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Abstract 6 

With the increasing impact of climate change and relative sea level rise, low-lying coastal 7 

communities face growing risks from recurrent nuisance flooding and storm tides. Thus, timely 8 

and reliable predictions of coastal water levels are critical to resilience in vulnerable coastal 9 

areas. Over the past decade, there has been increasing interest in utilizing machine learning 10 

(ML) based models for emulation and prediction of coastal water levels. However, flood 11 

advisory systems still rely on running computationally demanding hydrodynamic models. To 12 

alleviate the computational burden, these physics-based models are either run at small scales 13 

with high resolution or at large scales with low resolution. While ML-based models are very 14 

fast, they face challenges in terms of ensuring reliability and ability to capture any surge levels. 15 

In this paper, we develop a deep neural network for spatiotemporal prediction of water levels 16 

in coastal areas of the Chesapeake Bay in the U.S. Our model relies on data from numerical 17 

weather prediction models as the atmospheric input and astronomical tide levels, while its 18 

outputs are time series of predicted water levels at several tide gauge locations across the 19 

Chesapeake Bay. We utilized a CNN-LSTM setting as the architecture of the model. The CNN 20 

part extracts the features from a sequence of gridded wind fields and fuses its output to several 21 

independent LSTM units. The LSTM units concatenate the atmospheric features with 22 

respective astronomical tide levels and produce water level time series. The novel contribution 23 
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of the present work is in spatiotemporality and in prioritization of the physical relationships in 24 

the model to maintain a high analogy to hydrodynamic modeling, either in the network 25 

architecture or in the selection of predictors and predictands. The results show that this setting 26 

yields a strong performance in predicting coastal water levels that cause flooding from minor 27 

to major levels. We also show that the model stands up successfully to the rigorous comparison 28 

with a high-fidelity ADCIRC model, yielding mean RMSE and correlation coefficient of 14.3 29 

cm and 0.94, respectively, in two extreme cases, versus 12.30 cm and 0.96 for the ADCIRC 30 

model. The results highlight the practical feasibility of employing fast yet inexpensive data-31 

driven models for resilient coastal management. 32 
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1- Introduction 35 

Climate change has driven a rise in the intensity and frequency of tropical cyclones or 36 

hurricanes over the recent decades (Knutson et al., 2010), amplifying the vulnerability of 37 

coastal communities to flooding. Future projections suggest that this trend will continue by the 38 

end of the century (Karegar et al., 2017). With tropical cyclones as their primary driver, extreme 39 

storm surges have been posing an increased threat to coastal communities (Wahl et al., 2015). 40 

The economic impacts of major tropical cyclones are of an immense scale. In the U.S., recent 41 

named hurricanes such as Hurricanes Katrina (2005), Harvey (2017), and Ian (2022) have 42 

caused economic losses exceeding $100 billion each (Blake & Zelinsky, 2018; Hanna & 43 

Cangialosi, 2014; Knabb et al., 2023). Global sea level rise (SLR), on the other hand, is 44 

experiencing an accelerating increasing trend as well (Nerem et al., 2018). SLR not only 45 

exacerbates the impact of storm surges by facilitating their propagation towards coastal 46 

infrastructures (Castrucci and Tahvildari 2018; Tahvildari and Castrucci, 2021) but also 47 

contributes to other adverse coastal and environmental impacts such as shoreline erosion 48 



(Leatherman et al., 2000), saltwater intrusion (Werner & Simmons, 2009), and high-tide 49 

flooding in low-lying communities, so-called nuisance flooding (e.g. Moftakhari et al., 2015). 50 

Looking ahead, studies estimate a notable increase in the economic impacts of coastal flooding, 51 

including both less-frequent, high-impact events (Hallegatte et al., 2013; Hinkel et al., 2014), 52 

and less severe, recurrent incidents (Dahl et al., 2017; Ezer & Atkinson, 2014). This highlights 53 

the importance of developing more advanced methods for high-fidelity simulation, accurate 54 

real-time prediction, and reliable risk assessment of coastal flooding along vulnerable 55 

coastlines. 56 

Numerical models, based on shallow water equations, have been successfully utilized for over 57 

three decades for modeling coastal flooding. ADCIRC (ADvanced CIRculation, Luettich et al., 58 

1992), SLOSH (Sea, Lake, and Overland Surges from Hurricanes, Jelesnianski et al., 1992), 59 

FVCOM (C. Chen et al., 2003), Delft3D (Roelvink & Van Banning, 1995), ROMS 60 

(Shchepetkin & McWilliams, 2005), and SCHISM (Zhang et al., 2016) have been widely used 61 

by government agencies in the U.S. as well as researchers for prediction and obtaining risk 62 

maps of storm surges. These hydrodynamic models are often coupled with spectral wave 63 

models such as SWAN (Dietrich et al., 2011), STWAVE (Smith et al., 2001), and WAM (Group, 64 

1988) to account for flow-wave interactions, adding a level of complexity and computational 65 

cost. National Hurricane Center (NHC) uses SLOSH to forecast storm surges in the U.S. as a 66 

part of its advisory program. The real-time sea level forecast program by Coastal Emergency 67 

Risk Assessment (CERA) group runs ADCIRC+SWAN on the Atlantic and the Gulf of Mexico. 68 

In the North Atlantic Coastal Comprehensive Study (NACCS) by the U.S. Army Corps of 69 

Engineers, coupled ADCIRC and STWAVE were employed to run 1050 and 100 historical 70 

synthetic tropical cyclone scenarios, its results have been used for storm surge risk assessment 71 

in the North Atlantic (Cialone et al., 2015). The Operational Nowcast and Forecast 72 

Hydrodynamic Model Systems (OFS) by National Oceanic and Atmospheric Administration 73 



(NOAA) includes a suite of 15 real-time hydrodynamic models based on ROMS. The OFS 74 

models perform nowcast and short-term (48 hr) water level forecasts along most U.S. coasts. 75 

Despite improvements in the accuracy of storm surge predictions using hydrodynamic models, 76 

high-fidelity large-scale simulations remain time-consuming and computationally expensive. 77 

Generating the data for a regional risk analysis usually requires simulating thousands of 78 

scenarios which is hard to achieve with physics-based numerical models. Furthermore, the high 79 

computational cost has prohibited real-time flood predictions. Even with low-fidelity models, 80 

instant flood calculation using meteorological forecasts has been out of reach. For instance, 81 

NOAA’s OFS models demand considerable computational resources even though they do not 82 

account for waves, such that their performance is limited to 4 runs per day on relatively coarse 83 

curvilinear grids. 84 

 To achieve fast computation, there has been a growing inclination toward utilizing Machine 85 

Learning (ML) approaches to develop data-driven or surrogate models for coastal flooding. 86 

While ML techniques like random forests, kriging, and PCA have been widely used (Al Kajbaf 87 

& Bensi, 2020; Jia et al., 2016; Jia & Taflanidis, 2013; Kyprioti et al., 2021, 2023; Zahura & 88 

Goodall, 2022) for coastal flood modeling, neural networks remain the most popular. To this 89 

end, different architectures have been used. Earlier studies used conventional Artificial Neural 90 

Networks (ANN), while with the evolution of deep learning, more advanced algorithms such 91 

as Convolutional Neural Networks (CNN), and Recurrent Neural Networks (RNN) became 92 

prevalent. A category of past studies trained neural networks to predict water level at an 93 

individual timestamp, using meteorological and tidal data in hand (Kim et al., 2019; T. L. Lee, 94 

2006; Rajasekaran et al., 2008). Most of these models used ANN recurrently to produce a 95 

prediction of water level time series. These types of models are not able to account for the lags 96 

between sea state and weather conditions or any other temporal relationships. Another category 97 

of studies has sought to predict the time series of water levels, for a specific lead time, using 98 



very recent atmospheric and hydrodynamic information. Due to their ability to capture 99 

temporal dependencies, RNNs, specifically Long Short-Term Memory (LSTM) method, are 100 

used by most of these models (Bai & Xu, 2022; K. Chen et al., 2022; Igarashi & Tajima, 2021; 101 

Wang et al., 2021; Wei & Nguyen, 2022). Increasing the lead time in these models profoundly 102 

diminishes the accuracy. In another category of studies, neural networks were developed to 103 

achieve an accurate prediction of peak surge for specified storm parameters, either as a track 104 

or at landfall (Bass & Bedient, 2018; Hashemi et al., 2016; J. W. Lee et al., 2021; Sahoo & 105 

Bhaskaran, 2019). These models are potentially powerful tools for risk assessment purposes as 106 

well as preliminary decision-making.  107 

Atmospheric data is the primary input to these ML models. The mentioned studies incorporated 108 

atmospheric inputs as either storm track or point-wise data. Recently, utilizing 2D gridded wind 109 

data is getting attention, where CNN networks are often used to process them. The sources of 110 

these data are numerical weather prediction models such as European Centre for Medium-111 

Range Weather Forecasts (ECMWF), Climate Forecast System (CFS), Global Forecast System 112 

(GFS), and North American Mesoscale Forecast System (NAM) by NOAA. Xie et al., (2023) 113 

developed a CNN network to extract features from a sequence of wind fields sourced from 114 

ECMWF and CFS, together with water levels of the past 24 hours to predict the time series of 115 

the next 72 hours. Davila Hernandez et al. (2023) used CNN to extract features from the 116 

sequence of image-like weather forecasts and LSTM to extract information from the past water 117 

levels and fused both extracted features to an ANN to predict water level time series. Zust et 118 

al. (2021) developed a network of spatial and temporal encoders to forecast sea level in the 119 

northern Adriatic Sea. They fused ECMWF atmospheric data and past measured surges as 120 

inputs of their model. 121 

 The literature review reveals three gaps in the existing research: (1) The majority of physics-122 

based storm surge models rely on atmospheric data over their grids and harmonic tide values 123 



at the open boundaries to solve shallow water equations governing hydrodynamic variables. In 124 

their time-marching numerical schemes, the current sea state is computed using the current 125 

weather and hydrodynamic boundary conditions and the sea state in past time step. 126 

Consequently, simulating a time window [t1, t2] necessitates atmospheric and tidal inputs within 127 

the same temporal span. None of the referenced studies exploit this correlation between input 128 

and output data in their models. Since this correlation represents the physical reality, 129 

developing a similar linkage within the data in an ML flood prediction model should result in 130 

accurate learning and prediction. (2) The models described above provide a singular output 131 

point. To predict water level at multiple locations, the models must be separately trained for 132 

each point, even though the wind’s domain of influence remains same. (3) Few prior studies 133 

aimed at training ML models with a wide range of flood levels. The development of a model 134 

trained for any surge level, including normal-day sea levels, recurrent nuisance flooding, or 135 

extreme storm surges, holds a potential for broad practical applications. Such a model could 136 

establish cost-effective real-time flood prediction workflows, offering accuracies comparable 137 

to hydrodynamic models. 138 

 To address the mentioned gaps, we integrate CNN and LSTM neural networks to develop a 139 

spatiotemporal predictive model for coastal flooding. The inputs to this model are the gridded 140 

wind data over the domain of interest and harmonic tides at multiple tide gauges, while its 141 

outputs are time series of predicted water levels at these gauges. The results show that the 142 

model is effective in capturing nearly all water levels, spanning from regular sea state to major 143 

flooding. As expected, the error is larger for the most extreme storm tides due to their scarcity 144 

in the record. The remainder of the paper is organized as follows: Section 2 describes the 145 

methodology and data sources, Section 3 explores the performance metrics related to training 146 

and testing, Section 4 presents the results of validation and case studies, and Sections 5 and 6 147 

give the discussion and concluding remarks. 148 



2. Methodology 149 

2.1 Study area 150 

The study is focused on the Chesapeake Bay, the largest estuary in the U.S., which is located 151 

in the Mid-Atlantic region. The presence of rivers, tidal embayments, coastal marshes, 152 

navigation channels, and highly developed and undeveloped coastlines have created a very 153 

complex coastal landscape in the Chesapeake Bay. The Bay is home to a diverse range of 154 

habitats such as large wetlands, forests, and rivers, all of which play an important role in 155 

supporting species and maintaining the ecological balance of the Bay (Baird & Ulanowicz, 156 

1989). Owing to its low-lying topography, the coastal infrastructure is vulnerable to storm surge 157 

and recurrent flooding, which is exacerbated by relative SLR (Castrucci & Tahvildari, 2018; 158 

Tahvildari & Castrucci, 2021).  159 

Hampton Roads, a major metropolitan region in southeast Chesapeake Bay, experiences the 160 

highest relative SLR rate along the U.S. east coast (Boon et al., 2010). This trend is influenced 161 

not only by global SLR caused by climate change but also by land subsidence in this area 162 

(Sherpa et al., 2023). Several studies have highlighted the growing susceptibility of the 163 

transportation infrastructure in Hampton Roads to coastal flooding, including both storm surges 164 

and recurrent nuisance flooding, also referred to as high-tide flooding or sunny day flooding 165 

(Shen et al., 2019; Tahvildari et al., 2022). The development of a robust and rapid water level 166 

prediction model that leverages real-time weather forecast data will be beneficial to addressing 167 

the intensifying flooding issue in the region and other coastal communities facing similar 168 

challenges. Such a model can be used for early warning, infrastructure planning, and 169 

emergency management.  170 

We selected the Chesapeake Bay as the study area to illustrate the capabilities and challenges 171 

of the model in a region with a complex coastal landscape, with highly valued assets 172 

concentrated in the vicinity of the coastline that is highly vulnerable to sea level rise and climate 173 



change impacts.  The model is designed to calculate water level time series at several locations 174 

throughout the Chesapeake Bay, trained with historical water level data. The National Oceanic 175 

and Atmospheric Administration (NOAA) and the U.S. Geological Survey (USGS) operate 176 

numerous tide stations within the Chesapeake Bay region. For this study, ten stations were 177 

chosen (see Fig. 1 and Table 1) as the observation points for training and validating the model. 178 

Of these stations, four are located near the Bay mouth (CB, KT, SW, and MP), three are in the 179 

midsection (LS, WM, CM), and the remaining three are positioned at the north of the Bay (BT, 180 

AP, DC). 181 

 182 

Fig. 1. Map of Chesapeake Bay and the selected observation stations. 183 

Table 1. Names and locations of NOAA stations (NOAA, 2021) 184 

Label Name 
Station 

ID 

LAT. 

(°) 
LON. (°) 

AP Annapolis, MD 8575512 38.9833 -76.4817 

BT Baltimore, MD 8574680 39.2667 -76.6400 

CB CBBT, Chesapeake Channel, VA 8638901 37.0333 -76.0833 

CM Cambridge, MD 8571892 38.5717 -76.0617 

DC Washington, DC 8594900 38.8733 -77.0217 

KT Kiptopeke, VA 8632200 37.1650 -75.9883 

LS Lewisetta, VA 8635750 37.9967 -76.4650 

MP Money Point, VA 8639348 36.7783 -76.3017 

SP Sewells Point, VA 8638610 36.9433 -76.3283 

WM Windmill Point, VA 8636580 37.6150 -76.2900 



2.2 Data Preparation 185 

A higher level of inherent relationship within the data in an ML model enhances the potential 186 

to gain higher accuracy and dependability. From a physical perspective, total ocean water level 187 

is influenced by multiple processes including astronomical tides, storm surge, Coriolis-induced 188 

motions, and ocean currents, and the nonlinear interaction between these processes. Among 189 

these factors, astronomical tides and wind field are most influential. Astronomical tides are 190 

highly predictable and storm surge is mainly driven by wind stress tide, wave setup, and 191 

barometric tide, all of which are dependent on the wind field (Dean & Dalrymple, 2001).  192 

The majority of ML-based storm surge models rely on wind data as the primary input. Previous 193 

studies have incorporated atmospheric data through various approaches, including point-wise 194 

data recorded at meteorological stations, storm track, and more recently, as 2D wind field. The 195 

2D data is preferred as it accounts for more details, and, in contrast to hurricane tracks, it can 196 

be used for a wide range of storm events, including minor storms, tropical cyclones, and 197 

Nor’easters. In prior studies, tide has been treated differently. Some scholars have removed 198 

tide levels from water levels and predicted residual surge levels using atmospheric data. While 199 

some others have included tides as their model input. In our proposed model, the input data 200 

consists of an hourly sequence of atmospheric data, including velocity components of wind 201 

and air pressure (at the sea surface) on a 2D grid, as well as hourly time series of astronomical 202 

tide levels at the observation stations. The model’s outputs are time series of water level at 203 

these stations. The wind velocity vectors at 10 m above sea surface were used as model input. 204 

Velocity at this reference elevation is used commonly to parametrize wind stress on water 205 

surface because modeling or measuring wind velocity at the sea surface is challenging due to 206 

rapid and potentially large changes in surface elevation, and the effect of surface roughness on 207 

wind velocity within the atmospheric boundary layer.  208 



A dataset spanning 21 years, from 2002 to 2023, served as the training data of the model. Water 209 

level measurements, both observed and astronomical, at the observation stations were obtained 210 

from the NOAA database (NOAA, 2021), all referenced to the Mean Sea Level (MSL) vertical 211 

datum. For the atmospheric inputs, we employed the CFS database. The NCEP Climate 212 

Forecast System Reanalysis (CFSR, Saha et al., 2010) was used for the period from 2002 to 213 

2010, and The NCEP Climate Forecast System Version 2 (CFSv2, Saha et al., 2014) from 2010 214 

to 2023.  These datasets have different spatial resolutions, with CFSR at 0.30° resolution and 215 

CFSv2 at 0.205° resolution. To ensure consistency, both datasets were resampled using cubic 216 

interpolation onto a 5°x5° grid of 0.205° resolution, covering the entire study region, as 217 

illustrated in Figure 2. Within the model, we used the wind velocity components in the form of 218 

velocity magnitude and Azimuth direction. The input data were standardized before fusing into 219 

the model. In terms of the temporal data length, we selected a window of 84 hours to slide 220 

through the data. However, 12 hours of the sliding windows overlap. The first 12 hours of the 221 

84-hour period are used to provide the LSTM network with a sufficient memory of the past 222 

during the initial time step, but we excluded these 12 hour of predictions from the model output 223 

and the calculation of loss and performance parameters. Consequently, each prediction spanned 224 

a net length of 72 hours. It is noted that we tested different time windows within 2-4 days, 225 

corresponding to typical forecast period, and the model showed slightly better performance for 226 

a time window of 72 hours. 227 



 228 

Fig. 2. The extent and resolution of atmospheric data in the model. The figure shows the landfall of Hurricane Irene (2011). 229 

Two approaches exist in terms of the temporal relationship between input and output data 230 

within the predictive ML-based models. In one approach, to estimate surge within a time 231 

interval [t, t+Tlead], very recently recorded data in a time span [t-Tmin, t] is employed as input. 232 

The primary focus of this method is to discern the underlying data patterns and trends, rather 233 

than establishing a relationship between input and output grounded in the physics of the 234 

problem. This approach is sensitive to lead time, as the accuracy of predictions experiences a 235 

decline with increasing lead time. In the second approach, similar to physics-based modeling, 236 

a temporal consistency is maintained between input and output. However, in this approach, the 237 

model relies on inputs derived from other atmospheric forecast models. This adds an element 238 

of uncertainty to the results. Previous models have utilized either of the approaches or their 239 

combination.  We adopt the second approach here. Our model calculates water level at any time 240 

interval given respective inputs from atmospheric models.  241 

To generate training samples, a straightforward method is sliding a fixed time window across 242 

the entire dataset, resulting in a substantial number of samples. These samples can either be 243 

overlapping or non-overlapping with two samples that do not fully overlap considered as 244 

distinct instances. We used a fixed sliding shift of 72 hours to generate non-overlapping 245 



samples. Overall, 2305 samples were created from the collected data. Fig. 3 shows the 246 

histogram of the maximum water level in the generated samples.  247 

 248 

Fig. 3. Distribution of peak water level in the generated samples. The flooding thresholds (minor, moderate, major) are determined by 249 

averaging the thresholds used by NOAA across the stations. 250 

2.3. Description of the model 251 

A combination of CNN, LSTM, and fully connected layers was used in the architecture of the 252 

model. CNNs excel at processing grid-like data, by effectively capturing local patterns and 253 

hierarchies through convolutional layers (Lecun & Bengio, 1995). On the other hand, LSTM 254 

networks specialize in sequential data such as time series. While regular RNNs suffer from the 255 

vanishing gradient problem, LSTMs capture long-range dependencies in sequential data by 256 

utilizing memory cells and a sophisticated gating mechanism (Hochreiter & Schmidhuber, 257 

1997). The combination of CNN and LSTM networks has proven to be highly effective in 258 

handling applications that require both spatial and temporal data (Davila Hernandez et al., 259 

2023; Zust et al., 2021). While used in a few past studies, the application of CNN-LSTM 260 

networks for spatiotemporal flood prediction holds significant potential. 261 

An ensemble of several trial runs, not detailed here, were conducted to determine the optimal 262 

layer dimensions and hyperparameters. The best performance was achieved by manual grid 263 

search across the various parameters as well as utilizing random search through hyperparameter 264 



tuning functions. Fig. 4a shows the architecture that delivered the best performance. As shown 265 

in this figure, the model incorporates input data in two stages. The process begins with fusing 266 

the atmospheric inputs to the CNN layers. The convolution process involves sliding several 267 

kernel matrices, typically of the size 2x2 or 3x3, across the input data to produce several feature 268 

maps. The kernels initialize with random values and then, are optimized during the 269 

backpropagation step. For temporal data, a Time-Distributed option fuses the data frame by 270 

frame, enabling the model to process each frame separately (see Fig. 4b). 271 

  272 

Fig. 4. The architecture of the model. (a) “Conv2D” denotes 2D convolution layers with 32 output channels for the first layer and 16 for the 273 

second layer. “Dense” represents fully connected layers. The output dense layers employ a linear activation function while ReLU is used for 274 



the remaining layers. (b) the “Time-Distributed” option enables the model to process one frame of atmospheric input at each timestep of 275 

LSTMs.  276 

The input atmospheric data in the model has the dimension (72,25,25,3), including 72 hourly 277 

timesteps, 25 by 25 grid points, and 3 wind parameters (velocity, Azimuth direction, and 278 

pressure). The initial CNN layer with 3x3 kernels receives the inputs frame by frame and 279 

produces 32 output feature maps per frame. This layer is succeeded by the second CNN layer 280 

with 32 output channels. Subsequently, one Flatten and one Fully Connected layers condense 281 

the output to a 256-element-long vector.  282 

The feature vector derived from the wind field frame undergoes processing within dedicated 283 

LSTM units for each of the 10 stations. Before entering each unit, a primary fully connected 284 

layer reduces the feature vector dimensions to 16. At this stage, the model incorporates the tide 285 

data, concatenating it with the feature vector to enrich the information used for prediction. The 286 

LSTM layers, each configured with 128 output parameters at every time step and an equivalent 287 

number of hidden parameters, follow this initial processing step. Subsequently, two fully 288 

connected layers are employed to further reduce the final size of the outputs, resulting in a 72-289 

hour time series for each observation station. This time series represents the predicted water 290 

levels. To improve the model’s performance and prevent overfitting, batch normalization and 291 

dropout layers have been used at different stages (see Fig. 4a). A Rectified Linear Unit (ReLU) 292 

activation function was used in CNN layers due to its strong empirical success (Zoph & Le, 293 

2018). Table 2 presents the details of hyperparameters used in the model. 294 

Table 2. Summary of hyperparameters used in the model. 295 

Hyperparameter Value/Method 

Loss function MSE (m2) 

Optimizer Adam 

Learning rate 1e-3 

Batch size 64 

Early stopping min delta 1e-4 (m2) 

Early stopping patience 15 

Dropout rate 0.05 

Max epochs 200 



3- Model Performance 296 

The model performance was evaluated during both training and testing phases. Mean Squared 297 

Error (MSE) was employed as the loss function. MSE is widely employed for regression 298 

problems. It quantifies the squared deviation between model predictions and observed data. 299 

The formula for calculating MSE is as follows: 300 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝜂𝑔𝑎𝑢𝑔𝑒 − 𝜂𝑚𝑜𝑑𝑒𝑙)

2𝑁
1  , (1) 

where N is the number of data within a batch, 𝜂𝑔𝑎𝑢𝑔𝑒  are the observed water levels, and  𝜂𝑚𝑜𝑑𝑒𝑙  301 

are the output water levels, respectively. In the calculation of MSE, both 𝜂𝑔𝑎𝑢𝑔𝑒  and 𝜂𝑚𝑜𝑑𝑒𝑙  are 302 

truncated to exclude the first 12 hours of the output time series, as previously discussed in 303 

section 2.2.  304 

An 8-fold cross-validation strategy is performed to ensure the reliability of the evaluation and 305 

to mitigate potential biases. This approach involves partitioning the dataset into eight subsets, 306 

without any shuffling, and training the model on seven of them while validating the remaining 307 

subset. This process is repeated eight times, with each subset serving as the validation set once. 308 

The validation subsets are partitioned equally into early stopping validation and testing sets. 309 

The early stopping validation monitors the model's performance on the validation set and stops 310 

the training when further improvement can result in overfitting. 311 

Fig. 5. Shows the learning curve of the model. The steep slope indicates that the model is 312 

converging quickly, implying a strong relationship between the data. The dashed lines in the 313 

figure, representing the cross-validation data, show a good alignment with the training data. 314 

Despite the presence of minor fluctuations, the trends of the two curves are very similar.  315 



 316 

Fig. 5. Learning curve of the model. The blue line represents the training data and the dashed red line denotes the validation set. 317 

The box plots in Fig. 6 show the distribution of both training and testing error across different 318 

stations. The errors in this figure are plotted as Root Mean Squared Error (RMSE). Given the 319 

model has multiple output layers, each corresponding to a station, the total MSE is computed 320 

as the sum of the MSE for all output layers. However, RMSE is calculated by the formula: 321 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝜂𝑔𝑎𝑢𝑔𝑒 − 𝜂𝑚𝑜𝑑𝑒𝑙)

2
𝑁

1

,  (2) 

where N is the number of data in each station. As shown in Fig. 6, the upper quartile of RMSE 322 

for all the stations remains below 12 cm and 18 cm during the training and testing phases, 323 

respectively. The station DC shows a more dispersed and larger error, with whisker lines 324 

extending to nearly 20 cm during testing. Otherwise, the training and testing errors are 325 

comparable across the stations.  326 



  327 

Fig 6. Distribution of RMSE values across stations during training and testing phases. The boxes indicate the median and interquartile 328 

ranges (IQR), while the Whiskers extend 1.5 times the IQR. 329 

There are 2026 samples in a training set, each has data for 10 stations, and each station contains 330 

72 hourly water levels. This results in a total of 1,458,720 water level values for the train set, 331 

and 103,680 for the test set. Fig. 7 shows the distribution of training and testing Absolute Error 332 

(AE), calculated as |𝜂𝑔𝑎𝑢𝑔𝑒 − 𝜂𝑚𝑜𝑑𝑒𝑙|, for all water levels categorized into four ranges. The box 333 

plots show an expected increasing trend in AE with higher water level ranges. For the fourth 334 

bin that represents moderate and major flooding in most stations, the median AE is 10.3 cm 335 

and 23.2 cm for training and testing stages, respectively. 336 



  337 

Fig 7. Distribution of absolute error |ηtrue-ηpred| against different water level ranges during training and testing phases. The boxes indicate the 338 

median and interquartile ranges (IQR), while the Whiskers extend 1.5 times the IQR. 339 

Fig. 8 compares the RMSE at each station during training and testing steps. The average RMSE 340 

during training stands at 8.3 cm, while it slightly increases to 10.1 cm during testing. The model 341 

shows a good performance during testing. The close scores during training and testing prove 342 

that the model successfully fits the data without overfitting. In trying different architecture 343 

settings, we found that the inclusion of batch normalization and drop-out layers are highly 344 

effective in preventing overfitting (see Fig. 4a).  345 



 346 

Fig. 8. Comparison of mean RMSE values across the stations between training and testing steps. 347 

4. Storm Tide Prediction 348 

The model’s strong performance during testing does not necessarily guarantee its ability in 349 

predicting storm tides. This is because the majority of samples in a training set represent normal 350 

sea state, where the measured water levels are mainly driven by the tides. We applied the model 351 

to nine historical flood events (see Table 2) including major recent hurricanes and two nuisance 352 

flooding events to gain a better insight into its performance. The source of data used here was 353 

same as in the training step. To predict each event, the respective month was eliminated from 354 

the training data to keep its data unseen. The most extreme storm surge, Hurricane Isabel 355 

(2003), was kept in the training data. 356 

Table 3. The test cases conducted to show the model’s performance. Max Peak Surges are the maximum recorded water level across the 357 

stations. 358 

Name Max Peak Surge (m) Date 

Hurricane Ian 1.32 September-2022 

High-Tide flooding 1.26 November-2021 

High-Tide flooding 1.30 November-2019 

Hurricane Dorian 1.48 September-2019 

Hurricane Mattew 1.54 October-2016 

Hurricane Jaocin 1.66 September-2015 

Hurricane Sandy 1.75 October-2012 

Hurricane Irene 2.11 August-2011 

Nor'Ida 2009 2.11 November-2009 

The results herein are presented in terms of RMSE and Coefficient of Correlation. Correlation 359 

scores measure the strength of relationship between modeled and observed data. The 360 



coefficient of Determination (R2) assesses the proportion of the variance in the dependent 361 

variable. Adjusted R2 is commonly used for models with different number of predictors (Basiri 362 

et al., 2015). Pearson Coefficient of Correlation (R or CC) quantifies the linear relationship 363 

between the observed and modeled data. In this paper, we used CC which is calculated as 364 

follows: 365 

𝐶𝐶 = 1 −
∑ (𝜂𝑔𝑎𝑢𝑔𝑒 − 𝜂̅𝑔𝑎𝑢𝑔𝑒)(𝜂𝑚𝑜𝑑𝑒𝑙 − 𝜂̅𝑚𝑜𝑑𝑒𝑙)

𝑁
1

√∑ (𝜂𝑔𝑎𝑢𝑔𝑒 − 𝜂̅𝑔𝑎𝑢𝑔𝑒)
2𝑁

1 ∑ (𝜂𝑚𝑜𝑑𝑒𝑙 − 𝜂̅𝑚𝑜𝑑𝑒𝑙)2𝑁
1

,  
(3) 

where N is the number of data within a prediction. 366 

Fig. 9 shows the time series of the model for Hurricane Ian (2022). It was found that a 6-day 367 

time window can capture the duration of storm surge across different storms and different 368 

stations sufficiently. This window was used to illustrate the results for Hurricane Ian and other 369 

storms, and to calculate the correlation coefficient. Overall, the correlation with the observed 370 

time series is satisfactory at all the stations. There is no tidal phase lag between the astronomical 371 

data and model results which proves the LSTM units are trained well to follow the tidal phase 372 

for various atmospheric inputs. The model shows a very good performance in predicting peak 373 

surge for this scenario; the average pick surge in all stations is 0.99 m for both observed and 374 

model data. 375 

As an example of model performance for different high water level events, Fig. 10 shows the 376 

time series of all the simulated storm surges and king tides in the Sewells Point (SP) tide station. 377 

As seen, the model shows a decent performance in predicting water level during major 378 

hurricanes in the past two decades. The largest error in the peak storm tide at SP belongs to 379 

Hurricane Irene (2011) where the observed and modeled water levels are 1.88 m and 1.45 m, 380 

respectively, corresponding to a 23.0% error. On average, the model estimates pick water levels 381 

at this station with a 10.6% error.  382 



Fig. 11 shows scatter plots of predicted water levels against gauge data in all the stations. Using 383 

MSE as the loss function, a modest underestimation was observed in all stations, but the model 384 

showed a decent average RMSE of 11.4 cm in modeling nine historic events, seven of which 385 

were extreme storm surges. We examined different loss functions during the training process 386 

to minimize the underestimation. Less common loss functions like quantile loss decreased the 387 

underestimation but also diminished the overall model performance.  388 

We also compared our model’s prediction results with data available in the NACCS database, 389 

which includes a suite of high-fidelity numerical simulations of storm surge in the North 390 

Atlantic. The effort was conducted to provide information for computing the joint probability 391 

of coastal storm forcing parameters for the U.S. Mid-Atlantic and Northeast regions. This 392 

information is critical for effective flood risk management, project planning, design, and 393 

performance evaluation. The ADCIRC+STWAVE mesh developed for the NACCS study 394 

encompasses the western North Atlantic, the Gulf of Mexico, and the western extent of the 395 

Caribbean Sea with 3.1 million grid points nodes and 6.2 million grid cells. This mesh is a 396 

combination of prior regional meshes developed by FEMA (Cialone et al., 2015). Specifically, 397 

for the Chesapeake-Delaware Bay region on the Atlantic coast, the FEMA_R3 mesh was 398 

employed, with over 1.7 million nodes and a resolution of up to 30m (Blanton et al., 2011). 399 

With this resolution, the NACCS model is considered a reliable high-fidelity flow-wave model 400 

for studying storm surge. The initial NACCS model was validated with NOAA tide gauges for 401 

several cases. Among the historic events we simulated to show the performance of the model, 402 

Hurricanes Irene (2011) and Sandy (2012) were available in the NACCS’s historic simulations 403 

and were compared to model results. NACCS model generated outputs, including water levels, 404 

at approximately 18,000 points, with around 3,000 of these points located within the 405 

Chesapeake Bay. For comparison, we used outputs at locations nearly identical to the tide 406 

stations used in this study (Table 1).  407 



 408 

Fig. 9. Time series of water level during Hurricane Ian (2022) at the tide stations under study. Dashed black lines represent astronomical tide 409 

levels, the solid black lines are the gauge data and the model’s outputs are the blue dash-dot lines. 410 

 411 

Fig. 10. Time series of simulated storm surges and king tides at the Sewells Point (SP) tide gage. Dashed black lines represent astronomical 412 

tide levels, the solid black lines are the gauge data and the model's outputs are the blue dash-dot lines. 413 



 414 

Fig. 11. Scatter plots of predicted against observed water levels across the stations. The color map represents the density of points. 415 

Fig. 12 shows the time series output from the ML model, the ADCIRC model, and the gauge 416 

data for hurricanes Irene (2011) and Sandy (2012). The ADCIRC model shows a strong 417 

performance in capturing the peak surge in Irene for most stations, while the ML model 418 

underestimates the peak. Both models show a weak performance in the northern stations AP, 419 

BT, and DC. Excluding these stations, the average errors in peak residual surge values are 420 

21.0% and 12.0% for the present model and the ADCIRC model, while in the northern stations, 421 

these errors are 96% and 65%, respectively. The average RMSEs are close; for hurricane Irene, 422 

the ML model yields an average RMSE of 13.4 cm, compared to 16.2 cm for ADCIRC. For 423 

Hurricane Sandy, the ML model has a 19.5 cm RMSE compared to 15.8 cm for ADCIRC.  424 

Fig. 13 shows the scatter plots of both models and Fig. 14 summarizes the comparison between 425 

the two models across the observation stations. Averaging over all the stations for the two 426 



storms used for comparison, the ML model yields an RMSE of 16.4 cm and CC of 0.90, 427 

compared to 15.9 cm and 0.88 for the ADCIRC model. Neglecting the uncertain results of the 428 

three northern stations, the ML model yields an RMSE of 14.3 cm and CC of 0.94, compared 429 

to 12.9 cm and 0.96 for the ADCIRC model. These scores offer a more realistic representation 430 

of the comparison between the two models. In summary, the performance of the ML model is 431 

quite competitive, with the ADCIRC model performing slightly better in capturing peak surge. 432 

 433 

Fig. 12. Time series of water level output using the present ML model, ADCIRC model, and the observations for Hurricanes Irene (2011) 434 

and Sandy (2016). Black solid lines represent the observed gauge data, red dashed lines pertain to the ADCIRC model, blue dash-dot lines 435 

show the present model’s results, and black dashed lines represent harmonic tides.  436 



 437 

Fig. 13. Scatter plots of observed water levels against the ADCIRC (red dots) and the present ML model (blue dots). 438 

5. Discussion 439 

(1) Overall, the present model shows a strong performance in predicting coastal water levels 440 

of different intensity, despite the existence of a few outliers in the predictions. We can notice a 441 

trend in the results: the model shows a more reliable performance in prediction of water level 442 

near the bay mouth, compared to the stations located at higher latitudes towards the end of the 443 

Bay. This behavior is observed in the NACCS model results as well. Though not an objective 444 

of this study, discussing the implications of this trend is worthful. Several factors may 445 

contribute to such disparity. From the ML point of view, difference in correlation means that 446 

the network finds a stronger relationship between inputs and outputs in the southern stations 447 

compared with the northern ones. This means other factors may affect water level in the 448 

northern stations such as more complex hydrodynamics caused by tidal reflection, density 449 

gradient circulations, or riverine discharges. From the hydrodynamics point of view, the 450 



performance of the NACCS model (ADCIRC+STWAVE) in storm surge modeling has been 451 

widely verified. On the other hand, the circulations within the water column due to density 452 

gradients are expected to have a negligible surface signature compared to barotropic tides, wind 453 

waves, and wave-induced currents. Neither ADCIRC+STWAVE nor the present ML model 454 

accounts for fluvial and pluvial flows. By exploring respective USGS gauges, we found that 455 

the discharge from the Potomac and Susquehanna rivers during storm events was not negligible 456 

and could affect water levels in the northern Bay. For instance, during Hurricane Sandy (2016), 457 

the discharge of the Potomac River increased substantially from 3,000 ft/s to 140,000 ft/s. This 458 

underscores the fact that accounting for river discharge in input data in future studies could 459 

result in a stronger correlation between ML model output and observations. 460 

(2) The lowest performance of the ML model pertains to the most extreme storms due to the 461 

scarcity of that data. Therefore, training the model with more extreme samples, either historical 462 

or synthetic, could improve the accuracy of the model in predicting extreme events. In our 463 

training data, there are very few major hurricanes with category two or more. The model yields 464 

13.8 cm RMSE for Nor’Ida (2009) considering there is only one more extreme storm in the 465 

sample training data (Hurricane Isabel (2003)), While in the case of Hurricanes Ian (2022), 466 

since the model had several more extreme storms in the training data, the performance was 467 

superior with RMSE at 11.7 cm and CC at 0.97. Synthetic simulations such as NACCS database 468 

provide a wide range of hurricanes with rare return periods. Although these data are associated 469 

with uncertainties and respective errors, high-fidelity validated data such as NACCS are 470 

valuable sources of samples. Future works can combine synthetic storm simulations with real 471 

gauge data to improve the model’s skill for unseen extreme storms.  472 

 473 



 474 

Fig. 14. Summary of performance comparison between the ML model and ADCIRC 475 

The present model substantially reduces the computational time required for water level 476 

predictions. Typically, hydrodynamic models take several hours to days, depending on grid 477 

resolution and availability of high-performance computation resources, to calculate water 478 

levels across regional scales similar to the present study area. The present ML, once trained, 479 

produces water level in a few seconds using a personal laptop.   480 

6. Conclusion 481 

In this study, we developed a data-driven model using the deep learning approach to predict 482 

water level time series in multiple locations across the Chesapeake Bay. The model is trained 483 

with the data from NOAA tide gages and generates water level predictions at the same 484 

locations. The data from these tide gages is widely used by local and regional authorities for 485 

flood warning and emergency management, and rapid water level predictions at these locations 486 

can enable timely precautions and warnings.  487 



The architecture of our model consists of a time-distributed combination of a CNN network 488 

with multiple LSTM units. The input data are the hourly sequence of atmospheric data on a 489 

25x25 grid of 0.205 ͦ resolution and the time series of astronomical tides at the output points, 490 

while the outputs of model are the time series of predicted water level. To maintain a high 491 

physical relation, all input and output data pertain to the same time window, with no lead-lag 492 

approach. The training data includes samples created from 21 years of continuous data, from 493 

2002 to 2023. An adaptive sliding approach addresses the bias that arose due to the rarity of 494 

flooding events against normal sea states.  495 

The trained model is tested with an average RMSE of 10.0 cm. To better evaluate the model’s 496 

performance predicting storm surge occurrences, nine historical events were studied, where the 497 

model scored a CC of 0.94 and RMSE of 11.4 cm. We compared the performance of our method 498 

against the NACCS database, the results of high-fidelity hydrodynamic modeling of the North 499 

Atlantic. Our model demonstrated a decent accuracy and a comparable performance with the 500 

ADCIRC+STWAVE model used in the NACCS study. This study is an effort to address the 501 

speed-accuracy trade-off encountered in timely prediction of coastal flooding and suggests that 502 

physically related data fused to properly designed deep neural networks can be as accurate as 503 

high-resolution hydrodynamic models in real-time forecasting of coastal water levels. 504 
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