surge modeling has been
widely verified. On the other hand, the circulations within the water column due to density
gradients are expected to have a negligible surface signature compared to barotropic tides, wind
waves, and wave-induced currents. Neither ADCIRC+STWAVE nor the present ML model
accounts for fluvial and pluvial flows. By exploring respective USGS gauges, we found that
the discharge from the Potomac and Susquehanna rivers during storm events was not negligible
and could affect water levels in the northern Bay. For instance, during Hurricane Sandy (2016),
the discharge of the Potomac River increased substantially from 3,000 ft/s to 140,000 ft/s. This
underscores the fact that accounting for river discharge in input data in future studies could

result in a stronger correlation between ML model output and observations.

(2) The lowest performance of the ML model pertains to the most extreme storms due to the
scarcity of that data. Therefore, training the model with more extreme samples, either historical
or synthetic, could improve the accuracy of the model in predicting extreme events. In our
training data, there are very few major hurricanes with category two or more. The model yields
13.8 cm RMSE for Nor’ Ida (2009) considering there is only one more extreme storm in the
sample training data (Hurricane Isabel (2003)), While in the case of Hurricanes lan (2022),
since the model had several more extreme storms in the training data, the performance was
superior with RMSE at 11.7 cm and CC at 0.97. Synthetic simulations such as NACCS database
provide a wide range of hurricanes with rare return periods. Although these data are associated
with uncertainties and respective errors, high-fidelity validated data such as NACCS are
valuable sources of samples. Future works can combine synthetic storm simulations with real

gauge data to improve the model’s skill for unseen extreme storms.



474

475

476

477

478

479

480

481

482

483

484

485

486

487

03 HEE Model

HEE ADCIRC
0.25

024

015 4

RMSE (m)

0.05 1

SPMP KT CB WM CM LS ap DC BT
Station

HE  vodel
I ADCIRC

0.8 4

0.6

0.4

Average Max., Error (m)

0.2 1

SP MP KT CB WM CM LS AP DC BT
Station

Fig. 14. Summary of performance comparison between the ML model and ADCIRC

The present model substantially reduces the computational time required for water level
predictions. Typically, hydrodynamic models take several hours to days, depending on grid
resolution and availability of high-performance computation resources, to calculate water
levels across regional scales similar to the present study area. The present ML, once trained,

produces water level in a few seconds using a personal laptop.

6. Conclusion

In this study, we developed a data-driven model using the deep learning approach to predict
water level time series in multiple locations across the Chesapeake Bay. The model is trained
with the data from NOAA tide gages and generates water level predictions at the same
locations. The data from these tide gages is widely used by local and regional authorities for
flood warning and emergency management, and rapid water level predictions at these locations

can enable timely precautions and warnings.
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The architecture of our model consists of a time-distributed combination of a CNN network
with multiple LSTM units. The input data are the hourly sequence of atmospheric data on a
25x25 grid of 0.205" resolution and the time series of astronomical tides at the output points,
while the outputs of model are the time series of predicted water level. To maintain a high
physical relation, all input and output data pertain to the same time window, with no lead-lag
approach. The training data includes samples created from 21 years of continuous data, from
2002 to 2023. An adaptive sliding approach addresses the bias that arose due to the rarity of

flooding events against normal sea states.

The trained model is tested with an average RMSE of 10.0 cm. To better evaluate the model’s
performance predicting storm surge occurrences, nine historical events were studied, where the
model scored a CC 0f 0.94 and RMSE of 11.4 cm. We compared the performance of our method
against the NACCS database, the results of high-fidelity hydrodynamic modeling of the North
Atlantic. Our model demonstrated a decent accuracy and a comparable performance with the
ADCIRC+STWAVE model used in the NACCS study. This study is an effort to address the
speed-accuracy trade-off encountered in timely prediction of coastal flooding and suggests that
physically related data fused to properly designed deep neural networks can be as accurate as

high-resolution hydrodynamic models in real-time forecasting of coastal water levels.
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